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Abstract 14 

In many flood-prone areas, it is essential for emergency responders to use advanced 15 

computer models to assess flood risk and develop informed flood evacuation plans. 16 

However, previous studies have limited understanding of how evacuation performance is 17 

affected by the arrangement of evacuation shelters regarding their number and 18 

geographical distribution and human behaviors regarding the heterogeneity of household 19 

evacuation preparation times and route searching strategies. In this study, we develop an 20 

integrated socio-hydrological modeling framework that couples (1) a hydrodynamic model 21 
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for flood simulation, (2) an agent-based model for evacuation management policies and 22 

human behaviors, and (3) a transportation model for simulating household evacuation 23 

processes in a road network. We apply the model to the Xiong’an New Area and examine 24 

household evacuation outcomes for various shelter location plans and human behavior 25 

scenarios. The results show that household evacuation processes are significantly affected 26 

by the number and geographical distribution of evacuation shelters. Surprisingly, we find 27 

that establishing more shelters may not improve evacuation results if the shelters are not 28 

strategically located. We also find that low heterogeneity in evacuation preparation times 29 

can result in heavy traffic congestion and long evacuation clearance times. If each 30 

household selects their own shortest route without considering the effects of other evacuees’ 31 

route choices, traffic congestion will likely occur, thereby reducing system-level 32 

evacuation performance. These results demonstrate the unique functionality of our model 33 

to support flood risk assessment and to advance our understanding of how multiple 34 

management and behavioral factors jointly affect evacuation performance. 35 
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1. Introduction 40 

Flooding is one of the most devastating natural disasters and can lead to significant 41 

numbers of fatalities, social and economic disruptions, property and infrastructure damage, 42 

and environmental degradation around the world (Smith and Matthews, 2015; McClymont 43 
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et al., 2020; Brunner et al., 2020; Tanoue et al., 2016; Kreibich et al., 2014; Wang et al., 44 

2019). The global flood database shows that the global flood inundation land area is 45 

approximately 2.23 million km2, with 255~290 million people being directly affected by 46 

floods (Tellman et al., 2021). Flood-related economic damage increased globally from $94 47 

billion in the 1980s to more than $1 trillion U.S. dollars in the 2010s (Hino and Nance, 48 

2021). Furthermore, the severity, duration and frequency of damaging floods are expected 49 

to continue to increase in the future due to changes in climate, land use and infrastructure 50 

(Jongman et al., 2012; Moulds et al., 2021; Wedawatta and Ingirige, 2012; Tellman et al., 51 

2021). In many areas facing flood threats, it is essential for emergency responders and 52 

decision-makers to use advanced computer models to assess the flood risk and to establish 53 

effective disaster-mitigation plans (Simonovic and Ahmad, 2005).  54 

Before an extreme flood occurs, evacuation is a critical emergency preparedness measure 55 

and a common practice because it is impractical and/or economically costly to construct 56 

the necessary infrastructure to resist floods (Wang et al., 2016; Liu and Lim, 2016; Islam 57 

et al., 2020; Kreibich et al., 2015). However, studies have shown that emergency 58 

evacuation is a complex and dynamic process that can be affected by factors from a wide 59 

range of interdisciplinary domains (Zhuo and Han, 2020; Hasan et al., 2011; Huang et al., 60 

2012; Chen et al., 2021; Sung et al., 2018). These factors include but are not limited to (1) 61 

the accuracy, lead time and sources of flood early warnings and the broadcasting channels 62 

through which flood information is disseminated to the affected population (Shi et al., 2020; 63 

Verkade and Werner, 2011; Alonso Vicario et al., 2020; Palen et al., 2010; Nester et al., 64 

2012; Goodarzi et al., 2019), (2) the infrastructure and engineering facilities needed for 65 

emergency evacuation, which are influenced by the accessibility of transportation networks, 66 
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road capacity and locations of evacuation zones (Mostafizi et al., 2017; Chen and Zhan, 67 

2008; Saadi et al., 2018; Mostafizi et al., 2019; Koch et al., 2020; Oh et al., 2021; Liu and 68 

Lim, 2016), and (3) demographical attributes and household behavioral characteristics, 69 

such as residents’ beliefs and risk perception, previous knowledge, social networks, and 70 

past experience with flood events (Hofflinger et al., 2019; Huang et al., 2017; Lindell et 71 

al., 2020; Wang and Jia, 2021; Shahabi and Wilson, 2014; Du et al., 2017). These studies 72 

highlight the need to develop comprehensive socio-hydrological modeling tools that can 73 

adequately incorporate various factors and processes to support flood management plans 74 

in the context of coupled flood-human systems. 75 

Among the many emergency management policies and plans that can be implemented, 76 

appropriate shelter location arrangement is essential for massive evacuation operations. 77 

City planners and policy makers need to identify safe areas outside of flood inundation 78 

regions as feasible shelter locations for households who live in at-risk areas. Some studies 79 

have explored the criteria for shelter location arrangement and evacuation planning 80 

(Alçada-Almeida et al., 2009; Nappi and Souza, 2015; Bayram et al., 2015; Li et al., 2012; 81 

Alam et al., 2021). For instance, Bayram et al. (2015) developed an optimization model to 82 

allocate evacuation sites and assign each evacuee to the nearest shelter, with the objective 83 

of minimizing the total evacuation time. However, in this study, each evacuee’s travel time 84 

was estimated based on a simple traffic volume-travel time function, which was not able 85 

to fully represent evacuees’ complex interactions in a road network. Liu and Lim (2016) 86 

applied spatial analysis methods to assign shelters to households, considering the spatial 87 

relationships between households and shelter sites. A limitation of this study is that 88 

evacuee’s travel time was obtained from a simplified traffic model, and the road network 89 
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was not well represented in the network analysis. In a recent study, Alam et al. (2021) used 90 

a massive traffic simulation model and a multiple criteria evaluation method to identify 91 

candidate evacuation shelters and considered environmental conditions, structural 92 

attributes, emergency services and transportation factors. However, this study focused on 93 

obtaining a suitability score for each candidate shelter site with various weighting factors, 94 

yet failed to examine to what extent evacuation performance could be affected by the 95 

number of shelters and their geographical distribution in the community. Nevertheless, 96 

current studies have left a research gap that warrants research efforts to use physically-97 

based flood simulation models to identify safe areas as feasible shelter locations and more 98 

importantly, to use transportation models to address such a question: How evacuation 99 

performance is affected by the number and geographical distribution of evacuation shelter 100 

locations? This is the major research question we seek to explore in this study. 101 

The second research question to be explored in this study is associated with the role played 102 

by human behaviors in evacuation processes, which is an important research direction in 103 

disaster management (Aerts et al., 2018; Simonovic and Ahmad, 2005; Urata and Pel, 104 

2018). After receiving flood evacuation warnings, households will make decisions based 105 

on flood risk information, spend some time completing a set of preparation tasks, and then 106 

evacuate from their homes to safe areas. Among these decisions and behaviors, households’ 107 

evacuation preparation times (i.e., from the time when they receive flood evacuation orders 108 

to the time when they start to evacuate via a road network) play an important role in 109 

evacuation performance. Many empirical studies have examined the geographic, 110 

demographic and behavioral factors that affect households’ preparation times (Lindell et 111 

al., 2005, 2020; Huang et al., 2012, 2017; Chen et al., 2021). They found that household 112 
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evacuation preparation times can vary significantly from one household to another, 113 

exhibiting a certain degree of behavioral heterogeneity in a community (Lindell et al., 2005, 114 

2020; Rahman et al., 2021). As a result, we hypothesize that the heterogeneity in 115 

households’ evacuation preparation times affects the traffic flows in the corresponding road 116 

network and consequently influences the final evacuation outcomes. However, few studies 117 

have explicitly examined how traffic conditions and evacuation performance are affected 118 

by different degrees of heterogeneity in evacuation preparation times (Wang et al., 2016). 119 

This is the second question we aim to explore in this study. 120 

Furthermore, in this study, we also seek to assess how evacuation processes are affected 121 

by households’ evacuation route searching strategies, a process that involves emergency 122 

responders and policy makers. Previous studies have typically applied the shortest distance 123 

path searching method to simulate how evacuees find evacuation routes from their original 124 

locations to evacuation destinations (He et al., 2021; Bernardini et al., 2017; Du et al., 2016; 125 

Li et al., 2022). However, each evacuee’s search for the shortest evacuation path may not 126 

ensure system-level evacuation outcomes. In this study, we focus on comparing the 127 

evacuation scenario in which each household chooses the shortest path for evacuation with 128 

the scenario in which system-level global optimal routes are assigned to the evacuees. Such 129 

comparative analyses are expected to provide policy implications in terms of evacuees’ 130 

route selections to improve evacuation performance during natural disasters. 131 

Motivated by the above research questions and knowledge gaps, we develop an integrated 132 

socio-hydrological modeling framework in this study that couples (1) a physically-based 133 

hydrodynamic model (MIKE 21) for flood inundation simulation, (2) an agent-based model 134 

(ABM) for simulating flood management plans and human behaviors, and (3) a large-scale 135 
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traffic simulation model (MATSim) for simulating households’ evacuation processes in a 136 

road network. Specifically, the hydrological component of the socio-hydrological 137 

modeling framework is represented by the MIKE 21 model, which simulates flood 138 

inundation processes across space and over time in a flood-prone area for a given storm 139 

event. The simulation results of the MIKE 21 model can provide flood risk information 140 

and will be used by policy makers to make flood management plans. The social component 141 

of the modeling framework is represented by ABM and MATSim, which simulate policy 142 

makers’ flood management plans, households’ responses to flood management plans, and 143 

households’ collective evacuation activities in the road network. By coupling the three 144 

models, our modeling framework is capable of simulating a wide range of components and 145 

processes in a coherent manner to support flood evacuation management. 146 

We apply the modeling framework to the Xiong’an New Area, a large residential area with 147 

a high risk of flooding in northern China. Using a 100-year flood hazard as an example, a 148 

set of scenario analyses are conducted to explore how residents’ evacuation processes are 149 

jointly affected by management policies (i.e., the number and geographical distribution of 150 

evacuation shelter locations) and human behaviors (i.e., the heterogeneity in households’ 151 

evacuation preparation times and route searching strategies). This study aims to provide 152 

both modeling and policy implications for researchers and emergency responders to 153 

develop advanced socio-hydrological modeling tools for flood risk assessment and to 154 

improve the overall understanding of how flood evacuation performance is jointly affected 155 

by various management and behavioral factors.  156 

The remainder of this paper is organized as follows. Section 2 presents the modeling 157 

framework. Section 3 introduces the case study site, model construction and scenario 158 
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design. Section 4 presents the modeling results. Section 5 discusses the insights, limitations, 159 

and future research directions of this study, followed by the conclusions in Section 6. 160 

2. Methodology 161 

This section introduces the integrated modeling framework of this study. As illustrated in 162 

Figure 1, the modeling framework consists of three models: (1) an ABM for simulating 163 

household decision-making and emergency responders’ flood management policies, (2) a 164 

transportation model for simulating residents’ evacuation activities in a road network, and 165 

(3) a hydrodynamic model for simulating flood inundation processes. A detailed 166 

introduction to the three models and their coupling methods are described in turn as follows. 167 

 168 

Figure 1. Illustration of the integrated modeling framework that couples an ABM for 169 

simulating household decision-making and emergency responders’ flood management 170 
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policies, a transportation model for simulating residents’ evacuation processes in a road 171 

network and a hydrodynamic model for simulating flood inundation processes 172 

2.1. The ABM for human decision-making during flood events 173 

In this study, an ABM is developed to simulate the government’s disaster management 174 

plans and residents’ flood evacuation behaviors. Therefore, two types of agents are 175 

considered in the ABM: (1) an emergency responder (Type I agent) and (2) the set of 176 

households (Type II agents), which are described in turn below. 177 

An emergency responder agent is a government institution that makes flood management 178 

plans. As shown in Figure 1, in this study, we specifically consider two flood management 179 

decisions: (1) issuing a flood evacuation order to the residents who live in flood-prone 180 

areas and (2) shelter arrangement (i.e., deciding the number and location of evacuation 181 

zones that should be used to protect evacuees from flood hazards). Note that other 182 

management practices (e.g., sandbagging and levee construction) are also important flood 183 

management measures that are not explicitly discussed in this study. 184 

In this study, each household is represented by an autonomous decision unit (i.e., an agent), 185 

considering that all the family members in a household typically evacuate in a shared 186 

transportation mode after communicating with each other to arrive at a final evacuation 187 

decision (Du et al., 2016). After receiving evacuation orders, an agent will spend some 188 

time completing a set of evacuation preparation tasks and then evacuate from its household 189 

location to a chosen evacuation destination. The following three decisions and/or behaviors 190 

are explicitly considered during this process. 191 
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The first decision is selecting an evacuation shelter if multiple optional shelters are 192 

available. During evacuation processes, the agents seek to evacuate to safe areas as soon 193 

as possible, aiming to minimize their traveling times. However, during an emergency 194 

situation, it is unclear and/or quite challenging for the agents to assess which shelter can 195 

ensure the shortest traveling time due to, for example, uncertainties of real-time traffic 196 

conditions and traffic load (e.g., the number of evacuating agents on the road). Here we 197 

follow the classic approach in evacuation simulation and assume that an agent focuses on 198 

choosing the shortest route from its original location to the safe area, thereby choosing the 199 

geographically nearest shelter in the system to as its evacuation destination. Based on the 200 

above reasons, in this study, we assume that an agent will choose the evacuation shelter 201 

that is located the shortest geographical distance from its residential location. 202 

The second decision is associated with evacuation preparation activities (e.g., gather family 203 

members, pack bags, board up windows, and shut off utilities). These activities are 204 

aggregated and represented by a behavioral parameter called evacuation preparation time. 205 

This parameter measures how long it takes an agent to prepare for evacuation and is 206 

indicated by the interval between the time when an agent receives an evacuation order and 207 

the time when they start to evacuate via a road network. Previous studies have shown that 208 

households’ evacuation preparation times are influenced by both psychological and 209 

logistical preparation tasks, which may vary among agents, with noticeable behavioral 210 

heterogeneity even at the community scale (Lindell et al., 2020, 2005; Wang et al., 2016). 211 

In this study, the heterogeneity in agents’ evacuation preparation times is represented by 212 

the variation (i.e., standard deviation) in the evacuation preparation times of all households, 213 
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and we explicitly examine the role of human behavioral heterogeneity in community 214 

evacuation outcomes. 215 

The third decision is related to agents’ route selection strategies during evacuation 216 

processes. In a complex road network, an agent may have multiple route choices from its 217 

original location to a destination. In this study, we assume that all of the agents have good 218 

knowledge of the road network in their community. Thus, two route search methods are 219 

incorporated into the model: (1) the shortest distance route search method (Mode 1) and (2) 220 

the system optimization-based route search method (Mode 2). In the shortest distance route 221 

search method, each agent seeks to reduce its evacuation time without considering the 222 

effects of other agents’ evacuation route selections. The agents focus on finding the shortest 223 

route from their current location to the selected evacuation destination in the road network 224 

(Gallo and Pallottino, 1988; Fu et al., 2006; Li et al., 2022). Therefore, an agent’s choice 225 

of evacuation route in Mode 1 will not be affected by its departure time, because it will 226 

always choose the shortest route regardless of the time at which it starts to evacuate. The 227 

optimization-based route search method (Mode 2) adopts a heuristic iterative method to 228 

optimize all of the agents’ collective evacuation routes so that system-level evacuation 229 

efficiency is achieved (Zhu et al., 2018; He et al., 2021). In contrast with Mode 1, an agent’s 230 

evacuation route in Mode 2 is affected by real-time traffic condition and other agents’ 231 

evacuation status. Therefore, an agent’s evacuation route in Mode 2 might be different if it 232 

starts evacuation at a different time.  233 

It is worth noting that the agents will typically focus on reducing their own traveling times, 234 

and do not necessarily consider system-level evacuation efficiency. Among the above two 235 

route search modes, Mode 1 represents the case in which every agent in the system focuses 236 
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on achieving individual-level evacuation efficiency (i.e., chooses the shortest route for 237 

evacuation), while Mode 2 represents the case that represents system-level evacuation 238 

efficiency (i.e., all the agents’ route choices are optimized at the system level). In this 239 

regard, Mode 1 is the baseline evacuation scenario and Mode 2 is the benchmark scenario. 240 

The results of Mode 2 can be used to assess the extent to which the evacuation outcome of 241 

Model 1 can be improved by changing agents’ route choices. Policy makers can compare 242 

the results of the two modes to improve evacuation performance by, for example, providing 243 

recommended evacuation routes for the agents who may encounter and/or cause severe 244 

traffic congestion during their evacuation processes. Based on the above three decisions 245 

and behaviors, all the agents’ movements and interactions in the road network are 246 

incorporated into a transportation model, which is described in the following section. 247 

2.2. Transportation model for large-scale evacuation simulation 248 

As mentioned in Section 2.1, after an agent decides to evacuate, it will move from its 249 

household location to a chosen evacuation destination through the traffic network. During 250 

evacuation processes, an agent interacts with other agents and with the environment to 251 

adjust their movement in the road network over time. There are a number of modeling 252 

platforms and software packages used to model agents’ evacuation processes. These 253 

include the Network Explorer for Traffic Analysis (NEXTA), the Transportation Analysis 254 

and Simulation System (TRANSIMS), the Planung Transport Verkehr (PTV) VISSIM, the 255 

City Traffic Simulator (CTS), and the Multi-Agent Transport Simulation model (MATSim) 256 

(Mahmud and Town, 2016; Lee et al., 2014; Murray-Tuite and Wolshon, 2013). 257 

This study applies MATSim to simulate agents’ evacuation processes. MATSim is a widely 258 

used open-source software for large-scale transportation simulation. The model can 259 
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provide detailed information about each agent’s movements in a road network (Horni, 2016; 260 

Lämmel et al., 2010; Zhuge et al., 2021). As shown in Figure 2, MATSim requires a variety 261 

of data as model inputs. The plan data include the initial locations, evacuation destinations, 262 

and departure times of all agents, and these data can be retrieved from agents’ attributes 263 

and evacuation decisions in the ABM. The network data describe the attributes of the road 264 

network, such as the geographical structure of the road network, the number of lanes of 265 

each road, and road segment lengths and speed limits. These data are available from local 266 

or regional government institutions (e.g., the Department of Transportation) or from online 267 

data retrieval platforms such as OpenStreetMap or Google Maps (Farkas et al., 2014). 268 

Finally, the config input includes a model execution engine that defines a set of global 269 

model environments. Three modules, namely, an execution module, a scoring module, and 270 

a replanning module, are incorporated into MATSim for transportation simulation. This 271 

model has been widely used by researchers and practitioners to support evacuation 272 

planning and simulation for various types of natural disasters, such as earthquakes (Koch 273 

et al., 2020), hurricanes (Zhu et al., 2018), tsunamis (Muhammad et al., 2021), and floods 274 

(Saadi et al., 2018). For more details about MATSim and its applications in transportation 275 

simulation, see the studies of Lämmel et al. (2009) and Horni (2016). 276 
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 277 

Figure 2. Inputs, modules and processes of the MATSim model 278 

2.3. The hydrodynamic model for flood inundation simulation 279 

Information on flood inundation processes (e.g., flood extent and water level) is essential 280 

for governments and the public to make flood management and evacuation decisions. 281 

Hydrodynamic models are important tools for simulating the timing and duration of flood 282 

dynamics by solving a set of mathematical equations that describe fluid motion (Guo et al., 283 

2021). There are many hydrodynamic models available for flood dynamics simulation. 284 

These include but are not limited to HEC-RAS, MIKE11, MIKE 21, JFLOW, TRENT, 285 

TUFLOW and DELFT3D (Teng et al., 2017). 286 

Following our prior work (Wu et al., 2021), in this study we use the classic hydrodynamic 287 

model MIKE 21 to simulate flood inundation processes in a floodplain. MIKE 21 288 

numerically solves the two-dimensional shallow water equations to obtain water levels and 289 

flows across space and over time in various watershed environments, such as rivers, lakes, 290 

estuaries, bays and coastal areas. MIKE 21 has been widely used to simulate flood 291 

inundation processes in many floodplains across the world and is considered one of the 292 



15 

 

most effective modeling tools for flood risk mapping, flood forecasting and scenario 293 

analysis (Nigussie and Altunkaynak, 2019; Papaioannou et al., 2016). Interested readers 294 

may refer to our prior work (Wu et al., 2021) for detailed introductions to the construction, 295 

calibration and validation of the MIKE 21 model in the specific study area. 296 

2.4. Model integration and flowchart of the modeling framework 297 

In the prior sections (Sections 2.1-2.3), the structures and functionalities of the three 298 

models were introduced; this section introduces how they are coupled in an integrated 299 

modeling framework. Previous studies have shown that computer models can be coupled 300 

in either a loose or a tight manner (Harvey et al., 2019; Bhatt et al., 2014; Murray-Rust et 301 

al., 2014; Du et al., 2020; Li et al., 2021). The former refers to models that are linked 302 

together by input/output data interfaces. That is, the output of one model is used as the 303 

input of another model. In contrast, for the latter, a model uses a common data pool and 304 

workload to exchange data among multiple model components, and as a result, components 305 

affect each other during modelling processes.  306 

In this study, both the loose and tight coupling methods are employed to combine the three 307 

models. Specifically, MIKE 21 is coupled with the ABM and MATSim in a loose manner, 308 

while ABM and MATSim are coupled in a tight manner. The model coupling process and 309 

flowchart of the integrated model are illustrated in Figure 3. First, MIKE 21 simulates flood 310 

inundation processes for a specific flood event (e.g., a 100-year flood). The modeling 311 

results of MIKE 21 are then used to assess the inundated area and affected households in 312 

the flood zone, which are used as input data for the ABM and MATSim. Next, based on 313 

the modeling results of MIKE 21, two types of agents in the ABM are generated. The 314 

household agents who are located in the flood zone will receive flood warnings from an 315 
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emergency responder agent and make evacuation decisions. Finally, all the agents’ 316 

movements and evacuation activities are simulated by MATSim. By integrating the three 317 

models, the proposed modeling framework is capable of simulating flood inundation 318 

processes, flood management practices, and household decision-making and evacuation 319 

processes in a coherent manner. In the next sections, we will use a real-world case study to 320 

demonstrate how the modeling framework can be used by researchers and practitioners for 321 

flood risk assessment and evacuation management. 322 

 323 

Figure 3. Flowchart of the integrated modeling framework 324 

2.5. Measurement of flood evacuation performance 325 

Agents’ evacuation processes reflect their evacuation status and movements across space 326 

and over time in a road network. In this study, we use multiple parameters and indicators 327 
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to represent agents’ evacuation processes and evaluate their evacuation performance. For 328 

a residential area with n household agents, we first use a categorical variable, , {1,2,3}j tS  , 329 

to describe agent j’s evacuation status at time step t. , 1j tS   denotes that agent j has not 330 

started its evacuation process at time t. , 2j tS   denotes that agent j has already started 331 

evacuation but has not arrived at its evacuation destination at time t. , 3j tS   denotes that 332 

agent j has arrived at its evacuation destination at time t, which represents a successful 333 

evacuation case. Let 0  denote the time when the flood evacuation order is issued to the 334 

public, and let j  and 
*

j  denote agent j’s departure time (i.e., the time when the agent starts 335 

its evacuation in the road network after the evacuation preparation time) and arrival time 336 

(i.e., the time when agent j arrives at its evacuation destination), respectively. The agent’s 337 

evacuation time j  is defined as the time period from its departure time j  to its arrival 338 

time 
*

j  (i.e., 
*

j j j    ). 339 

By summarizing all the agents’ evacuation statuses over time, the effectiveness of flood 340 

evacuation processes in a region can be reflected by a matrix with two indicators at the 341 

system level: (1) agents’ average evacuation time   and (2) the system-level evacuation 342 

clearance time  . The agents’ average evacuation time   is the average value of all the 343 

agents’ evacuation times, which is calculated by 
1

1 n

j

jn




   . In comparison, the system-344 

level evacuation clearance time   for a region is the duration from the time when the flood 345 

evacuation warning is issued in a residential area to the time when the last agent arrives at 346 

its evacuation destination (i.e., 
*

0max({ | 1,2,3,..., })j j n     ). 347 
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3. Case study and scenario design 348 

3.1. Study site 349 

The Xiong’an New Area (XNA) is used as a case study to illustrate the functionality of the 350 

proposed modeling framework in flood simulation and evacuation management. The XNA 351 

is located in the Baiyangdian River Basin, which includes the largest freshwater wetland 352 

in North China. This region covers three counties (Xiongxian, Rongcheng, and Anxin), 353 

encompassing a total area of 1768 km2 (Figure 4). The region has a population of 1.1 354 

million, and the GDP is 21.5 billion RMB (Sun and Yang, 2019). 355 

The XNA has a typical continental monsoon climate, with annual average precipitation 356 

totaling approximately 570 mm. The region is influenced by various natural disasters and 357 

environmental problems, such as water pollution, heat waves, and groundwater 358 

overexploitation. In particular, the XNA has a high risk of flooding due to frequent extreme 359 

rainstorm events (Jiang et al., 2018; Su et al., 2021). Historical climate records show that 360 

a total of 139 flood events have occurred in the XNA over the past 300 years (Wang et al., 361 

2020). For example, the heavy storm from 19 July to 21 July in 2016 affected a total 362 

population of approximately 517,000, leading to severe destruction and economic losses. 363 

Studies have found that compared with historical flood conditions, both the frequency and 364 

intensity of extreme flood events in the region are expected to increase under future climate 365 

change (Zhu et al., 2017; Wang et al., 2020). The flood problems in the XNA and many 366 

other flood-prone areas worldwide call for developing advanced computer models and 367 

decision support systems for robust flood risk assessment and informed management 368 

practices during extreme flood events. 369 



19 

 

 370 

Figure 4. Map of the Baiyangdian River Basin and the Xiong’an New Area (marked with 371 

solid black lines) 372 

3.2. Data collection and model construction 373 

Based on the modeling framework, data from various sources were collected and compiled 374 

to construct the model, including meteorological, land use, hydrological, transportation and 375 

census data. Among them, land topology was retrieved from a 7-meter resolution DEM 376 

from the State Bureau of Surveying and Mapping. Meteorological data (e.g., daily 377 

precipitation, temperature, solar radiation and wind speed) from 98 stations in the study 378 

area were collected from the China Meteorological Administration. Population and 379 

household distribution were based on 30-meter resolution census data from the census 380 

bureau of the local government. Road network data were retrieved from Open Street Map, 381 
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an open source global map data repository. Table 1 presents the data used in this study and 382 

their sources. 383 

Table 1. List of data used in the integrated model 

Data type Data source Period Resolution Format 

Land elevation State Bureau of Surveying and Mapping 2019 7 m TIF 

Land use 
Data Center of the Chinese Academy of 

Sciences 

2015 30 m 
TIF 

River network 
Data Center of the Chinese Academy of 

Sciences 

2015 - 
SHP 

Streamflow Hydrological Yearbook in China 
1980-

2010 

Daily 
EXCEL 

Weather 

conditions 
China Meteorological Administration 

1980-

2010 

Daily 
EXCEL 

Soil type 
Data Center of Science in Cold and Arid 

Regions 

2009 1 km 
TIF 

Population Census Bureau of the local government 2020 30 m EXCEL 

Household 

distribution 
Census Bureau of the local government 

2020 30 m 
TIF 

Road network Open Street Map 2022 - XML 

 384 

Figure 5 illustrates how the data are merged and integrated into the modeling framework. 385 

As introduced in Section 2, the modelling process starts by running the MIKE 21 model, 386 

with meteorological, DEM, land use, soil type and river network data as the model inputs. 387 

For a given storm event, the MIKE 21 model generates flood processes, which can be used 388 

to predict the inundated area and the affected population. These data are then used to 389 

construct the ABM and the MATSim model to simulate agents’ flood management and 390 

evacuation behaviors. 391 
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 392 

Figure 5. Data sources and flowchart of the integrated modeling framework 393 

3.3. Flood simulation and scenario design 394 

As mentioned above, the case study site has a high risk of flooding due to frequent extreme 395 

rainstorm events. Following the precautionary principle in natural disaster management 396 

(Etkin et al., 2012), we use the 100-year flood event as an example to evaluate the impacts 397 

of extreme flooding on the study area, and then examine the impacts of various 398 

management policies and human behaviors on household evacuation processes. 399 

We run the hydrodynamic model to simulate flood inundation processes for the flood with 400 

100-year return period. The modeling results show that the inundated area is 66.5% of the 401 

land area (Figure 6). The affected population is 508,986 (45.8% of the total population). 402 

These modeling results are consistent with the results that were reported in our prior work, 403 

and are empirically similar to the flood hazard experienced in this region in July 2016. For 404 

detailed introductions regarding the construction, calibration and validation of the 405 

hydrodynamic model, see Wu et al. (2021). With such a high flood risk, it is essential for 406 
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emergency responders to understand how flood evacuation performance is affected by 407 

various human behavioral factors and evacuation management plans. 408 

 409 

Figure 6. Flood inundation areas for a 100-year flood in the study area 410 

A scenario-based analysis is conducted to examine the roles played by the following factors 411 

in flood evacuation simulations: (1) evacuation shelter establishment (i.e., the number and 412 

geographical distribution of shelter locations), (2) heterogeneity in households’ evacuation 413 

preparation times, and (3) evacuees’ route search strategies. Three experiments are 414 

designed to assess the joint impacts of the above three factors (Table 2), which are 415 

introduced in turn below. 416 

The first experiment focuses on assessing the impact of the number and geographical 417 

distribution of evacuation shelters on agents’ evacuation processes. Note that in the XNA, 418 
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five optional sites for evacuation shelters are identified based on the flood inundation area 419 

for the 100-year flood (illustrated by the red stars in Figure 6). Considering all the possible 420 

combinations of these shelters, a total of 31 simulations are performed in this experiment 421 

(5 simulations for single-shelter scenarios and 26 simulations for multiple-shelter 422 

scenarios). Experiment 2 assesses the impacts of agents’ behavioral heterogeneity (i.e., 423 

variations in households’ evacuation preparation times) on traffic flow and evacuation 424 

outcomes. Note that in the first and second experiments, agents apply the shortest-distance 425 

route search method (Mode 1) to evacuate from their household locations to evacuation 426 

destinations. Experiment 3 simulates evacuation processes in which agents apply the 427 

system-level optimization method (Mode 2) for route selection. The simulation results of 428 

experiment 3 are compared with those of the first and second experiments to explore the 429 

effects of agents’ route search strategies on evacuation outcomes. 430 

Table 2. Scenario design for simulating household evacuation processes 

Experiment Shelter arrangement 
Heterogeneity in agents’ 

evacuation preparation times 

Evacuation route 

search strategy 

1 

All the combinations of the 

five optional shelters #1, 

#2, #3, #4, and #5 

1.5(a) 
Mode 1 

(Shortest distance) 

2 {#1, #2, #3, #4, #5}(b) 0.2~3.0(a) 
Mode 1 

(Shortest distance) 

3 
Five one-shelter scenarios 

and {#1, #2, #3, #4, #5} 
0.2~3.0(a) 

Mode 2 

(System optimization) 

Note: 

(a) Residents’ behavioral heterogeneity is measured by the variation (i.e., standard deviation) in their 

evacuation preparation times. In the study area, the average evacuation preparation time of residents is set 

to 4 hours based on our communication with the local flood management authorities. 

(b) The set {#1, #2, #3, #4, #5} denotes that all five shelters are selected for this scenario.  
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4. Modeling results 431 

4.1. An example of household evacuation processes 432 

In this study, the results of household evacuation simulations are extracted and analyzed 433 

with the data visualization tool Senozon Via (Milevich et al., 2016). Figure 7a presents a 434 

snapshot of residents’ evacuation schemes for the case in which all five evacuation shelters 435 

are used in the study area (note that each household is illustrated by a green dot in Figure 436 

7a). Figure 7b depicts the change in the ratio of the three groups of the population during 437 

the evacuation processes. The percentage of the population in the S=1 group (i.e., the 438 

agents that have not started evacuating) displays a consistent decreasing trend, as more 439 

agents start their evacuation processes over time. Consequently, the S=3 group (i.e., the 440 

agents that have arrived in a safe zone) exhibits a consistent increasing trend. The S=2 441 

group (i.e., the agents that have started evacuating but have not arrived at a safe zone, 442 

representing the residents who are moving in the road network) increases at the beginning 443 

of the evacuation period, reaching a peak of 43.1% after approximately 6.5 hours, and then 444 

decreases until the end of the evacuation period. The entire evacuation process takes 445 

approximately 15.5 hours (i.e., the evacuation clearance time). In the following sections, 446 

the factors that influence the evacuation process will be assessed under different conditions. 447 
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 448 

Figure 7. (a) A snapshot of residents’ evacuation schemes when all five evacuation shelters 449 

are established in the study area; (b) The percentages of the population in the three groups 450 

of agents. Note that the S=1 group includes agents who have not started evacuating, S=2 451 

includes agents who have started evacuating but have not arrived at an evacuation 452 

destination, and S=3 includes agents who have successfully arrived at their destinations. 453 

4.2. Impacts of shelter location arrangement on evacuation processes 454 

We first conduct experiment 1 to examine agents’ evacuation processes for the five 455 

scenarios in which only one evacuation shelter is established. Figure 8 shows that the 456 

geographical location of an evacuation shelter has a fundamentally important influence on 457 
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residents’ flood evacuation performance. Residents’ average evacuation time is the shortest 458 

for shelter site #1 (20.1 hours), followed by sites #2 (23.7 hours), #5 (33.3 hours), #3 (35.7 459 

hours) and #4 (46.8 hours). The boxplot of all the agents’ evacuation times also shows that 460 

the variation in agents’ evacuation time is the largest for shelter site #4 (32.4 hours) and 461 

the smallest for shelter site #1 (15.4 hours). In terms of the system-level evacuation 462 

outcomes, shelter sites #1 and #2 are associated with the shortest evacuation clearance time 463 

(~ 56 hours), and shelter site #4 is associated with the longest evacuation clearance time 464 

(~108.9 hours) (the embedded figure in Figure 8). In this regard, among the five optional 465 

shelter locations, sites #1 and #2 are the best locations for shelter establishment, and site 466 

#4 is the worst, with the longest evacuation time. 467 

 468 

Figure 8. Boxplot of agents’ evacuation times (the main figure) and the system-level 469 

evacuation clearance times for the five one-shelter scenarios 470 
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Next, we compare the average evacuation time of agents for simulations in which all 31 471 

combinations of the five optional evacuation shelter locations are considered. As shown in 472 

Figure 9, when there are a small number of evacuation shelters, establishing more shelters 473 

in the system can notably reduce agents’ evacuation times, and this effect is more 474 

noticeable for the worst shelter allocation scenario (illustrated by the blue line) than for the 475 

best shelter allocation scenario (illustrated by the red line). For example, as the number of 476 

shelters increases from two to three, the average evacuation time is reduced from 44.7 477 

hours (shelter set {#4, #5}) to 29.7 hours (shelter set {#3, #4, #5}) for the worst shelter 478 

allocation scenario (a total reduction of 15 hours). In contrast, the reduction in evacuation 479 

time is only 5 hours for the best shelter allocation scenario (from 13.1 hours for set {#2, 480 

#3} to 8.1 hours for set {#1, #2, #3}). These results can yield policy implications in terms 481 

of the number and geographical locations of evacuation shelters needed to meet a particular 482 

flood management goal. For example, if the management goal is to evacuate all the 483 

residents to a single safe zone, shelter #1 would be the best choice, among the five optional 484 

locations, in terms of minimizing the evacuation clearance time. However, for the case of 485 

establishing two shelters in the region, shelter set {#2, #3} is a better choice as compared 486 

with the other shelter site combinations.  487 
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 488 

Figure 9. The average evacuation time of residents under the scenarios that consider all 489 

the possible combinations of the five optional evacuation shelters 490 

Notably, the modeling results show that agents’ evacuation time decreases if shelters are 491 

located closer to denser residential areas. This is because a shelter located closer to denser 492 

areas can reduce agents’ travel distances.  Furthermore, the modeling results show that the 493 

reduction in residents’ evacuation times, due to the increase in the number of evacuation 494 

shelters, is significantly affected by the existing number of evacuation shelters and, in 495 

particular, their geographical distribution in the region. After a certain number of 496 

evacuation shelters are established (larger than three in this case), including more shelters 497 

in the system has a marginal effect on reducing evacuation times. Taking the best shelter 498 

allocation scenario as an example (the red line in Figure 9), when there are only two 499 

evacuation shelters ({#2, #3}), adding one more evacuation shelter (#1) in the system can 500 

reduce the evacuation time by 5 hours (from 13.1 hours for set {#2, #3} to 8.1 hours for 501 

set {#1, #2, #3}). In contrast, the reduction in evacuation time is only 1.3 hours when 502 
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shelter #5 is added to the shelter set {#1, #2, #3}. In particular, the average evacuation time 503 

is 6.8 hours for shelter sets {#1, #2, #3, #5} and {#1, #2, #3, #4, #5}, which indicates that 504 

adding one more shelter in the system did not reduce the average evacuation time. This 505 

phenomenon is supported by the Braess paradox phenomena in the field of transportation 506 

research (Braess et al., 2005; Pas and Principio, 1997; Murchland, 1970), which suggests 507 

that including a new link in a traffic network could possibly result in heavier traffic 508 

congestion and longer travel times. This phenomenon and its policy implications will be 509 

further discussed in Section 5. 510 

4.3. Impacts of residents’ behavioral heterogeneity on evacuation processes 511 

Previous studies have shown that the evacuation preparation time of households plays an 512 

important role in their emergency evacuation outcomes during natural disasters (Lindell et 513 

al., 2005, 2020). However, the heterogeneity in human behaviors has not been explicitly 514 

examined in flood evacuation processes. In this section, we conduct experiment 2 to assess 515 

the impacts of human behavior heterogeneity (measured by the variance in agents’ 516 

evacuation preparation times) on evacuation processes. Figure 10 shows that human 517 

behavioral heterogeneity has a nonlinear effect on agents’ evacuation outcomes. Increasing 518 

the heterogeneity in households’ evacuation preparation times will result in reductions in 519 

the average evacuation time and the system-level evacuation clearance time, and this effect 520 

is more significant when the variation in the evacuation preparation time is small (< 1.5 521 

hours). In particular, when the variation in preparation time is large (> 2 hours), the change 522 

in the heterogeneity of preparation times will not notably affect the average evacuation 523 

time or the system-level evacuation clearance time. These results are consistent with the 524 
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modeling results obtained from our prior work, which examined the role of heterogeneity 525 

in residents’ tolerance to flood risk during evacuation processes (Du et al., 2016).  526 

 527 

Figure 10. The impacts of human behavioral heterogeneity (i.e., the variation in agents’ 528 

evacuation preparation times) on their average evacuation time (the left Y-axis) and the 529 

system-level evacuation clearance time (the right Y-axis) 530 

Next, we assess the impacts of human behavioral heterogeneity on the traffic flow 531 

conditions in the road network. Figure 11 plots the percentage of the three groups of the 532 

population during evacuation processes, and the S=2 group (illustrated by the two brown 533 

lines) includes the agents who are evacuating in the road network. The modeling results 534 

show that the peak traffic time (i.e., the time when the number of agents in the road network 535 

reaches a maximum during the evacuation period) is delayed as the level of agent 536 

behavioral heterogeneity increases. In addition, the percentage of agents in the road 537 

network at the peak traffic time is significantly lower in the high behavioral heterogeneity 538 

scenario than in other scenarios. For example, the traffic peak time can be delayed from 539 
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6.0 hours to 8.5 hours as the variation in the evacuation preparation times increases from 540 

1.0 hours to 3.0 hours. At the time of the traffic peak, the percentage of agents in the road 541 

network is reduced from 67.9% (the low-heterogeneity scenario) to 46.6% (the high-542 

heterogeneity scenario), and the system-level evacuation clearance time is reduced from 543 

28.5 hours (the low-heterogeneity scenario) to 27 hours (the high-heterogeneity scenario). 544 

Figure 12 compares the peak traffic time and the percentage of evacuating agents at the 545 

peak time under various levels of heterogeneity in agents’ evacuation preparation times. 546 

The modeling results show that as agents’ behavioral heterogeneity increases, flood 547 

evacuation outcomes can be improved (i.e., the traffic congestion problem is alleviated, the 548 

peak traffic time is delayed, and the evacuation clearance time is reduced).  549 

These modeling results highlight the importance for policy makers to pay explicit attention 550 

to households’ behavioral heterogeneity during flood evacuation processes. For example, 551 

the modeling results show that the variation in agents’ departure times can significantly 552 

affect traffic load in the road network and evacuation clearance time. Traffic congestion 553 

condition can be alleviated if the variation of agents’ departure times is larger. Thus, to 554 

improve evacuation efficiency, emergency responders may need to divide all the 555 

households in the community into a number of groups and guide them to evacuate in 556 

batches, rather than let them start evacuation in a chaotic manner without appropriate 557 

coordination. 558 
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559 

Figure 11. Comparison of the evacuation processes for low (solid lines) and high (dotted 560 

lines) levels of human behavioral heterogeneity. Note that agents’ behavioral heterogeneity 561 

is measured by the standard deviation of their evacuation preparation time, and the low and 562 

high levels of heterogeneity are 1.0 hours and 3.0 hours, respectively. 563 

 564 
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Figure 12. Peak traffic time (the left Y-axis) and the percentage of evacuating agents (i.e., 565 

S=2 group) at the peak traffic time (the right Y-axis) for various levels of human behavioral 566 

heterogeneity. 567 

4.4. Impacts of households’ evacuation route choices on evacuation processes 568 

In the above sections, the modeling results for scenarios in which the agents apply the 569 

shortest-distance route search method to travel from their original locations to destinations 570 

(Mode 1) during evacuation processes were presented. In this section, we conduct 571 

experiment 3, in which agents’ evacuation routes are obtained based on a system-level 572 

optimization approach (Mode 2). Then, we compare the three experiments to explore the 573 

joint impacts of the route search method and behavioral heterogeneity of residents on 574 

evacuation processes. 575 

Figure 13 compares agents’ average evacuation times for the two travel modes. Two 576 

implications are obtained from the modeling results. First, the results show that the average 577 

evacuation time is consistently smaller for Mode 2 than for Mode 1. This result agrees with 578 

the common belief in transportation research. That is, if each agent selects their shortest 579 

evacuation route without considering the effects of other agents’ route choices, traffic 580 

congestion will likely occur in the road network. In contrast, if agents’ evacuation route 581 

choices are optimized from the system level, traffic flow conditions can be improved, 582 

leading to a noticeable reduction in traffic congestion and shorter evacuation times. 583 
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 584 

Figure 13. Comparison of the average evacuation time of agents for the two evacuation 585 

route search strategies 586 

Second, one can observe that the variation in evacuation time across different shelter 587 

establishment scenarios is significantly higher for Mode 1 than for Mode 2. For example, 588 

among the five one-shelter scenarios, the agents’ average evacuation time ranges from 46.7 589 

hours to 20.1 hours (a difference of 26.6 hours) for Mode 1. In contrast, this value ranges 590 

from 16.5 hours to 9.2 hours (a difference of 7.3 hours) for Mode 2. This result implies that 591 

shelter establishment plays a more important role when residents only seek to minimize 592 

their individual evacuation times. In comparison, if agents’ evacuation routes are optimized 593 

from the system level, shelter establishment will become a less significant factor affecting 594 

evacuation performance.  595 

Figure 14 presents the percentages of the three groups of agents during the evacuation 596 

process to explicitly examine the impacts of different route search strategies. Compared 597 

with the shortest-distance search strategy (Mode 1), the system-level optimization route 598 
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search strategy (Mode 2) can reduce the evacuation clearance time by 12 hours (from 27.5 599 

hours for Mode 1 to 15.5 hours for Mode 2). In addition, the percentage of agents in the 600 

road network at the peak traffic time is reduced from 60.4% for Mode 1 to 43.1% for Mode 601 

2, indicative of a significant improvement in traffic congestion during the evacuation 602 

period. However, the peak traffic time is similar in the two scenarios, suggesting that 603 

changing agents’ route search strategies does not considerably affect the peak time of 604 

traffic flows.  605 

 606 

Figure 14. Comparison of residents’ evacuation processes for the two route search 607 

strategies (note that all five evacuation shelters are selected for the two scenarios, and the 608 

variation in residents’ evacuation preparation times is 1.5 hours) 609 

The above analyses focused on assessing the impacts of a single factor (agents’ behavioral 610 

heterogeneity or evacuation route search strategies). Figure 15 examines how the two 611 

factors jointly affect evacuation processes. Notably, in general, the average evacuation time 612 

of agents and the system-level evacuation clearance time are small when the variation in 613 
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the evacuation preparation time is low and/or when agents use Mode 2 to determine their 614 

evacuation routes. Interestingly, when the variation in agents’ evacuation preparation times 615 

is low (<1.0 hour), the difference between Mode 1 and Mode 2 is not significant in terms 616 

of the peak traffic time or the percentage of evacuating agents at the peak traffic time. This 617 

result indicates that changing agents’ route search strategies will not considerably affect 618 

the peak traffic time or the maximum traffic flow if all the agents start their evacuation 619 

activities within a short time window. In contrast, as the variation in the evacuation 620 

preparation time of agents increases, the evacuation route search strategy used can 621 

significantly affect the peak traffic time and the maximum traffic flow (Figures 15c-15d). 622 

However, the variation in agents’ evacuation preparation times does not notably affect the 623 

changes in the average evacuation time or system-level evacuation clearance time between 624 

the two route search strategies.  625 

The comparisons of the two route search methods, as have been presented in the above 626 

sections, show that households’ route choices play an important role in their evacuation 627 

processes. Evacuation clearance time and traffic congestion will be significantly alleviated 628 

and become more robust against the change in shelter location arrangement if evacuation 629 

routes are optimized. In this regard, policy makers may improve flood management by 630 

providing clear guidance to all the households in terms where (i.e., shelter choice), when 631 

(i.e., departure time) and in particular, through which route (i.e., route selection) to 632 

evacuate. On the other hand, households need to follow the evacuation guidance and take 633 

the recommended routes to improve evacuation efficiency.  634 
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 635 

Figure 15. The joint impacts of evacuation route search strategies and the variations in 636 

agents’ evacuation preparation times on (a) the average evacuation time, (b) the system-637 

level evacuation clearance time, (c) the time when the traffic peak is reached during 638 

evacuation processes, and (d) the percentage of evacuating agents at the peak traffic time 639 

5. Discussion 640 

5.1. Implications for flood risk assessment and evacuation management 641 

In this study, we employ an interdisciplinary socio-hydrological approach that incorporates 642 

a physically-based hydrodynamic model, an agent-based human behavior model, and a 643 

large-scale transportation model into an integrated modeling framework. The proposed 644 



38 

 

modeling framework is motivated by previous socio-hydrological studies that called for 645 

incorporating various factors in the context of coupled human-flood systems to support 646 

flood management. These factors may be associated with a wide range of interdisciplinary 647 

domains, such as hydrogeological conditions, flood inundation process, information 648 

dissemination platforms, risk perception and awareness, social preparedness, public policy, 649 

and urban infrastructure development (Barendrecht et al., 2019; Di Baldassarre et al., 2013; 650 

Yu et al., 2022; Pande and Sivapalan, 2017; Troy et al., 2015; Fuchs et al., 2017; Viglione 651 

et al., 2014). We apply the model to the XNA in China to assess the inundated areas of an 652 

extreme flood event and to examine household evacuation outcomes under various 653 

management policies and human behaviors. Several modeling and policy implications can 654 

be obtained based on the model construction and simulation results. 655 

First, the simulation results of this study show that the flood risk and flood damage to an 656 

area are affected not only by the hydrological characteristics of flood events but also by 657 

infrastructural, socioeconomic and human behavioral factors. In particular, the results 658 

show that household evacuation outcomes are significantly affected by shelter location 659 

arrangement, route selection strategies, and evacuation preparation times. Therefore, it is 660 

essential for researchers and policy makers to incorporate various social, hydrological and 661 

human behavioral factors into an integrated framework to obtain more robust estimations 662 

of flood risk and to design informed policies to support holistic flood management. 663 

Second, the modeling results show that the number of evacuation shelters and, in particular, 664 

their geographical distributions have important effects on flood evacuation processes. For 665 

example, by comparing the evacuation outcomes obtained for the five optional shelter sites 666 

in the case study area, we find that the average evacuation time of residents varies from 667 
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20.1 hours (shelter site #1) to 46.8 hours (shelter site #4) (Figure 8). In this regard, if there 668 

are limited available resources and only one evacuation site can be established in the area, 669 

shelter #1 would be a better site than shelter #4 if the management goal is to minimize the 670 

average evacuation time of residents. Another implication associated with shelter choice is 671 

that establishing more shelters in the area does not necessarily lead to improvements in a 672 

community’s evacuation processes if there is already a sufficient number of evacuation 673 

shelters or if the shelters are not well distributed in the region. For example, in the case in 674 

which there are three shelters (e.g., {#1, #2, #3}), including more shelters in the system 675 

(e.g., #4, #5, or both) will not effectively reduce the average evacuation time of households 676 

(Figure 8). This finding, although somewhat contrary to what one would intuitively expect, 677 

is in line with the classic Braess paradox in the field of transportation research; notably, 678 

adding a new link in a traffic network may not improve the operation of the traffic system 679 

(Frank, 1981; Murchland, 1970). Some studies have shown that the occurrence of Braess 680 

paradox phenomena may be affected by the road network configuration, travel demand, 681 

and travelers’ route search behaviors (Pas and Principio, 1997; Braess et al., 2005). 682 

Therefore, regarding emergency management policies such as where to establish new 683 

shelters, policy-makers need to assess the relationships among these factors to determine 684 

the number and geographic distribution of shelters in the system. 685 

Third, flood evacuation is a complex process in which residents’ evacuation activities can 686 

be affected by various social, economic, environmental and infrastructural factors. Thus, 687 

in a particular flood-prone area, residents’ decisions and evacuation behaviors could be 688 

highly heterogeneous, varying from family to family, from community to community, and 689 

from time to time (Paul, 2012; Huang et al., 2017). This study shows that human behavioral 690 
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heterogeneity can significantly affect flood evacuation outcomes in a given region. For 691 

example, the modeling results show that variations in residents’ evacuation preparation 692 

times could result in noticeable differences in traffic congestion conditions and the time 693 

required for evacuees to complete their evacuation processes (Figures 10-12). Therefore, 694 

in flood management practice, emergency responders need to explicitly consider the 695 

heterogeneity in residents’ behaviors and determine how to promote behavioral changes 696 

by providing the needed resources to vulnerable groups who are not able to take effective 697 

flood mitigation actions to improve the overall disaster management performance of the 698 

community (Nakanishi et al., 2019; Hino and Nance, 2021). 699 

5.2. Limitations and future research directions 700 

Our modeling framework and the simulations in this study have a number of limitations 701 

that warrant future research to make improvements and extend the current approach. First, 702 

similar to other studies on emergency evacuation simulation (Wood et al., 2020; Zhu et al., 703 

2018; Koch et al., 2020; Saadi et al., 2018), this study focuses on car-based traffic 704 

simulation without considering other transportation modes (e.g., motorcycles). In real-705 

world evacuation cases, residents may use various types of transportation modes to 706 

evacuate, including by automobile, motorcycle, bus, or foot (Melnikov et al., 2016). 707 

Residents may also change their travel modes during evacuation processes, for example, 708 

due to a change in the available transportation facilities. Recent studies have attempted to 709 

improve emergency evacuation simulations by considering more factors in evacuation 710 

simulation, such as multiple transportation facilities, changes in traffic network 711 

accessibility, variations in travel demand, pedestrian/vehicle interactions and speed 712 

adjustments (Dias et al., 2021; Takabatake et al., 2020; Wang and Jia, 2021; Sun et al., 713 
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2020; Chen et al., 2022). Future study could also improve the transportation model to 714 

consider more complex agent-agent and agent-environment interactions during evacuation 715 

processes. For instance, besides the two route search methods that have been analyzed in 716 

this study, future work may consider another type of route search method, in which agents 717 

have fully access to the real-time information on traffic conditions and may decide to 718 

change their evacuation routes over time (referred to as mode 3). The three travel modes 719 

can be systematically compared to achieve a better understanding of how agents’ route 720 

searching strategies may affect their evacuation results. This extension will enhance the 721 

functionality of the transportation model MATSim and improve the simulation of agent 722 

behaviors during community evacuation processes.   723 

Second, regarding the analyses of shelter establishment, we primarily focus on the number 724 

and geographical distribution of evacuation shelters without considering other important 725 

shelter characteristics, such as shelter capacity. However, it is sometimes necessary to 726 

consider the constraint of shelter capacity in evacuation management, especially in large-727 

scale evacuation scenarios. Recently, studies have analyzed the impacts of shelter 728 

capacities and their geographic distribution on evacuation outcomes (Alam et al., 2021; 729 

Khalilpourazari and Pasandideh, 2021; Oh et al., 2021; Liu and Lim, 2016). Future studies 730 

should consider more shelter properties to improve the current modeling framework. 731 

Third, in this study, the hydrodynamic model is coupled with the ABM and the 732 

transportation model in a one-way coupling manner. That is, the hydrodynamic model 733 

generates flood inundation results as the input for the ABM and the transportation model, 734 

but the modeling results of the ABM and the transportation model do not affect the 735 

hydrodynamic modeling process. Such a one-way model coupling method is suitable for 736 
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simulating residents’ evacuation activities before a flood occurs, but it is not suitable for 737 

cases in which evacuation processes and flood inundation processes have an overlapping 738 

time period. In particular, the model is not capable of simulating how human behaviors 739 

affect river channel and flood inundation processes (Chen et al., 2016; Witkowski, 2021). 740 

This is another limitation that needs to be addressed in future work. 741 

Finally, it is worth noting that this study is still subject to many simplifications and 742 

assumptions due to data incompleteness and the specific research scope of the current work. 743 

Future study could incorporate more psychological and social factors to describe agents’ 744 

decisions during evacuation processes. For example, future study can conduct surveys and 745 

questionnaires to quantify households’ evacuation preparation times after receiving flood 746 

evacuation orders (Lindell et al., 2020). Also, future studies could consider other factors 747 

that may affect human flood risk perception and risk awareness, such as social memories, 748 

social interactions and observations of neighbors’ actions (Du et al., 2017; Girons Lopez 749 

et al., 2017). These extensions and improvements can make the model capable of 750 

simulating more realistic decision-making processes and more complex human-flood 751 

interactions to support emergency management during floods.  752 

6. Conclusions 753 

A fundamental aspect of societal security is natural disaster management. Computational 754 

models are needed to assess the flood risk in flood-prone areas and to design holistic 755 

management policies for flood warning and damage mitigation. In this study, we propose 756 

an integrated socio-hydrological modeling framework that couples a hydrodynamic model 757 

for simulating flood inundation processes, an ABM for simulating the flood management 758 

practices of emergency responders and human behaviors, and a large-scale transportation 759 
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model for simulating household evacuation processes in a road network. Using a case study 760 

of the XNA in China, we demonstrate the effectiveness of the modeling framework for 761 

assessing flood inundation processes for a 100-year flood event and examining households’ 762 

evacuation outcomes considering various evacuation management policies and human 763 

behaviors. A number of scenario analyses are performed to explore the impacts of shelter 764 

location arrangement, evacuation preparation times and route search strategies on 765 

evacuation performance. 766 

Through a set of scenario analyses, the modeling results show that for a 100-year flood 767 

event, approximately 66.5% of the land area will be flooded, affecting 0.5 million people. 768 

Household evacuation processes can be significantly affected by the number and 769 

geographical distribution of evacuation shelters. For the five optional sites of evacuation 770 

shelters, the average evacuation time of residents ranges from 20.1 hours to 46.8 hours, 771 

depending on where the evacuation shelters are located. Counterintuitively, yet in line with 772 

the Braess paradox in the transportation field, we find that including more shelters in the 773 

system may not improve evacuation performance in a region if the number of shelters or 774 

shelter distribution is already optimal or near optimal. In addition, the simulation results 775 

show that residents’ flood evacuation outcomes are significantly affected by human 776 

decision-making processes, such as the selection of evacuation route search strategies. 777 

Compared with the system-level route optimization method, the shortest-distance route 778 

search method is associated with a longer evacuation travel time because evacuees seeking 779 

to minimize their own travel time may experience traffic congestion. We also find that a 780 

low level of heterogeneity in agents’ evacuation preparation times can result in heavy 781 

traffic congestion and long evacuation clearance times. These modeling results indicate 782 
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that the flood risk of, and the ultimate damage to, an area is affected not only by the 783 

magnitude of the flood itself but also by flood management practices and household 784 

behavioral factors. This study is therefore in line with some previous studies that 785 

highlighted the significance of using socio-hydrological methods for hydrological science 786 

and watershed management (Di Baldassarre et al., 2013; Sivapalan et al., 2012; Abebe et 787 

al., 2019). 788 

This study still has a number of limitations that need to be addressed. Recommended future 789 

work includes incorporating more types of transportation facilities and route selection 790 

methods in the transportation simulation model, considering more psychological and 791 

behavioral factors in human decision making, and improving the model coupling method 792 

by employing a two-way coupling approach to simulate the impacts of human behaviors 793 

on flood inundation processes. We envision that these extensions will improve the 794 

functionality of the proposed modeling framework, and the simulation results with these 795 

improvements can provide more useful modeling and policy implications to support flood 796 

risk assessment and emergency evacuation management. 797 
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