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Abstract

In many flood-prone areas, it is essential for emergency responders to use advanced
computer models to assess flood risk and develop informed flood evacuation plans.
However, previous studies have limited understanding of how evacuation performance is
affected by the arrangement of evacuation shelters regarding their number and
geographical distribution and human behaviors regarding the heterogeneity of household
evacuation preparation times and route searching strategies. In this study, we develop an

integrated socio-hydrological modeling framework that couples (1) a hydrodynamic model
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for flood simulation, (2) an agent-based model for evacuation management policies and
human behaviors, and (3) a transportation model for simulating household evacuation
processes in a road network. We apply the model to the Xiong’an New Area and examine
household evacuation outcomes for various shelter location plans and human behavior
scenarios. The results show that household evacuation processes are significantly affected
by the number and geographical distribution of evacuation shelters. Surprisingly, we find
that establishing more shelters may not improve evacuation results if the shelters are not
strategically located. We also find that low heterogeneity in evacuation preparation times
can result in heavy traffic congestion and long evacuation clearance times. If each
household selects their own shortest route without considering the effects of other evacuees’
route choices, traffic congestion will likely occur, thereby reducing system-level
evacuation performance. These results demonstrate the unique functionality of our model
to support flood risk assessment and to advance our understanding of how multiple

management and behavioral factors jointly affect evacuation performance.

Keywords:

Socio-hydrology; Flood management; Agent-based model; Emergency evacuation; Shelter

allocation

1. Introduction
Flooding is one of the most devastating natural disasters and can lead to significant
numbers of fatalities, social and economic disruptions, property and infrastructure damage,

and environmental degradation around the world (Smith and Matthews, 2015; McClymont
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et al., 2020; Brunner et al., 2020; Tanoue et al., 2016; Kreibich et al., 2014; Wang et al.,
2019). The global flood database shows that the global flood inundation land area is
approximately 2.23 million km?, with 255~290 million people being directly affected by
floods (Tellman et al., 2021). Flood-related economic damage increased globally from $94
billion in the 1980s to more than $1 trillion U.S. dollars in the 2010s (Hino and Nance,
2021). Furthermore, the severity, duration and frequency of damaging floods are expected
to continue to increase in the future due to changes in climate, land use and infrastructure
(Jongman et al., 2012; Moulds et al., 2021; Wedawatta and Ingirige, 2012; Tellman et al.,
2021). In many areas facing flood threats, it is essential for emergency responders and
decision-makers to use advanced computer models to assess the flood risk and to establish

effective disaster-mitigation plans (Simonovic and Ahmad, 2005).

Before an extreme flood occurs, evacuation is a critical emergency preparedness measure
and a common practice because it is impractical and/or economically costly to construct
the necessary infrastructure to resist floods (Wang et al., 2016; Liu and Lim, 2016; Islam
et al., 2020; Kreibich et al., 2015). However, studies have shown that emergency
evacuation is a complex and dynamic process that can be affected by factors from a wide
range of interdisciplinary domains (Zhuo and Han, 2020; Hasan et al., 2011; Huang et al.,
2012; Chen et al., 2021; Sung et al., 2018). These factors include but are not limited to (1)
the accuracy, lead time and sources of flood early warnings and the broadcasting channels
through which flood information is disseminated to the affected population (Shi et al., 2020;
Verkade and Werner, 2011; Alonso Vicario et al., 2020; Palen et al., 2010; Nester et al.,
2012; Goodarzi et al., 2019), (2) the infrastructure and engineering facilities needed for

emergency evacuation, which are influenced by the accessibility of transportation networks,
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road capacity and locations of evacuation zones (Mostafizi et al., 2017; Chen and Zhan,
2008; Saadi et al., 2018; Mostafizi et al., 2019; Koch et al., 2020; Oh et al., 2021; Liu and
Lim, 2016), and (3) demographical attributes and household behavioral characteristics,
such as residents’ beliefs and risk perception, previous knowledge, social networks, and
past experience with flood events (Hofflinger et al., 2019; Huang et al., 2017; Lindell et
al., 2020; Wang and Jia, 2021; Shahabi and Wilson, 2014; Du et al., 2017). These studies
highlight the need to develop comprehensive socio-hydrological modeling tools that can
adequately incorporate various factors and processes to support flood management plans

in the context of coupled flood-human systems.

Among the many emergency management policies and plans that can be implemented,
appropriate shelter location arrangement is essential for massive evacuation operations.
City planners and policy makers need to identify safe areas outside of flood inundation
regions as feasible shelter locations for households who live in at-risk areas. Some studies
have explored the criteria for shelter location arrangement and evacuation planning
(Alada-Almeida et al., 2009; Nappi and Souza, 2015; Bayram et al., 2015; Li et al., 2012;
Alam et al., 2021). For instance, Bayram et al. (2015) developed an optimization model to
allocate evacuation sites and assign each evacuee to the nearest shelter, with the objective
of minimizing the total evacuation time. However, in this study, each evacuee’s travel time
was estimated based on a simple traffic volume-travel time function, which was not able
to fully represent evacuees’ complex interactions in a road network. Liu and Lim (2016)
applied spatial analysis methods to assign shelters to households, considering the spatial
relationships between households and shelter sites. A limitation of this study is that

evacuee’s travel time was obtained from a simplified traffic model, and the road network
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was not well represented in the network analysis. In a recent study, Alam et al. (2021) used
a massive traffic simulation model and a multiple criteria evaluation method to identify
candidate evacuation shelters and considered environmental conditions, structural
attributes, emergency services and transportation factors. However, this study focused on
obtaining a suitability score for each candidate shelter site with various weighting factors,
yet failed to examine to what extent evacuation performance could be affected by the
number of shelters and their geographical distribution in the community. Nevertheless,
current studies have left a research gap that warrants research efforts to use physically-
based flood simulation models to identify safe areas as feasible shelter locations and more
importantly, to use transportation models to address such a question: How evacuation
performance is affected by the number and geographical distribution of evacuation shelter

locations? This is the major research question we seek to explore in this study.

The second research question to be explored in this study is associated with the role played
by human behaviors in evacuation processes, which is an important research direction in
disaster management (Aerts et al., 2018; Simonovic and Ahmad, 2005; Urata and Pel,
2018). After receiving flood evacuation warnings, households will make decisions based
on flood risk information, spend some time completing a set of preparation tasks, and then
evacuate from their homes to safe areas. Among these decisions and behaviors, households’
evacuation preparation times (i.e., from the time when they receive flood evacuation orders
to the time when they start to evacuate via a road network) play an important role in
evacuation performance. Many empirical studies have examined the geographic,
demographic and behavioral factors that affect households’ preparation times (Lindell et

al., 2005, 2020; Huang et al., 2012, 2017; Chen et al., 2021). They found that household
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evacuation preparation times can vary significantly from one household to another,
exhibiting a certain degree of behavioral heterogeneity in a community (Lindell et al., 2005,
2020; Rahman et al., 2021). As a result, we hypothesize that the heterogeneity in
households’ evacuation preparation times affects the traffic flows in the corresponding road
network and consequently influences the final evacuation outcomes. However, few studies
have explicitly examined how traffic conditions and evacuation performance are affected
by different degrees of heterogeneity in evacuation preparation times (Wang et al., 2016).

This is the second question we aim to explore in this study.

Furthermore, in this study, we also seek to assess how evacuation processes are affected
by households’ evacuation route searching strategies, a process that involves emergency
responders and policy makers. Previous studies have typically applied the shortest distance
path searching method to simulate how evacuees find evacuation routes from their original
locations to evacuation destinations (He et al., 2021; Bernardini et al., 2017; Du et al., 2016;
Li et al., 2022). However, each evacuee’s search for the shortest evacuation path may not
ensure system-level evacuation outcomes. In this study, we focus on comparing the
evacuation scenario in which each household chooses the shortest path for evacuation with
the scenario in which system-level global optimal routes are assigned to the evacuees. Such
comparative analyses are expected to provide policy implications in terms of evacuees’

route selections to improve evacuation performance during natural disasters.

Motivated by the above research questions and knowledge gaps, we develop an integrated
socio-hydrological modeling framework in this study that couples (1) a physically-based
hydrodynamic model (MIKE 21) for flood inundation simulation, (2) an agent-based model

(ABM) for simulating flood management plans and human behaviors, and (3) a large-scale
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traffic simulation model (MATSim) for simulating households’ evacuation processes in a
road network. Specifically, the hydrological component of the socio-hydrological
modeling framework is represented by the MIKE 21 model, which simulates flood
inundation processes across space and over time in a flood-prone area for a given storm
event. The simulation results of the MIKE 21 model can provide flood risk information
and will be used by policy makers to make flood management plans. The social component
of the modeling framework is represented by ABM and MATSim, which simulate policy
makers’ flood management plans, households’ responses to flood management plans, and
households’ collective evacuation activities in the road network. By coupling the three
models, our modeling framework is capable of simulating a wide range of components and

processes in a coherent manner to support flood evacuation management.

We apply the modeling framework to the Xiong’an New Area, a large residential area with
a high risk of flooding in northern China. Using a 100-year flood hazard as an example, a
set of scenario analyses are conducted to explore how residents’ evacuation processes are
jointly affected by management policies (i.e., the number and geographical distribution of
evacuation shelter locations) and human behaviors (i.e., the heterogeneity in households’
evacuation preparation times and route searching strategies). This study aims to provide
both modeling and policy implications for researchers and emergency responders to
develop advanced socio-hydrological modeling tools for flood risk assessment and to
improve the overall understanding of how flood evacuation performance is jointly affected

by various management and behavioral factors.

The remainder of this paper is organized as follows. Section 2 presents the modeling

framework. Section 3 introduces the case study site, model construction and scenario



159  design. Section 4 presents the modeling results. Section 5 discusses the insights, limitations,

160 and future research directions of this study, followed by the conclusions in Section 6.

161 2. Methodology

162  This section introduces the integrated modeling framework of this study. As illustrated in
163  Figure 1, the modeling framework consists of three models: (1) an ABM for simulating
164  household decision-making and emergency responders’ flood management policies, (2) a
165 transportation model for simulating residents’ evacuation activities in a road network, and
166 (3) a hydrodynamic model for simulating flood inundation processes. A detailed

167 introduction to the three models and their coupling methods are described in turn as follows.

: (1) Agent-based model Agents’ decisions
Type I agent: - -
Emergency responder ' v’ Issuing evacuation order

— v Shelter arrangement (e.g.,
Type II agent: ] number and locations)
Households I_ . l _____ I_ .

Shelter selection
Evacuation preparation time
Evacuation route choice

NES S

< Agents’ decision-making \

and evacuation processes /

Flood risk information

168

169  Figure 1. lllustration of the integrated modeling framework that couples an ABM for

170  simulating household decision-making and emergency responders’ flood management
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policies, a transportation model for simulating residents’ evacuation processes in a road

network and a hydrodynamic model for simulating flood inundation processes

2.1. The ABM for human decision-making during flood events

In this study, an ABM is developed to simulate the government’s disaster management
plans and residents’ flood evacuation behaviors. Therefore, two types of agents are
considered in the ABM: (1) an emergency responder (Type | agent) and (2) the set of

households (Type Il agents), which are described in turn below.

An emergency responder agent is a government institution that makes flood management
plans. As shown in Figure 1, in this study, we specifically consider two flood management
decisions: (1) issuing a flood evacuation order to the residents who live in flood-prone
areas and (2) shelter arrangement (i.e., deciding the number and location of evacuation
zones that should be used to protect evacuees from flood hazards). Note that other
management practices (e.g., sandbagging and levee construction) are also important flood

management measures that are not explicitly discussed in this study.

In this study, each household is represented by an autonomous decision unit (i.e., an agent),
considering that all the family members in a household typically evacuate in a shared
transportation mode after communicating with each other to arrive at a final evacuation
decision (Du et al., 2016). After receiving evacuation orders, an agent will spend some
time completing a set of evacuation preparation tasks and then evacuate from its household
location to a chosen evacuation destination. The following three decisions and/or behaviors

are explicitly considered during this process.
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The first decision is selecting an evacuation shelter if multiple optional shelters are
available. During evacuation processes, the agents seek to evacuate to safe areas as soon
as possible, aiming to minimize their traveling times. However, during an emergency
situation, it is unclear and/or quite challenging for the agents to assess which shelter can
ensure the shortest traveling time due to, for example, uncertainties of real-time traffic
conditions and traffic load (e.g., the number of evacuating agents on the road). Here we
follow the classic approach in evacuation simulation and assume that an agent focuses on
choosing the shortest route from its original location to the safe area, thereby choosing the
geographically nearest shelter in the system to as its evacuation destination. Based on the
above reasons, in this study, we assume that an agent will choose the evacuation shelter

that is located the shortest geographical distance from its residential location.

The second decision is associated with evacuation preparation activities (e.g., gather family
members, pack bags, board up windows, and shut off utilities). These activities are
aggregated and represented by a behavioral parameter called evacuation preparation time.
This parameter measures how long it takes an agent to prepare for evacuation and is
indicated by the interval between the time when an agent receives an evacuation order and
the time when they start to evacuate via a road network. Previous studies have shown that
households’ evacuation preparation times are influenced by both psychological and
logistical preparation tasks, which may vary among agents, with noticeable behavioral
heterogeneity even at the community scale (Lindell et al., 2020, 2005; Wang et al., 2016).
In this study, the heterogeneity in agents’ evacuation preparation times is represented by

the variation (i.e., standard deviation) in the evacuation preparation times of all households,

10



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

and we explicitly examine the role of human behavioral heterogeneity in community

gvacuation outcomes.

The third decision is related to agents’ route selection strategies during evacuation
processes. In a complex road network, an agent may have multiple route choices from its
original location to a destination. In this study, we assume that all of the agents have good
knowledge of the road network in their community. Thus, two route search methods are
incorporated into the model: (1) the shortest distance route search method (Mode 1) and (2)
the system optimization-based route search method (Mode 2). In the shortest distance route
search method, each agent seeks to reduce its evacuation time without considering the
effects of other agents’ evacuation route selections. The agents focus on finding the shortest
route from their current location to the selected evacuation destination in the road network
(Gallo and Pallottino, 1988; Fu et al., 2006; Li et al., 2022). Therefore, an agent’s choice
of evacuation route in Mode 1 will not be affected by its departure time, because it will
always choose the shortest route regardless of the time at which it starts to evacuate. The
optimization-based route search method (Mode 2) adopts a heuristic iterative method to
optimize all of the agents’ collective evacuation routes so that system-level evacuation
efficiency is achieved (Zhu et al., 2018; He et al., 2021). In contrast with Mode 1, an agent’s
evacuation route in Mode 2 is affected by real-time traffic condition and other agents’
evacuation status. Therefore, an agent’s evacuation route in Mode 2 might be different if it

starts evacuation at a different time.

It is worth noting that the agents will typically focus on reducing their own traveling times,
and do not necessarily consider system-level evacuation efficiency. Among the above two

route search modes, Mode 1 represents the case in which every agent in the system focuses

11
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on achieving individual-level evacuation efficiency (i.e., chooses the shortest route for
evacuation), while Mode 2 represents the case that represents system-level evacuation
efficiency (i.e., all the agents’ route choices are optimized at the system level). In this
regard, Mode 1 is the baseline evacuation scenario and Mode 2 is the benchmark scenario.
The results of Mode 2 can be used to assess the extent to which the evacuation outcome of
Model 1 can be improved by changing agents’ route choices. Policy makers can compare
the results of the two modes to improve evacuation performance by, for example, providing
recommended evacuation routes for the agents who may encounter and/or cause severe
traffic congestion during their evacuation processes. Based on the above three decisions
and behaviors, all the agents’ movements and interactions in the road network are

incorporated into a transportation model, which is described in the following section.

2.2. Transportation model for large-scale evacuation simulation

As mentioned in Section 2.1, after an agent decides to evacuate, it will move from its
household location to a chosen evacuation destination through the traffic network. During
evacuation processes, an agent interacts with other agents and with the environment to
adjust their movement in the road network over time. There are a number of modeling
platforms and software packages used to model agents’ evacuation processes. These
include the Network Explorer for Traffic Analysis (NEXTA), the Transportation Analysis
and Simulation System (TRANSIMS), the Planung Transport Verkehr (PTV) VISSIM, the
City Traffic Simulator (CTS), and the Multi-Agent Transport Simulation model (MATSim)

(Mahmud and Town, 2016; Lee et al., 2014; Murray-Tuite and Wolshon, 2013).

This study applies MATSim to simulate agents’ evacuation processes. MATSim is a widely

used open-source software for large-scale transportation simulation. The model can
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provide detailed information about each agent’s movements in a road network (Horni, 2016;
Lammel etal., 2010; Zhuge et al., 2021). As shown in Figure 2, MATSim requires a variety
of data as model inputs. The plan data include the initial locations, evacuation destinations,
and departure times of all agents, and these data can be retrieved from agents’ attributes
and evacuation decisions in the ABM. The network data describe the attributes of the road
network, such as the geographical structure of the road network, the number of lanes of
each road, and road segment lengths and speed limits. These data are available from local
or regional government institutions (e.g., the Department of Transportation) or from online
data retrieval platforms such as OpenStreetMap or Google Maps (Farkas et al., 2014).
Finally, the config input includes a model execution engine that defines a set of global
model environments. Three modules, namely, an execution module, a scoring module, and
a replanning module, are incorporated into MATSim for transportation simulation. This
model has been widely used by researchers and practitioners to support evacuation
planning and simulation for various types of natural disasters, such as earthquakes (Koch
et al., 2020), hurricanes (Zhu et al., 2018), tsunamis (Muhammad et al., 2021), and floods
(Saadi et al., 2018). For more details about MATSim and its applications in transportation

simulation, see the studies of L&nmel et al. (2009) and Horni (2016).
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Figure 2. Inputs, modules and processes of the MATSim model

2.3. The hydrodynamic model for flood inundation simulation

Information on flood inundation processes (e.g., flood extent and water level) is essential
for governments and the public to make flood management and evacuation decisions.
Hydrodynamic models are important tools for simulating the timing and duration of flood
dynamics by solving a set of mathematical equations that describe fluid motion (Guo et al.,
2021). There are many hydrodynamic models available for flood dynamics simulation.
These include but are not limited to HEC-RAS, MIKE11, MIKE 21, JFLOW, TRENT,

TUFLOW and DELFT3D (Teng et al., 2017).

Following our prior work (Wu et al., 2021), in this study we use the classic hydrodynamic
model MIKE 21 to simulate flood inundation processes in a floodplain. MIKE 21
numerically solves the two-dimensional shallow water equations to obtain water levels and
flows across space and over time in various watershed environments, such as rivers, lakes,
estuaries, bays and coastal areas. MIKE 21 has been widely used to simulate flood

inundation processes in many floodplains across the world and is considered one of the
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most effective modeling tools for flood risk mapping, flood forecasting and scenario
analysis (Nigussie and Altunkaynak, 2019; Papaioannou et al., 2016). Interested readers
may refer to our prior work (Wu et al., 2021) for detailed introductions to the construction,

calibration and validation of the MIKE 21 model in the specific study area.

2.4. Model integration and flowchart of the modeling framework

In the prior sections (Sections 2.1-2.3), the structures and functionalities of the three
models were introduced; this section introduces how they are coupled in an integrated
modeling framework. Previous studies have shown that computer models can be coupled
in either a loose or a tight manner (Harvey et al., 2019; Bhatt et al., 2014; Murray-Rust et
al., 2014; Du et al., 2020; Li et al., 2021). The former refers to models that are linked
together by input/output data interfaces. That is, the output of one model is used as the
input of another model. In contrast, for the latter, a model uses a common data pool and
workload to exchange data among multiple model components, and as a result, components

affect each other during modelling processes.

In this study, both the loose and tight coupling methods are employed to combine the three
models. Specifically, MIKE 21 is coupled with the ABM and MATSim in a loose manner,
while ABM and MATSIim are coupled in a tight manner. The model coupling process and
flowchart of the integrated model are illustrated in Figure 3. First, MIKE 21 simulates flood
inundation processes for a specific flood event (e.g., a 100-year flood). The modeling
results of MIKE 21 are then used to assess the inundated area and affected households in
the flood zone, which are used as input data for the ABM and MATSIim. Next, based on
the modeling results of MIKE 21, two types of agents in the ABM are generated. The

household agents who are located in the flood zone will receive flood warnings from an
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emergency responder agent and make evacuation decisions. Finally, all the agents’
movements and evacuation activities are simulated by MATSIim. By integrating the three
models, the proposed modeling framework is capable of simulating flood inundation
processes, flood management practices, and household decision-making and evacuation
processes in a coherent manner. In the next sections, we will use a real-world case study to

demonstrate how the modeling framework can be used by researchers and practitioners for

flood risk assessment and evacuation management.
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Figure 3. Flowchart of the integrated modeling framework

2.5. Measurement of flood evacuation performance

Agents’ evacuation processes reflect their evacuation status and movements across space

and over time in a road network. In this study, we use multiple parameters and indicators
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to represent agents’ evacuation processes and evaluate their evacuation performance. For

a residential area with n household agents, we first use a categorical variable, S;, €{L,2,3},
to describe agent j’s evacuation status at time step t. S;; =1 denotes that agent j has not
started its evacuation process at time t. S it = 2 denotes that agent j has already started

evacuation but has not arrived at its evacuation destination at time t. S;, =3 denotes that
agent j has arrived at its evacuation destination at time t, which represents a successful

evacuation case. Let 7, denote the time when the flood evacuation order is issued to the

public, and let 7; and T; denote agent j’s departure time (i.e., the time when the agent starts

its evacuation in the road network after the evacuation preparation time) and arrival time

(i.e., the time when agent j arrives at its evacuation destination), respectively. The agent’s

evacuation time ¢J- is defined as the time period from its departure time 7; to its arrival
time 7; (ie, ¢, =7,-7;).

By summarizing all the agents’ evacuation statuses over time, the effectiveness of flood
evacuation processes in a region can be reflected by a matrix with two indicators at the
system level: (1) agents’ average evacuation time ® and (2) the system-level evacuation

clearance time 1. The agents’ average evacuation time @ is the average value of all the

N S 1 .
agents’ evacuation times, which is calculated by @ = —Z¢j . In comparison, the system-
n oz
j=1

level evacuation clearance time T for a region is the duration from the time when the flood

evacuation warning is issued in a residential area to the time when the last agent arrives at

its evacuation destination (i.e., I'= max({r]f |1=12,3,....,n})—1,).
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3. Case study and scenario design

3.1. Study site

The Xiong’an New Area (XNA) is used as a case study to illustrate the functionality of the
proposed modeling framework in flood simulation and evacuation management. The XNA
is located in the Baiyangdian River Basin, which includes the largest freshwater wetland
in North China. This region covers three counties (Xiongxian, Rongcheng, and Anxin),
encompassing a total area of 1768 km? (Figure 4). The region has a population of 1.1

million, and the GDP is 21.5 billion RMB (Sun and Yang, 2019).

The XNA has a typical continental monsoon climate, with annual average precipitation
totaling approximately 570 mm. The region is influenced by various natural disasters and
environmental problems, such as water pollution, heat waves, and groundwater
overexploitation. In particular, the XNA has a high risk of flooding due to frequent extreme
rainstorm events (Jiang et al., 2018; Su et al., 2021). Historical climate records show that
a total of 139 flood events have occurred in the XNA over the past 300 years (Wang et al.,
2020). For example, the heavy storm from 19 July to 21 July in 2016 affected a total
population of approximately 517,000, leading to severe destruction and economic losses.
Studies have found that compared with historical flood conditions, both the frequency and
intensity of extreme flood events in the region are expected to increase under future climate
change (Zhu et al., 2017; Wang et al., 2020). The flood problems in the XNA and many
other flood-prone areas worldwide call for developing advanced computer models and
decision support systems for robust flood risk assessment and informed management

practices during extreme flood events.
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solid black lines)

3.2. Data collection and model construction

Based on the modeling framework, data from various sources were collected and compiled
to construct the model, including meteorological, land use, hydrological, transportation and
census data. Among them, land topology was retrieved from a 7-meter resolution DEM
from the State Bureau of Surveying and Mapping. Meteorological data (e.g., daily
precipitation, temperature, solar radiation and wind speed) from 98 stations in the study
area were collected from the China Meteorological Administration. Population and
household distribution were based on 30-meter resolution census data from the census

bureau of the local government. Road network data were retrieved from Open Street Map,
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an open source global map data repository. Table 1 presents the data used in this study and

their sources.

Table 1. List of data used in the integrated model

Data type Data source Period Resolution  Format

Land elevation State Bureau of Surveying and Mapping 2019 7m TIF

Land use Da_ta Center of the Chinese Academy of 2015 30m TIF
Sciences

River network Da_ta Center of the Chinese Academy of 2015 - SHP
Sciences

Streamflow Hydrological Yearbook in China 12%81% Daily EXCEL

Weat.h.e ' China Meteorological Administration 1980- Daily EXCEL

conditions 2010

. Data Center of Science in Cold and Arid 2009 1km

Soil type . TIF
Regions

Population Census Bureau of the local government 2020 30m EXCEL

H.°“?Eh9'd Census Bureau of the local government 2020 30m TIF

distribution

Road network Open Street Map 2022 - XML

Figure 5 illustrates how the data are merged and integrated into the modeling framework.

As introduced in Section 2, the modelling process starts by running the MIKE 21 model,

with meteorological, DEM, land use, soil type and river network data as the model inputs.

For a given storm event, the MIKE 21 model generates flood processes, which can be used

to predict the inundated area and the affected population. These data are then used to

construct the ABM and the MATSim model to simulate agents’ flood management and

evacuation behaviors.
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Figure 5. Data sources and flowchart of the integrated modeling framework

3.3. Flood simulation and scenario design

As mentioned above, the case study site has a high risk of flooding due to frequent extreme
rainstorm events. Following the precautionary principle in natural disaster management
(Etkin et al., 2012), we use the 100-year flood event as an example to evaluate the impacts
of extreme flooding on the study area, and then examine the impacts of various

management policies and human behaviors on household evacuation processes.

We run the hydrodynamic model to simulate flood inundation processes for the flood with
100-year return period. The modeling results show that the inundated area is 66.5% of the
land area (Figure 6). The affected population is 508,986 (45.8% of the total population).
These modeling results are consistent with the results that were reported in our prior work,
and are empirically similar to the flood hazard experienced in this region in July 2016. For
detailed introductions regarding the construction, calibration and validation of the

hydrodynamic model, see Wu et al. (2021). With such a high flood risk, it is essential for
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emergency responders to understand how flood evacuation performance is affected by

various human behavioral factors and evacuation management plans.

Figure 6. Flood inundation areas for a 100-year flood in the study area

A scenario-based analysis is conducted to examine the roles played by the following factors
in flood evacuation simulations: (1) evacuation shelter establishment (i.e., the number and
geographical distribution of shelter locations), (2) heterogeneity in households’ evacuation
preparation times, and (3) evacuees’ route search strategies. Three experiments are
designed to assess the joint impacts of the above three factors (Table 2), which are

introduced in turn below.

The first experiment focuses on assessing the impact of the number and geographical

distribution of evacuation shelters on agents’ evacuation processes. Note that in the XNA,
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five optional sites for evacuation shelters are identified based on the flood inundation area
for the 100-year flood (illustrated by the red stars in Figure 6). Considering all the possible
combinations of these shelters, a total of 31 simulations are performed in this experiment
(5 simulations for single-shelter scenarios and 26 simulations for multiple-shelter
scenarios). Experiment 2 assesses the impacts of agents’ behavioral heterogeneity (i.e.,
variations in households’ evacuation preparation times) on traffic flow and evacuation
outcomes. Note that in the first and second experiments, agents apply the shortest-distance
route search method (Mode 1) to evacuate from their household locations to evacuation
destinations. Experiment 3 simulates evacuation processes in which agents apply the
system-level optimization method (Mode 2) for route selection. The simulation results of
experiment 3 are compared with those of the first and second experiments to explore the

effects of agents’ route search strategies on evacuation outcomes.

Table 2. Scenario design for simulating household evacuation processes

. Heterogeneity in agents’ Evacuation route
Experiment Shelter arrangement . .
evacuation preparation times search strategy
All the combinations of the
. . Mode 1
1 five optional shelters #1, 1.5@

(Shortest distance)
#2,#3, #4, and #5

Mode 1
2 {#1, #2, #3, #4, #5}® 0.2~3.0@ )
(Shortest distance)
Five one-shelter scenarios Mode 2
3 0.2~3.0@ o
and {#1, #2, #3, #4, #5} (System optimization)

Note:

@ Residents’ behavioral heterogeneity is measured by the variation (i.e., standard deviation) in their
evacuation preparation times. In the study area, the average evacuation preparation time of residents is set
to 4 hours based on our communication with the local flood management authorities.

® The set {#1, #2, #3, #4, #5} denotes that all five shelters are selected for this scenario.

23



431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

4. Modeling results

4.1. An example of household evacuation processes

In this study, the results of household evacuation simulations are extracted and analyzed
with the data visualization tool Senozon Via (Milevich et al., 2016). Figure 7a presents a
snapshot of residents’ evacuation schemes for the case in which all five evacuation shelters
are used in the study area (note that each household is illustrated by a green dot in Figure
7a). Figure 7b depicts the change in the ratio of the three groups of the population during
the evacuation processes. The percentage of the population in the S=1 group (i.e., the
agents that have not started evacuating) displays a consistent decreasing trend, as more
agents start their evacuation processes over time. Consequently, the S=3 group (i.e., the
agents that have arrived in a safe zone) exhibits a consistent increasing trend. The S=2
group (i.e., the agents that have started evacuating but have not arrived at a safe zone,
representing the residents who are moving in the road network) increases at the beginning
of the evacuation period, reaching a peak of 43.1% after approximately 6.5 hours, and then
decreases until the end of the evacuation period. The entire evacuation process takes
approximately 15.5 hours (i.e., the evacuation clearance time). In the following sections,

the factors that influence the evacuation process will be assessed under different conditions.
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Figure 7. (a) A snapshot of residents’ evacuation schemes when all five evacuation shelters
are established in the study area; (b) The percentages of the population in the three groups
of agents. Note that the S=1 group includes agents who have not started evacuating, S=2
includes agents who have started evacuating but have not arrived at an evacuation

destination, and S=3 includes agents who have successfully arrived at their destinations.

4.2. Impacts of shelter location arrangement on evacuation processes
We first conduct experiment 1 to examine agents’ evacuation processes for the five
scenarios in which only one evacuation shelter is established. Figure 8 shows that the

geographical location of an evacuation shelter has a fundamentally important influence on
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458  residents’ flood evacuation performance. Residents’ average evacuation time is the shortest
459  for shelter site #1 (20.1 hours), followed by sites #2 (23.7 hours), #5 (33.3 hours), #3 (35.7
460  hours) and #4 (46.8 hours). The boxplot of all the agents’ evacuation times also shows that
461  the variation in agents’ evacuation time is the largest for shelter site #4 (32.4 hours) and
462  the smallest for shelter site #1 (15.4 hours). In terms of the system-level evacuation
463  outcomes, shelter sites #1 and #2 are associated with the shortest evacuation clearance time
464  (~ 56 hours), and shelter site #4 is associated with the longest evacuation clearance time
465  (~108.9 hours) (the embedded figure in Figure 8). In this regard, among the five optional
466  shelter locations, sites #1 and #2 are the best locations for shelter establishment, and site

467  #4is the worst, with the longest evacuation time.
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469  Figure 8. Boxplot of agents’ evacuation times (the main figure) and the system-level

470  evacuation clearance times for the five one-shelter scenarios
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Next, we compare the average evacuation time of agents for simulations in which all 31
combinations of the five optional evacuation shelter locations are considered. As shown in
Figure 9, when there are a small number of evacuation shelters, establishing more shelters
in the system can notably reduce agents’ evacuation times, and this effect is more
noticeable for the worst shelter allocation scenario (illustrated by the blue line) than for the
best shelter allocation scenario (illustrated by the red line). For example, as the number of
shelters increases from two to three, the average evacuation time is reduced from 44.7
hours (shelter set {#4, #5}) to 29.7 hours (shelter set {#3, #4, #5}) for the worst shelter
allocation scenario (a total reduction of 15 hours). In contrast, the reduction in evacuation
time is only 5 hours for the best shelter allocation scenario (from 13.1 hours for set {#2,
#3} to 8.1 hours for set {#1, #2, #3}). These results can yield policy implications in terms
of the number and geographical locations of evacuation shelters needed to meet a particular
flood management goal. For example, if the management goal is to evacuate all the
residents to a single safe zone, shelter #1 would be the best choice, among the five optional
locations, in terms of minimizing the evacuation clearance time. However, for the case of
establishing two shelters in the region, shelter set {#2, #3} is a better choice as compared

with the other shelter site combinations.
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Figure 9. The average evacuation time of residents under the scenarios that consider all

the possible combinations of the five optional evacuation shelters

Notably, the modeling results show that agents’ evacuation time decreases if shelters are
located closer to denser residential areas. This is because a shelter located closer to denser
areas can reduce agents’ travel distances. Furthermore, the modeling results show that the
reduction in residents’ evacuation times, due to the increase in the number of evacuation
shelters, is significantly affected by the existing number of evacuation shelters and, in
particular, their geographical distribution in the region. After a certain number of
evacuation shelters are established (larger than three in this case), including more shelters
in the system has a marginal effect on reducing evacuation times. Taking the best shelter
allocation scenario as an example (the red line in Figure 9), when there are only two
evacuation shelters ({#2, #3}), adding one more evacuation shelter (#1) in the system can
reduce the evacuation time by 5 hours (from 13.1 hours for set {#2, #3} to 8.1 hours for
set {#1, #2, #3}). In contrast, the reduction in evacuation time is only 1.3 hours when
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shelter #5 is added to the shelter set {#1, #2, #3}. In particular, the average evacuation time
IS 6.8 hours for shelter sets {#1, #2, #3, #5} and {#1, #2, #3, #4, #5}, which indicates that
adding one more shelter in the system did not reduce the average evacuation time. This
phenomenon is supported by the Braess paradox phenomena in the field of transportation
research (Braess et al., 2005; Pas and Principio, 1997; Murchland, 1970), which suggests
that including a new link in a traffic network could possibly result in heavier traffic
congestion and longer travel times. This phenomenon and its policy implications will be

further discussed in Section 5.

4.3. Impacts of residents’ behavioral heterogeneity on evacuation processes

Previous studies have shown that the evacuation preparation time of households plays an
important role in their emergency evacuation outcomes during natural disasters (Lindell et
al., 2005, 2020). However, the heterogeneity in human behaviors has not been explicitly
examined in flood evacuation processes. In this section, we conduct experiment 2 to assess
the impacts of human behavior heterogeneity (measured by the variance in agents’
evacuation preparation times) on evacuation processes. Figure 10 shows that human
behavioral heterogeneity has a nonlinear effect on agents’ evacuation outcomes. Increasing
the heterogeneity in households’ evacuation preparation times will result in reductions in
the average evacuation time and the system-level evacuation clearance time, and this effect
is more significant when the variation in the evacuation preparation time is small (< 1.5
hours). In particular, when the variation in preparation time is large (> 2 hours), the change
in the heterogeneity of preparation times will not notably affect the average evacuation

time or the system-level evacuation clearance time. These results are consistent with the
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modeling results obtained from our prior work, which examined the role of heterogeneity

in residents’ tolerance to flood risk during evacuation processes (Du et al., 2016).
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Figure 10. The impacts of human behavioral heterogeneity (i.e., the variation in agents’
evacuation preparation times) on their average evacuation time (the left Y-axis) and the

system-level evacuation clearance time (the right Y-axis)

Next, we assess the impacts of human behavioral heterogeneity on the traffic flow
conditions in the road network. Figure 11 plots the percentage of the three groups of the
population during evacuation processes, and the S=2 group (illustrated by the two brown
lines) includes the agents who are evacuating in the road network. The modeling results
show that the peak traffic time (i.e., the time when the number of agents in the road network
reaches a maximum during the evacuation period) is delayed as the level of agent
behavioral heterogeneity increases. In addition, the percentage of agents in the road
network at the peak traffic time is significantly lower in the high behavioral heterogeneity
scenario than in other scenarios. For example, the traffic peak time can be delayed from
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6.0 hours to 8.5 hours as the variation in the evacuation preparation times increases from
1.0 hours to 3.0 hours. At the time of the traffic peak, the percentage of agents in the road
network is reduced from 67.9% (the low-heterogeneity scenario) to 46.6% (the high-
heterogeneity scenario), and the system-level evacuation clearance time is reduced from
28.5 hours (the low-heterogeneity scenario) to 27 hours (the high-heterogeneity scenario).
Figure 12 compares the peak traffic time and the percentage of evacuating agents at the
peak time under various levels of heterogeneity in agents’ evacuation preparation times.
The modeling results show that as agents’ behavioral heterogeneity increases, flood
evacuation outcomes can be improved (i.e., the traffic congestion problem is alleviated, the

peak traffic time is delayed, and the evacuation clearance time is reduced).

These modeling results highlight the importance for policy makers to pay explicit attention
to households’ behavioral heterogeneity during flood evacuation processes. For example,
the modeling results show that the variation in agents’ departure times can significantly
affect traffic load in the road network and evacuation clearance time. Traffic congestion
condition can be alleviated if the variation of agents’ departure times is larger. Thus, to
improve evacuation efficiency, emergency responders may need to divide all the
households in the community into a number of groups and guide them to evacuate in
batches, rather than let them start evacuation in a chaotic manner without appropriate

coordination.
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Figure 12. Peak traffic time (the left Y-axis) and the percentage of evacuating agents (i.e.,
S=2 group) at the peak traffic time (the right Y-axis) for various levels of human behavioral

heterogeneity.

4.4. Impacts of households’ evacuation route choices on evacuation processes

In the above sections, the modeling results for scenarios in which the agents apply the
shortest-distance route search method to travel from their original locations to destinations
(Mode 1) during evacuation processes were presented. In this section, we conduct
experiment 3, in which agents’ evacuation routes are obtained based on a system-level
optimization approach (Mode 2). Then, we compare the three experiments to explore the
joint impacts of the route search method and behavioral heterogeneity of residents on

evacuation processes.

Figure 13 compares agents’ average evacuation times for the two travel modes. Two
implications are obtained from the modeling results. First, the results show that the average
evacuation time is consistently smaller for Mode 2 than for Mode 1. This result agrees with
the common belief in transportation research. That is, if each agent selects their shortest
evacuation route without considering the effects of other agents’ route choices, traffic
congestion will likely occur in the road network. In contrast, if agents’ evacuation route
choices are optimized from the system level, traffic flow conditions can be improved,

leading to a noticeable reduction in traffic congestion and shorter evacuation times.
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Figure 13. Comparison of the average evacuation time of agents for the two evacuation

route search strategies

Second, one can observe that the variation in evacuation time across different shelter
establishment scenarios is significantly higher for Mode 1 than for Mode 2. For example,
among the five one-shelter scenarios, the agents’ average evacuation time ranges from 46.7
hours to 20.1 hours (a difference of 26.6 hours) for Mode 1. In contrast, this value ranges
from 16.5 hours to 9.2 hours (a difference of 7.3 hours) for Mode 2. This result implies that
shelter establishment plays a more important role when residents only seek to minimize
their individual evacuation times. In comparison, if agents’ evacuation routes are optimized
from the system level, shelter establishment will become a less significant factor affecting

evacuation performance.

Figure 14 presents the percentages of the three groups of agents during the evacuation
process to explicitly examine the impacts of different route search strategies. Compared

with the shortest-distance search strategy (Mode 1), the system-level optimization route
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search strategy (Mode 2) can reduce the evacuation clearance time by 12 hours (from 27.5
hours for Mode 1 to 15.5 hours for Mode 2). In addition, the percentage of agents in the
road network at the peak traffic time is reduced from 60.4% for Mode 1 to 43.1% for Mode
2, indicative of a significant improvement in traffic congestion during the evacuation
period. However, the peak traffic time is similar in the two scenarios, suggesting that
changing agents’ route search strategies does not considerably affect the peak time of

traffic flows.
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Figure 14. Comparison of residents’ evacuation processes for the two route search
strategies (note that all five evacuation shelters are selected for the two scenarios, and the

variation in residents’ evacuation preparation times is 1.5 hours)

The above analyses focused on assessing the impacts of a single factor (agents’ behavioral
heterogeneity or evacuation route search strategies). Figure 15 examines how the two
factors jointly affect evacuation processes. Notably, in general, the average evacuation time

of agents and the system-level evacuation clearance time are small when the variation in
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the evacuation preparation time is low and/or when agents use Mode 2 to determine their
evacuation routes. Interestingly, when the variation in agents’ evacuation preparation times
is low (<1.0 hour), the difference between Mode 1 and Mode 2 is not significant in terms
of the peak traffic time or the percentage of evacuating agents at the peak traffic time. This
result indicates that changing agents’ route search strategies will not considerably affect
the peak traffic time or the maximum traffic flow if all the agents start their evacuation
activities within a short time window. In contrast, as the variation in the evacuation
preparation time of agents increases, the evacuation route search strategy used can
significantly affect the peak traffic time and the maximum traffic flow (Figures 15c-15d).
However, the variation in agents’ evacuation preparation times does not notably affect the
changes in the average evacuation time or system-level evacuation clearance time between

the two route search strategies.

The comparisons of the two route search methods, as have been presented in the above
sections, show that households’ route choices play an important role in their evacuation
processes. Evacuation clearance time and traffic congestion will be significantly alleviated
and become more robust against the change in shelter location arrangement if evacuation
routes are optimized. In this regard, policy makers may improve flood management by
providing clear guidance to all the households in terms where (i.e., shelter choice), when
(i.e., departure time) and in particular, through which route (i.e., route selection) to
evacuate. On the other hand, households need to follow the evacuation guidance and take

the recommended routes to improve evacuation efficiency.
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Figure 15. The joint impacts of evacuation route search strategies and the variations in

agents’ evacuation preparation times on (a) the average evacuation time, (b) the system-

level evacuation clearance time, (c) the time when the traffic peak is reached during

evacuation processes, and (d) the percentage of evacuating agents at the peak traffic time

5. Discussion

5.1. Implications for flood risk assessment and evacuation management

In this study, we employ an interdisciplinary socio-hydrological approach that incorporates

a physically-based hydrodynamic model, an agent-based human behavior model, and a

large-scale transportation model into an integrated modeling framework. The proposed
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modeling framework is motivated by previous socio-hydrological studies that called for
incorporating various factors in the context of coupled human-flood systems to support
flood management. These factors may be associated with a wide range of interdisciplinary
domains, such as hydrogeological conditions, flood inundation process, information
dissemination platforms, risk perception and awareness, social preparedness, public policy,
and urban infrastructure development (Barendrecht et al., 2019; Di Baldassarre et al., 2013;
Yu et al., 2022; Pande and Sivapalan, 2017; Troy et al., 2015; Fuchs et al., 2017; Viglione
et al., 2014). We apply the model to the XNA in China to assess the inundated areas of an
extreme flood event and to examine household evacuation outcomes under various
management policies and human behaviors. Several modeling and policy implications can

be obtained based on the model construction and simulation results.

First, the simulation results of this study show that the flood risk and flood damage to an
area are affected not only by the hydrological characteristics of flood events but also by
infrastructural, socioeconomic and human behavioral factors. In particular, the results
show that household evacuation outcomes are significantly affected by shelter location
arrangement, route selection strategies, and evacuation preparation times. Therefore, it is
essential for researchers and policy makers to incorporate various social, hydrological and
human behavioral factors into an integrated framework to obtain more robust estimations

of flood risk and to design informed policies to support holistic flood management.

Second, the modeling results show that the number of evacuation shelters and, in particular,
their geographical distributions have important effects on flood evacuation processes. For
example, by comparing the evacuation outcomes obtained for the five optional shelter sites

in the case study area, we find that the average evacuation time of residents varies from
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20.1 hours (shelter site #1) to 46.8 hours (shelter site #4) (Figure 8). In this regard, if there
are limited available resources and only one evacuation site can be established in the area,
shelter #1 would be a better site than shelter #4 if the management goal is to minimize the
average evacuation time of residents. Another implication associated with shelter choice is
that establishing more shelters in the area does not necessarily lead to improvements in a
community’s evacuation processes if there is already a sufficient number of evacuation
shelters or if the shelters are not well distributed in the region. For example, in the case in
which there are three shelters (e.g., {#1, #2, #3}), including more shelters in the system
(e.g., #4, #5, or both) will not effectively reduce the average evacuation time of households
(Figure 8). This finding, although somewhat contrary to what one would intuitively expect,
is in line with the classic Braess paradox in the field of transportation research; notably,
adding a new link in a traffic network may not improve the operation of the traffic system
(Frank, 1981; Murchland, 1970). Some studies have shown that the occurrence of Braess
paradox phenomena may be affected by the road network configuration, travel demand,
and travelers’ route search behaviors (Pas and Principio, 1997; Braess et al., 2005).
Therefore, regarding emergency management policies such as where to establish new
shelters, policy-makers need to assess the relationships among these factors to determine

the number and geographic distribution of shelters in the system.

Third, flood evacuation is a complex process in which residents’ evacuation activities can
be affected by various social, economic, environmental and infrastructural factors. Thus,
in a particular flood-prone area, residents’ decisions and evacuation behaviors could be
highly heterogeneous, varying from family to family, from community to community, and

from time to time (Paul, 2012; Huang et al., 2017). This study shows that human behavioral
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heterogeneity can significantly affect flood evacuation outcomes in a given region. For
example, the modeling results show that variations in residents’ evacuation preparation
times could result in noticeable differences in traffic congestion conditions and the time
required for evacuees to complete their evacuation processes (Figures 10-12). Therefore,
in flood management practice, emergency responders need to explicitly consider the
heterogeneity in residents’ behaviors and determine how to promote behavioral changes
by providing the needed resources to vulnerable groups who are not able to take effective
flood mitigation actions to improve the overall disaster management performance of the

community (Nakanishi et al., 2019; Hino and Nance, 2021).

5.2. Limitations and future research directions

Our modeling framework and the simulations in this study have a number of limitations
that warrant future research to make improvements and extend the current approach. First,
similar to other studies on emergency evacuation simulation (Wood et al., 2020; Zhu et al.,
2018; Koch et al., 2020; Saadi et al., 2018), this study focuses on car-based traffic
simulation without considering other transportation modes (e.g., motorcycles). In real-
world evacuation cases, residents may use various types of transportation modes to
evacuate, including by automobile, motorcycle, bus, or foot (Melnikov et al., 2016).
Residents may also change their travel modes during evacuation processes, for example,
due to a change in the available transportation facilities. Recent studies have attempted to
improve emergency evacuation simulations by considering more factors in evacuation
simulation, such as multiple transportation facilities, changes in traffic network
accessibility, variations in travel demand, pedestrian/vehicle interactions and speed

adjustments (Dias et al., 2021; Takabatake et al., 2020; Wang and Jia, 2021; Sun et al.,
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2020; Chen et al., 2022). Future study could also improve the transportation model to
consider more complex agent-agent and agent-environment interactions during evacuation
processes. For instance, besides the two route search methods that have been analyzed in
this study, future work may consider another type of route search method, in which agents
have fully access to the real-time information on traffic conditions and may decide to
change their evacuation routes over time (referred to as mode 3). The three travel modes
can be systematically compared to achieve a better understanding of how agents’ route
searching strategies may affect their evacuation results. This extension will enhance the
functionality of the transportation model MATSim and improve the simulation of agent

behaviors during community evacuation processes.

Second, regarding the analyses of shelter establishment, we primarily focus on the number
and geographical distribution of evacuation shelters without considering other important
shelter characteristics, such as shelter capacity. However, it is sometimes necessary to
consider the constraint of shelter capacity in evacuation management, especially in large-
scale evacuation scenarios. Recently, studies have analyzed the impacts of shelter
capacities and their geographic distribution on evacuation outcomes (Alam et al., 2021;
Khalilpourazari and Pasandideh, 2021; Oh et al., 2021; Liu and Lim, 2016). Future studies

should consider more shelter properties to improve the current modeling framework.

Third, in this study, the hydrodynamic model is coupled with the ABM and the
transportation model in a one-way coupling manner. That is, the hydrodynamic model
generates flood inundation results as the input for the ABM and the transportation model,
but the modeling results of the ABM and the transportation model do not affect the

hydrodynamic modeling process. Such a one-way model coupling method is suitable for
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simulating residents’ evacuation activities before a flood occurs, but it is not suitable for
cases in which evacuation processes and flood inundation processes have an overlapping
time period. In particular, the model is not capable of simulating how human behaviors
affect river channel and flood inundation processes (Chen et al., 2016; Witkowski, 2021).

This is another limitation that needs to be addressed in future work.

Finally, it is worth noting that this study is still subject to many simplifications and
assumptions due to data incompleteness and the specific research scope of the current work.
Future study could incorporate more psychological and social factors to describe agents’
decisions during evacuation processes. For example, future study can conduct surveys and
questionnaires to quantify households’ evacuation preparation times after receiving flood
evacuation orders (Lindell et al., 2020). Also, future studies could consider other factors
that may affect human flood risk perception and risk awareness, such as social memories,
social interactions and observations of neighbors’ actions (Du et al., 2017; Girons Lopez
et al., 2017). These extensions and improvements can make the model capable of
simulating more realistic decision-making processes and more complex human-flood

interactions to support emergency management during floods.

6. Conclusions

A fundamental aspect of societal security is natural disaster management. Computational
models are needed to assess the flood risk in flood-prone areas and to design holistic
management policies for flood warning and damage mitigation. In this study, we propose
an integrated socio-hydrological modeling framework that couples a hydrodynamic model
for simulating flood inundation processes, an ABM for simulating the flood management

practices of emergency responders and human behaviors, and a large-scale transportation
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model for simulating household evacuation processes in a road network. Using a case study
of the XNA in China, we demonstrate the effectiveness of the modeling framework for
assessing flood inundation processes for a 100-year flood event and examining households’
evacuation outcomes considering various evacuation management policies and human
behaviors. A number of scenario analyses are performed to explore the impacts of shelter
location arrangement, evacuation preparation times and route search strategies on

evacuation performance.

Through a set of scenario analyses, the modeling results show that for a 100-year flood
event, approximately 66.5% of the land area will be flooded, affecting 0.5 million people.
Household evacuation processes can be significantly affected by the number and
geographical distribution of evacuation shelters. For the five optional sites of evacuation
shelters, the average evacuation time of residents ranges from 20.1 hours to 46.8 hours,
depending on where the evacuation shelters are located. Counterintuitively, yet in line with
the Braess paradox in the transportation field, we find that including more shelters in the
system may not improve evacuation performance in a region if the number of shelters or
shelter distribution is already optimal or near optimal. In addition, the simulation results
show that residents’ flood evacuation outcomes are significantly affected by human
decision-making processes, such as the selection of evacuation route search strategies.
Compared with the system-level route optimization method, the shortest-distance route
search method is associated with a longer evacuation travel time because evacuees seeking
to minimize their own travel time may experience traffic congestion. We also find that a
low level of heterogeneity in agents’ evacuation preparation times can result in heavy

traffic congestion and long evacuation clearance times. These modeling results indicate

43



783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

that the flood risk of, and the ultimate damage to, an area is affected not only by the
magnitude of the flood itself but also by flood management practices and household
behavioral factors. This study is therefore in line with some previous studies that
highlighted the significance of using socio-hydrological methods for hydrological science
and watershed management (Di Baldassarre et al., 2013; Sivapalan et al., 2012; Abebe et

al., 2019).

This study still has a number of limitations that need to be addressed. Recommended future
work includes incorporating more types of transportation facilities and route selection
methods in the transportation simulation model, considering more psychological and
behavioral factors in human decision making, and improving the model coupling method
by employing a two-way coupling approach to simulate the impacts of human behaviors
on flood inundation processes. We envision that these extensions will improve the
functionality of the proposed modeling framework, and the simulation results with these
improvements can provide more useful modeling and policy implications to support flood

risk assessment and emergency evacuation management.
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Data availability
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