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Abstract. Although radar-based quantitative precipitation estimation (QPE) has been widely investigated from various per-

spectives, very few studies have been devoted into extreme rainfall QPE. In this study, the performance of KDP-based QPE

during the record-breaking Zhengzhou rainfall event occurred on 20 July 2021 is assessed. Firstly, the OTT disdrometer ob-

servations are used as input to T-matrix simulation and different assumptions are made to construct R(KDP) estimators. Then,

KDP estimates from three algorithms are compared for obtaining best KDP estimates, and gauge observations are used to eval-5

uate the R(KDP) estimates. Our results in general agree with previous known-truth tests, and provide more practical insights

from the perspective of QPE applications. For rainfall rates below 100 mm h−1, the R(KDP) agrees rather well with the gauge

observations, and the selection of KDP estimation method or controlling factor has minimal impacts on the QPE performance

provided that the used controlling factor is not too extreme. For higher rain rates, significant underestimation is found for the

R(KDP), and a smaller window length results in higher KDP thus less underestimation of rain rates. We show that the “best10

KDP estimate”-based QPE cannot reproduce the gauge measurement of 201.9 mm h−1 with commonly used assumptions for

R(KDP), and potential responsible factors are discussed. We further show that the gauge with the 201.9 mm h−1 report was at

the vicinity of local rainfall hot spots during 16:00 ∼ 17:00 LST, while the 3-h rainfall accumulation center was located at the

southwest of Zhengzhou city.

1 Introduction15

Extreme rainfall can lead to high-impact events, such as soil erosion, debris flows and flash floods, and therefore poses a

serious threat to both life and properties. In a warming climate, the occurrence frequency of regional extreme rainfall events

is expected to increase (Allan and Soden, 2008; Donat et al., 2016), and this increase is particularly highlighted in regions

of rapid urbanization (Zhang, 2020) where both the intensity of precipitation and the risk of flooding tend to be exacerbated

(Zhang et al., 2018).20

To mitigate potential damages induced by extreme rainfall events, great efforts have been devoted to improving the predic-

tion and monitoring of extreme rainfall. While the prediction technologies based on numerical models are confronting major
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challenges (Luo et al., 2020), a collection of in-situ and remote sensing instruments is in operation to observe precipitation,

thanks to the development of surface observing systems. The “ground truth” of surface precipitation map is customarily made

from rain gauge observations. However, the rain gauge spacings are usually beyond several kilometers, and such “point” obser-25

vations are inadequate to represent the localized rainfall centers produced by rapidly evolving storms (Schroeer et al., 2018).

Gauge measurements seem to be falling short to support flood controlling in urban areas, where the inhomogeneity of underly-

ing surfaces and complexity of fine-grained drainage connections call for rainfall observations with fine resolutions (Paz et al.,

2020) and the simulated runoff is even more sensitive to the spatial resolution than to the temporal resolution (Bruni et al.,

2015). The areal rainfall map can be seamlessly made with remote sensing observations. Weather radars have been used for30

quantitative precipitation estimation (QPE) based on equivalent radar reflectivity factor (Ze), polarimetric observations (dif-

ferential reflectivity ZDR, specific differential phase KDP, and cross correlation coefficient ρHV) or attenuation effects. From

the perspective of raindrop size distribution (DSD) moments, KDP and specific attenuation, corresponding to the estimators

of R(KDP) and R(A), respectively, are better correlated with rain rates. Therefore, R(KDP) and R(A) approaches are more

efficient than Ze-based ones in reducing uncertainties caused by the DSD variability (Ryzhkov et al., 2022). For lower rain35

rates, R(A) has shown apparent advantages, whereas R(KDP) is optimal for heavy rain (Ryzhkov et al., 2022). However,

the accuracy of KDP estimation can significantly depend on the methods used (Reimel and Kumjian, 2021). To the best of

our knowledge, the performance of KDP-based heavy rainfall estimation has hardly been addressed despite a large volume of

works on radar-based QPE (Schleiss et al., 2020; Cremonini et al., 2022).

On 20 July 2021, a devastating rainfall event hit Zhengzhou (Fig. 1a), one of the largest cities in central China, which hosts40

over 12 million residents. This event took place following the continuous, relatively weaker, rainfall on 18 and 19 July, and

caused severe flooding over Zhengzhou city that led to around 300 fatalities and tremendous economic losses (Yin et al., 2022).

In Zhengzhou city, urban infrastructure is mostly constructed with impervious materials, the so-called “gray urbanization” (gray

area in Fig. 1b), making the city vulnerable to waterlogging in the presence of short-duration extreme rainfall. Given the limited

emergency resources, it is therefore imperative to accurately locate the worst hit area. The most intense rainfall was produced45

during 14:00 ∼ 17:00 local solar time (LST) on July 20 (Yin et al., 2022) (Fig. 1c). Although a gauge (the site is marked with

a black cross in Fig. 1a, b) located in Zhengzhou reported the maximum hourly rainfall of 201.9 mm at 17:00 LST, an hourly

rainfall rate exceeding or close to the historical record in mainland China (Ding, 2019), location and extremity of other local

rainfall hotspots are still unclear.

In this study, we aim to quantitatively assess the performance of different KDP-estimation algorithms in this extreme rainfall50

event and analysis the areal precipitation map over Zhengzhou city. The paper is organized as follows. The data and KDP esti-

mation methods are introduced in section 2. The methods of comparing KDP estimates from different algorithms, constructing

different R(KDP) estimators, and merging radar observations at multiple elevation angles are described in section 3. Section 4

compares the QPE performance of KDP estimated from different approaches. The areal precipitation map over Zhengzhou city

is analyzed in section 5, and conclusions are given in section 6.55
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Figure 1. (a) Topography over and around Zhengzhou overlaid with the two operational S-band dual-polarization radars (black triangles),

meteorological rain gauges (METE gauges; red dots), hydrological rain gauges (HYDRO gauges; blue dots) and one OTT disdrometer

(black cross). (b) Satellite image of Zhengzhou city (modified from Google Maps). (c) Hourly rain rate recorded by the gauge and the OTT

disdrometer located at the Zhengzhou national reference climatological station (113.66 ◦E, 34.71 ◦N, the site where the OTT disdrometer is

deployed) on 20 July 2021. (d) 5-min horizontal wind speed (left) and direction (right) from 14:00 to 18:00 LST. The light blue curves in (a)

indicate county boundaries and Zhengzhou city is outlined in dark green. Note that the HYDRO gauges are widely distributed, although only

those over Zhengzhou city are presented in (a).

2 Data

2.1 Dual-polarization weather radars

Since the late 1990s, a nationwide weather radar network composing of over 200 China’s New Generation Doppler Weather

Radars (CINRADs) has been built in China. CINRADs typically work in the volume coverage pattern 21 mode, which consists

of nine plan position indicator scans (0.5◦ , 1.5◦ , 2.4◦ , 3.3◦ , 4.3◦ , 6.0◦ , 9.9◦ , 14.6◦ , and 19.5◦) with the volumetric update60

time of 6 min. In recent years, more than 100 CINRADs have been upgraded to dual-polarization systems and others are in

progress. As shown in Fig. 1a, two S-band dual-polarization CINRADs are deployed in Luoyang city (112.44 ◦ E, 34.5 ◦ N) and

Zhengzhou city (113.697 ◦ E, 34.704 ◦ N), respectively. Both Luoyang and Zhengzhou radars have the same configurations,
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e.g., the range resolution of 0.25 km, azimuth resolution of 1 ◦, and the time resolution of 6 min. Mt. Song, located between

Luoyang and Zhengzhou, is about 0.9 km above mean sea level (amsl), and the altitude of Luoyang radar is 0.209 km amsl.65

Therefore, the mountains partially block Luoyang radar’s lowest radar beam (0.5◦), which may affect reflectivity observations

but KDP is immune to this effect (Lang et al., 2009). The altitude of Zhengzhou radar is 0.18 km. We have checked Luoyang

and Zhengzhou radar observations at different elevation angles, and no second-trip echoes can be identified. Due to the power

outage, the Zhengzhou radar data were missing from 17:18 to 19:48 LST. Still, this extreme precipitation event over Zhengzhou

city was successfully captured by the Zhengzhou radar, since the majority of the precipitation system moved out of urban70

Zhengzhou after 17:00 LST.

KDP is one-half the range derivative of differential phase shift (ΦDP), while radars measure the total differential phase shift

which is a combination of KDP and backscatter differential phase (δ). The impact of δ on KDP is negligible at S-band, while

it can be significant at shorter radar wavelengths (Trömel et al., 2013). There are a number of algorithms available for KDP

estimation, and some of them are accessible in the open-source tool Py-ART (Helmus and Collis, 2016). Reimel and Kumjian75

(2021) used a known-truth framework to evaluate the commonly used KDP estimation algorithms. They found that the algorithm

accuracy is dependent on the raw ΦDP, and concluded that each algorithm has its apparent strengths and weakness. They also

showed that the method of Maesaka et al. (2012) and linear programming (Giangrande et al., 2013) can change the overall

behavior between oversmoothing and undersmoothing. This means that a couple of KDP estimates generated with different

tuned parameters may yield a range of values where the “best KDP” falls in, despite that it is challenging to determine the best80

controlling parameter. In this study, we will assess the performance of using different tuning parameters in KDP-based QPE. A

brief introduction of KDP-estimation algorithms is given below.

– The operationally used KDP estimation algorithm in CINRADs is a traditional least square fitting (LSF). As a regression

approach, LSF is easy to implement and is commonly used for estimating KDP in weather radars. For a given window

of smoothed ΦDP, linear regression is done to estimate KDP. The window length is adaptive and depends on observed85

Ze (Wang and Chandrasekar, 2009). Due to this dependence on Ze, which can be affected by data quality issues such as

ground clutter, KDP estimates with ρHV below 0.8 are removed.

– Linear programming (LP). This algorithm assumes that ΦDP monotonically increases with range and uses self-consistency

between Ze and KDP. Since the self-consistency relation is developed for rainfall, the algorithm does not process ΦDP

values above melting layer (4.5 km in this study) or in presence of hail. The algorithm is proposed by Giangrande et al.90

(2013) and is compiled in Py-ART (Helmus and Collis, 2016). The user can define a self-consistency coefficient for

KDP-Ze as well as a self-consistency factor or use the default settings. In Py-ART, the self-consistency factor is used to

define the weight of the Ze-KDP relationship on the final solution, and the default value is 6×104. For S-band radars,

the self-consistency factor below 4×104 may degrade the estimation performance (Reimel and Kumjian, 2021), while

it should be tuned at C-band (Cremonini et al., 2022). In this study, the default setting in Py-ART was used. We have95

compared the ΦDP reconstructed by the LP method with the raw ΦDP in radar radials, and found that the algorithm works

reasonably well. In addition, the user should set a window length in which a Sobel filter is imposed, and the length of

4



this window effectively affects the smoothness of the KDP field. For a comparison with (Reimel and Kumjian, 2021), we

have tried the window lengths of 5 (0.75 km), 15 (3.75 km), 25 (6.25 km), 35 (8.75 km) and 45 (11.25 km) in this study.

– Maesaka algorithm. This algorithm assumes monotonic increase of ΦDP below the melting layer, namely applicable in100

rain. It applies a low-pass filter to smooth the observed ΦDP, and the effect that the low pass filter has on the final solution

depends on a user-defined parameter Clpf. By changing the value of Clpf the user can control the amount of smoothing

applied by the algorithm. A thorough introduction of the algorithm is referred to (Maesaka et al., 2012). Similar to

Reimel and Kumjian (2021), we have used values of 100,102,104 and 106 for Clpf in this study for KDP estimation.

Note that the data quality of ΦDP, which is also critical for KDP estimation, can be heavily affected by ground clutter which105

usually leads to significant spikes of ΦDP at certain ranges (r). To minimize the impact of those spikes on KDP estimation, the

following procedures were utilized:

– Firstly, a linear fit was made to the raw ΦDP(r) data for an interval of 5 km. The fitted values were labeled as Φ′
DP(r).

– Then, the point with |ΦDP(r)-Φ′
DP(r)| exceeding 10◦ was identified as clutter.

– Finally, a cubic spline interpolation was made to the identified clutter points.110

These steps can effectively remove majority of clutter signals, however, local perturbation of ΦDP can be on the order of

10◦ given the area of interest is so close to the radar. Therefore, we have also manually checked the ΦDP fields and removed

significant clutter signals.

2.2 Surface observations

The most widely used rainfall measuring instrument in operational weather services is the tipping bucket rain gauge. The115

buckets are mounted on a fulcrum and located below a funnel. Once one bucket is filled with water channeled through the

funnel, it tips down and the other bucket raises. At the same time, a switch records an electronic signal, which is then converted

to the amount of rain. The gauge observations used in this study are from both meteorological (METE) and hydrological

(HYDRO) rain gauge stations, respectively. For the METE gauges, the volume of a bucket is 0.1 mm, which corresponds

to the minimal detectable rain accumulation of 0.1 mm. Every one minute, the number of tips is recorded. Liu et al. (2019)120

have pointed out that the uncertainty of such gauges is about 4 % for rain rates exceeding 10 mm h−1. The HYDRO gauges

employ tipping buckets as well, but the instrument model differs from that of the METE gauges. The minimal detectable rain

accumulation of the HYDRO gauges is 0.5 mm and the time resolution is 1 h. The high temporal resolution of the METE

gauges enables the inspection of the data quality. For the HYDRO gauges with hourly measurements, the inverse distance

weighting (IDW) approach (Chen and Liu, 2012) was implemented to yield an estimate of hourly rainfall accumulation at a125

given HYDRO gauge site. Then, the observed value below 50% of the expected one was removed, in order to indentify the

gauges which were not working due to power outages. After the data quality control, 114 gauges were used in this study.
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Different from tipping buckets gauges, OTT PARSIVEL disdrometer (OTT) measures rainfall by accounting every raindrop

that severely attenuates the light signal emitted from a laser sheet. This different measuring principle makes the OTT an

independent instrument that can be used to evaluate gauge observations. The one deployed close to the gauge is the second130

generation of OTT. Figure 1 (c) compares hourly rain rate measurements recorded by a rain gauge and the OTT at Zhengzhou

national reference climatological station in 20 July 2021. During most of the period, OTT slightly overestimates hourly rainfall

accumulations compared to the gauge observations. This may be attributed to the overestimation of large drops possibly caused

by several factors, such as the assumed oblate shape and the coincidence effect (Tokay et al., 2013; Park et al., 2017).

2.3 Comparison of Luoyang and Zhengzhou radar observations135

Zhengzhou radar is located in the southeast of Zhengzhou city and Luoyang radar is around 120 km away from the Zhengzhou

city. Since the lowest beam of Luoyang radar is about 2.2 km over the Zhengzhou city while the lowest beams of Zhengzhou

radar are rather close to the surface, the agreement between Luoyang and Zhengzhou radar observations is an potential issue

that should be addressed. Given the hourly precipitation from 16:00 to 17:00 LST reached the peak, radar retrievals during

this period were used for an assessment. To provide a reference for the operational service, we used KDP from CINRAD’s140

operational products (LSF method) in the comparison. The lowest elevation angle of Luoyang radar (0.5◦, the radar beam is

about 2.2 km over Zhengzhou city) was used, while the selection of 1.5◦ for the Zhengzhou radar was due to significant clutter

issues at 0.5◦. A linear interpolation was applied to range gates that were severely affected by ground clutter as characterized by

ρHV below 0.8. The raw data were interpolated into the spatial resolution of 0.5 km using Py-ART (Helmus and Collis, 2016).

Note that we did not find significant evidence of hail from Luoyang radar ρHV observations, and therefore hail is anticipated to145

be absent below 2.2 km.

As shown in Fig. 2, the heaviest rainfall poured over the area around the Zhengzhou radar site during 16:00 ∼ 17:00 LST,

which may explain the breakdown of Zhengzhou radar at 17:12 LST. A closer inspection to Fig. 2b shows that the location

of precipitation center retrieved from the Luoyang radar (black isolines) is on the east side of that from the Zhengzhou radar.

Yin et al. (2022) have made numerical simulations of this event, and they found that the storms were vertically tilted eastward.150

The sampling volume of the Luoyang radar over Zhengzhou city was about 2 km, while the Zhengzhou radar observed near-

surface precipitation. Therefore, the precipitation observed by the Luoyang radar is more eastward than the Zhengzhou radar.

In addition, warm rain processes may also significantly augment rain rates within the height of 2 km (Yu et al., 2022). Given

the effects discussed above, Zhengzhou radar observations were used for QPE in this study.

3 Methods155

As pointed out by Bringi and Chandrasekar (2001), the accuracy of KDP-based QPE is dependent on not only the KDP estima-

tion from radars but also on the parameterization of R(KDP). This section will address these two aspects respectively.
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Figure 2. Rainfall accumulation from 16:00 to 17:00 LST estimated using R= 51K0.86
DP , in which KDP estimates were from the operational

data products (LSF method). (a) Luoyang radar data at the elevation angle of 0.5◦ and (b) Zhengzhou radar data at the elevation angle of

1.5◦ were used for comparison. Note that KDP estimates within 3 km to the Zhengzhou radar site were removed. The black triangle and cross

denote the Zhengzhou radar and the gauge/OTT site, respectively. The black isolines indicate the rainfall accumulation of 100 mm and 130

mm observed by the Luoyang radar, respectively.

3.1 Approaching the “best KDP estimate”

The calculation of KDP with Maesaka and LP algorithms requires a presetting of Clpf and window length, respectively, which

controls the extent of smoothing applied to ΦDP. Bringi and Chandrasekar (2001) concluded that the minimal window length160

required for KDP estimation decreases with precipitation intensity. Reimel and Kumjian (2021) further showed that the “best

KDP estimate” falls in a range of values produced by varying the parameters in known-truth simulations and the retrieved KDP

is heavily dependent on the algorithm and tuning parameter employed for steep real KDP regions. In this study, the Zhengzhou

national reference climatological station hosts an OTT and the gauge with the 201.9 mm h−1 report and is 3.15 km at 274◦

azimuth of Zhengzhou radar site. KDP estimates from different algorithms with various tuning parameters over this site were165

compared. Here, radar observations at the elevation angles of 1.5◦, 2.4◦, 3.3◦ and 4.3◦ were used for the following considera-

tions. (1) The dependence of observed KDP on the viewing angle is expected to be negligible at small radar elevation angles,

i.e., smaller than 4.3◦ (Bringi and Chandrasekar, 2001). (2) Due to the strong ground clutter contamination, we discarded the

data recorded at the lowest elevation angle. KDP estimates at elevation angles of 1.5◦, 2.4◦, 3.3◦ and 4.3◦ corresponding to

heights about 0.083 km, 0.132 km, 0.182 km and 0.237 km, respectively, over the station were used. Given the small range of170

height, we assume that the real KDP values over the Zhengzhou station at these elevation angles were about the same.
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Figure 3. KDP estimates using (a) Maesaka (2012) method and (b) LP over Zhengzhou national reference climatological station. Thick

lines and shading areas indicate the median values and standard deviations of KDP at elevation angles of 1.5◦, 2.4◦, 3.3◦ and 4.3◦. LP:

linear programming method (Giangrande et al., 2013); LSF: least square fitting, the CINRAD’s operational algorithm. Colored lines indicate

different window length (len) used in LP.

Bearing the considerations above, KDP estimates using Maesaka and LP algorithms are presented in Fig. 3. Interestingly,

our results resemble what is presented in Fig. 16 of (Reimel and Kumjian, 2021) in following aspects:

– Stronger dependence of KDP on the tuning parameter is found for LP than the Maesaka algorithm.

– Smaller window length used in the LP method generally leads to higher KDP in heavy rainfall periods. In comparison,175

KDP does not significantly change by varying Clpf from 100 to 104 for the Maesaka algorithm.

– LP can produce higher KDP values than the Maesaka algorithm.

– In presence of relatively light rainfall, such as before 15:00 LST, longer window length in LP agrees better with the

Maesaka algorithm.

– KDP values retrieved from both the LSF and Maesaka algorithms are less uncertain than LP.180

However, the impact of changing the window length does not seem to be as significant as in (Reimel and Kumjian, 2021).

The KDP values with a window length of 0.75 km which is expected to yield nearly the most extreme KDP (Reimel and
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Kumjian, 2021) are comparable with the window length of 3.75 km (Fig. 3b). Namely, it appears that the KDP estimated from

the LP algorithm has reached “saturation" at the window length of 3.75 km.

It should be noted that the non-uniform radar beam filling was not considered in idealized known-truth tests (Reimel and185

Kumjian, 2021), but it can lead to local perturbation of KDP (Ryzhkov and Zrnic, 1998). As the LP and Maesaka algorithms

assume the monotonic increase of ΦDP, they are expected to yield higher KDP than the LSF method if the negative radial

slope of ΦDP occurs in the close proximity. However, this effect does not seem to be significant in this study for the following

reasons. Firstly, the Zhengzhou radar is close to the gauge site (3.15 km), and therefore the radar sampling volume is much

smaller than that at larger distances. Then, the gauge site was not located in the edges of rain cells (see merged KDP observations190

at https://github.com/HaoranLiHelsinki/Figs_Zhengzhou). Finally, we have manually checked ΦDP observations, and did not

see significant negative radial slope of ΦDP. In addition, the smallest Clpf (least smoothing) yields smaller KDP than the LSF

method from 16:00 to 17:00 LST (Fig. 3a), suggesting the selection of KDP estimation method is more important than the

effect of non-uniform radar beam filling in this study.

3.2 Parameterizations of R(KDP)195

While KDP is less dependent on DSDs than other radar products, a localized R(KDP) parameterization is suggested to minimize

the impact of varying DSDs (e.g., Chen et al., 2022). In this study, the OTT disdrometer observations on 20 July 2021 were

used as input to PyTMatrix (Leinonen, 2014) to calculate radar polarimetric variables. Before the calculation, we have removed

raindrops with the velocity outside of ± 50% of empirical relations (Atlas et al., 1973) or with the volume equivalent diameter

higher than 6 mm. It was assumed that raindrops are oblate spheroids with the aspect ratio parameterized by the equivolumetric200

spherical drop diameter (Thurai et al., 2007). The water temperature was set to 20 ◦C, and the orientation of rain drops was

assumed to be normally distributed with zero mean and a certain value of standard deviation (σ). We will discuss the factors

affecting the accuracy of R(KDP) parameterization as follows.

– DSDs. Zhang et al. (2022) have shown that for a given KDP the fitted relation for OTT observations during 16:00 ∼
17:00 LST yields higher precipitation rates than that for the whole day, but the value does not exceed ∼ 15 mm h−1. In205

addition, most rain rates above 200 mm h−1 are during 16:00 ∼ 17:00 LST, and they follow the fitted curves rather well.

Therefore, we have used the OTT data from 00:00 to 24:00 LST 20 July 2021.

– Assumed σ. The simulated radar polarimetric variables are dependent on σ if hydrometeors are assumed to be spheroids

(Li et al., 2018). Bringi et al. (2008) have found a σ of around 7◦ in a stratiform rainfall event with low wind conditions

and 12◦ in moderate wind conditions. In presence of high winds, this value can be 13.6◦ ∼ 24.7◦ (Bolek and Testik,210

2022). The automatic weather station at the OTT site reported that wind speed during this event ranged from 2 to 5

m s−1 with a peak of 7.8 m s−1 at around 16:00 LST. The magnitude of wind speed seems rather close to the condition

corresponding to the σ of 13.6◦ (Bolek and Testik, 2022).
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Figure 4. T-Matrix-based simulation of KDP versus rain rate from the OTT observations on 21 July 2021. Black and green circles indicate

observations with the σ = 7 and 13.6◦, respectively, assuming the aspect ratio parameterization from (Thurai et al., 2007, T07). The R(KDP)

relations from (Ryzhkov et al., 2005, R05), (Huang et al., 2018, H18) as well as (Bringi and Chandrasekar, 2001) with aspect ratio parame-

terizations from (Pruppacher and Beard, 1970, PB70) and (Beard and Chuang, 1987, BC87) are also presented.

For a given KDP of 5 ◦ km−1, the estimated rain rates are 203.6 mm h−1 and 183.6 mm h−1 for σ of 13.6◦ and 7◦,

respectively. This value can even be 279.4 mm h−1 (R= 70K0.86
DP , not shown) for a σ of 24.7◦, which was observed in215

a tornadic squall-line storm (Bolek and Testik, 2022) and seems to be unrealistically large in this case.

– Aspect ratio parameterization. Assuming a light wind condition (σ = 7◦), the (Pruppacher and Beard, 1970) and (Beard

and Chuang, 1987) parameterizations lead to quite different rain rate estimations (Fig. 4), as earlier shown by Bringi and

Chandrasekar (2001). Thurai et al. (2007) have shown that the observed raindrop shapes are rather close to the model

simulations in (Beard and Chuang, 1987). This is the reason why we have employed the (Thurai et al., 2007) aspect ratio220

parameterization in the KDP calculations.

As shown in Fig. 4, the deviation between different parameterizations seems relatively small for smaller rain rates, but

significantly enlarges as the precipitation intensity increases. This indicates that a single R(KDP) parameterization is applicable

for QPE of moderate rainfall. For higher rain rates, the fitted relation for σ of 13.6◦ agrees rather well with (Beard and Chuang,

1987) and (Huang et al., 2018).225
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3.3 Merge of Zhengzhou radar observations at multiple elevation angles

One of the major challenges of using weather radar observations is to mitigate the ground clutter contamination in the vicinity

of radar sites. To remove pixels affected by ground clutters, the threshold of ρhv = 0.8 (Kumjian, 2013) was implemented firstly.

In the second step, with the assumption that the rain microphysics within 0.6 km to the surface do not change, the median of

radar observations at elevation angles from 0.5◦ to 6.0◦ was used to replace the pixels identified as ground clutter. Because230

of the rapid increase of the beam height at higher elevation angles, the maximum radar range decreases with the increase of

elevation angle for a given height. Due to the clutter contamination, very few radar observations at the vicinity of the radar site

at the elevation angle of 0.5◦ were used in the data merge. Meanwhile, radar data at 9.9◦, 14.6◦, and 19.5◦ were discarded given

limited valid data and the elevation dependence of polarimetric measurements may start appearing (Bringi and Chandrasekar,

2001). Then, the Inverse Distance Weighting (IDW) interpolation (Cressman, 1959; Goudenhoofdt and Delobbe, 2009) of235

the radar data was applied to filling in empty regions, and the new constructed radar data were interpolated into the spatial

resolution of 0.5 km using Py-ART (Helmus and Collis, 2016).

4 Results

4.1 KDP-based QPE over the gauge/OTT site

With a parameterized R(KDP), we have been able to quantitatively analyze the performance of KDP-based QPE over the gauge240

site. Given the high rain rates in this event, KDP estimates using the LSF method, the Maesaka algorithm with Clpf = 100 as

well as the LP method with the window length of 0.75 km are used for comparison. As shown in Fig. 5(a) and (b), R(KDP)

agrees generally well with the gauge and OTT observations before 16:00 LST, regardless of the KDP estimation method or the

used R(KDP) parameterizations.

From 16:00 to 17:00 LST, significant deviations can be found between the gauge and OTT observations. In addition, KDP-245

based QPE significantly underestimates the surface precipitation during this period. With a larger σ (Fig. 5b), R(KDP) is still

well below OTT/gauge observations. Therefore, it is of necessity to discuss factors potentially contributing to this underesti-

mation.

– Accuracy of KDP estimates. Compared with the LSF and Maesaka algorithms, KDP estimated by the LP method less

underestimates the rainfall. Note that the parameterizations used for Maesaka and LP algorithms are expected to generate250

the highest KDP values in heavy rainfall (Reimel and Kumjian, 2021). Therefore, we should have good confidence that

the best KDP should be close to or lower than the estimates.

– DSD variations in the air. The lowest radar sampling volume is 0.083 km over the gauge/OTT site (1.5◦) while the

highest is 0.237 km (4.3◦). If DSDs would have significantly varied, KDP estimates at different elevation angles should

also change. However, the uncertainty of KDP estimates at different elevations angles is on the order of 0.5 ◦km−1.255

Therefore, the change of DSDs should not be significant, and the DSDs observed by OTT should be applicable to radar
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Figure 5. Comparison of rainfall estimates using KDP estimated from different methods over Zhengzhou national reference climatological

station. Thick lines and shading areas indicate median values and standard deviations of rain rates estimated from KDP at elevation angles of

1.5◦, 2.4◦, 3.3◦ and 4.3◦. The used parameterizations are (a) R= 46K0.86
DP and (b) R= 51K0.86

DP , respectively. The dashed line in (b) is the

use of R= 70K0.86
DP (σ = 24.7◦) for QPE from 16:00 to 17:00 LST.

observations that are so close to the surface. In addition, the rain water content does not seem to change within such a

short distance (Chen et al., 2020).

– Vertical air motions. The KDP-based QPE assumes the absence of vertical air motions. For a given DSD in the radar

sampling volume, downdrafts can lead to the underestimation of rain rates. For such heavy rainfall, a downdraft of 2 ∼ 3260

m s−1 can lead to the rain rate underestimation of 30 ∼ 40 %. We have examined this factor from two aspects. Firstly, we

found that the diameter-velocity diagram generated by OTT observations agrees rather well with the empirical relation,

suggesting the absence of significant downdrafts near the surface (Kim and Song, 2018).

Then, although direct retrieval of vertical air motions is rather uncertain (Oue et al., 2019) compared with the magnitude

of expected downdrafts of 1 ∼ 2 m s−1 as shown in model simulations (Yin et al., 2022), existence of downdrafts is265

detectable in radial divergence (Roberts and Wilson, 1989; Adachi et al., 2016). Here, we define the radial divergence

(RD) as
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RD =
Vi+4 −Vi−4

ri+4 − ri−4
(1)

where Vi is the observed radar Doppler velocity at the range gate ri. The RD is derived every 2 km for a range resolution

of 0.25 km according to Eq. 1. Figure 6 shows time series of the observed Doppler velocity (black) as well as RD (red)270

over Zhengzhou national reference climatological station. The leading edge of the extreme-rainfall-producing storms

passed the site at about 15:36 LST when the Doppler velocity underwent the transition from positive to negative and

the RD reached a local minimum (-3×10−3 s−1), indicating the presence of updrafts. From 16:00 to 17:00 LST, the

Doppler velocity is around 0 m s−1 and RD is about 2×10−3 s−1, suggesting the sustained downdrafts. Therefore, the

unquantified downward air motions may be responsible for the underestimation of rainfall accumulation.275

Figure 6. Doppler velocity (left) and Radial divergence (right) observed over Zhengzhou national reference climatological station. Thick

lines and shading areas indicate the median values and standard deviations at elevation angles of 1.5◦, 2.4◦, 3.3◦ and 4.3◦.

– Assumption of σ. As shown in Fig. 4, the assumption on σ is critical for the parameterization of R(KDP). However, σ

cannot be measured by OTT, and very few experiments have been conducted for addressing this (e.g., Bringi et al., 2008;

Bolek and Testik, 2022). The wind observations are rather close to what was reported by Bolek and Testik (2022), and

σ =13.6◦ seems to be a good first guess. If the σ =24.7◦ measured during the passage of a tornadic squall-line storm

(the 4-min running averaged horizontal wind speed is 6 ∼ 10 m s−1) is used, the resulted rain rate estimation is rather280

close to gauge/OTT measurements (dashed line in Fig. 5b). However, the observed horizontal wind speed is 3 ∼ 5 m s−1

from 16:00 to 17:00 LST (Fig. 1d). Therefore, even though we cannot give a more accurate estimate of σ, 24.7◦ seems

to to be unrealistically large in this study.
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– Different sampling volumes between the radar and the gauge/OTT. The width of the sampling volume for Zhengzhou

radar with a beam width of 1◦ over the gauge site is about 55 m, which is much larger than that of a gauge. Although this285

effect is difficult to quantify, we argue that it plays a minor role for the rainfall underestimation. By manually checking

the movement of storms (merged KDP observations at https://github.com/HaoranLiHelsinki/Figs_Zhengzhou), we found

that the storm propagation speed is on the order of several kilometers per hour, contrasting with the much smaller radar

sampling volume. Given the rapid changing nature of the storms, the sampling effect does not seem to be a major factor

responsible for the rainfall underestimation.290

4.2 Statistical evaluation

The dense meteorological and hydrological rain gauge network in Zhengzhou city allows a statistical evaluation of the KDP-

based QPE. In addition, R(KDP) is expected to be less uncertain than other approaches in heavy precipitation (Ryzhkov

et al., 2022). Therefore, the performance of R(KDP) during the most intensive precipitation period (14:00 ∼ 17:00 LST) was

investigated. As discussed above, the assumption of σ = 13.6◦ appears to be more suitable than the commonly used 7◦ in this295

event, thus R= 51K0.86
DP was used. Note that the gridded R(KDP), as introduced in Sect. 3.3, was used for comparison.

For rainfall rates below 50 mm h−1, the standard deviation (std) and bias of R(KDP) are mostly on the order of 7 ∼ 8

mm h−1 and -1 ∼ 0 mm h−1, respectively. Regarding the LP method, the used window length does not significantly degrade

the accuracy of QPE (Fig. 7a-e). The performance of the Maesaka method is comparable with that of the LP method (Fig.

7f-h), except for Clpf = 106 (Fig. 7i) which imposes a too aggressive filter that obviously leads to oversmoothing as well as300

much larger std and bias. The operationally used LSF method (Fig. 7j) shows relatively large bias (1.8 mm h−1), indicating

that the KDP as derived from the LSF method in rainfall rates below 50 mm h−1 should be used with caution.

For rainfall rates above 50 mm h−1, R(KDP) in general underestimates hourly rainfall accumulation, and this underestima-

tion becomes more significant as the rain rate increases (smaller bias and std of red dots than those of black dots). KDP values

estimated from the Maesaka algorithms is on average smaller than that from the LP and LSF methods, which is consistent with305

the results in Fig. 3. Interestingly, the std and bias of LP method are very close to those of the LST method regardless of the

used window length. This indicates that varying the window length from 0.75 to 11.25 km has minimal impact on the accuracy

of R(KDP) for rain rates of 50 ∼ 100 mm h−1 in this event.

Reimel and Kumjian (2021) have shown that smaller window length employed in the LP method yields higher KDP. This

appears to be true for the gauge with the 201.9 mm h−1 report, but decreasing the window length did not significantly amelio-310

rate the underestimation in a statistical perspective (Fig. 7a-e). Specifically, the highest hourly rainfall accumulation was found

for the LP method, and the value rises from 100 mm h−1 (len = 11.25 km) to 149.6 mm h−1 (len = 0.75 km). For a reference,

the value was 122.9 mm h−1 and 143.3 mm h−1 for Maesaka method with Clpf = 100 and LSF method, respectively.
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Figure 7. KDP-based hourly rainfall accumulation v.s. gauge observations from 14:00 to 17:00 LST. KDP was estimated using (a-e) LP, (f-i)

Maesaka and (j) LSF methods. Rain rates were divided into three groups: Rgauge < 50 mm h−1 (blue), 50 mm h−1 ≤Rgauge < 100 mm h−1

(red), and 100 mm h−1 ≤ Rgauge (black). The standard deviation (std) and bias between Rgauge and R(KDP) for each group are marked by

corresponding colors. R= 51K0.86
DP was used.

5 Analysis of areal rainfall map

As discussed above, the use of window length (LP method) and Clpf (Maesaka algorithm) has limited impact on heavy rainfall315

QPE and the window length of 0.75 km generates the closest rainfall estimation to the 201.9 mm h−1 report. Therefore, we

have compared the areal hourly rainfall accumulation based on KDP generated by these three methods during the period with

most intensive rainfall (14:00 ∼ 17:00 LST).

As shown in Fig. 8, the hot spots of rainfall rates can be manually identified and the results of the three methods generally

agree with each other for R(KDP) < 100 mm h−1. However, an in-depth analysis reveals that the magnitudes of rainfall320

accumulations are different at higher rain rates. From 16:00 to 17:00 LST (the right column in Fig. 8), the rainfall hot spots

are in the vicinity of the Zhengzhou radar site (black triangle Fig. 8). The LP method is characterized by the largest area of

R(KDP) > 130 mm h−1 (Fig. 8a3), while the smallest area was found for the Maesaka algorithm (Fig. 8b3). However, due to

the scaricity of gauges in the area of rainfall hot spots, this difference is noticeable only for the gauge with the 201.9 mm h−1

report (black cross Fig. 8).325
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Figure 8. Hourly areal rainfall map from 14:00 to 17:00 LST. KDP was estimated from the (a) LP method with LP = 0.75 km, (b) Maesaka

method with Clpf = 100, and (c) LSF method. The black triangle and cross denote Zhengzhou radar and the site hosting the gauge with the

201.9 mm h−1 report, respectively. R= 51K0.86
DP was used.

The areal hourly rainfall accumulation enables the analysis of the evolution of this event. As shown in Fig. 8a, the precipita-

tion system moved into Zhengzhou city from the southwest pouring rainfall up to 130 mm h−1 from 14:00 to 15:00 LST (Fig.

8a). Then it slowly propagated northeastwards in the next one hour with increased precipitation intensity. The hourly rainfall
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beyond 100 mm h−1 covered a north-south oriented, ellipse-shaped area of about 115.5 km2. From 16:00 to 17:00 LST, the

precipitation system moved eastwards and poured the most intense hourly rainfall over the center of Zhengzhou city (Fig. 8c).330

The rainfall rate beyond 100 mm h−1 covered an area of about 198.25 km2, which is 171.7% of that in the previous one hour.

The increased rainfall extremity and the more localized extreme rainfall likely resulted from merging of convective cells and

formation of an arc-shaped convergence zone which favored the development of convective updrafts in a three-quarter circle

around the storm (Yin et al., 2022). Interestingly, the gauge with the 201.9 mm h−1 report was almost exactly located in the

high-value center of the hourly rainfall map at 17:00 LST.335

The accumulated rainfall from 14:00 to 17:00 LST is presented in Fig. 9. As expected, the results of the LP method and

the LSF method are similar, while the area of rainfall accumulation exceeding 200 mm generated by the Maesaka method

is significantly different from those using the other two methods. Interestingly, we have found that the center of 3-h rainfall

accumulation was off from the hot spot with the record-breaking hourly rainfall accumulation (16:00 ∼ 17:00 LST, Fig. 8a3).

Specifically, the center of 3-h rainfall accumulation was located southwest of Zhengzhou city, fortunately an urban-rural fringe340

area where the surface is less impervious and relatively fewer residents were living.

Figure 9. Satellite images from Google Maps overlapped by isolines indicating the rainfall accumulation [mm] during 14:00 ∼ 17:00 LST.

The rain rate was inferred from R= 51K0.86
DP in which KDP was estimated from the (a) LP method with len = 0.75 km, (b) Maesaka algorithm

with Clpf = 100, and (c) LSF method. The black triangle and cross denote Zhengzhou radar and the site hosting the gauge with the 201.9

mm h−1 report, respectively.
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6 Conclusions

In this study, we have examined the KDP-based QPE for the record-breaking extreme rainfall event occurred over Zhengzhou,

14:00 ∼ 17:00 20 July 2021 LST. The rain drop size distribution observations obtained by an OTT disdrometer was used to

develop R(KDP) parameterizations. The KDP estimates generated by operationally used LSF method were compared with two345

parameter-controlled methods. The KDP estimates were gridded with a spatial resolution of 500 m and the results of R(KDP)

were compared with gauge observations. The results can be summarized as follows.

– Range degradation effect significantly affected the performance radar-based QPE in this event. The precipitation center

as identified by the Luoyang radar, which is about 120 km from the Zhengzhou city center, significantly deviates from

Zhengzhou radar estimates.350

– The assumed σ in T-matrix simulation has tangible impact on the development of R(KDP) parameterizations. Higher σ

results in smaller KDP in simulations for a given rain drop size distribution. The previous Bringi et al. (2008) experimental

study on σ was made in low-wind conditions, while the applicability of σ assumption in moderate to strong winds should

be addressed in future studies.

– Gauges deployed over the Zhengzhou city were used to evaluate the accuracy of R(KDP). The results show that all meth-355

ods agree with each other rather well for R(KDP) < 100 mm h−1. The LP method is capable of producing the highest

rainfall accumulation. In a statistical sense, changing the window length from 0.75 to 11.25 km in the LP method or Clpf

from 100 ∼ 104 in the Maesaka algorithm does not significantly affect the QPE performance, while the oversmoothing

was found for the Maesaka algorithm with Clpf=106.

– KDP estimates of three algorithms over the gauge with the 201.9 mm h−1 report were compared, and the results are360

generally similar to (Reimel and Kumjian, 2021). One notable difference is that the estimated KDP almost reached

“saturation” at the window length of 3.75 km, and the increase of KDP with the decrease of window length is not as

significant as that in (Reimel and Kumjian, 2021). The results of LP method with a window length of 0.75 km are close

to those of the LSF method, but significantly larger than the highest values obtained from the Maesaka algorithm.

– R(KDP) with the KDP estimated from the three methods cannot reproduce the gauge-observed 201.9 mm h−1. Our365

comparisons suggest that this underestimation is unlikely attributed to the KDP estimation process. Rather, the adequacy

of assumed σ and unquantified vertical air motions may explain this underestimation.

– The gauge with the 201.9 mm h−1 report was located at the vicinity of local rainfall hot spots during 16:00 ∼ 17:00

LST, but the center of the 3-h areal rainfall accumulation was found to be located at the southwest of Zhengzhou city,

deviating from the site with the 201.9 mm h−1 record.370

From the perspective of operational applications, the effect of smoothing on KDP estimation is interesting. Our results show

that the use of smoothing factor has minimal impact on KDP for hourly rainfall accumulation below 100 mm, while its impact
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becomes more significant as the rain rate increases. This suggests the importance of employing an adaptive window length as

used in the LSF method. However, current LP or Maesaka algorithm uses a fixed window length or a single smoothing factor.

It is recommended to develop a new LP algorithm with an adaptive window length in the future. In addition, we speculate that375

the underestimation of 201.9 mm h−1 rainfall accumulation can be attributed to the inadequate assumptions about raindrop

microphysics and unquantified vertical air motions. Although we cannot quantify their contributions in the Zhengzhou event,

more focused observational experiments are suggested to ascertain their impact on radar-based QPE.

Extreme rainfall events are relatively rare, but they are very destructive. We call for integrated efforts to tackle the issue of

radar data quality control, and to promote the capability of operational weather radars in extreme rainfall monitoring. This will380

improve hydrological modelling, extreme rainfall nowcasting and disaster mitigation for cities, and will also be valuable to the

studies of mechanisms governing the extreme rainfall production.
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