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Abstract. Although radar-based quantitative precipitation estimation (QPE) has been widely investigated from various per-
spectives, very few studies have been devoted into extreme rainfall QPE. In this study, the performance of Kpp-based QPE
during the record-breaking Zhengzhou rainfall event occurred on 20 July 2021 was-is assessed. Firstly, the OTT disdrometer
observations svere-are used as input to T-matrix simulation and different assumptions were-are made to construct R(Kpp)
estimators. Then, Kpp estimates from three algorithms were-are compared for obtaining best Kpp estimates, and gauge ob-
servations were-are used to evaluate the R(Kpp) estimates. Our results in general agree with previous known-truth tests, and
provide more practical insights from the perspective of QPE applications. For rainfall rates below 100 mm h~1, the R(Kpp)
agrees rather well with the gauge observations, and the selection of Kpp estimation method or controlling factor has minimal
impaet-on-impacts on the QPE performance provided that the used controlling factor is not too extreme. For higher rain rates,
significant underestimation wasfound-for-is found for the R(Kpp), and a smaller window length results in higher Kpp thus
less underestimation of rain rates. We show that the “best Kpp estimate”-based QPE cannot reproduce the gauge measurement
of 201.9 mm h~! with commonly used assumptions for R(Kpp), and potential responsible factors were-are discussed. We
further show that the gauge with the 201.9 mm h~! report was teeated-at the vicinity of local rainfall hot spots during 16:00

~ 17:00 LST, while the 3-h rainfall accumulation center was located at the southwest of Zhengzhou city.

1 Introduction

Extreme rainfall can lead to high-impact events, such as soil erosion, debris flows and flash floods, and therefore poses a
serious threat to both life and properties. In a warming climate, the occurrence frequency of regional extreme rainfall events
is expected to increase (Allan and Soden, 2008; Donat et al., 2016), and this increase is particularly highlighted in regions
of rapid urbanization (Zhang, 2020) where both the intensity of precipitation and the risk of flooding tend to be exacerbated
(Zhang et al., 2018).
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To mitigate potential damages induced by extreme rainfall events, great efforts have been devoted to improving the predic-
tion and monitoring of extreme rainfall. While the prediction technologies based on numerical models are confronting major
challenges (Luo et al., 2020), a collection of in-situ and remote sensing instruments is in operation to observe precipitation,
thanks to the development of surface observing systems. The “ground truth” of surface precipitation map is customarily made
from rain gauge observations. However, the rain gauge spacings are usually beyond several kilometers, and such “point” obser-
vations are inadequate to represent the localized rainfall centers produced by rapidly evolving storms (Schroeer et al., 2018).
Gauge measurements seem to _be falling short to support flood controlling in urban areas, where the inhomogeneity of un-
derlying surfaces and complexity of fine-grained drainage connections call for rainfall observations with fine resolutions (Paz
et al., 2020) and the simulated runoff is even more sensitive to the spatial resolution than to the temporal resolution (Bruni
et al., 2015). The areal rainfall map can be seamlessly made with remote sensing observations. Weather radars have been used
for quantitative precipitation estimation (QPE) based on parameterized-equivalent radar reflectivity factor (Z;), polarimetric
observations (differential reflectivity Zpg, specific differential phase Kpp, and cross correlation ratie-coefficient ppv) or the
attenuation effects. From the perspective of BSB-raindrop size distribution (DSD) moments, Kpp and specific attenuation,
corresponding to the estimators of R(Kpp) and R(A), respectively, are better correlated with rain rates. Therefore, R(Kpp)
and R(A) approaches are more efficient than Z.-based ones in reducing uncertainties caused by the drop-size—distribution
PBSP-DSD variability (Ryzhkov et al., 2022). For lower rain rates, R(A) has shown apparent advantages, whereas R(Kpp)
is optimal for heavy rain (Ryzhkov et al., 2022). However, the accuracy of Kpp estimation can be-significantly-dependent
significantly depend on the methods used (Reimel and Kumjian, 2021). To the best of our knowledge, the performance of
Kpp-based heavy rainfall estimation has hardly been addressed despite a large volume of works on radar-based QPE (Schleiss
et al., 2020; Cremonini et al., 2022).

On 20 July 2021, a devastating rainfall event hit Zhengzhou (Fig. 1a), one of the largest cities in central China, which
hosts over 12 million residents. This event took place following the continuous, relatively weaker, rainfall on 18 and 19 July,
and caused severe flooding over Zhengzhou city that led to around 300 fatalities and tremendous economic losses (Yin et al.,
2022). In Zhengzhou city, the-infrastruetures-are-urban infrastructure is mostly constructed with impervious materials, the so-
called “gray urbanization” (gray area in Fig. 1b), making the city vulnerable to waterlogging in the presence of short-duration
extreme rainfall. Given the limited emergency resources, it is therefore imperative to accurately locate the worst hit area. The
most intense rainfall was produced during 14:00 ~ 17:00 local solar time (LST) on July 20 (Yin et al., 2022) (Fig. 1c). Although
a gauge (the site is marked with a black cross in Fig. 1a, b) located in Zhengzhou reported the maximum hourly rainfall of
201.9 mm at 17:00 LST, an hourly rainfall rate exceeding or close to the historical record in mainland China (Ding, 2019),
location and extremity of other local rainfall hotspots are still unclear.

In this study, we aim to quantitatively assess the performance of different Kpp-estimation algorithms in this extreme rainfall
event and analysis the areal precipitation map over Zhengzhou city. The paper is organized as follows. The deseription—-of
data and Kpp estimation methods is-presented-are introduced in section 2. The methods of comparing Kpp estimates from

different algorithms, constructing different R(Kpp) estimators, and merging radar observations at multiple elevation angles
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Figure 1. (a) Topography over and around Zhengzhou overlaid with the two operational S-band dual-polarization radars (black triangles),
meteorological rain gauges (METE gauges; red dots), hydrological rain gauges (HYDRO gauges; blue dots) and one OTT disdrometer
(black cross). (b) Satellite image of Zhengzhou city (modified from Google Maps). (c) Hourly rain rate recorded by the gauge and the OTT
disdrometer located at the Zhengzhou national reference climatological station (113.66 °E, 34.71 °N, the site where the OTT disdrometer is
deployed) on 20 July 2021. (d) 5-min horizontal wind speed (left) and direction (right) from 14:00 to 18:00 LST. The light blue curves in (a)
indicate county boundaries and Zhengzhou city is outlined in dark green. Note that the HYDRO gauges are widely distributed, although only

those over Zhengzhou city are presented in (a).

are given-described in section 3. Section 4 compares the QPE performance of Kpp estimated from different approaches. The
areal precipitation map over Zhengzhou city is analyzed in section 5, and conclusions are given in section 6.

2 Data

2.1 Dual-polarization weather radars

Since the late 1990s, a nationwide weather radar network composing of over 200 China’s New Generation Doppler Weather
Radars (CINRADs) has been built in China. CINRADs typically work in the volume coverage pattern 21 mode, which consists
of nine plan position indicator scans (0.5° , 1.5°, 2.4° , 3.3° ,4.3°,6.0°, 9.9° , 14.6° , and 19.5°) with the volumetric
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update time of 6 min. In recent years, more than 100 CINRADs have been upgraded to dual-polarization systems and others
are in the-progress. As shown in Fig. 1(a), two S-band dual-polarization CINRADs are deployed in Luoyang city (112.44 ©
E, 34.5 ° N) and Zhengzhou city (113.6972 ° E, 34.704 ° N), respectively. Both Luoyang and Zhengzhou radars have the
same configurations, e.g., the range resolution of 0.25 km, azimuth resolution of 1 °, and the time resolution of 6 min. Mt.
Song, located between Luoyang and Zhengzhou, is areund-about 0.9 km above mean sea level (amsl), and the altitude of
Luoyang radar is 0.209 km amsl. Therefore, the mountains partially block Luoyang radar’s lowest radar beam (0.5°), which
may affect reflectivity observations but Kpp is immune to this effect (Lang et al., 2009). The altitude of Zhengzhou radar is
0.18 km. We have checked Luoyang and Zhengzhou radar observations at different elevation angles, and no second-trip echoes
can be identified. Due to the power outage, the Zhengzhou radar data was-were missing from 17:18 to 19:48 LST. Still, this
extreme precipitation event over Zhengzhou city was successfully captured by the Zhengzhou radar, since the majority of the
precipitation system moved out of urban Zhengzhou after 17:00 LST.

Kpp is the-derivation-one-half the range derivative of differential phase shift (Ppp), while radars measure the total differen-
tial phase shift which is a combination of Kpp and backscatter differential phase (). The impact of § on Kpp estimation-in
rain-is negligible at S-band, while it can be significant at shorter radar wavelengths (Tromel et al., 2013). There are a number
of algorithms available for Kpp estimation, and some of them are accessible in the open-source tool Py-ART (Helmus and
Collis, 2016). Reimel and Kumjian (2021) have-used a known-truth framework to evaluate the commonly used Kpp estimation
algorithms. They havefound that the algorithm accuracy is dependent on the raw ®pp, and concluded that each algorithm has
its apparent strengths and weakness. They havef
(Giangrande et al;2043) are-the-two-that-also showed that the method of (Maesaka et al., 2012) and linear programming
(Giangrande et al., 2013) can change the overall behavior between oversmoothing and undersmoothing. This means that a

couple of Kpp estimates generated with different tuned parameters may yield a range of values where the “best Kpp” falls in,

despite that it is challenging to determine the best controlling parameter. In this study, we will assess the performance of using

different tuning parameters in Kpp-based QPE. A brief introduction of Kpp-estimation algorithms is given below.

— The operationally used Kpp estimation algorithm in CINRADs is a traditional least square fitting (LSF). As a regression
approach, LSF is easy to implement and is commonly used for estimating Kpp in weather radars. For a given window
of smoothed ®pp, linear regression is done to estimate Kpp. The window length is adaptive and depends on observed
Z. (Wang and Chandrasekar, 2009). Due to this dependence on Z., which can be affected by data quality issues such as

ground clutter, Kpp estimates with ppy below 0.8 are removed.

— Linear programming (LP). This algorithm assumes that ®pp monotonically increases with range and uses self-consistency
between Z. and Kpp. Since the self-consistency relation is developed for rainfall, the algorithm does not process ®Ppp
values above melting layer as-defined-by-users(4.5 km in this study) or in presence of hail. The algorithm is proposed by
Giangrande et al. (2013) and is compiled in Py-ART (Helmus and Collis, 2016). The user can define a self-consistency
coefficient for Kpp-Z. as well as a self-consistency factor or use the default settings. In Py-ART, the self-consistency

factor is used to define the weight of the Z.- Kpp relationship on the final solution, and the default value is 6x 10%. For
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usually leads to significant spikes of ®pp -

r). To minimize the impact of those spikes on Kpp estimation—, the following procedures were made:

S-band radars, the self-consistency factor below 460664 x10? may degrade the estimation performance (Reimel and
Kumjian, 2021), while it should be tuned at C-band (Cremonini et al., 2022). In this study, the default setting in Py-ART
was used. We have further-compared the ®pp reconstructed by the LP method with the raw ®pp in radar radials, and
found that the algorithm works reasonably well. In addition, the user should set a window length in which a Sobel filter
is imposed, and the length of this window effectively affects the smoothness of the Kpp field. For a comparison with

Reimel and Kumjian, 2021), we have tried the window lengths of 5 (0.75 km), 15 (3.75 km), 25 (6.25 km), 35 (8.75
km) and 45 (11.25 km) in this study.

Maesaka-et-al-(2042)-methodMaesaka algorithm. This algorithm assumes monotonic increase of $pp below the melting
layer, namely applicable in rain. It applies a low-pass filter to smooth the observed ®ppand-the-weight-of-thisfilter
..and the effect that the low pass filter has on the final solution depends on a user-defined parameter Clpf. Jtcan-be
understood-that targer Clpf-valueslead-to-smoother profilesBy changing the value of Clpf the user can control the
amount of smoothing applied by the algorithm. A thorough introduction of the algorithm is referred to (Maesaka et al.,

2012). Similar with-Reimeland Kumjian;2021to Reimel and Kumjian (2021), we have used values of 10°,102,10%
and 106 for Clpf in this study for Kpp estimation.

Note that the data quality of ®pp, which is also critical for Kpp estimation, can be heavily affected by ground clutter which

e-at certain ranges

— Firstly, a linear fit was made to the raw ®pp(r) data for an interval of 5 km. The fitted values were labeled as ®pp(7).
— Then, the point with |®pp(r)-Pp(r)| exceeding 10° was identified as clutter.

— Finally, a cubic spline interpolation was made to the identified clutter points.

These steps can effectively remove majority of clutter signals, however, local perturbation of ®pp can be on the order of
10° given the area of interest is so close to the radar. Therefore, we have also manually checked the ®pp fields and removed
significant clutter signals.

2.2 Surface observations

The most widely used rainfall measuring instrument in operational weather services is the tipping bucket rain gauge. The
buckets are mounted on a fulcrum and located below a funnel. Once one bucket is filled with water channeled through the
funnel, it tips down and the other bucket raises. At the same time, a switch records an electronic signal, which is then converted
to the amount of rain. The gauges-gauge-observations used in this study are from both meteorological (METE) and hydrological
(HYDRO) rain gauge stations, respectively. For the METE gauges, the volume of a bucket is 0.1 mm, which corresponds to
the minimal detectable rain accumulation of 0.1 mm. Every one minute, the number of tips is recorded. Liu et al. (2019) have

pointed out that the uncertainty of such gauges is about 4 % for rain rates exceeding 10 mm h™*, The HYDRO gauges employ
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tipping buckets as well, but the instrument model is-different-that-ofdiffers from that of the METE gauges. The minimal
detectable rain accumulation of the HYDRO gauges is 0.5 mm and the time resolution is 1 h. The high temporal resolution of

the METE gauges enables the inspection of the data quality. For the HYDRO gauges with hourly measurements, the inverse

distance weighting (IDW) approach (Chen and Liu, 2012) was implemented to remove-the-datasignifieantly-deviatingfrom
the-expeeted-valueyield an estimate of hourly rainfall accumulation at a given HYDRO gauge site. Then, the observed value

below 50% of the expected one was removed, in order to indentify the gauges which were not working due to power outages.
Different from tipping buckets gauges, OTT PARSIVEL disdrometer (OTT) measures rainfall by accounting every raindrop

that severely attenuates the light signal emitted from a laser sheet. This different measuring principle makes the OTT an
independent instrument that can be used to evaluate gauge observations. Figure 1 (c) compares hourly rain rate measurements
recorded by a rain gauge and the OTT at Zhengzhou national reference climatological station in 20 July 2021. During most of
the period, OTT slightly overestimates hourly rainfall accumulations compared to the gauge observations. This may attribute
be attributed to the overestimation of large drops as-possibly caused by several factors, such as the assumed oblate shape and

the coincidence effect (Tokay et al., 2013; Park et al., 2017).
2.3 Comparison of Luoyang and Zhengzhou radar observations

Zhengzhou radar is located in the southeast of Zhengzhou city and Luoyang radar is around 120 km away from the Zhengzhou
city. Since the lowest beam of Luoyang radar is about 2.2 km over the Zhengzhou city while the lowest beams of Zhengzhou
radar are rather close to the surface, the agreement between Luoyang and Zhengzhou radar observations is an potential issue
that should be addressed. Given the hourly precipitation from 16:00 to 17:00 LST reached the peak, radar retrievals during this
period were used for an assessment. To provide a reference for the operational service, we have-used Kpp from CINRAD’s
operational products (LSF method) in the comparison. The lowest elevation angle of Luoyang radar (0.5°, the radar beam is
about 2.2 km over Zhengzhou city) was used, while the selection of 1.5° for the Zhengzhou radar was due to significant clutter
issues at 0.5°. An-A linear interpolation was applied to range gates that were severely affected by ground clutter as characterized
by prv below 0.8. The raw data was-were interpolated into the spatial resolution of 0.5 km using PyARTFPy-ART (Helmus and
Collis, 2016). Note that we did not find significant evidence of hail from Luoyang radar pygy observations, and therefore hail is
anticipated to be absent below 2.2 km.

As shown in Fig. 2, the heaviest rainfall poured over the area around the Zhengzhou radar site during 16:00 ~ 17:00
LST, which may explain the breakdown of Zhengzhou radar at 17:12 LST. A closer inspection to Fig. 2b shows that the
location of precipitation center retrieved from the Luoyang radar (black isolines) is on the east side of that from the Zhengzhou

radar.

made numerical simulations on this event, and they found that the storms were vertically tilted eastward. The sampling volume
of the Luoyang radar over Zhengzhou city was about 2 km, while the Zhengzhou radar observed near-surface precipitation.
Therefore, the precipitation observed by the Luoyang radar is more eastward than the Zhengzhou radar. In addition, warm rain
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rocesses may also significantly augment rain rates within the height of 2 km (Yu et al., 2022). Given the effects discussed
above, Zhengzhou radar will-be-observations were used for QPE in this study.
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Figure 2. Rainfall accumulation from 16:00 to 17:00 LST estimated using R = 51 KD;%%, in which Kpp estimates were from the operational
data products (LSF method). (a) Luoyang radar data at the elevation angle of 0.5° and (b) Zhengzhou radar data at the elevation angle of
1.5° were used for comparison. Note that Kpp estimates within 3 km to the Zhengzhou radar site were removed. The black triangle and cross
denote the Zhengzhou radar and the gauge/OTT site, respectively. The black isolines indicate the rainfall accumulation of 100 mm and 130

mm observed by the Luoyang radar, respectively.

3 Methods

As pointed out by Bringi and Chandrasekar (2001), the accuracy of Kpp-based QPE is dependent on not only the Kpp esti-
mation from radars but also on the parameterization of R(Kpp). Fhereforethis-This section will address these two aspects

respectively.

3.1 Approaching the “best Kpp estimate”

The calculation of Kpp with (Maesaka-et-al;2012)and(Giangrande-et-al;2013)-methods-Maesaka and LP algorithms re-
quires a presetting of Clpf and window length, respectively, which eentrol-the-smoothingeffeetBringi-and-Chandrasekar-(2001)-

have-controls the extent of smoothing applied to ®pp. Bringi and Chandrasekar (2001) concluded that the minimal window
length required for Kpp estimation decreases with precipitation intensity. Reimel and Kumjian (2021) have-furthershewn

further showed that the “best Kpp estimate” falls in a range of values produced by varying the parameters in known-truth
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simulations ;-and-used-real-data-to-show-that-and the retrieved Kpp is heavily dependent on the algorithm and tuning parameter
employed for steep real Kpp regions. In this study, the Zhengzhou national reference climatological station hosts beth-the-an

OTT and the gauge with the 201.9 mm h™! report and is 3.15 km away-from-at 274° azimuth of Zhengzhou radar site. We

have-compared-different-Kpp estimates from different algorithms with various tuning parameters over this site —tn-addition;the
elevationangle-dependenee-of-were compared. Here, radar observations at the elevation angles of 1.5°,2.4°, 3.3° and 4.3° were

used for the following considerations. (1) The dependence of observed Kpp_on the viewing angle is expected to be negligible
for-at small radar elevation angles, i.e., smaller than 4.3° (Bringi and Chandrasekar, 2001). Given-(2) Due to the strong ground

clutter contamination, we discarded the data recorded at the lowest elevation angleand-. Kpp estimates at elevation angles of
1.5°,2.4°,3.3° and 4.3° corresponding to heights about 0.083 km, 0.132 km, 0.182 km and 0.237 km, respectively, over the
station were used. Given the small ehanges-ef-heightsrange of height, we assume that the real Kpp values over the Zhengzhou
station at these elevation angles did-not-changewere about the same.
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Figure 3. Kpp estimates using (a) Maesaka (2012) method and (b) LP over Zhengzhou national reference climatological station. Fiek-Thick
lines and shading areas indicate the median values and standard deviations of Kpp at elevation angles of 1.5°, 2.4°, 3.3° and 4.3°. LP:
linear programming method (Giangrande et al., 2013); LSF: least square fitting, the CINRAD’s operational algorithm. Colored lines indicate

different window length (len) used in LP.

Bearing the considerations above, Kpp estimates using Maesaka-et-al-«(2012)-method-and1=P-Maesaka and LP algorithms

are presented in Fig. 3. Interestingly, our results resemble what is presented in Fig. 16 of (Reimel and Kumjian, 2021) in

185 following aspects:



— Stronger dependence of Kpp on the tuning parameter is found for LP than fer Maesaka-et-al(2612)-methodthe Maesaka
algorithm.

— Smaller window length used in the LP method generally leads to higher Kpp in heavy rainfall periods. In comparison,

Kpp does not significantly change by varying Clpf from 10° to 10* for the Maesaka methodalgorithm.

190 — LP can produce higher Kpp values than Maesaka-et-al(2012)-methedthe Maesaka algorithm.

— In presence of relatively light rainfall, see-fer-example-such as before 15:00 LST, longer window length in LP agrees
better with Maesaka-et-al(2042)-methodthe Maesaka algorithm.

— Kpp values retrieved from both the LSF and Maesaka-et-al(2012)-method-Maesaka algorithms are less noisy than LP.

However, the impact of changing the window length does not seem to be as significant as in (Reimel and Kumjian, 2021).
195 The Kpp values with a window length of 5-0.75 km which is expected to yield nearly the most extreme Kpp (Reimel and
Kumjian, 2021) are comparable with the window length of 45-3.75 km (Fig. 3b). Namely, it appears that the Kpp estimated

from the LP algorithm has reached “saturation" at the window length of +5-3.75 km.

It should be noted that the non-uniform radar beam filling was not considered in idealized known-truth tests (Reimel and Kumjian, 2021)
200  monotonic increase of ®pe, they are expected to yield higher Kpp than the LSE method if the negative radial slope of ®pp.
occurs in the close proximity. However, this effect does not seem to be significant in this study for the following reasons.
than that at larger distances. Then, the gauge site was not located in the edges of rain cells (see merged Kpp observations
at https://github.com/HaoranLiHelsinki/Figs_Zhengzhou). Finally, we have manually checked ®pp observations, and did not
205 see significant negative radial slope of ®pp. In addition, the smallest Clpf (least smoothin ields smaller Kpp than the LSF
method from 16:00 to 17:00 LST (Fig. 3a), suggesting the selection of Kpp estimation method is more important than the

3.2 Parameterizations of R(Kpp)

Although-While Kpp is less dependent on DSDs than other radar products, a localized R(Kpp) parameterization is suggested
210 to minimize the impact of varying DSDs (e.g., Chen et al., 2022). In this study, the OTT disdrometer observations on 20 July
2021 were used as input to PyTMatrix (Leinonen, 2014) to calculate radar polarimetric variables. Before the calculation, we
have removed raindrops with the velocity outside of + 50% of empirical relations (Atlas et al., 1973) or with the volume
equivalent diameter higher than 6 mm. It was assumed that raindrops are oblate spheroids with the aspect ratio parameterized
by the equivolumetric spherical drop diameter (Thurai et al., 2007). The water temperature was set to 20 °C, and the orientation
215 of rain drops was assumed to be normally distributed with zero mean and a certain value of standard deviation (o). We will

discuss the factors affecting the accuracy of R(Kpp) parameterization as follows.
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Figure 4. T-Matrix-based simulation of Kpp versus rain rate from the OTT observations on 21 July 2021. Black and green circles indicate
observations with the ¢ = 7 and 13.6°, respectively, assuming the aspect ratio parameterization from (Thurai et al., 2007, T07). The R(Kpp)
relations from (Ryzhkov et al., 2005, R05), (Huang et al., 2018, H18) as well as (Bringi and Chandrasekar, 2001) with aspect ratio parame-
terizations from (Pruppacher and Beard, 1970, PB70) and (Beard and Chuang, 1987, BC87) are also presented.

— DSDs. Zhang et al. (2022) have shown that for a given Kpp the fitted relation for OTT observations during 16 ~ 17 LST
yields higher precipitation rates than that for the whole day, but the value does not exceed ~ 15 mm h™*. In addition,
most rain rates above 200 mm h~! are frem-during 16 ~ 17 LST, and they follow the fitted curves rather well. Therefore,
we have used the OTT data from 00:00 to 24:00 LST 20 July 2021.

— Assumed o. The simulated radar polarimetric variables are dependent on o if hydrometeors are assumed to be spheroids
(Li et al., 2018). Bringi et al. (2008) have found a ¢ of around 7° in a stratiform rainfall event with low wind conditions
and 12° in moderate wind conditions. In presence of strong-high winds, this value can be 13.6° ~ 24.7° (Bolek and
Testik, 2022). The automatic weather station at the OTT site reported that wind speed during this event ranged from 2
to 5 m s~! with a peak of 7.8 m s~! at around 16:00 LST. The magnitude of wind speed seems rather close to the

condition corresponding to the o of 13.6° (Bolek and Testik, 2022).

For a given Kpp of 5 ° km ™1, the estimated rain rates are 203.6 mm h~! and 183.6 mm h~! for ¢ of 13.6° and 7°,
respectively. This value can even be 279.4 mm h~! (R = 70K 3%, not shown) for a o of 24.7°, which was observed in

a ternade-event-tornadic squall-line storm (Bolek and Testik, 2022) and seems to be unrealistically large in this case.

— Aspect ratio parameterization. Assuming a light wind condition (o = 7°), the (Pruppacher and Beard, 1970) and (Beard

and Chuang, 1987) parameterizations lead to quite different rain rate parameterizations-estimations (Fig. 4), as early

10
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earlier shown by Bringi and Chandrasekar (2001). Thurai et al. (2007) have shown that the observed raindrop shapes
are rather close to the model simulations in (Beard and Chuang, 1987). This is the reason why we have employed the

(Thurai et al., 2007) aspect ratio parameterization in the Kpp calculations.

As shown in Fig. 4, the deviation between different parameterizations seems relatively small for smaller rain rates, but
significantly enlarges as the precipitation intensity increases. This indicates that a single R(Kpp) parameterization is applicable
for QPE of moderate rainfall. For higher rain rates, the fitted relation for o of 13.6° agrees rather well with (Beard and Chuang,

1987) and (Huang et al., 2018).
3.3 Merge of Zhengzhou radar observations at multiple elevation angles

One of the major challenges of using weather radar observations is to mitigate the ground clutter contamination in the vicinity
of radar sites. To remove pixels affected by ground clutters, the threshold of py, = 0.8 (Kumjian, 2013) was implemented firstly.
In the second step, with the assumption that the rain microphysics within 0.6 km to the surface do not change, the median of
radar observations at different-elevation-angles-elevation angles from 0.5° to 6.0° was used to replace the pixels identified as
ground clutter. Because of the rapid increase of the beam height at higher elevation angles, the maximum radar range decreases
with the increase of elevation angle for a given height. In-thisstudy;-we-did-netemploy-Due to the clutter contamination, very

few radar observations at the vicinity of the radar site at the elevation angle of 0.5° due-to-the-strong-cluttercontamination;-and
were used in the data merge. Meanwhile, radar data at 9.9°, 14.6°, and 19.5° were discarded given limited valid data and the

elevation dependence of polarimetric measurements may start appearing (Bringi and Chandrasekar, 2001). Then, the Inverse
Distance Weighting (IDW) interpolation (Cressman, 1959; Goudenhoofdt and Delobbe, 2009) of the radar data was applied to

filling in empty regions, and the new constructed radar data was-were interpolated into the spatial resolution of 506-m-using

PyART0.5 km using Py-ART (Helmus and Collis, 2016).

4 Results
4.1 Kpp-based QPE over the gauge/OTT site

With a parameterized R(Kpp), we have been able to quantitatively anatysis-analyze the performance of Kpp-based QPE over
the gauge site. Given the high rain rates in this event, Kpp estimates using the LSF method, Maesaka-method-the Maesaka
algorithm with Clpf = 10° as well as the LP method with the window length of 5-0.75 km are used for comparison. As shown
in Fig. 5(a) and (b), R(Kpp) agrees generally well with the gauge and OTT observations before 16:00 LST, regardless of the
Kpp estimation method or the used R(Kpp) parameterizations.

From 16:00 to 17:00 LST, deeent-significant deviations can be found between the gauge and OTT observations. In addi-
tion, Kpp-based QPE significantly underestimates the surface precipitation during this period. With a larger o (Fig. 5b), the

underestimation-is-stileryfrom-gauge/OTTR(Kpp) is still well below OTT/gauge observations. Therefore, it is of necessity

to discuss factors potentially contributing to this underestimation.
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Figure 5. Comparison of rainfall estimates using Kpp estimated from different methods over Zhengzhou national reference climatological
station. Thick lines and shading areas indicate median values and standard deviations of rain rates estimated from Kpp at elevation angles of
1,5°,2.4°, 3.3° and 4.3°, The used parameterizations are (a) R = 46 K35 and (b) R = 51 K55, respectively. The dashed line in (b) is the
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use of R = 70K 58 (o = 24.7°) for QPE from 16:00 to 17:00 LST.

— Accuracy of Kpp estimates. Compared with the LSF and Maesaka methedsalgorithms, Kpp estimated by the LP method
less underestimates the rainfall. Note that the parameterizations used for Maesaka and LP metheds-algorithms are ex-
pected to generate the highest Kpp values in heavy rainfall (Reimel and Kumjian, 2021). Therefore, we should have

good confidence that the uncertainty in Kpp estimation is minimized.

— DSD variations in the air. The lowest radar sampling volume is 0.083 km over the gauge/OTT site (1.5°) while the
highest is 0.237 km (4.3°). If DSDs would have significantly varied, Kpp estimates at different elevation angles should
also change. However, the uncertainty of Kpp estimates at different elevations angles is on the order of 0.5 °km 1.
Therefore, the change of DSDs should not be significant, and the DSDs observed by OTT should be applicable to radar

observations that are so close to the surface.

— Vertical air motions. The Kpp-based QPE assumes the absence of vertical air motions. For a given DSD in the radar
sampling volume, downdrafts can lead to the underestimation of rain rates. For such heavy rainfall, a downdraft of 2 ~ 3

m s~ ! can lead to the rain rate underestimation of 30 ~ 40 %. We have examined this factor from two aspects. Firstly, we
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found that the diameter-velocity diagram generated by OTT observations agrees rather well with the empirical relation,

suggesting the absence of significant downdrafts near the surface (Kim and Song, 2018).

Then, although direct retrieval of vertical air motions is rather uncertain (Oue et al., 2019) compared with the magnitude
of expected downdrafts of 1 ~ 2 m s~1 as shown in model simulations (Yin et al., 2022), existence of downdrafts is
detectable in radial divergence (Roberts and Wilson, 1989; Adachi et al., 2016). Here, we define the radial divergence
(RD) as

Viea=Via

Tita —Ti—4a

RD = ey

where V; is the observed radar Doppler velocity at the range gate r;. The RD is derived every 2 km for a range resolution
of 0.25 km according to Eq. 1. Figure 6 shows time series of the observed Doppler velocity (black) as well as RD (red)
over Zhengzhou national reference climatological station. The leading edge of the extreme-rainfall-producing storms
passed the site at about 15:36 LST when the Doppler velocity underwent the transition from positive to negative and
the RD reached a local minimum (-3x10~2 s~!), indicating the presence of updrafts. From 16:00 to 17:00 LST, the
Doppler velocity is around 0 m s~! and RD is about 2x 1073 571, suggesting the sustained downdrafts. Therefore, the

unquantified downward air motions may be responsible for the underestimation of rainfall accumulation.

<1073
15 L L L L L
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E 2 @
= 7] e
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> 2
T -5 >
2 B
8 101 ©
-4
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Time [LST]

Figure 6. Doppler velocity (left) and Radial divergence (right) observed over Zhengzhou national reference climatological station. Thick

lines and shading areas indicate the median values and standard deviations at elevation angles of 1.5°,2.4°, 3.3° and 4.3°.

— Assumption of o. As shown in Fig. 4, the assumption on ¢ is critical for the parameterization of R(Kpp). However, o

cannot be measured by OTT, and very few experiments have been conducted for addressing this (e.g., Bringi et al., 2008;
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Bolek and Testik, 2022). The wind observations are rather close to what was reported by Bolek and Testik (2022), and
o =13.6° seems to be a good first guess. If the o =24.7° measured during the passage of a tornadic squall-line storm
(the 4-min running averaged horizontal wind speed is 6 ~ 10 m s~1) is used, the resulted rain rate estimation is rather
close to gauge/OTT measurements (dashed line in Fig. 5b). However, the observed horizontal wind speedis 3 ~ 5 m s~ !
from 16:00 to 17:00 LST. Therefore, even though we cannot give a more accurate estimate of o, 24.7° seems to to be

unrealistically large in this study.

— Different sampling volumes between the radar and the gauge/OTT. The width of the sampling volume for Zhengzhou
radar with a beam width of 1° over the gauge site is about 55 m, which is much larger than that of a gauge. Although this
effect is difficult to quantify, we argue that it plays a minor role for the rainfall underestimation. By manually checking
the movement of storms (merged Kpp observations at https://github.com/HaoranLiHelsinki/Figs_Zhengzhou), we found
that the storm propagation speed is on the order of several kilometers per hour, contrasting with the much smaller radar
sampling volume. Given the rapid changing nature of the storms, the sampling effect does not seem to be a major factor

responsible for the rainfall underestimation.

4.2 Statistical evaluation

With-the-The dense gauge network in Zhengzhou city -we-have-been-able-to-evaluate-the-performance-of-allows a statistical
evaluation of the Kpp-based QPEwith-a-statistical-perspeetive—Sinee—, In addition, R(Kpp) is preferably-mere-appheable
in-heavy-preeipitation—expected to be less uncertain than other approaches {Ryzhkev-etal;2022)-the-in heavy precipitation
(Ryzhkov et al., 2022). Therefore, the performance of R(Kpp) during the most intensive precipitation period (14:00 ~ 17:00

LST) was investigated. As discussed above, the assumption of o = 13.6° appears to be more suitable than the commonly used
7° in this event, and-thereforethus R = 51 K3;$¢ was used. Note that the gridded R(Kpp), as introduced in Sect. 3.3, was used
for comparison.

For rainfall rates below 50 mm h~!, the standard deviation (std) and bias of R(Kpp) are mostly on the order of 7 ~ 8
mm h~! and -1 ~ 0 mm h™!, respectively. Regarding the LP method, the used window length does not significantly degrade
the accuracy of QPE (Fig. 7a-e). The performance of the Maesaka method is comparable with that of the LP method (Fig.
7f-h), except for Clpf = 10° (Fig. 7i) which imposes ebviously-oversmoothingfilterand-resulisin-an overaggressive filter that
obviously leads to oversmoothing as well as much larger std and bias. The operationally used LSF method (Fig. 7j) shows
relatively large bias (1.8 mm h~!), indicating that the Kpp as derived from the LSF method in rainfall rates below 50 mm h~!
should be used with caution.

For rainfall rates above 50 mm h~!, R(Kpp) in general underestimates hourly rainfall accumulation, and this underesti-
mation becomes more significant as the rain rate increases (smaller bias and std of red dots than those of black dots). Kpp
values estimated from the Maesaka methods-algorithms is on average smaller than that from the LP and LSF methods, which
is consistent with the results in Fig. 3. Interestingly, the std and bias of LP method are very close to those of the LST method
regardless of the used window length. This indicates that varying the window length from 5t6-45-0.75 to 11.25 km has minimal

impact on the accuracy of R(Kpp) for rain rates of 50 ~ 100 mm h~! in this event.
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Figure 7. Kpp-based hourly rainfall accumulation v.s. gauge observations from 14:00 to 17:00 LST. Kpp was estimated using (a-e) LP, (f-i)
Maesaka and (j) LSF methods. Rain rates were divided into three groups: Rgauge < 50 mm h™" (blue), 50 mm h ™" < Ryauge < 100 mm h™*

(red), and 100 mm h~* < Riauge (black). The standard deviation (std) and bias between Rgauge and R(Kpp) for each group are marked by

0.86
P

corresponding colors. R = 51 Kpp -~ was used.

Reimel and Kumjian (2021) have shown that smaller window length employed in the LP method yields higher Kpp. This ap-
pears to be true for the gauge with the 201.9 mm h ™~ report, but decreasing the window length did not significantly ameliorate
the underestimation in a statistical perspective (Fig. 7a-e). Specifically, the highest hourly rainfall accumulation was found for
the LP method, and the value rises from 100 mm h~! (len =4511.25 km) to 149.6 mm h~! (len =50.75 km). For a reference,
the value was 122.9 mm h~! and 143.3 mm h~! for Maesaka method with Clpf = 10° and LSF method, respectively.

5 Analysis of areal rainfall map

As discussed above, the use of window length (LP method) and Clpf (Maesaka methedalgorithm) has limited impact on heavy
rainfall QPE and the window length of 5-0.75 km generates the closest rainfall estimation to the 201.9 mm h~! report.

Therefore, we have compared the areal hourly rainfall accumulation based on Kpp generated by these three methods during

the mestintensive-period-period with most intensive rainfall (14:00 ~ 17:00 LST).
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Figure 8. Hourly areal rainfall map from 14:00 to 17:00 LST. Kpp was estimated from the (a) LP method with LP = 50.75 km, (b) Maesaka
method with Clpf = 10°, and (c) LSF method. The black triangle and cross denote Zhengzhou radar and the site hosting the gauge with the

201.9 mum h™* report, respectively. R = 51 K56 was used.

As shown in Fig. 8, the hot spots of rainfall rates can be manually identified and the results of the three methods generally
agree with each other for R(Kpp) < 100 mm h~'. However, a-depth-in-an in-depth analysis reveals that the magnitudes of
rainfall accumulations are different at higher rain rates. From 16:00 to 17:00 LST (the right column in Fig. 8), the rainfall
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hot spots are in the vicinity of the Zhengzhou radar site (black triangle Fig. 8). The LP method is characterized by the largest
area of R(Kpp) > 130 mm h~! (Fig. 8as), while the smallest area was found for the Maesaka method-algorithm (Fig. 8b3).
However, due to the scaricity of gauges in the area of rainfall hot spots, this difference is noticeable only for the gauge with the
201.9 mm h~! report (black cross Fig. 8).

The areal hourly rainfall accumulation enables the analysis of the evolution of this event. As shown in Fig. 8a, the precipita-
tion system moved into Zhengzhou city from the southwest pouring rainfall up to 130 mm A~ from 14:00 to 15:00 LST (Fig.
8a). Then it slowly propagated northeastwards in the next one hour with increased precipitation intensity. The hourly rainfall
beyond 100 mm h~! covered a north-south oriented, ellipse-shaped area of about 115.5 km?. From 16:00 to 17:00 LST, the
precipitation system moved eastwards and poured the most intense hourly rainfall over the center of Zhengzhou city (Fig. 8c).
The rainfall rate beyond 100 mm h~! covered an area of about 198.25 km?2, which is 171.7% of that in the previous one hour.
The increased rainfall extremity and the more localized extreme rainfall likely resulted from merging of convective cells and
formation of an arc-shaped convergence zone which favored the development of convective updrafts in a three-quarter circle
around the storm (Yin et al., 2022). Interestingly, the gauge with the 201.9 mm h~! report was almost exactly located in the
high-value center of the hourly rainfall map at 17:00 LST.

The accumulated rainfall from 14:00 to 17:00 LST is presented in Fig. 9. As expected, the results of the LP method and
the LSF method are similar, while the area of rainfall accumulation exceeding 200 mm generated by the Maesaka method
is significantly different from those using the other two methods. Interestingly, we have found that the center of 3-h rainfall
accumulation was off from the hot spot with the record-breaking hourly rainfall accumulation (16:00 ~ 17:00 LST, Fig. 8as).
Specifically, the center of 3-h rainfall accumulation was located at-the-southwest of Zhengzhou city, fortunately an urban-rural

fringe area where the surface is less impervious and relatively fewer residents were living.

6 Conclusions

In this study, we have examined the Kpp-based QPE for the record-breaking extreme rainfall event occurred atover Zhengzhou,
14:00 ~ 17:00 20 July 2021 LST. The rain drop size distribution observations obtained by an OTT disdrometer was used to
develop R(Kpp) parameterizations. The Kpp estimates generated by operationally used LSF method were compared with two
parameter-controlled methods. The Kpp estimates were grided-gridded with a spatial resolution of 500 m and the results of

R(Kpp) were compared with gauge observations. The results can be summarized as follows.

— Range degradation effect significantly affected the performance radar-based QPE in this event. The precipitation center
as identified by the Luoyang radar, which is about 120 km from the Zhengzhou city center, significantly deviates from

Zhengzhou radar estimates.

— The assumed o in T-matrix simulation has deeent-detectable impact on the development of R(Kpp) parameterizations.

Higher o results in smaller Kpp in simulations for a given rain drop size distribution. The previous Bringi et al. (2008)
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e A ite-Satellite images from Google Maps )-from-overlapped by
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was estimated from the (a) LP method with £P-len = 50.75 km, (b) Maesaka methed-algorithm with Clpf = 10°, and (c) LSF method. The

black triangle and cross denote Zhengzhou radar and the site hosting the gauge with the 201.9 mm h~! report, respectively. R—5+K 5"

experimental study on o was made in low-wind conditions, while the applicability of o assumption in moderate to strong

370 winds should be addressed in future studies.

— Gauges deployed over the Zhengzhou city were used to evaluate the accuracy of R(Kpp). The results show that all meth-
ods agree with each other rather well for R(Kpp) < 100 mm h~1. The LP method is capable of producing the highest
rainfall accumulation. In a statistical sense, changing the window length from 0.75 to 11.25 km in the LP method or Clpf
from 10° ~ 10* in the Maesaka algorithm does not significantly affect the QPE performance, while the oversmoothing

375 was found for the Maesaka algorithm with Clpf=106.

— Kpp estimates of three algorithms over the gauge with the 201.9 mm h ™! report were compared, and the results are
generally similar to (Reimel and Kumjian, 2021). One notable difference is that the estimated Kpp almost reached
"saturation” at the window length of 3.75 km, and the increase of Kpp with the decrease of window length is not as
significant as that in (Reimel and Kumjian, 2021). The results of LP method with a window length of 0.75 km are close

380 to those of the LSF method, but significantly larger than the highest values obtained from the Maesaka algorithm.
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- R(Kpp) with the Kpp estimated from the three methods cannot reproduce the gauge-observed 201.9 mm h~!. Our
comparisons suggest that this underestimation is unlikely attributed to the Kpp estimation process. Rather, the adequacy

of assumed o and unquantified vertical air motions may explain this underestimation.

— The gauge with the 201.9 mm h~! report was located at the vicinity of local rainfall hot spots during 16:00 ~ 17:00
LST, but the center of the 3-h areal rainfall accumulation was found to be located at the southwest of Zhengzhou city,

deviating from the site with the 201.9 mm h~! record.

From the perspective of operational applications, the effect of smoothing on Kpp estimation is interesting. Our results show.
that the use of smoothing factor has minimal impact on Kpp for hourly rainfall accumulation below 100 mm, while its impact
becomes more significant as the rain rate increases. This suggests the importance of employing an adaptive window length as
used in the LSE method. However, current LP or Maesaka algorithm uses a fixed window length or a single smoothing factor.
It is recommended to develop a new LP algorithm with an adaptive window length in the future. In addition, we speculate that
the underestimation of 201.9 mm k! rainfall accumulation can be attributed to the inadequate assumptions about raindrop
microphysics and unquantified vertical air motions. Although we cannot quantify their contributions in the Zhengzhou event,
more delicate observational experiments are suggested to ascertain their impact on radar-based QPE.

Data availability. The data used in this study can be accessed by contacting the first author. The merged Kpp figures are availble at
https://github.com/HaoranLiHelsinki/Figs_Zhengzhou . The hourly QPE products generated in this study are availble at https://github.com/
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