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Abstract. Mathematical models for stream depletion with stream stage decline or drawdown are developed to overcome the

deficiency in existing models that typically use the constant-head (Dirichlet) or general (Robin) boundary condition and source

terms at the stream-aquifer interface. Existing approaches assume a fixed stream stage during pumping, implies that the stream

is an infinite water source, with depletion defined as a decrease in stream discharge. We refer to this depletion without draw-

down as the “stream depletion paradox.” It is a glaring model limitation, ignoring the most observable adverse effect of long-5

term groundwater abstraction near a stream, namely stage declines that eventually lead to dry streambeds. Field data are

presented to demonstrate that stream stage responds to pumping near the stream, motivating the development of an alternative

theory predicts transient stream drawdown based on the concepts of finite stream storage and mass continuity at the stream-

aquifer interface. Based on this alternative theory, models are developed for the cases of a non- and a fully-penetrating stream.

The proposed model reduces to the fixed-stage model in the limit as stream storage becomes infinitely large and to the limit-10

ing case of confined aquifer flow with a no-flow boundary at the streambed when the stream storage vanishes. The model is

applied to field observations of both aquifer and stream drawdown from tests conducted in a confined aquifer over which a shal-

low stream flows. Model fits and parameter estimates are obtained both aquifer and stream drawdown data. Model predicted

and observed transient drawdown behavior indicate that fixed-stage models (a) underestimate late-time aquifer drawdown and

(b) overestimate the available recharge from streams to pumping wells. This has significant implications for the sustainable15

management of water resources in hydraulically connected stream-aquifer systems with heavy groundwater abstraction.

1 Introduction

Groundwater pumping in basins bounded by streams can lead to reduced stream flows, with undesirable impacts on both

human use and ecosystem function (Winter et al., 1998; Bowen et al., 2007; Yu and Chu, 2010; Foglia et al., 2013; Zipper

et al., 2018; Tolley et al., 2019; Kwon et al., 2020) due to dry streambeds and disconnected stream-groundwater systems. Theis20
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(1941) was among the first to develop a model for stream depletion resulting from groundwater pumping from a confined

aquifer. Theis (1941) used an earlier model (Theis, 1935) for a laterally infinite aquifer and the linear superposition principle

to simulate a constant-head (Dirichlet) boundary condition at the stream-aquifer interface. Glover and Balmer (1954) extended

upon this work with a closed-form function of the model, later tabulated by Jenkins (1968). Hantush (1965) made the next

notable advancement by introducing a semiprevious streambed with a general (Robin) boundary condition at the stream-aquifer25

interface. The Robin boundary condition implies that the flux is proportional to the differential head across the streambed, with

stream stage held constant. Intaraprasong and Zhan (2009) expanded upon this work, solving the full groundwater flow equation

throughout the streambed with stream stage prescribed as a time-dependent function. Chan (1976) and Asadi-Aghbolaghi and

Seyyedian (2010) generalized application of the superposition principle to confined aquifer flow domains bounded laterally

by intersecting streams. Workers such as Grigoryev (1957), Bochever (1966), Zlotnik et al. (1999), Hunt (1999), Butler Jr30

et al. (2001), Fox et al. (2002), Butler Jr et al. (2007) and Zlotnik and Tartakovsky (2008) extended analytical stream depletion

models to cases of partially penetrating streams. Stream depletion models where the aquifer is unconfined have been developed

by Hunt (2003, 2009), who also uses a fixed-stage condition.

Numerical models, such as MODFLOW (Harbaugh, 2005) and MIKE SHE (Refsgaard et al., 2010), through their respec-

tive stream packages, treat stream BCs and source/drainage terms in a manner similar to the analytical models discussed above.35

They also allow one to specify the spatially variable stream stage using empirical hydrographs (Harbaugh, 2005) or formulas

such as the Manning equation (Prudic et al., 2004). The approach is highly nonlinear, requiring iterative methods at every time

step, which is computationally taxing. A comprehensive review of the literature on different configurations of pumping-induced

stream depletion problems has been provided by Huang et al. (2018), where the Dirichlet and Robin boundary conditions are

identified as the only ones used for such problems. Where source terms are introduced in partially-penetrating stream scenarios,40

they are a linear function of the differential head across the streambed with a fixed stage.

As mentioned already, the models discussed above use either a constant-head or Robin boundary condition (or source

term) at the stream-aquifer interface, both of which require fixed (or more generally, prescribed) stream stages with the stream

acting as an indefinite source of groundwater recharge. However, streams can only provide a limited amount of water and for a

limited period to pumping wells. This has been recognized by others, including Zlotnik (2004), who subsequently introduced45

the concept of maximum stream depletion rate (SDR). As noted by Kollet and Zlotnik (2003), stream stage response to aquifer

pumping can be ignored because the stream flow rate is two orders or more higher than the pumping rate. This suggests that

new models that consider the stream stage drawdown response are required when the stream flow rate is small or comparable

to the pumping rate. Given the limitations of the stream depletion models reviewed above, an alternative theory is proposed

here where a new boundary condition is imposed at the stream-aquifer interface by invoking the mass-balance principle and50

introducing the concept of finite stream channel storage.

Two semi-analytical solutions are developed for the cases of non- (or minimally-) penetrating (NPS) and fully-penetrating

streams (FPS) in a confined aquifer. The solutions are validated by comparing them with a numerical model based on the finite-

element method (FEM) as well as field observations of aquifer and stream drawdown. Li et al. (2022) proposed analytical

depletion functions (ADFs), to combine the advantages of analytical and numerical solutions for estimating the pumping-55
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induced stream depletion. The ADFs approach was tested on several existing stream depletion solutions Theis (1941); Hunt

(1999) coupled with the superposition principle to estimate SDR from streamflow networks. Due to the linearity of the model

proposed in the present work, it is possible to couple it with the ADFs approach to better estimate the SDR due to pumpage.

Additionally, Huang et al. (2020); Xiong et al. (2021) proposed a Robin-type streambed boundary condition using the lagging

theory of Lin and Yeh (2017) to reflect the effect of the streambed storage. They revealed that streambed storage has a profound60

impact on aquifer drawdown, particularly at early times. In this work, we neglect both the ADF approach and streambed

storage to focus entirely on the effect of stream channel storage and to limit the number of confounding free parameters in the

mathematical model.

In the following, we describe the mathematical formulation and the proposed new boundary condition, develop semi-

analytical solutions for the two cases already mentioned above, validate these solutions by comparison to a finite element65

solution, and apply the model to field observations of stream and aquifer drawdown.

2 Mathematical Formulation

In the following, we test the hypothesis that the stream has finite storage and, using a mass conservation condition at the

stream-aquifer interface, derive two solutions that allow stream stage to respond to pumping. To accomplish this, we consider

flow to a fully-penetrating well in a confined aquifer in the neighborhood of (a) a non-penetrating stream (NPS) and (b) a70

fully-penetrating stream (FPS). For the FPS, we consider two cases, namely, the case where flow in the aquifer on both sides

of the stream is considered, and the case where only flow in the aquifer on the bank-side with the pumping well is considered.

We assume that groundwater is pumped at a constant rate, Q [L3T−1], from a line-sink located at a distance of R [L] from

the stream bank. The aquifer is of infinite lateral extent away from the stream with uniform thickness b [L], and is anisotropic

in the horizontal (x,y) plane with the hydraulic conductivities Kx and Ky [LT−1] in x- and y-directions, respectively. The75

aquifer interacts with the stream across a streambed with hydraulic conductivity K ′ [LT−1] and thickness b′ [L] (conductance

β = K ′/b′) as in Hantush (1965). The effects of streambed storage are neglected entirely with a focus only on the effects of

stream channel storage. Stream stage, Hr(t) [L], here is relative to the bottom of the aquifer. Stream drawdown is defined as

sr(t) = H0−Hr(t), where H0 [L] is the initial stream stage. The conceptual models of the problem described here are shown

schematically in Figure 1.80

2.1 Governing Equations of Flow

The governing equation of flow problem considered in this work is (Fox et al., 2002)

Ss
∂s

∂t
= K∇2s + f(x,y, t), (1)

where s = s(x,y, t) is aquifer drawdown, (x,y) are spatial coordinates in the horizontal plane, t is the elapsed time from the

onset of pumping, K is the diagonal aquifer hydraulic conductivity tensor with principal values Kx and Ky , Ss is aquifer85

specific storage, and f(x,y, t) is a sink/source function. The x coordinate axis is perpendicular to the stream bank with the
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origin on the stream bank closest to the pumping well. The y-axis is parallel to the stream channel axis and extends from

y =−∞ to y =∞.

2.2 Non-penetrating Stream

We first consider the case of a stream that flows atop an aquifer to simulate the case where the stream only minimally penetrates90

the aquifer. We refer to this case as that of a non-penetrating stream (NPS). To solve the flow problem, aquifer drawdown is

defined in a piecewise manner as

s(x,y, t) =





s1(x,y, t) x > 0

s2(x,y, t) x ∈ [−W,0]

s3(x,y, t) x <−W

(2)

where W is the width of the stream. Also, the sink/source function, f(x,y, t), is defined as

f(x,y, t) =
1
b





−Qδ(x−R)δ(y)/π x > 0

Γ x ∈ [−W,0]

0 x <−W,

(3)95

where b is aquifer thickness, Q is the pumping rate from a well located a distance R from the stream bank along the x-axis, Γ

[LT−1] is the mass-transfer function across the stream-aquifer interface through the base of the stream, defined as

Γ = β [s(x,y, t)− sr(t)] , x ∈ [−W,0] (4)

In this equation (4), s = H0−h is aquifer drawdown and sr = H0−hr is stream drawdown, where h is aquifer hydraulic head,

hr is stream stage, and H0 is initial system hydraulic head, all measured relative to the same datum. Mass exchange across100

the stream-aquifer interface is characterized by the mass-transfer coefficient, β, defined as the stream conductance β = K ′/b′,

where K ′ is streambed hydraulic conductivity and b′ is its thickness. Note that for the NPS case we treat vertical flow across

the streambed as a sink/source term in equation (3) defined by the mass-transfer function in equation (4). Also, is the fixed

stage models, sr ≡ 0, which is where the model developed in this work departs from fixed-stage models (see below).

The flow problem is solved subject to the initial condition105

s|t=0 = 0, (5)

and the far-field boundary conditions

lim
x→±∞
y→±∞

s = 0. (6)

Additionally, continuity conditions for drawdown

s1|x=0 = s2|x=0 (7)110

s2|x=−W = s3|x=−W , (8)
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and flux

∂s1

∂x

∣∣∣∣
x=0

=
∂s2

∂x

∣∣∣∣
x=0

(9)

∂s3

∂x

∣∣∣∣
x=−W

=
∂s2

∂x

∣∣∣∣
x=−W

, (10)

are enforced at x = 0 and x =−W .115

2.3 Fully-penetrating Stream

A schematic of the conceptual model for the stream-aquifer system with a FPS is shown in Figure 1b. Aquifer drawdown for

this case is defined in a piecewise manner as

s(x,y, t) =





s1(x,y, t) x > 0

s2(x,y, t) x <−W
(11)

when flow on the far-side half-space of the aquifer is accounted for. Here, s1(x,y, t) is the drawdown of the aquifer in the half120

space with the pumping well, and s2(x,y, t) is the drawdown in the far side half space. For the case where the flow on the

far-side (x <−W ) is neglected, only the drawdown on the pumped side is considered.

The boundary condition imposed at the stream-aquifer interface is specified as

−Kx
∂s1

∂x

∣∣∣∣
x=0

= Γ1, (12)

for the pumped half-space, and125

−Kx
∂s2

∂x

∣∣∣∣
x=−W

= Γ2 (13)

on the far side, where the mass-transfer functions Γ1 and Γ2 are defined as

Γ1 =−β [sr(t)− s1(x,y, t)] , x = 0 (14)

Γ2 = β [sr(t)− s2(x,y, t)] , x =−W (15)

for the pumped-side and far-side stream-aquifer interface. Here, we assume that the two interfaces have the same conductance,130

β. For the case where far-side flow is neglected, Γ2 ≡ 0.

2.4 Accounting for Stream Drawdown and Channel Storage

As discussed above, the models of Hantush and Jacob (1955) and Fox et al. (2002) assume that the stream stage is fixed; the

stream does not experience drawdown. Here, we develop a model that accounts for stream drawdown. It should be noted that

the flow problem defined above is ill-posed for both the NPS and FPS cases because stream drawdown, sr, is left unspecified135

in both equations (4) and (14). If the stream is assumed to have fixed stage, as is the case in Hantush and Jacob (1955) and Fox
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et al. (2002), sr ≡ 0. From the resulting Robin BC, one can recover both the no-flow and Dirichlet BCs at the stream-aquifer

interface by setting β = 0 and β →∞, respectively.

In this work, we are concerned with the case where the stream stage does not remain fixed but is allowed to respond to

pumping (see Figure 1a); the stream is allowed to undergo drawdown in response to aquifer pumping, in which case sr ̸= 0.140

We achieve this by specifying an additional condition at the stream aquifer interface, namely a mass-balance condition applied

to the stream, which simply states that the rate of change of mass within the stream equals the rate of mass transfer across the

streambed induced by pumping.

For the NPS model, this condition can be mathematically stated by the parsimonious relation.

Cr
∂sr

∂t
= Γ, (16)145

whereas for the FPS model

Cr
∂sr

∂t
= Γ1 + Γ2, (17)

where Cr is a stream channel storage coefficient, defined such that Cr ∈ [0,∞) is a dimensionless measure of the vol-

ume of water, δVw, which flows through a unit area of the streambed, δAr, per unit change in stream stage, δhr (i.e.,

Cr = δVw/(δArδhr)). It is a measure of the volume contribution of water stored in the stream channel to aquifer flow, and is150

distinguished here from streambed elastic storage.

For a stream channel with an idealized uniform geometric cross-sectional structure, it is possible to provide simple expres-

sions for this parameter. For example, in the FPS case, the stream channel has a rectangular cross section, with stream width

W and aquifer thickness b, δVw = Wδyδhr, δAr = 2bδy, leading to Cr = W/b if the mass exchange is limited to the stream

bank. For the NPS case, where a similar simple geometric profile may be adopted for the cross section of the stream channel, it155

can be shown that Cr is of the order of unity. For more complex cross-sectional geometries of channels that vary spatially with

y, the parameter Cr can be empirically estimated by inversion of the stream and aquifer drawdown data. It is also possible,

in principle, to develop empirical functions relating Cr to the dimensionless ratio ⟨W ⟩/h of the form Cr = f(⟨W ⟩/b), where

⟨W ⟩ is some well-defined spatial (in y) average of stream width. Additional research outside the scope of the present work

would be needed to develop such empirical relations. It is also easy to imagine the parameter Cr as a (non-linear) function of160

the stream stage. For our purposes here, in the spirit of parsimony and mathematical tractability, we restrict ourselves to the

case where Cr is a constant to develop a first solution that describes stream drawdown in response to aquifer pumping. For our

purposes, the effect of flow in the subdomain in the non-pumping half-space is not considered in the following development of

the analytical model for FPS and NPS for mathematical tractability.

3 Analytical Solutions of the Flow Problem165

To solve the flow problem described above, the governing equation is first transformed into a dimensionless form. Details of the

nondimensionalization of the governing equations and their solutions may be found in the Appendix. The solutions are given
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below in dimensionless form. The dimensionless variables and parameters that appear in the solution are defined in Table 1.

The solutions for sD and sD,r are obtained using Laplace (in time) and Fourier cosine (in y) transforms.

3.1 Non-Penetrating Stream170

The exact solution for aquifer drawdown, in transform space, for the NPS case can be shown (see Appendix for details) to be

˜̄sD =
2e−η

p∆1





eη(1−xD) ˜̄g1(p,ξ,1.0) ∀xD > 1

˜̄g1(p,ξ,xD) ∀xD ∈ [0,1]

η̂ cosh[η̂(xD + WD)] + η sinh[η̂(xD + WD)] xD ∈ (−WD,0)

η̂eη(WD+xD) xD ≤−WD,

(18)

where ˜̄sD is the Laplace and Fourier cosine transform of sD, p is the Laplace transform variable, ξ is the Fourier cosine

transform variable, η =
√

p + κξ2, η̂ =
√

η2 + ζ, ζ = pβD/(p+β∗D), β∗D = βD/CD,r, βD = β/(Kx/R) is the dimensionless

stream conductance, WD = W/R is the dimensionless stream channel width, CD,r = Cr/(RSs) is the dimensionless ration of175

the stream channel storage coefficient to aquifer elastic storage,

∆1 = 2η̂η cosh(η̂WD) +
(
η2 + η̂2

)
sinh(η̂WD), (19)

˜̄g1(p,ξ,xD) = η̂eηxD cosh(η̂WD) + ˜̄g2(p,ξ,xD)sinh(η̂WD), and (20)

˜̄g2(p,ξ,xD) = η cosh(ηxD) + (η̂2/η)sinh(ηxD). (21)

The corresponding solution for stream drawdown is given by180

˜̄sD,r =
˜̄sD(p,ξ,xD)
1 + p/β∗D

, xD ∈ (−WD,0), (22)

where ˜̄sD,r is the Laplace and Fourier cosine transform of dimensionless stream drawdown sD,r. Upon inversion from trans-

form space, Equation (22) may be used to compute stream drawdown, in addition to stream depletion, induced by pumping

from a well completed in a confined aquifer. Space-time stream and aquifer drawdown are obtained by numerical inversion

of the Fourier cosine and Laplace transforms using numerical quadrature and the Stehfest (1970) algorithm as implemented185

within the Wolfram Mathematica environment.

3.2 Fully-Penetrating Stream

3.2.1 Flow on both sides of stream

As shown in the Appendix D, the exact solution for the FPS model, allowing for flow on both sides of the stream, is given by

˜̄sD =
2e−η

p∆2





e−η(xD−1) ˜̄g3(p,ξ,1.0) ∀xD > 1

˜̄g3(p,ξ,xD) ∀xD ∈ [0,1]

pβDβ∗Deη(WD+xD) xD ≤−WD,

(23)190
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where ˜̄sD is the Laplace and Fourier cosine transform of aquifer drawdown, sD,

˜̄g3(p,ξ,xD) = χ1 cosh(ηxD) +χ2 sinh(ηxD), (24)

χ1 =
∆2

βD + η
+ pβ∗DβD, (25)

χ2 =
βD∆2

η(βD + η)
− pβ∗DβD, and (26)

∆2 = p(βD + η) [2β∗Dη + p(βD + η)] . (27)195

The corresponding stream drawdown solution in transform space is

˜̄sD,r(p,ξ) =
2e−η

p∆2

β∗D (χ1 + pβDβ∗D)
p + 2β∗D

, (28)

in transform space. The space-time solution, a function of tD and y, is obtained numerically as stated previously.

3.2.2 Flow on pumped side of stream only

When there is no flow across the far-side stream-aquifer interface, with Γ2 ≡ 0, the solution for the FPS solution can be reduced200

to

˜̄sD =
2e−η

p∆∗
3





˜̄g5(p,ξ,xD) ∀xD ≤ 1

e−ηxD ˜̄g5(p,ξ,1.0) ∀xD > 1
(29)

where ˜̄sD is the Laplace and Fourier cosine transform of sD, ∆∗
3 = η + ζ, ˜̄g5(p,ξ,xD) = cosh(ηxD) + (ζ/η)sinh(ηxD), and

ζ is as defined previously. The corresponding solution for dimensionless stream drawdown is

˜̄sD,r(p,ξ) =
[
1−χ

(
1− 1

ηpβD

)]
e−η

p∆∗
3

, (30)205

which upon inversion gives stream drawdown as a function of time, tD, and position along the stream channel, yD. As men-

tioned previously, the inversion is performed numerically in the Wolfram Mathematica environment.

3.3 Stream Depletion Solution

Stream depletion, Qr [L3T−1], defined as the volume rate of flow captured from the stream by a pumping well, is obtained

simply by integrating the point-wise streambed flux along the length of the stream. The point-wise depletion flux, qr, in210

dimensionless form, is

qD,r = CD,r
∂sD,r

∂tD
(31)

where qD,r = qr/(2πbR/Q). In the Laplace- and Fourier-cosine transform domain, equation (31) becomes ˜̄qD,r = pCD,r ˜̄sD,r.

Inverting the Fourier cosine inverse transform yields (Povstenko, 2015)

q̄D,r = pCD,r

∞∫

0

˜̄sD,r cosξxD dξ. (32)215
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Therefore,

Q̄D,r =
CD,r

π





∞∫

0

ps̄D,rdyD for FPS and

1
bD

∞∫

0

0∫

−WD

ps̄D,rdxDdyD for NPS,

(33)

where QD,r = Qr/Q. Equation (33) includes improper integrals, which take a long time to evaluate numerically. Additionally,

there may be a practical limit on the stream reach that contributes appreciable amounts of water to the well over the pumping

period. Hence, a definite integral over the interval yD ∈ [0,LD], may be more practical. Using the late-time drawdown approx-220

imation of Cooper Jr and Jacob (1946), namely, sD =−γ/2− ln(u) where sD is dimensionless drawdown, u = r2
D/(4αtD),

r2
D = (xD−1)2 +y2

D, α is the hydraulic diffusivity K/Ss, and γ ≃ 0.577216 is Euler’s constant, one can determine the radius

of influence, R∞, of the pumping well by considering a depression cone centered about the well (xD = 1) and defining R∞ as

sD|rD=RD,∞
= 0. This leads to

RD,∞ = At
1/2
D , (34)225

where A =
√

4αe−γ/4 ≈ 1.73
√

α. Then LD ≈RD,∞ can be set when evaluating Equation (33). In Figure 2 we compare the

QD,r curves with LD = RD,∞ given above versus the arbitrary upper bound of LD = 105. The two curves are nearly identical

with a maximum relative error (RE) of less than 10% at the early time. For tD > 1, the RE is less than 2%. The CPU time

shows that the setting LD = RD,∞ computes faster than the use of LD = 105.

3.4 Model Verification230

To check the correctness of the analytical solutions developed above, a verification exercise was undertaken by comparing these

solutions with a numerical solution based on the finite element method (FEM). A 3D FEM model was built for comparison with

the NPS case and to evaluate the significance of vertical flow. The stream overlying the aquifer was allowed to drain through

the streambed and generate vertical flow. The domain is set as above with zD ∈ [0,1.5]. As mentioned above, the conceptual

model comprises three isotropic layers, namely the aquifer layer with zD ∈ [0,1], the streambed layer with zD ∈ (1,1 + b′D]235

with xD ∈ [−WD,0] and yD ∈ [0,105], and the stream layer with zD ∈ (1 + b′D,1.5] with xD ∈ [−WD,0] and yD ∈ [0,105].

The drawdown computed with the 3D FEM model is vertically averaged. Finer meshes were assigned near the stream and

pumping well, while a coarser mesh was used elsewhere. The hydraulic parameter values used for the comparison were set to

CD,r = 25, βD = 10, b′D = 0.01, and WD = 0.5. The streambed storage was set the same as the aquifer and K ′ = 0.1Kx.

In the case of the FPS with a fully penetrating pumping well, the vertical flow is negligible and a 2D model in the (xD,yD)240

plane is sufficient to describe the flow behavior. The numerical solution was developed in a domain with xD ∈ [−105,105]

and yD ∈ [0,105]. The flow domain was divided into multiple zones: the pumped aquifer zone: xD ∈ [0,105], aquifer zone

on the far side: xD ∈ [−2b′D,−105], the stream zone: xD ∈ [−b′D,−b′D −WD), and streambed zones: xD ∈ [0,−b′D) and

[−b′D −WD,−2b′D −WD), where b′D is the dimensionless streambed thickness defined as b′/R. Figure 3 shows the aquifer
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drawdown curves predicted by the (a) NPS and (b) FPS solutions versus the FEM solution. The observation points were245

established at (xD,yD) = (0.1,0),(0.25,0),(0.5,0). The results show that the semi-analytical and FEM solutions agree well

with negligible residuals. Additionally, Butler Jr et al. (2001) tested the assumptions of the NPS model by comparing it with

the seven-layer MODFLOW model. They found that the NPS assumptions are valid when the relative penetration (ratio of

stream penetration to aquifer thickness) is less than 85%. For the Cal Poly stream-aquifer system that motivated this study, the

relative penetration is 50%.250

4 Model Predicted Behavior

4.1 Aquifer and Stream Drawdown Response

Aquifer and stream drawdown predicted by the solutions of NPS and FPS with its special case (Γ2 = 0) are shown in Figures

4 (a) and (b), respectively. The models for the case of an impermeable barrier(Ferris et al., 1962), Theis (1935), Hantush

(1965), and Fox et al. (2002) are included as limiting cases for comparison. The models of Hantush (1965) and Fox et al.255

(2002) correspond to the limiting case of infinite stream channel storage and no stream drawdown. The limiting solution of an

impermeable barrier proposed in Ferris et al. (1962) shown in Figure 4(b) is for a semi-infinite flow domain with a no-flow

fully-penetrating boundary at the stream-aquifer interface.

The predicted aquifer drawdown response shows three phases that are commonly observed in dual-storage media such as

unconfined aquifers (Neuman, 1974; Malama, 2011; Tartakovsky and Neuman, 2007; Mishra and Neuman, 2010; Mishra and260

Kuhlman, 2013; Malama, 2014; Lin et al., 2019) and dual-porosity media (Warren and Root, 1963; Streltsova, 1983; De Smedt,

2011; Lin and Yeh, 2021). The three phases are termed early-, intermediate-, and late-time. During early-time, aquifer response

follow the Theis (1935) model and stream drawdown response is virtually imperceptible as water flows primarily from aquifer

elastic storage. The onset of intermediate-time is marked by significant departure of aquifer drawdown from that predicted by

Theis (1935) and aquifer drawdown is lower than it would be in the absence of stream recharge. The stream initially serves265

as a near-infinite store of water and aquifer drawdown closely follows that predicted by the limiting solutions of Fox et al.

(2002) and Hantush (1965), appearing to approach steady-state before beginning to increase again as the stream stage begins

to respond significantly to pumping. If pumping were to cease during the early part of intermediate-time, the models of Fox

et al. (2002) and Hantush (1965) would be sufficient to describe system behavior. The higher stream storage coefficient, CD,r,

the longer this quasi-static phase persists. As pumping continues, the aquifer drawdown response transitions into late-time270

behavior characterized by increasing aquifer and stream drawdown response; the depression cone has propagated to the edge

of the stream, capturing water directly from stream channel storage. Depending on the initial stage of the stream, stream

drawdown would lead to drying up of the stream at late times, and the model developed here would transition into one with

a no-flow condition at the streambed. For the NPS model, the predicted aquifer drawdown behavior transitions back into an

infinite aquifer state of Theis (1935) with the streambed forming a segment of the upper no-flow boundary.275

The dependence of aquifer and stream drawdown on stream channel storage, CD,r, as predicted on the pumped aquifer

side (0.5,0) and the unpumped aquifer side (−1.5,0) is depicted in Figures 5 (a), (b), and (c), as well as (d) and (e), respectively.
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The models of Fox et al. (2002) and Hantush (1965), which assume a fixed stream stage and correspond to the case of infinite

stream channel storage, are included for comparison for the cases of NPS and FPS with Γ2 = 0. Increasing the values of CD,r

have the effect of prolonging the intermediate phase and increasing the delay in the response of the stream stage to pumping.280

Streams with high discharge and stage are associated with high values of CD,r, and would require prolonged pumping to

respond to the drawdown to the transition to the late-time phase. This may take several days, which explains why such streams

are typically treated as fixed-stage boundaries. On the unpmped aquifer side (Figures 5d and e), the drawdown of the FPS

with Γ2 = 0 is not plotted due to the assumption of an infinite reserve of the stream. This shows the results similar to those

given in the pumped aquifer, but the case of CD,r →∞ for the FPS solution is zero because the pumped water comes from the285

pumped aquifer and the stream. The dependence of aquifer and stream drawdown on the streambed conductance on the pumped

aquifer side and the unpumped aquifer side, βD is depicted in Figure 6. Large values of βD indicate a strong stream-aquifer

hydraulic connection with aquifer drawdown that shows the three phases discussed above. As the value of βD decreases, aquifer

behavior approaches the no-flow solution, with the limiting value of βD = 0, corresponding to a no-flow boundary. Stream stage

responsiveness increases with increasing values of βD, leading to decreasing lag times between stream and aquifer responses.290

4.2 Stream Depletion Behavior

The predicted SDR is illustrated in Figure 7, where we explore the effect of CD,r on the QD,r predicted by (a) NPS solution,

(b) FPS solution, and (c) FPS solution with Γ2 = 0. Generally, for all finite values of CD,r, the depletion rate, QD,r, increases

initially with time before reaching a peak rate followed by a subsequent decline. This behavior has been previously highlighted

in the literature by Zlotnik (2004). For CD,r →∞, the maximum depletion rate stays fixed indefinitely with all water captured295

by the pumping well coming from the stream recharge. For finite values of CD,r, the depletion rate reaches a peak value of

QD,r ≤ 1.0, with a unimodal distribution pattern, indicating that the peak depletion rate is only a fraction of the pumping rate

even at late-time, with the rest of the water coming from aquifer storage. As CD,r increases, the stream contributes increasing

proportions of the water abstracted by the pumping well and the curves of QD,r are closer to the limiting case of CD,r →∞.

Figure 8 shows the effect of βD on the behavior of QD,r predicted by the models. The figure shows that QD,r increases300

with increasing βD because higher values of βD mean a higher degree of stream-aquifer connectivity. Increasing βD has the

effect of shifting the QD,r peaks leftward and upward; that is, increasing βD leads to increased peak depletion, with the peak

occurring earlier.

5 Drawdown Derivative Analysis

The drawdown derivative analysis is a useful tool to diagnose the change in flow behavior by plotting the curve of ∂sD/∂ ln(tD)305

for the aquifer flow response or ∂sD,r/∂ ln(tD) for the flow response of the stream, because it drastically improved the sensi-

tivity to flow conditions (Bourdet et al., 1983; Chow, 1952; Ferroud et al., 2018, 2019). Figure 9 shows the temporal drawdown

derivative curve predicted by the (a) NPS and (b) FPS solutions in the aquifer located at (0.5, 0) and those predicted by (c)

the NPS and (d) the FPS solutions in the stream located at (-0.5, 0) by varying the values of CD,r from 10 to 100. As can be
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seen in the figure, CD,r =∞ represents the case of fixed stage of river water. It shows a hump that the drawdown derivative310

value steeply rises and falls down to a near-zero value. It is a typical feature of the recharge boundary effect, especially for the

Dirichlet-type condition on the recharge boundary Ferroud et al. (2019). However, for the finite value of CD,r, the drawdown

derivative displays a double humps with a higher peak for the latter, and then it is stable at a constant value. The valleys of

the curves represent the starting point of the river that supports the pumped aquifer. This valley pattern can be observed in a

dual porosity system, but in this case it represents the transfer of water from the matrix block to the fracture. In general, the315

entire pattern shown in Figures 9(a) and (b) can be seen as a characteristic of the effect of stream drawdown on the response

of aquifer flow. In the stream, there is an immediate sharp increase in the drawdown derivative that gradually declines until

it returns to a constant level. Note that the case of CD,r does not appear in the figure for the stream derivative because sD,r

is constant, leading to the zero value of ∂sD,r/∂ ln(tD). On the other hand, Figure 10 demonstrates the temporal drawdown

derivative curves generated by the (a) NPS and (b) FPS solutions at (0.5, 0) and those predicted by the (c) NPS and (d) FPS320

solutions at (-0.5, 0) by changing the values of βD from 0.1 to 1. It shows patterns similar to those of the above figure. As can

be seen, when β is zero, the river stage will not charge due to pumping. Moreover, the steady-state pattern for the case of βD =

0 represents the radial flow in the aquifer. For the case of NPS, zero β means that the atop the river has no impact on the aquifer

and the pumped water is mainly recharged from the storage of the aquifer, while for the case of FPS, it means an impermeable

layer near the pumping well. Overall, these curve features can be helpful in identifying the change in stream drawdown once325

pump-induced drawdown data are obtained near a stream.

6 Application to Field Observations

To test the hypothesis that streams respond to groundwater pumping, we passively monitored the response of a stream-aquifer

system to groundwater pumping for irrigation. The null hypothesis in this case is that streams act as constant-head boundaries

or as sources of the mass-transfer type with fixed stage, supplying recharge to an aquifer indefinitely during groundwater330

pumping. In the following, we provide evidence from field observation that a stream in hydraulic contact with a pumped

aquifer, experiences transient drawdown in response to the pumping. We also use observations of stream drawdown, in addition

to aquifer drawdown data, to estimate aquifer hydraulic properties, stream conductance, and the newly introduced finite stream

storage coefficient Cr.

6.1 Study Site Description335

The study site is situated in the agricultural fields of the California Polytechnic State University (Cal Poly), San Luis Obispo,

located along the California central coast. The site is an alluvial basin underlain with a shallow confined gravel and sand aquifer

underlain with metavolcanic bedrock. It is situated at the northern edge of the greater San Luis Obispo aquifer where the water-

bearing geologic formations that comprise recent (Quaternary) alluvium, Paso Robles Formation, and Pismo Formation. The

metavolcanic bedrock is locally interpreted to belong to the non-water-bearing Franciscan assemblage. The groundwater basin340

in which the aquifer is situated has been designated as medium priority in the implementation of the Sustainable Groundwater
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Management Act (SGMA) passed in the state of California in 2014. Hence, the modeling, data, and results presented here have

great implications for an aquifer of significant social relevance.

The aquifer is confined and bounded above by a thin near-surface layer of variably saturated clay or clay-rich sediment of

very low permeability. This layer constitutes the upper confining unit (upper aquitard) and has a thickness of 11 m. The aquifer345

is confined from below at a depth of about 24 m by metavolcanic bedrock of unknown thickness. The aquifer has a nominal

uniform thickness of b = 11 m, as determined from drill logs for well installation. A stream, Stenner Creek, flows across the

study site on top of the aquifer in a nearly northwest-to-southeast direction cutting across the entire thickness of the confining

layer overlying the aquifer. As will become clear in the following, the stream is in direct hydraulic connection with the aquifer.

The streambed is of the same sand and gravel formation as the aquifer, and the stream has minimal penetration of the aquifer.350

During the summer low flows, the discharge rate of the stream is on the order of Qs ∼ 5× 10−4 m3/s.

6.2 Passive Monitoring of Aquifer Pumping

An irrigation well, which serves as the pumping well in this study, has a diameter of 8 inches (∼ 0.2 m) and is located about

60 m southwest of the stream, as depicted in Figure 11. It is completed throughout the thickness of the aquifer and is used

to pump confined aquifer regularly on a fortnightly schedule at a constant rate of Q = 138 gpm (8.58× 10−3 m3/s). Aquifer355

drawdown response to pumping was continuously monitored with transducers in the pumping well and a nearby abandoned

well located across the stream about 10 m from the bank as shown on the map. A piezometer 100 m west of the pumping

well was also instrumented for monitoring aquifer response. This piezometer and the abandoned well serve as the aquifer

drawdown observation wells in this study. It is installed at about the interface between the top of the aquifer and the overlying

clay-clayey confining unit. To monitor the stream stage, pressure transducers (Stenner-P1, P2, and P3) were placed in the360

stream channel in stilling wells without penetrating the streambed at three locations. Two additional stream channel monitoring

stations downstream of Stenner-P3 were instrumented with pressure transmitters connected to CR300 data loggers (Campbell

Scientific, Inc.) and are marked Stenner-P4 and P5.

The stream stage was continuously monitored at 15-minute intervals. The time series (hydrographs) of the aquifer water

levels in the two observation wells and stream stage at five locations, relative to the long-term background levels, are plotted365

in Figure 12. The time series of drawdown data have been denoised using the singular spectrum analysis and detrended using

the ensemble empirical mode decomposition method to remove the unfavorable noises from the diurnal evapotranspiration

signal and the trend due to rainfall events. These functions can be found in the built-in functions in the Python package called

pyts.decomposition and PyEMD, respectively. Six pumping events recorded during the spring and summer irrigation seasons

of 2022 are highlighted. Due to instrument malfunction, not all episodes of pumping are recorded by each of the monitoring370

stations. In addition, the six pumping events specifically occurred on March 16 at 9:35, April 27 at 7:12, May 31 at 13:53, June

23 at 9:30, July 18 at 12:05, and August 8 at 7:22 in 2022.
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6.3 Observed Transient Aquifer and Stream Drawdown

Aquifer drawdown recorded in the observation well is shown in Figure 13 for the six tests highlighted previously. The figure

shows (a) log-log and (b) semi-log plots of the observed drawdown. The figure also shows in (c) the log-time derivative of the375

drawdown data computed numerically using central differences. The recovery data are also included for completeness. The

drawdown data show a general shift in aquifer drawdown behavior of the course of the observation period. The least overall

drawdowns were recorded in the first of the pumping periods of March 16 to March 18, while the largest were recorded in the

last reported pumping period. This behavior is reflective of the decrease in the amount of water stored in the stream channel

from the spring high flows to the summer low flows. As stated previously, a small value of the parameter Cr is associated with380

larger aquifer drawdowns in the neighborhood of a stream.

In addition to the shift in behavior observed from test to test, for any given test, the transient aquifer response generally

shows the three phases predicted by the model developed in this work, namely early-, intermediate-, and late-time behavior.

These phases are most evident in the latter tests (4,5,6) that are associated with small values of the parameter Cr. The earlier

tests (1,2,3), when the stream channel has the most water (large Cr) primarily show the early- and intermediate phases as the385

stream acts more like a fixed-stage boundary. Even for the earlier tests, the intermediate phase does not show the constant

late-time drawdown predicted by the models of Hantush and Jacob (1955) and Fox et al. (2002). It is clear from these data that

the parameter changes significantly over the course of the irrigation season, being dependent on stream stage over such long

time scales. However, for the relatively short duration of each test (48 hours), we treat Cr as constant due to the relatively small

stream stage responses induced by each test (see below).390

The plot of the log-time derivative of aquifer drawdown, ∂s/∂ ln(t), shown in Figure 13(c) reveals more clearly the three

phases described above, as well as the changes in the stream storage coefficient over the course of the irrigation season and the

six tests. The general temporal behavior of the derivative of aquifer drawdown as depicted in this figure also captures well the

general temporal pattern predicted by the model for different values of the parameter Cr, as shown in Figure 9. The derivative

generally increases with time before reaching an initial peak value during the early-time phase of the drawdown response. This395

is followed by a general decrease of the slope associated with the contribution of flow from stream recharge, with the slope

attaining a local minimum. This decrease in the derivative observed in the data and predicted by the model is characteristic

of the intermediate-time drawdown response. Figure 10 displays the drawdown derivative curves as changing the value of βD

with fixing CD,r = 25. The same patterns can be observed as shown in Figure (9) due to the effect of CD,r. If CD,r is finite and

βD is greater than nil, a similar feature of the drawdown derivative would be observed from the finite storage stream model.400

Observed stream stage drawdown data are shown in Figure 14. The response of the aquifer in test 6 is also included in all

the graphs for comparison. The first observation to note is that stream is drawdown is nonzero, coherent, and unambiguous. The

stream clearly does not behave as a fixed-stage boundary or a source term that supplies recharge indefinitely without drawdown.

The second observation is that stream drawdown response occurs significantly later than the aquifer drawdown. All the stream

stilling wells are located closer to the pumping well than the aquifer observation well but all start showing drawdown response405
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at much later times (about an hour later) than the aquifer observation well. This delayed stream response confirms the model

predictions presented above.

6.4 Drawdown Analysis and Parameter Estimation

Based on the configuration of the stream and aquifer aquifer at the study site, the NPS solution was used to identify the

hydraulic parameters of the aquifer, namely, Kx, κ, and Ss, as well as the streambed conductance, β, and the stream channel410

storage coefficient, Cr. The solution proposed in this study was coupled with the Levenberg-Marquardt optimization algorithm

as implemented in MATLAB through the lsqcurvefit function. The purpose of parameter identification was to minimize the

sum of the residuals between the observation drawdown and the predicted drawdown. The objective function Z is defined as

Z = min
{Kx,Ss,κ,β,Cr}

N∑

n=1

[sobs,(x,y, tn)− s(x,y, tn;Kx,Ss,κ,β,Cr)]
2 (35)

where N is the total number of temporal drawdown observations, sobs(x,y, tn) measured drawdown at location (x,y) at time tn,415

and s(x,y, tn;Kx,Ss,κ,β,Cr) are the corresponding model computed values given the set of parameters {Kx,Ss,κ,β,Cr}.

The convergence criterion of equation (35) is set to Z < 1× 10−4 m. The hydraulic parameters were log-transformed to to

constrain the optimization procedure to the positive space of the parameter values.

Additionally, estimated values of hydraulic parameters were checked against published values of geologic materials with

similar sediment composition to ensure reliability. The aquifer at the study site is predominantly sand and gravel; therefore, the420

reasonable range for hydraulic conductivity Kx is [10−6, 10−3] m/s, with Ky = κKx where κ∼ 1.0. The possible range for

Ss is [10−6, 10−3] m−1, and β > 10−9 s−1. The value of Cr is bounded only by the log-transformation during the parameter

estimation procedure; no published values are available in the hydrogeology literature because the parameter was first intro-

duced in this work. It is expected, however, that this parameter would generally be greater than specific yield in unconfined

aquifer settings, and storativity, in confined settings.425

In this work, parameter estimation is conducted by considering only drawdown data from the aquifer observation well

and the stream stilling well Stenner-P1. The pumping well is located at R = 62.2 m and has x-y coordinates (62.2, 0.0) m.

The stream observation location Stenner-P1 is located in the middle of the stream channel at (−0.75,183.1) m, whereas the

observation well location is on the far-side of the stream at (−15.1,193.6) m. The stream channel had an average width of

about w = 1.5 m during the Spring-Fall period of 2022 when the data analysed here were collected. The aquifer has an average430

thickness of 11 m, estimated from drilling logs of the pumping and irrigation wells. In all the tests analysed, water was pumped

at a constant rate of Q = 135 gallons per minute (gpm) to irrigate one half of a lemon orchard for 24 hours, and the other

half for another 24-hour period for a total of 48 hours of pumping. However, the pumping rate increases slightly to about 138

gpm at the start of the second 24-hour irrigation period, which has the effect of changing the trajectory of transient drawdown

response. Hence, for this work, only data from the first 24 hours (1440 min) of pumping are analysed for the purpose of435

parameter estimation. Recovery phase data are not considered here in order to simplify the analysis.

Figure 15 shows the best fits of the NPS model to the observation well (aquifer) drawdown data for the six tests highlighted

above. The results are plotted on (a) log-log, (b) semi-log, and (c) linear scales. The corresponding estimated parameter values
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for the model fits to data that minimize the objective function defined previously are summarized in Table 2. All the model fits to

the aquifer drawdown data were obtained with values of Kx = 8.31×10−5 m/s for hydraulic conductivity and Ss = 1.46×10−5440

m−1 for specific storage. These values were obtained with test 6 data and then held fixed in the subsequent analyses. Only

parameters κ, β, and Cr were allowed to vary among all the subsequent analyses of tests 1-6.

Figure 15 also includes (in d, e, and f) the predicted stream drawdown behavior at Stenner-P1 using the parameter values

in Table 2 from analysis of aquifer drawdown. These model predictions are compared to the observed stream drawdown. It

is clear the the observed stream drawdown shows significant departure from the behavior predicted on the basis of hydraulic445

parameters estimated with aquifer drawdown only. This is particularly the case for test 4 data depicted in Figure 15(d). Hence,

stream drawdown data where analysed separately and the resulting model fits to observed transient behavior are shown in Figure

16 on (a) log-log, (b) semi-log, and (c) linear scales. Model fits show a marked improvement and the resulting parameter values

are summarized in Table 3. These values are appreciably different from those estimated from aquifer drawdown only, which

may be attributed to system heterogeneity (more on this in the discussion below). The estimated values of the anisotropy ratio,450

κ, are in the range of 0.591 to 1.09, which implies that the aquifer is only modestly anisotropic. The parameter β was also

estimated with only modest variation among the tests.

In the analysis of aquifer drawdown data, the most significant parameter change among the 6 tests was observed in the

stream storage coefficient Cr. The results are plotted in Figure 17, showing the temporal behavior over the course of the six

pumping tests. For each individual test, Cr was taken to be constant, but there was clear and consistent decrease from test 1455

to 6. This decrease of Cr over the course of the pumping season correlates with a reduction in the river stage and discharge

during the dry season. This variation notwithstanding, the results, indicate that the stream storage is finite and estimable and

may be treated as fixed only for a relatively short duration corresponding to a single pumping period of 24-hours.

7 Discussion

This work sought to resolve the stream depletion paradox where streams in hydraulic contact with an aquifer undergoing460

pumping from a well experience depletion without stage decline or drawdown. Models were developed by introducing a mass

balance condition at the stream-aquifer interface and a finite stream storage coefficient, which allow the stream to show a

transient drawdown response to groundwater pumping. These are the first analytical models in the hydrogeology literature to

accomplish this overcoming the limitation of published analytical models that assume streams to be fixed-head boundaries or

source terms. For simplicity and mathematical tractability, stream velocity was neglected in the theory presented here. The465

resulting mathematical solutions show that predicted aquifer drawdown has a three-phase response characteristic of a two-

storage flow system, namely, (1) an early-time response associated with water released from aquifer elastic storage, (2) an

intermediate-time response where water is released from a combination of stream and aquifer storage, and (3) a late-time phase

where water is withdrawn primarily from stream storage, with stream stage showing decline or drawdown. The intermediate-

and late-time phases are characterized by aquifer drawdown departure from the steady-state drawdown behavior predicted by470

models with a fixed stream stage.
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Direct observations of stream drawdown at multiple locations at the study site clearly demonstrate that streams cannot in

general be treated as strictly constant head boundary conditions or as mass transfer source terms with fixed stage. This also

implies that streams should more generally be treated as having finite storage where they cannot supply water to pumping wells

indefinitely. The mathematical solution developed in this work, with the application of a mass conservation condition in the475

stream channel and the introduction of a finite stream storage coefficient, Cr, was used to estimate aquifer and stream hydraulic

parameters by fitting the model to observed aquifer and stream drawdown. In particular, the NPS solution was used because it

best matches the stream configuration relative to the aquifer to the extent that Stenner Creek at the study site only minimally

penetrates the aquifer.

The transient behavior of aquifer drawdown data shows the features predicted by the mathematical model, with early-480

time, intermediate, and late-time phases clearly evident in tests 5 and 6; these two tests correspond to the low stream storage

coefficient, when stream discharge and stage where approaching the summer low flows. The earlier tests, conducted when the

stream discharge and stage were relatively high, and the observed aquifer drawdown response shows only the early-time and

intermediate-time phases; the 24-hour test period was not sufficiently long for the aquifer to transition into late-time behavior,

though there were hints of this behavior in data from test 4. Analysis of time derivatives of the data supports this observation485

and shows close correspondence between the general pattern of the model predicted derivative behavior with the observed

behavior for different values of the stream storage coefficient.

Qualitatively, stream drawdown behavior also conforms to model predicted temporal behavior, being significantly delayed

in response compared to aquifer response, even though the aquifer observation well is farther from the pumping well. The

highest stream drawdown was recorded in Stenner-P1 which was also the farthest from the pumping well. This suggests that490

the aquifer may be anisotropic. Quantitatively, the model was found to fit the observed aquifer drawdown very well with R2-

values larger that 90%. Parameter estimation directly from aquifer drawdown, by minimizing the sum of squared residuals

between these data and model predictions, yielded reasonable values of hydraulic conductivity, Kx, specific storage, Ss, and

hydraulic anisotropy, κ = Ky/Kx, for an aquifer made up of unconsolidated sand and gravel. In analyzing aquifer drawdown

for parameter estimation, the same Kx and Ss values were found to lead to very good fits (R2 > 90%) of the model to495

drawdown. Because the observed drawdown suggested anisotropic conditions, an attempt was made to estimate this parameter

for each of the tests, yielding only modest variations in κ. Estimated stream conductance values, β, also showed only modest

variation (coefficient of variation of ∼ 8%) among the tests.

The stream channel storage coefficient, Cr, shows the greatest and most consistent variation among the six tests, being

largest for test 1, which was conducted in March 2022, and lowest for test 6 conducted in August of the same year. Test 1500

coincided with high stream discharge (flow rate) and stage following the end of the rainy season, whereas test 6 was conducted

in the middle of the summer dry season, when stream flow was predominantly dictated by baseflow recession. During the earlier

tests, the stream acts as a large water storage source of recharge, hence the large values of Cr and the induced stream drawdown

relative to (as a fraction of) stream stage is much lower than later in the dry season; aquifer drawdown may be approximated

by the solutions of Hantush (1965) and Fox et al. (2002) as it may be perceived to approach steady state. However, the fact505

that the stream was not acting as a fixed stage boundary or source is clear from the induced stream drawdown, and in the
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change in the observed aquifer drawdown, particularly during the intermediate and late-time stages of tests 4-6. Additionally,

the parameter identification for these field tests showed that the stream channel storage in Stenner Creek decreases as the dry

season progresses, which also coincides with the irrigation season where the frequency of pumping events tends to increase.

This can have significant implications for the sustainable management of water resources in interacting stream-aquifer systems510

with heavy groundwater abstraction.

The predicted transient stream drawdown behavior, using parameter values in Table 2 that were estimated from aquifer

drawdown data, was found to be significantly mismatched with observed stream drawdown. This was particularly the case for

test 4, with tests 5 and 6 showing improved alignment between model predictions and observed behavior albeit with poor model

fit to data. This necessitated separate analysis of stream drawdown data leading to greatly improved model fits to data (see515

Figure 16) but with parameter values that are appreciably different from those estimated using aquifer drawdown observations.

This suggests that the aquifer and streambed may be heterogeneous and that estimation of their equivalent homogeneous

hydraulic properties would require joint inversion of aquifer and stream drawdown data. For the purposed of the present work,

it is sufficient to demonstrate that aquifer and stream hydraulic properties are estimable from both stream and aquifer drawdown

data, while highlighting the need for further analysis.520

8 Conclusions

The data and modeling results of this work demonstrate that aquifer flow models with a fixed stream stage boundary condition

or source term underestimate aquifer drawdown and overestimate the capacity of a stream to buffer aquifer drawdown through

continuous recharge. Streams are demonstrated to have finite and estimable channel storage and undergo both depletion and

drawdown when an aquifer in close proximity is pumped. This is especially critical in aquifer systems subjected to prolonged525

groundwater abstraction, which can lead to the drying of streambeds, as has been observed in many groundwater basins with

irrigated agriculture. Models with fixed stream stage overestimate the available groundwater supply from the stream because

of their inherent assumption of infinite stream storage. The results of this work have implications for sustainable groundwater

management. The model developed may be used to not only predict the stream depletion rate but also the decline of stream

stage referred to as stream drawdown. Additional work is needed to incorporate stream discharge (or velocity) in the model530

and to conduct longer pumping tests than reported herein in order to better constrain parameter estimates.

Appendix A: Non-dimesionalization of NPS Flow Problem

On the basis of Table 1, the governing equation, in dimensionless form, for the case of NPS, is as follows.

∂sD

∂tD
=

∂2sD

∂x2
D

+ κ
∂2sD

∂y2
D

+ fD, (A1)

where sD,i = sD,i(xD,yD, tD) is dimensionless aquifer drawdown, si/Hc, in the ith sub-domain, with i = 1,2,3, Hc =535

Q/(2πbKx) is a system characteristic head, xD = x/R and yD = y/R are dimensionless distances in the x and y directions,
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tD = t/Tc is dimensionless time, Tc = R2/αx is a characteristic system time, αx = Kx/Ss is aquifer horizontal hydraulic

diffusivity in the x-direction, κ = Ky/Kx is the anisotropy ratio in the horizontal plane, and fD = fD(xD,yD, tD) is the

piecewise dimensionless sink/source term defined by

fD =





−2δ(xD − 1)δ(yD) xD > 0,

ΓD xD ∈ (−WD,0),

0 xD ≤−WD.

(A2)540

Here ΓD = Γ/[Q/(2πR2)] = βD(sD,2− sD,r) is the dimensionless mass-transfer function at the stream-aquifer interface. A

more complete list of dimensionless variables and relevant parameters is provided in Table 1. Equation (A1) is solved subject

to the initial condition

sD|tD=0 = 0, (A3)

and the far-field boundary conditions545

lim
xD→±∞
yD→±∞

sD = 0. (A4)

The dimensionless continuity conditions at xD = 0 and xD =−WD are specified as

sD,1|xD=0 = sD,2|xD=0 , (A5)

sD,2|xD=−WD
= sD,3|xD=−WD

, (A6)

for drawdown, and550

∂sD,1

∂xD

∣∣∣∣
xD=0

=
∂sD,2

∂xD

∣∣∣∣
xD=0

(A7)

∂sD,2

∂x

∣∣∣∣
xD=−WD

=
∂sD,3

∂x

∣∣∣∣
xD=−WD

(A8)

for flux. In dimensionless form the stream-mass-balance condition becomes

CD,r
∂sD,r

∂tD
= βD(sD,2− sD,r), (A9)

where CD,r = bDCr/S is the dimensionless stream storage coefficient, sD,r = sr/Hc, βD = βR/Kx is the dimensionless555

mass transfer coefficient across the streambed, S = bSs is aquifer storativity, and bD = b/R is dimensionless aquifer thickness.

Note that Cr/S is simple the ratio of the stream storage coefficient to aquifer storativity. The dimensionless initial condition

associated with this mass balance condition is

sD,r(tD = 0) = 0. (A10)
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Appendix B: Derivation of the NPS Solution560

Applying the Laplace and Fourier cosine transforms to to equations A1 and A2 leads to

η2 ˜̄sD =
∂2 ˜̄sD

∂x2
D

+





−2
p
δ(xD − 1) xD > 0

±χ˜̄sD,2 xD ∈ (−WD,0)

0 xD ≤−W

, (B1)

where η =
√

p + κξ2, χ = βDp/(p + β∗D), p is the Laplace transform parameter, and ξ is the Fourier cosine transform pa-

rameter. The problem domain in (xD,yD) dimensionless plane is symmetrical with xD-axis; therefore, the problem domain

yD ∈ (−∞,∞) can simply be reduced to yD ∈ [0,∞). Therefore, the symmetric boundary conditions for sD can be described565

by no-flow Neumann-type boundary conditions, i.e., ∂sD/∂yD at yD = 0. The transformed governing equations for the NPS

solution are

η2 ˜̄sD,1 =
d2 ˜̄sD,1

dx2
D

− 2
p
δ(xD − 1), xD ∈ [0,∞),yD ∈ [0,∞) (B2)

η̂2 ˜̄sD,2 =
d2 ˜̄sD,2

dx2
D

, xD ∈ [−WD,0),yD ∈ [0,∞) (B3)

η2 ˜̄sD,3 =
d2 ˜̄sD,3

dx2
D

, xD ∈ (−∞,−WD),yD ∈ [0,∞) (B4)570

where η̂2 = η2 + χ.

The transformed dimensionless stream-mass-balance condition from equation (A9) is

p˜̄sD,r = β∗D(˜̄sD,2− ˜̄sD,r), (B5)

which can be rearranged as

˜̄sD,r =
(

β∗D
p + β∗D

)
˜̄sD,2. (B6)575

The far-field conditions are

lim
xD→±∞

˜̄sD,1 = 0. (B7)

The transformed continuity conditions from equations (A5) – (A7), respectively, are

˜̄sD,1|xD=0 = ˜̄sD,2|xD=0 , (B8)

˜̄sD,2|xD=−WD
= ˜̄sD,3|xD=−WD

, (B9)580

d˜̄sD,1

dxD

∣∣∣∣
xD=0

=
d˜̄sD,2

dxD

∣∣∣∣
xD=0

, (B10)

d˜̄sD,2

dx

∣∣∣∣
xD=−WD

=
d˜̄sD,3

dx

∣∣∣∣
xD=−WD

. (B11)
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Given the jump discontinuity introduced by the Dirac Delta source at xD = 1, the solution for ˜̄sD,1 is piecewise, having the

form

˜̄sD,1 =





A1e
ηxD + A2e

−ηxD ∀xD ∈ (1,∞)

A3 cosh(ηxD) +A4 sinh(ηxD) ∀xD ∈ [0,1)
(B12)585

where A1 – A4 are undetermined coefficients. From the farfield homogeneous boundary condition, it follows that A1 = 0. The

general solutions of equations (B3) and (B4) can be readily obtained and respectively give

˜̄sD,2 = A5 cosh(η̂xD) +A6 sinh(η̂xD) (B13)

˜̄sD,3 = A7e
ηxD + A8e

−ηxD (B14)

where A5 to A8 are coefficients to be determined by applying the boundary conditions defined above. From the farfield bound-590

ary conditions stated in equation (B7), the coefficients A1 = A8 ≡ 0.

In addition to the boundary conditions already specified above, jump conditions across the Dirac Delta source at xD = 1

are required to determine these coefficients. The jump conditions are

˜̄sD,1|xD=1+ = ˜̄sD,1|xD=1− , (B15)

d˜̄sD,1

dxD

∣∣∣∣
xD=1+

=
d˜̄sD,1

dxD

∣∣∣∣
xD=1−

− 2
p
, (B16)595

where xD = 1± = limδ→0 1± δ, where δ is a small interval across the Dirac Delta source. These two conditions enforce head

or drawdown continuity at xD = 1 and define the flux discontinuity, respectively. Applying these two conditions to the solution

in Equation (B12) leads to

A2e
−η = A3 cosh(η) +A4 sinh(η), and (B17)

−A2e
−η = A3 sinh(η) +A4 cosh(η)− 2

pη
. (B18)600

Also, applying continuity conditions at xD = 0 gives

A3 = A5, and (B19)

ηA4 = ϕA6 = η̂A6. (B20)

Finally, applying continuity conditions at xD =−WD leads to

A5 cosh(η̂WD)−A6 sinh(η̂WD) = A7e
−ηWD , and (B21)605

−A5 sinh(η̂WD) +A6 cosh(η̂WD) =
η

η̂
A7e

−ηWD). (B22)
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Equations (B17)-(B22) fully define the linear system of equations needed to determine the coefficients A2–A7. These equations

were solved in the Wolfram Mathematica environment and checked manually, yielding the coefficients as

A2 =
2
pη

(
cosh(η)− η̂

∆1
e−ηχ̂2

)
, (B23)

A3 = A5 =
2

p∆1
e−ηχ̂1, (B24)610

A4 =
2η̂

pη∆1
e−ηχ̂2, (B25)

A6 =
2

p∆1
e−ηχ̂2, and (B26)

A7 =
2η̂

p∆1
e−η(1−WD) (B27)

where

∆1 = 2η̂η cosh(η̂WD) +
(
η2 + η̂2

)
sinh(η̂WD), (B28)615

χ̂1 = η̂ cosh(η̂WD) + η sinh(η̂WD), and (B29)

χ̂2 = η cosh(η̂WD) + η̂ sinh(η̂WD). (B30)

Substituting these coefficients into equations (B12) – (B14), the aquifer and stream drawdown solutions for NPS are obtained

and shown in Equations (18) and (22), respectively.

Appendix C: Non-dimensionalization of FPS Flow Problem620

The dimensionless governing equations for the FPS bounded by two aquifers are

∂sD

∂tD
=

∂2sD

∂x2
D

+ κ
∂2sD

∂y2
D

+ fD, (C1)

with

fD =




−2δ(xD − 1)δ(yD) xD > 0,

0 xD <−WD.
(C2)

Equation (C1) is solved subject to the dimensionless initial condition.625

sD|tD=0 = 0, (C3)

and far-field boundary condition

lim
xD→±∞
yD→±∞

sD = 0. (C4)
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The dimensionless flux boundary conditions at the stream-aquifer interfaces 1 and 2, respectively, are

∂sD,1

∂xD

∣∣∣∣
xD=0

= βD

(
sD,1|xD=0− sD,r

)
, (C5)630

∂sD,2

∂xD

∣∣∣∣
xD=−WD

= βD

(
sD,r − sD,2|xD=−WD

)
(C6)

The dimensionless stream-mass-balance condition becomes

CD,r
∂sD,r

∂tD
= βD

(
sD,1|xD=0− sD,r

)
+ βD

(
sD,r − sD,2|xD=−WD

)
. (C7)

Equations (C1) – (C7) fully describe the well-posed nondimensional flow problem for a fully penetrating stream considered

herein.635

Appendix D: Derivation of the FPS Solution

The Fourier cosine transform method can then be used to eliminate yD; meanwhile, the Laplace transform method can eliminate

tD in Equation (C1). The transformed flow equation for the pumped aquifer (j = 1) is

η2 ˜̄sD,1 + 2δD(xD − 1) =
d2 ˜̄sD,1

dx2
D

, (D1)

for xD ∈ [0,∞),yD ∈ [0,∞), and for the aquifer on the other side (j = 2) is640

η2 ˜̄sD,2 =
d2 ˜̄sD,2

dx2
D

, (D2)

for xD ∈ [−WD,−∞),yD ∈ [0,∞), where η =
√

p + κξ2 with the Laplace parameter p and Fourier parameter ξ; the over-bar

and tilde represent the function the Laplace and Fourier domains, respectively.

Similarly, the dimensionless Laplace-Fourier-domain boundary conditions in xD-direction are obtained as

lim
xD→∞

˜̄sD,1 = lim
xD→−∞

˜̄sD,2 ≡ 0. (D3)645

The dimensionless inner boundary conditions at xD = 0 and −WD, respectively, give the following.

d˜̄sD,1

dxD

∣∣∣∣
xD=0

= βD(˜̄sD,1− ˜̄sD,r)|xD=0, (D4)

d˜̄sD,2

dxD

∣∣∣∣
xD=−WD

= βD(˜̄sD,r − ˜̄sD,2)|xD=−WD
. (D5)

The dimensionless stream mass-balance condition, equation (C7), in the Laplace-Fourier domain is

p˜̄sD,r = β∗D(˜̄sD,1|xD=0− ˜̄sD,r)−β∗D(˜̄sD,r − ˜̄sD,2|xD=−WD
). (D6)650

Rearranging equation (D6), one obtains

˜̄sD,r =
β∗D

p + 2β∗D
( ˜̄sD,1|xD=0 + ˜̄sD,2|xD=−WD

). (D7)
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The jump conditions at xD = 1 are same as equations (D8) and (E7),

˜̄sD,1|xD=1+ = ˜̄sD,1|xD=1− , (D8)

d˜̄sD,1

dxD

∣∣∣∣
xD=1+

=
d˜̄sD,1

dxD

∣∣∣∣
xD=1−

− 2
p
. (D9)655

After applying the far-field boundary conditions, the solutions are

˜̄sD,1 =





B2e
−ηxD ∀x≥ 1,

B3 cosh(ηxD) +B4 sinh(ηxD) ∀x ∈ [0,1]
(D10)

˜̄sD,2 = B5e
ηxD ∀xD <−WD (D11)

˜̄sD,r =
β∗D

p + 2β∗D
( ˜̄sD,1|xD=0 + ˜̄sD,2|xD=−WD

) ∀xD ∈ [−WD,0]. (D12)

where B2 – B5 are undetermined coefficients. Upon applying the boundary and jump conditions, it can be shown that660

B2 =
2

p∆2
{χ1 cosh(η) +χ2 sinh(η)} (D13)

B3 =
2

p∆2
e−ηχ1 (D14)

B4 =
2

p∆2
e−ηχ2 (D15)

B5 =
2

∆2
βDβ∗Deη(WD−1) (D16)

where ∆2 = p(βD + η) [2β∗Dη + p(βD + η)]. Substituting these coefficients into Equation (D10 leads to the solutions given in665

equations (23) and (28), for aquifer and stream drawdown.

Appendix E: Derivation of the FPS Solution for Γ2 = 0

When Γ2 = 0, the FPS solution will ignore the effect of unpumped aquifer. The same integral transformations applied previ-

ously are used. For the case for Γ2 = 0, we only have to focus on solving the pumped aquifer, giving the following.

η2 ˜̄sD + 2δD(xD − 1) =
d2 ˜̄sD

dx2
D

, (E1)670

for xD ∈ [0,∞),yD ∈ [0,∞). We drop the subscript for drawdown because there is only one aquifer, that is, the pumped

aquifer. The dimensionless Laplace-Fourier-domain boundary conditions in xD-direction, are obtained as

lim
xD→∞

˜̄sD ≡ 0. (E2)

d˜̄sD

dxD

∣∣∣∣
xD=0

= βD(˜̄sD − ˜̄sD,r)|xD=0. (E3)675
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The dimensionless stream mass-balance condition is transformed as

p˜̄sD,r = β∗D(˜̄sD|xD=0− ˜̄sD,r). (E4)

Solving equation (E4), one can obtain

˜̄sD,r =
β∗D

p + β∗D
˜̄sD|xD=0 . (E5)

To deal with the Dirac Delta function in equation (E1), the jump conditions in xD = 1 are imposed, that is,680

˜̄sD|xD=1+ = ˜̄sD|xD=1− , (E6)

d˜̄sD

dxD

∣∣∣∣
xD=1+

=
d˜̄sD

dxD

∣∣∣∣
xD=1−

− 2
p
, (E7)

Therefore, The general solutions for ˜̄sD,L and ˜̄sD,R are

˜̄sD =





C1e
ηxD + C2e

−ηxD xD > 1, and

C3e
ηxD + C4e

−ηxD xD ∈ [0,1),
(E8)

where C1 – C4 are undetermined coefficients. From the farfield boundary condition, it follows that C1 ≡ 0. Imposing equations685

(E3) and (E4) on equation (E8), it can be shown that

C2 =
2

pη∆3
[(p + β∗D)η cosh(η) + pβD sinh(η)], (E9)

C3 =
2e−η(p + β∗D)

p∆3
, (E10)

C4 =
2βe−η

η∆3
, (E11)

where ∆3 = η(p+β∗D)+pβD. From the coefficients obtained above, the dimensionless aquifer and stream drawdown solutions690

for FPS are given in equations (29) and (30), respectively.
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Figure 1. (a) Figure illustrating that the stream stage responds to pumping and (b) the schematic diagram of the conceptual model of the

stream-aquifer system used for the NPS and FPS models derived herein.
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Figure 2. The QD,r curves showing evaluated depletion integral using upper limit of LD (solid line) and 105 (circle symbol). The relative

error curve (dashed line) and associated curves of used CPU time are also included below.
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Figure 3. Comparison of the aquifer drawdown curves predicted by the (a) NPS and (b) FPS solutions and FEM solutions based on 3D and

2D model. The visual representations of the meshes near the well used in the 3D and 2D FEM models are included in the bottom right corner

of the figure.
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Figure 4. Transient aquifer and stream drawdown response predicted by the (a) NPS and (b) FPS solutions illustrating the stream depletion

paradox.

33

https://doi.org/10.5194/hess-2022-353
Preprint. Discussion started: 2 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 5. Temporal aquifer and stream drawdowns with different CD,r values predicted by (a) the NPS solution, (b) FPS solution, and (c)

FPS solution with Γ2 = 0 at (0.5, 0) (i.e., pumped aquifer) and (d) the curves predicted by NPS and (e) FPS solutions at (-1.5, 0) (i.e.,

unpumped aquifer).
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Figure 6. Temporal aquifer and stream drawdowns with different βD values predicted by (a) the NPS solution, (b) FPS solution, and (c) FPS

solution with Γ2 = 0 at (0.5, 0) (i.e., pumped aquifer) and (d) the curves predicted by NPS and (e) FPS solutions at (-1.5, 0) (i.e., unpumped

aquifer).
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Figure 7. Temporal SDR with different CD,r values predicted by (a) the NPS solution, (b) FPS solution, and (c) FPS solution with Γ2 = 0.
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Figure 8. Temporal SDR with different βD values predicted by (a) the NPS solution, (b) FPS solution, and (c) FPS solution with Γ2 = 0.
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Figure 9. Temporal aquifer drawdown derivatives for the cases of (a) NPS and (b) FPS solutions and stream derivatives for the cases of (c)

NPS and (d) FPS solutions with varying CD,r values.
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Figure 10. Temporal aquifer drawdown derivatives for the cases of (a) NPS and (b) FPS solutions and stream derivatives for the cases of (c)

NPS and (d) FPS solutions with varying βD values.
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Figure 11. The map of the study site at California Polytechnic State University, San Luis Obispo, showing the observation locations along

the stream and the observation well and the aquifer piezometer.
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Figure 12. Time series of groundwater and stream stage fluctuations observed in the stream-aquifer system in this work. The six pumping

events are colored gray and labeled 1-6.
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Figure 13. Plots of aquifer drawdown recorded in the observation well on the (a) log-log and (b) semi-log scale. The logarithmic time

derivative of drawdown is plotted in (c) using centered differencing.
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Figure 14. Log-log plots of transient stream stage drawdown response to pumping observed in stream channel stilling wells (a) Stenner-P1,

(b) Stenner-P2, (c) Stenner-P3, and (d) Stenner-P5. The data also show stage recovery after pumping (dashed lines for pumping after 48 hrs).

Aquifer response (gray dots) is included for comparison.
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Figure 15. Results of transient analysis of aquifer drawdown response from individual tests showing model fits to observation well data in

(a) log-log scale, (b) semi-log scale, and (c) in linear scale. Model predicted stream drawdown response is compared to observations in (d),

(e), and (f) using parameters estimated from aquifer data.
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Figure 16. Results of transient analysis of stream drawdown response from individual tests showing model fits to the data for Stenner Creek

stilling well S1. The results are plotted on (a) log-log, (b) semi-log, and (c) linear scales.
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Figure 17. Time series of Cr estimated from the (a) observation well and (b) Stenner-P1 from pumping tests.
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Table 1. Definitions of dimensionless variables and parameters based on a characteristic length of Lc = R, a characteristic time of Tc =

R2/αx with αx = Kx/Ss and a characteristic head of Hc = Q/(2πbKx).

Symbols Definitions Symbols Definitions

sD,i si/Hc κ Ky/Kx

sD,r sr/Hc βD βR/Kx

xD x/R β∗D βD/CD,r

yD y/R CD,r Cr/SsR

tD t/Tc WD W/R

bD b/R qD 2πbRq/Q

b′D b′/R QD,r Qr/Q
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Table 2. Results of parameter estimation using NPS solution for six tests in the observation well.

Test Kx (m/s) κ (-) Ss (1/m) β (1/s) Cr (-)

1 8.31× 10−5 0.591 1.46× 10−5 4.14× 10−5 68.0

2 8.31× 10−5 0.591 1.46× 10−5 4.09× 10−5 46.1

3 8.31× 10−5 0.674 1.46× 10−5 4.02× 10−5 33.2

4 8.31× 10−5 0.978 1.46× 10−5 3.56× 10−5 19.0

5 8.31× 10−5 1.09 1.46× 10−5 3.54× 10−5 7.09

6 8.31× 10−5 1.08 1.46× 10−5 3.49× 10−5 5.54

average 8.31× 10−5 0.836 1.46× 10−5 3.81× 10−5 29.8
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Table 3. Estimated parameter values using NPS solution for the three recorded tests in the Stenner-P1. Parameters κ and β were fixed to

values estimated with aquifer observation well drawdown data.

Test Kx (m/s) κ (-) Ss (1/m) β (1/s) Cr (-)

4 8.88× 10−4 1.0 6.33× 10−4 1.03× 10−4 0.166

5 5.14× 10−4 1.0 5.19× 10−4 1.03× 10−4 0.447

6 3.92× 10−4 1.0 5.22× 10−4 1.03× 10−4 0.180
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