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Abstract. Mathematical models for groundwater pumping induced stream depletion with concomitant transient stream stage

decline or drawdown are developed in this work to address a deficiency in existing models, namely, the use of a fixed-stage

boundary condition or source term at the stream-aquifer interface. Existing approaches in the hydrogeology literature enforce

a fixed stream stage condition during pumping by prescribing a constant-head or a general boundary condition or source term,

both of which imply that the stream is an infinite water source and can replenish the aquifer indefinitely during groundwater5

pumping. It is a major limitation of the model, as it ignores the most observable adverse effect of long-term groundwater

abstraction through well in close proximity to streams, namely stage declines that can eventually lead to dry streambeds.

Field data are presented to demonstrate that stream stage decline does indeed occur in response to groundwater pump-

ing pumping near hydraulically connected streams, motivating the development of an alternative theory that predicts

stream depletion with transient stream drawdown. The theory is based on the concepts of finite stream storage and10

the mass continuity principle at the stream-aquifer interface, and is used to develop models for cases of a non- and a

fully-penetrating stream. The proposed models are shown to reduce to existing fixed-stage models in the limit as stream

storage becomes infinitely large, and to the confined aquifer flow with a no-flow boundary at the streambed when the

stream storage vanishes. The models are then applied to field observations of both aquifer and stream drawdown, yield-

ing estimates of aquifer hydraulic parameters as well as streambed conductance and a finite stream storage coefficient.15

The observed and model-predicted transient drawdown behavior indicate that existing fixed-stage models (a) underes-

timate late-time aquifer drawdown and (b) overestimate the available recharge from streams to pumping wells, which

has significant implications for the sustainable management of groundwater resources.
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. Graphical Abstract. Schematic illustrating the proposed theory of stream stage that shows transient response to pumping.

1 Introduction

Groundwater pumping in basins with or bounded by streams can lead to reduced stream flows, with undesirable impacts on20

both human use and ecosystem function (Winter et al., 1998; Bowen et al., 2007; Yu and Chu, 2010; Foglia et al., 2013; Zipper

et al., 2018; Tolley et al., 2019; Kwon et al., 2020) due to drying up of streambeds and disconnected stream-groundwater

systems. Theis (1941) was among the first to develop a model for stream depletion resulting from groundwater pumping from

a confined aquifer, with depletion defined as the decrease in stream discharge. Theis (1941) used the earlier model of Theis

(1935), developed for a laterally infinite aquifer, together with the principle of linear superposition, to simulate a constant-head25

(Dirichlet) boundary condition at the stream-aquifer interface and develop a model for stream depletion. Glover and Balmer

(1954) extended upon this work with a closed-form function of the model, later tabulated by Jenkins (1968). Hantush (1965)

made the next notable advancement by introducing a semi-pervious streambed with a general (Robin) boundary condition at the

stream-aquifer interface, where the flux across the streambed was treated as being proportional to the differential head across

the streambed thickness, with stream stage held constant. Intaraprasong and Zhan (2009) expanded upon this work, solving30

the full groundwater flow equation throughout the streambed with stream stage prescribed as a time-dependent function. Chan

(1976) and Asadi-Aghbolaghi and Seyyedian (2010) generalized application of the superposition principle to confined aquifer

flow domains bounded laterally by intersecting streams. Other workers have extended these analytical stream depletion models

to cases of partially penetrating streams (Grigoryev, 1957; Bochever, 1966; Zlotnik et al., 1999; Hunt, 1999; Butler Jr et al.,

2001; Fox et al., 2002; Butler Jr et al., 2007; Zlotnik and Tartakovsky, 2008). Stream depletion models for cases where the35

aquifer is unconfined have been developed by Hunt (2003, 2009), who also uses a fixed-stage condition with a Robin-type

boundary condition or source function.

Numerical models, such as MODFLOW (Harbaugh, 2005) and MIKE SHE (Refsgaard et al., 2010), through their respec-

tive stream packages, treat stream boundary conditions and source/drainage terms in a manner similar to the analytical models
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discussed above. They also allow one to specify the spatially variable stream stage using empirical hydrographs (Harbaugh,40

2005) or formulas such as the Manning equation (Prudic et al., 2004) to allow for effect of stream flow. The approach is highly

nonlinear, requiring iterative methods at every time step, which can be computationally taxing. A comprehensive review of the

literature on different configurations of pumping-induced stream depletion problems has been provided by Huang et al. (2018),

where the Dirichlet and Robin boundary conditions are identified as the only ones used for such problems. To reiterate, where

source terms are introduced in partially-penetrating stream scenarios, they are treated as linear functions of the differential45

head across the streambed, with fixed stage.

As mentioned already, the models discussed above use either a constant-head or Robin boundary condition (or source

term) at the stream-aquifer interface, both of which require fixed (or more generally, prescribed) stream stage with the stream

acting as an infinite source of storage that can supply recharge indefinitely during periods of groundwater pumping. However, it

is intuitively clear that streams can only provide a limited amount of recharge and for only a limited period of time to pumping50

wells. This has been recognized by others, including Zlotnik (2004), who subsequently introduced the concept of maximum

stream depletion rate (SDR). As a consequence of their limited capacity to provide recharge during groundwater pumping,

streams can undergo transient stream stage decline or drawdown in addition to depletion. According to Kollet and Zlotnik

(2003), stream stage decline due to aquifer pumping can only be ignored in cases where the stream flow rate is two orders of

magnitude or more higher than the pumping rate. This suggests that new models that consider finite stream storage and the55

associated transient stage drawdown response to pumping are required when the stream flow rate is small or comparable to the

pumping rate.

Given the limitations of the stream depletion models reviewed above, an alternative theory is proposed here where

a new boundary condition is imposed at the stream-aquifer interface by invoking the mass-balance principle and intro-

ducing the concept of finite stream channel storage. Hence, in this study, two semi-analytical models are developed for60

the cases of non- or minimally-penetrating streams (NPS) and fully-penetrating streams (FPS) in a confined aquifer,

taking into account the effect of finite stream channel storage and the resulting drawdown of the stream. It is reit-

erated again here that stream drawdown is distinguished from stream depletion because it defines a decline stream

stage whereas the latter only refers to a decrease in stream discharge rate. The model developed herein are the first

semi-analytical models in the hydrogeology literature to accomplish this, overcoming the limitation of existing analyt-65

ical models that assume streams to have fixed-stage. The solutions are validated by comparing them with a numerical

model based on the finite-element method (FEM) and with field observations of aquifer and stream drawdown. Finally,

the newly developed models are applied to field observations of stream and aquifer drawdown in a parameter esti-

mation exercise by fitting the models to both aquifer and stream drawdown data, which demonstrates their practical

application.70
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Figure 1. The schematic diagram of the conceptual model of the stream-aquifer system used for the (a) non-penetrating stream (NPS) and

(b) fully-penetrating stream (FPS) models derived herein.

2 Methods

In the following, we describe the mathematical formulation and the proposed new boundary condition, develop semi-analytical

solutions for the two cases already mentioned above, and apply the model to field observations of stream and aquifer drawdown.

2.1 Governing Equations of Flow

We consider a stream with finite storage and derive two solutions that allow the stream stage to respond to pumping. To do75

this, we consider flow to a fully-penetrating well in a confined aquifer in the neighborhood of a non-penetrating stream (NPS)

and a fully-penetrating stream (FPS). For the FPS, we consider two cases: one in which flow in the aquifer on both sides of

the stream is considered, and one in which only flow in the aquifer on the side of the pumping well is considered. We assume

that groundwater is pumped at a constant rate, Q [L3T−1], from a line-sink located at a distance of R [L] from the stream

bank. The aquifer has infinite lateral extent away from the stream, with a uniform thickness b [L] and anisotropic horizontal80

hydraulic conductivities Kx and Ky [LT−1] in the x- and y-directions, respectively. The aquifer interacts with the stream

across a streambed with hydraulic conductivity K ′ [LT−1] and thickness b′ [L] (conductance β =K ′/b′) as in Hantush (1965).

The effects of streambed storage are neglected, and the focus is only on the effects of stream channel storage. Stream stage,

Hr(y,t) [L], is relative to the bottom of the aquifer. Stream drawdown is defined as sr(y,t) =H0 −Hr(y,t), where H0 [L]

is the initial stream stage, which is set equal to the initial aquifer hydraulic head. It should be noted here that aquifer head85

and stream stage are assumed to be measured relative to the same datum (base of aquifer in this work) and the stream-aquifer

system is initially at equilibrium. The conceptual models of the problem described here are shown schematically in Figure 1.

The governing equation of confined flow problem considered in this work is (Fox et al., 2002)

Ss
∂s

∂t
=K∇2s+ fs(x,y, t), (1)

where s=H0−h(x,y, t) is aquifer drawdown, (x,y) are spatial coordinates in the horizontal plane, t is the elapsed time from90

the onset of pumping, K is the diagonal aquifer hydraulic conductivity tensor with principal values Kx and Ky , Ss is aquifer
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specific storage, and fs(x,y, t) is a sink/source function. The x coordinate axis is perpendicular to the stream bank with the

origin on the stream bank closest to the pumping well. The y-axis is parallel to the stream channel axis and extends from

y =−∞ to y =∞.

The aquifer flow problem is solved subject to the initial condition95

s|t=0 = 0, (2)

and the far-field boundary conditions

lim
x→±∞
y→±∞

s= 0. (3)

For simplicity, the stream-aquifer flow system is assumed to be initially at equilibrium. For cases where a background uniform

flow field exists, the principle of superposition may be invoked to apply the solution developed herein.100

2.1.1 Non-penetrating Stream

We first consider the case of a non-penetrating stream (NPS) that flows atop an aquifer to simulate the case where the stream

has incised through the upper confining unit and only minimally penetrates the aquifer. The schematic of the conceptual model

of this case in shown in Figure 1(a). To solve the flow problem, aquifer drawdown is defined in a piecewise manner as

s(x,y, t) =


s1(x,y, t) x > 0

s2(x,y, t) x ∈ [−W,0]

s3(x,y, t) x <−W

(4)105

where W is the width of the stream. Also, the sink/source function, fs(x,y, t), is defined as

fs(x,y, t) =
1

b


−Qδ(x−R)δ(y)/π x > 0

Γ x ∈ [−W,0]

0 x <−W,

(5)

where Q is the pumping rate from a well located a distance R, from the stream bank along the x-axis, δ(·) is the Dirac delta

function, and Γ [LT−1] is the mass-transfer function across the stream-aquifer interface through the base of the stream. The

term Qδ(x−R)δ(y)/π represents the well as a continuous line sink with its center located at (R,0).110

The mass-transfer function, Γ, across the streambed is expressed here as

Γ = β [s(x,y, t)− sr(y,t)] , x ∈ [−W,0] (6)

where β is the streambed conductance, defined as β =K ′/b′, where K ′ is streambed hydraulic conductivity and b′ is its

thickness. Note again the time dependence of stream drawdown, sr(y,t), an unknown system state variable, to be solved

for along with aquifer drawdown.115
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Additionally, continuity conditions for drawdown

s1|x=0 = s2|x=0 (7)

s2|x=−W = s3|x=−W , (8)

and flux

∂s1
∂x

∣∣∣∣
x=0

=
∂s2
∂x

∣∣∣∣
x=0

(9)120

∂s3
∂x

∣∣∣∣
x=−W

=
∂s2
∂x

∣∣∣∣
x=−W

, (10)

are enforced at x= 0 and x=−W .

It should be noted that for the NPS case vertical flow across the streambed is treated as a sink/source term in

equation (5) defined by the mass-transfer function in equation (6), where stream stage and the associated drawdown are

functions of both y and time t. This dependence on time is what distinguishes the present work from fixed stage models125

where stage is set as hr =H0 = const. and stream drawdown vanishes identically (sr ≡ 0). To allow for such a temporally

variable stream stage and drawdown, an additional condition is required in the stream as discussed subsequently.

2.1.2 Fully-penetrating Stream

The second case considered is one where the stream has fully incised through both the thicknesses of the upper confining

unit and the aquifer, a case commonly referred to in the hydrogeology literature as that of a fully-penetrating stream (FPS).130

A schematic of the conceptual model for this case is shown in Figure 1(b). Aquifer drawdown for this case is defined in a

piecewise manner as

s(x,y, t) =

s1(x,y, t) x > 0

s2(x,y, t) x <−W
(11)

when flow on the far-side half-space of the aquifer is accounted for. Here, s1(x,y, t) is the drawdown of the aquifer in the

half-space with the pumping well, and s2(x,y, t) is the drawdown in the far side half space. For the case where the flow on135

the far-side (x <−W ) half-space is neglected, only the drawdown on the pumped half-space is considered. Such a case is

realizable when the stream flows along a fault line where the far-side bank comprises an impermeable formation.

The boundary condition imposed at the stream-aquifer interface is specified as

−Kx
∂s1
∂x

∣∣∣∣
x=0

= Γ1, (12)

for the pumped half-space, and140

−Kx
∂s2
∂x

∣∣∣∣
x=−W

= Γ2 (13)
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on the far side, where the mass-transfer functions Γ1 and Γ2 are defined as

Γ1 =−β [sr(y,t)− s1(x,y, t)] , x= 0 (14)

Γ2 = β [sr(y,t)− s2(x,y, t)] , x=−W (15)

for the pumped-side and far-side stream-aquifer interfaces. Here, we assume that the two interfaces have the same conductance,145

β. For the case where flow in the far-side half-space is neglected, Γ2 ≡ 0. Note that for this case, a boundary condition is im-

posed at the stream-aquifer interface. Stream drawdown is again treated as a time dependent function, which necessitates

an additional condition discussed in the following section.

2.1.3 Accounting for Stream Drawdown and Channel Storage

As discussed above, the models of Hantush and Jacob (1955) and Fox et al. (2002) assume that the stream stage is150

fixed; the stream does not experience drawdown in response to groundwater pumping. Here, we develop a model that

accounts for stream drawdown. It should be noted that the flow problem defined above is ill-posed for both the NPS and

FPS cases because stream drawdown, sr(y,t), is left unspecified in both equations (6) and (14). If the stream is assumed

to have fixed stage, as is the case in Hantush and Jacob (1955) and Fox et al. (2002), sr ≡ 0. From the resulting Robin

BC, one can recover both the no-flow and Dirichlet BCs at the stream-aquifer interface by setting β = 0 and β →∞,155

respectively.

In this work, we are concerned with the case where the stream stage does not remain fixed but is allowed to respond

to pumping (see Figure 1a); the stream is allowed to undergo drawdown in response to aquifer pumping, in which case

sr ̸= 0. We achieve this by specifying an additional condition at the stream aquifer interface, namely a mass-balance

condition applied to the stream channel, which simply states that the rate of change of mass within the stream equals160

the rate of mass transfer across the streambed induced by pumping. In the following development of the theory, stream

flow velocity is neglected for simplicity.

For the NPS model, this condition can be mathematically stated by the relation

Cr
∂sr
∂t

= Γ, (16)

whereas for the FPS model165

Cr
∂sr
∂t

= Γ1 +Γ2, (17)

where Cr ∈ [0,∞) is a stream channel storage coefficient, defined as a dimensionless measure of the volume of wa-

ter, δVw, which flows through a unit area of the streambed, δAr, per unit change in stream stage, δhr (i.e., Cr =

δVw/(δArδHr)). It is a measure of the volume contribution of water stored in the stream channel to aquifer flow,

and is distinguished here from streambed elastic storage.170

For a stream channel with an idealized uniform geometric cross-sectional structure, it is possible to provide simple expres-

sions for this parameter. For example, in the FPS case, the stream channel has a rectangular cross section, with stream width
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Table 1. Nomenclature.

Parameters/Variables Definitions Parameters/Variables Definitions

A 1.73
√
α [LT−1/2] s Aquifer drawdown [L]

b Thickness of a confined aquifer [L] sobs Temporal drawdown observation [L]

b′ Thickness of a streambed [L] sr Stream drawdown [L] defined as H0 −Hr

Cr Stream channel storage coefficient [-] and Cr ∈ [0,∞) t Elapsed time [T] from the beginning of pumping

fs Sink/source function tn Time [T] at n-th observation

F Objective function W Width of the stream [L]

H0 Initial stream stage [L] equal to the initial aquifer hydraulic head (x,y) Spatial coordinates [L] in the horizontal plane

Hr Stream stage [L] relative to the aquifer bottom Y Set of parameter {Kx,Ss,κ,β,Cr}

Kx Hydraulic conductivity [LT−1] in x-direction Yopt Set of parameters that minimizes the objective function

Ky Hydraulic conductivity [LT−1] in y-direction α Hydraulic diffusivity [L2T−1]

K′ Hydraulic conductivity [LT−1] of streambed β Conductance [T−1] defined as K′/b′

K Diagonal aquifer hydraulic conductivity tensor γ Euler’s constant ≃ 0.577216

N Total number of temporal drawdown observations Γ Mass-transfer function [LT−1] across the stream-aquifer interface

qr Point-wise depletion flux [LT−1] δAr Unit area [L2] of streambed defined as 2bδy

Q Pumping rate [L3T−1] in the pumping well δHr Unit change [L] in drawdown

Qr Stream depletion rate [L3T−1] δVw Unit volume of stream water [L3] defined as WδyδHr

R Distance of pumping well [L] from the stream bank along the x-axis δy Unit distance [L] in y-direction

κ Anisotropy ratio [-] in the horizontal plane defined as Ky/Kx

W and aquifer thickness b, δVw =WδyδHr, δAr = 2bδy, leading to Cr =W/b if the mass exchange is limited to the stream

bank. For the NPS case, where a similar simple geometric profile may be adopted for the cross section of the stream channel, it

can be shown that Cr is of the order of unity. For more complex cross-sectional geometries of channels that vary spatially with175

y, the parameter Cr can be empirically estimated by inversion of the stream and aquifer drawdown data. It is also possible, in

principle, to develop empirical functions relating Cr to the dimensionless ratio ⟨W ⟩/Hr of the form Cr = f(⟨W ⟩/b), where

⟨W ⟩ is some well-defined spatial (in y) average of stream width. Additional research outside the scope of the present work

would be needed to develop such empirical relations. It is also easy to imagine the parameter Cr as a (non-linear) function

of the stream stage. For our purposes here, adopting the principle of parsimony for mathematical tractability, we restrict the180

development of a solution to the case where Cr is a constant for the duration of a pumping test.

2.2 Analytical Solutions of the Flow Problem

To solve the flow problem described above, the governing equation is first transformed into a dimensionless form. Details of

the nondimensionalization of the governing equations and their solutions may be found in the Appendix. The dimensionless

variables and parameters that appear in the solution are defined in Table 2. Laplace and Fourier-cosine transforms are applied185

to the dimensionless governing equations, which are then solved by standard methods for ordinary differential equations. The

respective inversion formulae of the transforms are finally used to numerically obtain the applicable flow solutions in space-

time. The transform and inversion formulae can be found in standard textbooks of Engineering Mathematics, and interested

readers may refer to the reference text of Haberman (2012). Similar solution approaches have been used in the hydrogeology

literature by Butler Jr et al. (2001) and others.190
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2.2.1 Non-Penetrating Stream

The exact solution for aquifer drawdown, in transform space, for the NPS case can be shown (see Appendix for details) to be

˜̄sD =
2e−η

p∆1



eη(1−xD) ˜̄g1(p,ξ,1.0) ∀xD > 1

˜̄g1(p,ξ,xD) ∀xD ∈ [0,1]

η̂ cosh[η̂(xD +WD)] + η sinh[η̂(xD +WD)] xD ∈ (−WD,0)

η̂eη(WD+xD) xD ≤−WD,

(18)

where ˜̄sD is the Laplace and Fourier cosine transform of sD, p is the Laplace transform variable, ξ is the Fourier cosine

transform variable, and with195

η =
√
p+κξ2 (19a)

η̂ =
√
η2 + ζ (19b)

ζ =
pβD

p+β∗
D

(19c)

β∗
D =

βD

CD,r
(19d)

∆1 = 2η̂η cosh(η̂WD)+
(
η2 + η̂2

)
sinh(η̂WD), (19e)200

˜̄g1(p,ξ,xD) = η̂eηxD cosh(η̂WD)+ ˜̄g2(p,ξ,xD)sinh(η̂WD), and (19f)

˜̄g2(p,ξ,xD) = η cosh(ηxD)+ (η̂2/η)sinh(ηxD). (19g)

Here, βD = β/(Kx/R) = (K ′/Kx)/b
′
D is the dimensionless stream conductance, WD =W/R is the dimensionless stream

channel width, and CD,r = bD(Cr/S) is the dimensionless ratio of the stream channel storage coefficient to aquifer storativity

scaled by the normalized aquifer thickness.205

The corresponding solution for stream drawdown is given by

˜̄sD,r =
˜̄sD(p,ξ,xD)

1+ p/β∗
D

, xD ∈ (−WD,0), (20)

where ˜̄sD,r is the Laplace and Fourier cosine transform of dimensionless stream drawdown sD,r. Upon inversion from trans-

form space, Equation (20) may be used to compute stream drawdown induced by pumping from a well completed in a confined

aquifer. Space-time stream and aquifer drawdown are obtained by numerical inversion of the Fourier cosine and Laplace210

transforms using numerical quadrature and the Stehfest (1970) algorithm as implemented within the Wolfram Mathematica en-

vironment. The algorithms of numerical integral and Stehfest (1970) inversion written in the Mathematica script can be found

in the hyperlink provided in acknowledgements.
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Table 2. Definitions of dimensionless variables and parameters based on system characteristic length Lc =R, time Tc =R2/αx with

αx =Kx/Ss, head Hc =Q/(2πbKx), and flux qc =Kx(Hc/R).

Symbols Definitions Symbols Definitions

sD,i si/Hc κ′ K′/Kx

sD,r sr/Hc βD βR/Kx = κ′/b′D

xD x/R β∗
D βD/CD,r

yD y/R CD,r bDCr/S

tD t/Tc WD W/R

bD b/R qD 2πbRq/Q= q/qc

b′D b′/R QD,r Qr/Q

κ Ky/Kx

2.2.2 Fully-Penetrating Stream

As detailed in Appendix D, the exact aquifer drawdown solution for the FPS model, allowing for flow on both sides of the215

stream, is given by

˜̄sD =
2e−η

p∆2


e−η(xD−1) ˜̄g3(p,ξ,1.0) ∀xD > 1

˜̄g3(p,ξ,xD) ∀xD ∈ [0,1]

pβDβ∗
Deη(WD+xD) xD ≤−WD,

(21)

where ˜̄sD is the Laplace and Fourier cosine transform of aquifer drawdown, sD,

˜̄g3(p,ξ,xD) = χ1 cosh(ηxD)+χ2 sinh(ηxD), (22)

χ1 =
∆2

βD + η
+ pβ∗

DβD, (23)220

χ2 =
βD∆2

η(βD + η)
− pβ∗

DβD, and (24)

∆2 = p(βD + η) [2β∗
Dη+ p(βD + η)] . (25)

The corresponding stream drawdown solution in transform space is

˜̄sD,r(p,ξ) =
2e−η

p∆2

β∗
D (χ1 + pβDβ∗

D)

p+2β∗
D

, (26)

in transform space. The space-time solution, a function of tD and y, is obtained numerically as stated previously.225

When there is no flow across the far-side stream-aquifer interface, with Γ2 ≡ 0, the solution reduces to

˜̄sD =
2e−η

p∆∗
3


˜̄g5(p,ξ,xD) ∀xD ≤ 1

e−ηxD ˜̄g5(p,ξ,1.0) ∀xD > 1
(27)
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where ˜̄sD is the Laplace and Fourier cosine transform of sD, ∆∗
3 = η+ ζ, ˜̄g5(p,ξ,xD) = cosh(ηxD)+ (ζ/η)sinh(ηxD), and

ζ is as defined previously. The corresponding solution for dimensionless stream drawdown is

˜̄sD,r(p,ξ) =

[
1−χ

(
1− 1

ηpβD

)]
e−η

p∆∗
3

, (28)230

which upon inversion gives dimensionless stream drawdown, sD,r(yD, tD) as a function of time, tD, and position along the

stream channel, yD. As mentioned previously, the inversion from transform space is performed numerically in the Wolfram

Mathematica as well as using MATLAB functionality and scripts.

2.2.3 Stream Depletion Solution

Stream depletion, Qr [L3T−1], defined as the volume rate of flow captured from the stream by a pumping well, is obtained235

simply by integrating the point-wise streambed flux along the length of the stream. The point-wise depletion flux, qr, in

dimensionless form, is

qD,r = CD,r
∂sD,r

∂tD
(29)

where qD,r = qr/(2πbR/Q). In the Laplace- and Fourier-cosine transform domain, equation (29) becomes ˜̄qD,r = pCD,r ˜̄sD,r.

Inverting the Fourier cosine inverse transform yields (Povstenko, 2015)240

q̄D,r = pCD,r

∞∫
0

˜̄sD,r cosξxD dξ. (30)

Therefore,

Q̄D,r =
CD,r

π



∞∫
0

ps̄D,rdyD for FPS and

1

bD

∞∫
0

0∫
−WD

ps̄D,rdxDdyD for NPS,

(31)

where QD,r =Qr/Q. Equation (31) includes improper integrals, which can be time consuming to evaluate numerically. Ad-

ditionally, there may be a practical limit on the stream reach that contributes appreciable amounts of water to the well over the245

pumping period. Hence, a definite integral over the interval yD ∈ [0,LD], may be more practical. Using the late-time drawdown

approximation of Cooper Jr and Jacob (1946), namely,

sD =−γ/2− ln(u) (32a)

u=
r2D

4αtD
(32b)

r2D = (xD − 1)2 + y2D. (32c)250
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where sD is dimensionless drawdown, α is the hydraulic diffusivity K/Ss, and γ ≃ 0.577216 is Euler’s constant, one can

determine the radius of influence, R∞, of the pumping well by considering a cone of depression centered about the well

(xD = 1) and defining R∞ as

sD|rD=RD,∞
= 0 (33)

This leads to255

RD,∞ =At
1/2
D (34a)

A=
√
4αe−γ/4 ≈ 1.73

√
α. (34b)

Then LD ≈RD,∞ can be set when evaluating Equation (31).

2.3 Application to Field Observations

In this work, to test the hypothesis that streams respond to groundwater pumping, we observed the response of a stream-aquifer260

system to groundwater pumping for irrigation.. The null hypothesis in this case is that streams act as constant-head boundaries

or as sources of the mass-transfer type with fixed stage, supplying recharge to an aquifer indefinitely during groundwater

pumping. In the following, we provide evidence from field observations that a stream in hydraulic contact with a pumped

aquifer experiences transient drawdown in response to the pumping. We also use the newly developed flow model and the

field observations of stream drawdown, in addition to aquifer drawdown data, to estimate aquifer hydraulic properties, stream265

conductance, and the newly introduced finite stream storage coefficient Cr.

2.3.1 Study Site Description

The study site is situated in the agricultural fields of the California Polytechnic State University (Cal Poly), San Luis Obispo,

located along the California central coast. The site is an alluvial basin underlain with a shallow confined aquifer of gravel and

sand, which underlain with low permeability metavolcanic bedrock. The site is situated at the northern edge of the greater San270

Luis Obispo aquifer where the water-bearing geologic formations comprise recent (Quaternary) alluvium, Paso Robles For-

mation, and Pismo Formation. The metavolcanic bedrock is locally interpreted to belong to the non-water-bearing Franciscan

assemblage. The groundwater basin in which the aquifer is situated has been designated as medium priority in the implementa-

tion of the Sustainable Groundwater Management Act (SGMA) passed in the state of California in 2014. Hence, the modeling,

data, and results presented here have great implications for an aquifer of societal relevance.275

The aquifer is bounded above by a thin near-surface layer of variably saturated clay or clay-rich sediment of very low

permeability. This layer constitutes the upper confining unit (upper aquitard) and has a thickness of 13 m. The aquifer is

confined from below at a depth of about 24 m by metavolcanic bedrock. The aquifer has an average thickness of approximately

b= 11 m locally as determined from drilling logs for well installation. A stream, Stenner Creek, flows across the study site

on top of the aquifer in a nearly northwest-to-southeast direction, incising through the entire thickness of the confining layer280

overlying the aquifer. As will become clear in the following, the stream is in direct hydraulic contact with the aquifer. The
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Figure 2. The map of the study site at California Polytechnic State University, San Luis Obispo, showing the observation locations along the

stream and the observation well and the aquifer piezometer.

streambed is of the same sand and gravel formation as the aquifer, and the stream has minimal penetration of the aquifer.

During the summer low flows, the discharge rate of the stream is on the order of Qs ∼ 5× 10−4 m3/s.

2.3.2 Monitoring of Aquifer Pumping

An irrigation well, which serves as the pumping well in this study, has a diameter of about 0.2 m and is located about 60285

m southwest of the stream, as depicted in Figure 2. It is completed throughout the thickness of the aquifer and is used to

pump confined aquifer regularly on a fortnightly schedule at a constant rate of Q= 8.58× 10−3 m3/s. Aquifer drawdown

response to pumping was continuously monitored with transducers in the pumping well and a nearby abandoned well located

across the stream about 10 m from the bank as shown on the map. A piezometer situated about 100 m due west of the

pumping well was also instrumented for monitoring aquifer response. It is completed in the top 1 m of the aquifer just below290

the overlying confining unit. To monitor the stream stage, pressure transducers (Stenner-P1, P2, and P3) were placed in the

stream channel in stilling wells without penetrating the streambed at three locations. Two additional stream channel monitoring

stations downstream of Stenner-P3 were instrumented with pressure transmitters connected to CR300 data loggers (Campbell

Scientific, Inc.) and are marked Stenner-P4 and P5 on the site map in Figure 2. Stream stage was continuously monitored at

15-minute intervals at these five locations.295

Drawdown data were obtained by denoising and detrending the raw time series data shown in the figure. The raw data

were denoised using singular spectrum analysis and detrended using the ensemble empirical mode decomposition method

to remove unfavorable noises arising from the diurnal evapotranspiration signal of the riparian corridor and the trend due to

rainfall events (highlighted in blue in the figure). These functions can be found in the built-in functions in the Python package

called pyts.decomposition (Johann, 2021) and PyEMD (Laszuk, 2020), respectively. Six pumping events recorded during the300

spring and summer irrigation seasons of 2022 are highlighted gray in the figure. Due to instrument malfunction, not all episodes
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of pumping were recorded by each of the monitoring stations. The six pumping events analysed in this work occurred on March

16 starting at 9:35, April 27 at 7:12, May 31 at 13:53, June 23 at 9:30, July 18 at 12:05, and August 8 at 7:22 in 2022.

2.3.3 Drawdown Analysis and Parameter Estimation

To demonstrate the applicability of the model to field observations of stream and aquifer drawdown, a model fitting and305

parameter estimation exercise was conducted using observed drawdown. Based on the configuration of the stream and aquifer

at the study site, the NPS solution was used to identify the hydraulic parameters of the aquifer, namely, Kx, κ, and Ss, as

well as the streambed conductance, β, and the stream channel storage coefficient, Cr. The solution proposed in this study was

coupled with the Levenberg-Marquardt optimization algorithm as implemented in MATLAB. The purpose of the exercise was

to identify parameter values that minimize the sum of the residuals between the observed and model predicted drawdown as310

expressed in the objective function

F (Y ) =

N∑
n=1

[sobs,(x,y, tn)− s(x,y, tn;Y )]
2 (35)

where N is the total number of temporal drawdown observations, sobs(x,y, tn), at location (x,y) at time tn, and s(x,y, tn;Y )

are the corresponding model computed values given the set of parameters Y = {Kx,Ss,κ,β,Cr}. The convergence criterion

for the optimization process was set to F (Yopt)< 1× 10−4, where Yopt is the set of parameters that minimizes the objec-315

tive function in equation (35). The hydraulic parameters were log-transformed to constrain the optimization procedure to the

positive space of the parameter values.

Additionally, estimated values of hydraulic parameters were checked against published values of geologic materials with

similar sediment composition to ensure reliability. The aquifer at the study site is predominantly sand and gravel; therefore,

the reasonable range for hydraulic conductivity is Kx ∈
[
10−6,10−3

]
m/s, with Ky = κKx where κ∼ 1.0. The typical range320

for specific storage is Ss ∈
[
10−6,10−3

]
m−1, and β > 10−9 s−1. The value of Cr is bounded only by the log-transformation

during the parameter estimation procedure; no published values are available in the hydrogeology literature because the param-

eter was first introduced in this work. It is expected, however, that this parameter would generally be greater than storativity,

S = bSs.

In this work, parameter estimation is conducted by considering only drawdown data from the aquifer observation well325

and the stream stilling well Stenner-P1. The pumping well is located at R= 62.2 m and has x-y coordinates (62.2,0.0) m.

The stream observation location Stenner-P1 is located in the middle of the stream channel at (−0.75,183.1) m, whereas the

observation well location is on the far-side of the stream at (−15.1,193.6) m. The stream channel had an average width of

about w = 1.5 m during the Spring-Fall period of 2022 when the data analysed here were collected. The aquifer has an average

thickness of 11 m, estimated from drilling logs of the pumping and irrigation wells. In all the tests analysed here, groundwater330

was pumped at a constant rate of Q= 135 gallons per minute (gpm) to irrigate one half of a lemon orchard for 24 hours, and

the other half for another 24-hour period for a total of 48 hours of pumping. However, the pumping rate increases slightly to

about 138 gpm at the start of the second 24-hour irrigation period, which has the effect of changing the trajectory of transient

14



drawdown response. Hence, for this work, only data from the first 24 hours (1440 min) of pumping are analysed for the purpose

of parameter estimation. Recovery phase data are not considered here in order to simplify the analysis.335

3 Results

The results presented here are separated into three parts, namely (1) the model predicted behavior, (2) the observed drawdown

response of the stream and aquifer at the study site, and (3) estimation of aquifer hydraulic parameters by fitting the model to

observed aquifer and stream drawdown.

3.1 Model Predicted Aquifer and Stream Drawdown340

Transient aquifer and stream drawdown predicted by the developed herein are shown in Figure 3, where the graph in (a) shows

the behavior predicted by the NPS model, and (b) that predicted by the FPS model. The graphs are plots of dimensionless

drawdown on the vertical axis versus dimensionless time, tD/r2D, on the horizontal axis. The model predicted behavior is

plotted with the limiting cases of Theis (1935), Ferris et al. (1962), Hantush (1965), and Fox et al. (2002) for comparison. The

models of Hantush (1965) and Fox et al. (2002) correspond to the limiting case of infinite stream channel storage (Cr →∞)345

for the NPS and FPS models, respectively. The model of Theis (1935) is shown in Figure 3(a) as the limiting case of Cr = 0

for the NPS solution for an impermeable barrier at the stream-aquifer interface when there is no water in the stream, while that

of Ferris et al. (1962) is included in (b) for the FPS case.

Figure 3. Transient aquifer and stream drawdown response predicted by the (a) NPS and (b) FPS solutions. The limiting cases of Theis

(1935), Fox et al. (2002), Ferris et al. (1962), and Hantush (1965) are included for comparison.

The dependence of the model predicted temporal behavior of aquifer and stream drawdown on the dimensionless stream

channel storage coefficient, CD,r, is depicted in Figure 4. The models of Fox et al. (2002) and Hantush (1965) are again350

included for comparison. In the figure, the graphs (a) and (b) show, respectively, the NPS and FPS solutions on the pumped
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half-space at (x,y) = (0.5,0), while graphs (c) and (d) show the corresponding predicted behavior in the unpumped half-space

at (x,y) = (−1.5,0).

Figure 4. Model predicted temporal behavior of aquifer and stream drawdown for different values of CD,r ranging from 10 to ∞. Graphs

(a) and (b) show, respectively, the NPS and FPS solutions on the pumped half-space at (x,y) = (0.5,0). Graphs (c) and (d) show the

corresponding response in the unpumped half-space at (x,y) = (−1.5,0).

The effect of dimensionless streambed conductance, βD, on aquifer and stream drawdown is depicted in Figure 5. The

curves in the graphs are for different values of βD ranging from an impermeable streambed at βD = 0 to a highly conductive355

one at βD = 10. The results are shown for both the pumped (a and b) and the unpumped (c and d) half-spaces of the respective

flow domain.

Drawdown derivative analysis is a useful tool to diagnose the change in flow behavior because it can markedly improve

the sensitivity of the model behavior to hydraulic parameters leading to improved parameter identifiability (Bourdet et al.,

1983; Chow, 1952; Ferroud et al., 2018, 2019). Figure 6 shows the temporal behavior of aquifer and stream drawdown time360

derivatives and their dependence on CD,r. The graphs show the derivative plots of the two solutions in the pumped half-space(a

and b) at (0.5, 0) and in the stream (c and d) at (-0.5, 0). The different curves are obtained by varying the values of CD,r from

1 to 109. The graphs are plots of ∂sD/∂ ln(tD) for the aquifer flow response or ∂sD,r/∂ ln(tD) for the flow response of the

stream. Figure 7 shows the dependence of the same temporal derivatives on dimensionless streambed conductance, βD, over

the range 0 to 105.365
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Figure 5. Model predicted temporal behavior of aquifer and stream drawdown for different values of βD ranging from 0 to 10. Graphs (a)

and (b) show the NPS and FPS solutions on the pumped half-space, while (c) and (d) are corresponding solution in unpumped half-space).

Figure 6. Temporal aquifer drawdown derivatives for the cases of (a) NPS and (b) FPS solutions and stream derivatives for the cases of (c)

NPS and (d) FPS solutions with varying CD,r values from 1 to ∞.
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Figure 7. Temporal aquifer drawdown derivatives for the cases of (a) NPS and (b) FPS solutions and stream derivatives for the cases of (c)

NPS and (d) FPS solutions with varying βD values from 0 to 105.

3.2 Model Predicted Stream Depletion

The predicted stream depletion rate (SDR), QD,r, is illustrated in Figure 8, where we explore the effect of CD,r on the QD,r

predicted by (a) NPS solution, (b) FPS solution, and (c) FPS solution with Γ2 = 0. The Figure also shows the effect of βD on

the behavior of QD,r predicted by the models.

3.3 Observed Transient Aquifer and Stream Drawdown370

The time series (hydrographs) of the aquifer water levels in an observation wells and piezometer as well as stream stage at the

four monitoring locations, relative to the long-term background levels, are plotted in Figure 9. Aquifer drawdown obtained data

by detrending and denoising observation well water levels are shown in Figure 10 for the six tests highlighted previously. The

figure shows (a) log-log and (b) semi-log plots of the observed drawdown. The figure also shows in (c) the log-time derivative

of the drawdown data computed numerically using central differences. The recovery data are also included for completeness.375

Observed stream stage drawdown data are shown in Figure 11 for the four monitoring stations. The response of the

aquifer in test 6 is also included in all the graphs for comparison. The data are plotted on log-log scale for (a) Stenner

P1, (b) Stenner P2, (c) Stenner P3, and (d) Stenner P5, with elapsed time since onset of pumping on the horizontal axis

and drawdown on the vertical axis.
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Figure 8. Temporal SDR for different (left column) CD,r values from 10 to ∞ and for different (right column) βD values from 10−3 to 10

predicted by (a) the NPS solution, (b) FPS solution, and (c) FPS solution with Γ2 = 0.

Figure 9. Time series of groundwater and stream stage fluctuations observed in the stream-aquifer system. The six pumping events are

colored gray and labeled 1-6. All data are plotted on vertical axis on the left except pumping well water levels, which are on the right axis.

3.4 Analysis of Aquifer and Stream Drawdown380

The results of model fits to the data and the corresponding parameter estimation exercise are shown in Figure 12. The best

model fits of the NPS model to the observation well (aquifer) drawdown data for the six tests highlighted above are plotted
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Figure 10. Plots of aquifer drawdown recorded in the observation well from six pumping tests on the (a) log-log and (b) semi-log scale. The

logarithmic time derivative of drawdown is plotted in (c) using centered differencing.

Figure 11. Log-log plots of transient stream stage drawdown response to pumping observed in stream channel stilling wells (a) Stenner-P1,

(b) Stenner-P2, (c) Stenner-P3, and (d) Stenner-P5. The data also show stage recovery after pumping (dashed lines for pumping after 48 hrs).

Aquifer response (gray dots) is included for comparison.

on (a) log-log, (b) semi-log, and (c) linear scales. The corresponding estimated parameter values for the model fits to data that

minimize the objective function defined previously are summarized in Table 3. All the model fits to the aquifer drawdown data

were obtained with values of Kx = 8.31×10−5 m/s for hydraulic conductivity and Ss = 1.46×10−5 m−1 for specific storage.385

These values were obtained with test 6 data and then held fixed in the subsequent analyses. Only parameters κ, β, and Cr were

allowed to vary among all the subsequent analyses of tests 1-5.

Figure 12 also includes (in d, e, and f) the predicted stream drawdown behavior at Stenner-P1 using the parameter values in

Table 3 from analysis of aquifer drawdown. Given the model-data misfit, stream drawdown data were used to independently fit
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Figure 12. Results of transient analysis of aquifer drawdown response from individual tests showing model fits to observation well data in

(a) log-log scale, (b) semi-log scale, and (c) in linear scale. Model predicted stream drawdown response is compared to observations in (d),

(e), and (f) using parameters estimated from aquifer data.

Table 3. Estimated parameter values using aquifer drawdown data from the observation well.

Test Kx (m/s) κ (-) Ss (1/m) β (1/s) Cr (-)

1 8.31× 10−5 0.591 1.46× 10−5 4.14× 10−5 68.0

2 8.31× 10−5 0.591 1.46× 10−5 4.09× 10−5 46.1

3 8.31× 10−5 0.674 1.46× 10−5 4.02× 10−5 33.2

4 8.31× 10−5 0.978 1.46× 10−5 3.56× 10−5 19.0

5 8.31× 10−5 1.09 1.46× 10−5 3.54× 10−5 7.09

6 8.31× 10−5 1.08 1.46× 10−5 3.49× 10−5 5.54

average 8.31× 10−5 0.836 1.46× 10−5 3.81× 10−5 29.8
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Table 4. Estimated parameter values using NPS solution for the three recorded tests in the Stenner-P1. Parameters κ and β were fixed to

values estimated with aquifer observation well drawdown data.

Test Kx (m/s) κ (-) Ss (1/m) β (1/s) Cr (-)

4 8.88× 10−4 1.0 6.33× 10−4 1.03× 10−4 0.166

5 5.14× 10−4 1.0 5.19× 10−4 1.03× 10−4 0.447

6 3.92× 10−4 1.0 5.22× 10−4 1.03× 10−4 0.180

the model and estimate system hydraulic parameters. The resulting model fits to stream drawdown data at observation location390

Stenner-P1 are shown in Figure 13. The estimated parameter values are summarized in Table 4.

Figure 13. Results of transient analysis of stream drawdown response from individual tests showing model fits to the data for Stenner Creek

stilling well S1. The results are plotted on (a) log-log, (b) semi-log, and (c) linear scales.

Figure 14 shows the change in the parameter values of Cr over the course of the six pumping tests. For each individual

test, Cr was taken to be constant, but there was clear and consistent decrease from test 1 to 6.

Figure 14. Time series of Cr estimated from the (a) observation well and (b) Stenner-P1 from six pumping tests.
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4 Discussion

The predicted aquifer drawdown response shown in Figure 3 is characterized by three phases that are commonly observed395

in dual-storage media such as unconfined aquifers (Neuman, 1974; Malama, 2011; Mishra and Neuman, 2010; Lin et al.,

2019) and dual-porosity fractured formations (Warren and Root, 1963; Streltsova, 1983; De Smedt, 2011; Lin and Yeh, 2021).

The three phases predicted by the present model are termed here as early-, intermediate-, and late-time. During early-time,

aquifer response follows the limiting models of Theis (1935) and Ferris et al. (1962) for the NPS and FPS models, respectively,

which corresponding to CD,r ≡ 0. Stream drawdown response is virtually imperceptible during this early-time phase as water400

flows primarily from aquifer elastic storage. The onset of intermediate-time is marked by significant departure of aquifer

drawdown from limiting case of CD,r ≡ 0 transitioning to closely follow the behavior predicted by the limiting solutions of

Fox et al. (2002) and Hantush (1965) for CD,r →∞. During this transition period, stream appears to initially serve as a near-

infinite store of water and aquifer drawdown appears to approach steady-state. For finite values of CD,r, this “steady-state”

phase is only momentary as aquifer drawdown begins to increase again and stream stage begins to respond to pumping. If405

pumping were to cease during the early part of intermediate-time, the models of Fox et al. (2002) and Hantush (1965) would

be sufficient to describe system behavior. The higher stream storage coefficient, CD,r, the longer this quasi-static phase persists.

As pumping continues, the aquifer drawdown response transitions into late-time transient behavior characterized by increasing

aquifer drawdown response, which rises above the steady-state values predicted by the fixed-stage models of Fox et al. (2002)

and Hantush (1965). This suggests that these models underestimate aquifer drawdown at late-time. At very late-time, aquifer410

drawdown transitions into the behavior predicted by models with a no-flow condition at the tream-aquifer interface.

The results indicate that stream stage drawdown response is delayed relative to aquifer drawdown, and only appears to

start during the late-time phase. It is shown to exceed the late-time steady-state aquifer drawdown predicted by the fixed-stage

models of Fox et al. (2002) and Hantush (1965). Depending on the initial stage of the stream, stream drawdown would lead to

drying up of streams at very late-time, during prolonged periods of groundwater pumping.415

Model results shown in Figure 4 indicate that increasing the values of CD,r has the effect of prolonging the intermediate

phase and increasing the delay in stream stage drawdown response to pumping. Deep streams with high discharge may be

associated with high values of channel storage, and would require prolonged pumping at high rates to induce stream drawdown.

This may take several days, which explains why such streams are typically treated as fixed-stage boundaries. Model results in

Figure 5 suggest that stream stage responsiveness to pumping increases with increasing values of βD, leading to decreasing lag420

times between stream and aquifer drawdown responses.

Results of drawdown derivative analysis shown in Figure 6 indicate that for the case of CD,r =∞, the drawdown deriva-

tive is characterized by values that initially rise steeply, reaching a peak value before declining down to vanishingly small

values. This is a typical feature of a fixed-head recharge boundary effect Ferroud et al. (2019) where aquifer drawdown be-

havior attains to a steady state. However, for finite values of CD,r, the drawdown derivative displays a double hump with an425

initial peak associated with transition from early- to intermediate-time drawdown behavior and a second peak associated with

transition from intermediate- to late-time behavior. The second peak is typically higher that the first one and is subsequently
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followed by a late-time derivative derivative decline a constant value. Between the two peak values is a unique minimum for

each value of CD,r. The times at which these unique minima of the derivatives of aquifer drawdown occur appear to represent

the starting time of the stream drawdown response. The valley pattern of the aquifer drawdown derivative is typical of storage430

porosity systems, and in this case, it represents the transition between discharge of water from elastic storage to that from

stream storage. The stream drawdown derivative increases to a single peak value before gradually decline until it returns to

a constant level. The peak value generally coincides in time with the second peak of the aquifer drawdown derivatives. The

behavior of the derivative of aquifer drawdown appears to be less sensitive to the dimensionless streambed conductance, βD,

but the features of the curves may still be useful in identifying the streambed conductance from stream drawdown data.435

The results in Figure 8 show that, generally, for finite values of CD,r, the depletion rate, QD,r, increases initially with

time before reaching a peak rate followed by a subsequent decline. In this instance, the solution of Zlotnik (2004) serves as

the limiting case of depletion rate. The behavior of QD,r for finite values of CD,r differs significantly from that predicted for

CD,r →∞ where the maximum depletion rate stays fixed at QD,r = 1.0 indefinitely, with all water captured by the pumping

well at late-time coming from stream recharge. For finite values of CD,r, the depletion rate reaches a peak value of QD,r ≤ 1.0,440

with a unimodal distribution pattern, indicating that the peak depletion rate is only a fraction of the pumping rate even at late-

time, with the rest of the water coming from aquifer storage, as stream stage declines and the stream approaches dryness. As

CD,r increases, the stream contributes increasing proportions of the water abstracted by the pumping well at late-time and

the curves of QD,r are closer to the limiting case of CD,r →∞. The results in Figure 8 also show that QD,r increases with

increasing βD because higher values of βD are associated with a higher degree of stream-aquifer connectivity. Increasing445

values βD have the effect of shifting the QD,r peaks leftward to earlier times and upward to greater peak depletion rates.

Analysis of drawdown data from the observation well show a general shift in aquifer drawdown behavior over the course

of the six pumping events during the summer 2022 irrigation season. The least overall drawdowns were recorded in the first

of the pumping periods of March 16 to March 18, while the largest were recorded in the last reported pumping period. This

behavior is reflective of the decrease in the amount of water stored in the stream channel (Cr) from the spring high flows to450

the summer lows. However, for any given test, Cr may be treated as a constant and the observed transient aquifer response

generally shows the three phases predicted by the model developed in this work, namely early-, intermediate-, and late-time

behavior. These phases are most evident in the latter tests (4,5,6) that are associated with small values of the parameter Cr.

The earlier tests (1,2,3), when the stream channel has the most water (large Cr) primarily show the early- and intermediate

phases as the stream acts more like a fixed-stage boundary. Even for the earlier tests, the intermediate phase does not attain to455

late-time drawdown steady state predicted by the fixed-stage models of Hantush and Jacob (1955) and Fox et al. (2002).

Another important observation of note is that a nonzero, coherent, and unambiguous transient stream drawdown response

is clearly evident in the data. For the present study site, the stream clearly does not behave as having a fixed-stage, supplying

recharge indefinitely. Additionally, the observed stream drawdown response at all measuring locations is significantly delayed

relative to aquifer drawdown. All the stream stage observation locations are located closer to the pumping well than the aquifer460

observation well but all start showing measurable drawdown response at much later times (over an hour later) than the aquifer

observation well. This delayed stream response confirms a key model prediction shown in Figure 3.
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Results of the model fit exercise based on aquifer drawdown data shown in Figure 12 demonstrate that excellent model

fits to data are obtainable with R2 ≥ 95%. The associated parameter values estimated from the data and summarized in Table 3

clearly demonstrate that reasonable aquifer hydraulic parameters as well as streambed conductance and stream channel storage465

values are obtainable with the model developed in this work from the observed aquifer drawdown response. It is, however,

clear that the stream drawdown behavior predicted on the basis of hydraulic parameters estimated with aquifer drawdown only

deviates significantly from the observed behavior at Stenner-P1. This is particularly the case for test 4 data depicted in Figure

12(d). Hence, stream drawdown data where analysed separately and the resulting model fits to observed transient behavior are

shown in Figure 13. The model fits to stream drawdown data show a marked improvement and the resulting parameter values470

are summarized in Table 4. These values are appreciably different from those estimated from aquifer drawdown data (see Table

3), which may be attributed to aquifer and streambed heterogeneity. This discrepancy in model parameters estimated from

stream versus aquifer drawdown data may highlight a deficiency in the theory developed here where stream flow velocity is

neglected in the stream channel mass balance condition. For the present case, it is sufficient to demonstrate that the hydraulic

parameters of the system are estimable from the data.475

In the analysis of aquifer drawdown data, the most significant parameter change among the 6 tests was observed in the

stream storage coefficient Cr. The results are plotted in Figure 14, showing the change in the value of Cr over the course

of the six pumping tests. For each individual test, Cr was taken to be constant, but there was clear and consistent decrease

from test 1 to 6 over the irrigation season from March to August 2022. This decrease of Cr over the course of the pumping

season correlates with a reduction in stream stage and discharge during the dry season. This variation notwithstanding, the480

results, indicate that the stream storage is finite and estimable and may be treated as fixed only for a relatively short duration

corresponding to a single pumping event.

5 Conclusions

The modeling and data analysis results presented in this work demonstrate that aquifer flow models with a fixed stream stage

boundary condition or source term underestimate aquifer drawdown and overestimate the capacity of a stream to buffer aquifer485

drawdown through continuous recharge. It is demonstrated here that streams may have finite and estimable channel storage and

that can undergo both depletion and drawdown in response to groundwater pumping from a hydraulically connected aquifer.

This is especially critical in aquifer systems subjected to prolonged groundwater abstraction, which can lead to the drying

of streambeds, as has been observed in many groundwater basins with irrigated agriculture. Models with fixed stream stage

overestimate the available groundwater supply from the stream because of their inherent assumption of infinite stream storage.490

The results of this work have implications for sustainable groundwater management. The model developed may be used to not

only predict the stream depletion rate but also the decline of stream stage. Additional work is needed to incorporate stream

discharge (or velocity) in the model and to conduct longer pumping tests than reported herein in order to better constrain

parameter estimates. This may resolve the discrepancy in model parameter values estimated from independent analyses of

aquifer and stream drawdown data.495
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Code and data availability. Mathematica and MATLAB codes developed for the study are available at the hyperlinks: HydroShare and

MATLAB File Exchange. The raw data analyzed in this work are available from the corresponding author upon request.

Appendix A: Non-dimesionalization of NPS Flow Problem

On the basis of Table 2, the governing equation, in dimensionless form, for the case of NPS, is as follows.

∂sD
∂tD

=
∂2sD
∂x2

D

+κ
∂2sD
∂y2D

+ fs,D, (A1)500

where sD,i = sD,i(xD,yD, tD) is dimensionless aquifer drawdown, si/Hc, in the ith sub-domain, with i= 1,2,3, Hc =

Q/(2πbKx) is a system characteristic head, xD = x/R and yD = y/R are dimensionless distances in the x and y directions,

tD = t/Tc is dimensionless time, Tc =R2/αx is a characteristic system time, αx =Kx/Ss is aquifer horizontal hydraulic

diffusivity in the x-direction, κ=Ky/Kx is the anisotropy ratio in the horizontal plane, and fs,D = fs,D(xD,yD, tD) is the

piecewise dimensionless sink/source term defined by505

fs,D =


−2δ(xD − 1)δ(yD) xD > 0,

ΓD xD ∈ (−WD,0),

0 xD ≤−WD.

(A2)

Here ΓD = Γ/[Q/(2πR2)] = βD(sD,2 − sD,r) is the dimensionless mass-transfer function at the stream-aquifer interface. A

more complete list of dimensionless variables and relevant parameters is provided in Table 2. Equation (A1) is solved subject

to the initial condition

sD|tD=0 = 0, (A3)510

and the far-field boundary conditions

lim
xD→±∞
yD→±∞

sD = 0. (A4)

The dimensionless continuity conditions at xD = 0 and xD =−WD are specified as

sD,1|xD=0 = sD,2|xD=0 , (A5)

sD,2|xD=−WD
= sD,3|xD=−WD

, (A6)515

for drawdown, and

∂sD,1

∂xD

∣∣∣∣
xD=0

=
∂sD,2

∂xD

∣∣∣∣
xD=0

(A7)

∂sD,2

∂x

∣∣∣∣
xD=−WD

=
∂sD,3

∂x

∣∣∣∣
xD=−WD

(A8)
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for flux. In dimensionless form the stream-mass-balance condition becomes

CD,r
∂sD,r

∂tD
= βD(sD,2 − sD,r), (A9)520

where CD,r = bDCr/S is the dimensionless stream storage coefficient, sD,r = sr/Hc, βD = βR/Kx is the dimensionless

mass transfer coefficient across the streambed, S = bSs is aquifer storativity, and bD = b/R is dimensionless aquifer thickness.

Note that Cr/S is simple the ratio of the stream storage coefficient to aquifer storativity. The dimensionless initial condition

associated with this mass balance condition is

sD,r(tD = 0) = 0. (A10)525

Appendix B: Derivation of the NPS Solution

Applying the Laplace and Fourier cosine transforms to to equations A1 and A2 leads to

η2 ˜̄sD =
∂2 ˜̄sD
∂x2

D

+


−2

p
δ(xD − 1) xD > 0

±χ˜̄sD,2 xD ∈ (−WD,0)

0 xD ≤−W

, (B1)

where η =
√
p+κξ2, χ= βDp/(p+β∗

D), p is the Laplace transform parameter, and ξ is the Fourier cosine transform parame-

ter. The problem domain in (xD,yD) dimensionless plane is symmetrical on either side of the xD-axis; therefore, the problem530

domain yD ∈ (−∞,∞) can simply be reduced to yD ∈ [0,∞). Therefore, the symmetric boundary conditions for sD can be

described by no-flow Neumann-type boundary conditions, i.e., ∂sD/∂yD at yD = 0. The transformed governing equations for

the NPS solution are

η2 ˜̄sD,1 =
d2 ˜̄sD,1

dx2
D

− 2

p
δ(xD − 1), xD ∈ [0,∞),yD ∈ [0,∞) (B2)

η̂2 ˜̄sD,2 =
d2 ˜̄sD,2

dx2
D

, xD ∈ [−WD,0),yD ∈ [0,∞) (B3)535

η2 ˜̄sD,3 =
d2 ˜̄sD,3

dx2
D

, xD ∈ (−∞,−WD),yD ∈ [0,∞) (B4)

where η̂2 = η2 +χ.

The transformed dimensionless stream-mass-balance condition from equation (A9) is

p˜̄sD,r = β∗
D(˜̄sD,2 − ˜̄sD,r), (B5)

which can be rearranged as540

˜̄sD,r =

(
β∗
D

p+β∗
D

)
˜̄sD,2. (B6)

27



The far-field conditions are

lim
xD→±∞

˜̄sD,1 = 0. (B7)

The transformed continuity conditions from equations (A5) – (A7), respectively, are

˜̄sD,1|xD=0 = ˜̄sD,2|xD=0 , (B8)545

˜̄sD,2|xD=−WD
= ˜̄sD,3|xD=−WD

, (B9)

d˜̄sD,1

dxD

∣∣∣∣
xD=0

=
d˜̄sD,2

dxD

∣∣∣∣
xD=0

, (B10)

d˜̄sD,2

dx

∣∣∣∣
xD=−WD

=
d˜̄sD,3

dx

∣∣∣∣
xD=−WD

. (B11)

Given the jump discontinuity introduced by the Dirac Delta source at xD = 1, the solution for ˜̄sD,1 is piecewise, having the

form550

˜̄sD,1 =

A1e
ηxD +A2e

−ηxD ∀xD ∈ (1,∞)

A3 cosh(ηxD)+A4 sinh(ηxD) ∀xD ∈ [0,1)
(B12)

where A1 – A4 are undetermined coefficients. From the farfield homogeneous boundary condition, it follows that A1 = 0. The

general solutions of equations (B3) and (B4) can be readily obtained and respectively give

˜̄sD,2 =A5 cosh(η̂xD)+A6 sinh(η̂xD) (B13)

˜̄sD,3 =A7e
ηxD +A8e

−ηxD (B14)555

where A5 to A8 are coefficients to be determined by applying the boundary conditions defined above. From the farfield bound-

ary conditions stated in equation (B7), the coefficients A8 ≡ 0.

In addition to the boundary conditions already specified above, jump conditions across the Dirac Delta source at xD = 1

are required to determine these coefficients. The jump conditions are

˜̄sD,1|xD=1+ = ˜̄sD,1|xD=1− , (B15)560

d˜̄sD,1

dxD

∣∣∣∣
xD=1+

=
d˜̄sD,1

dxD

∣∣∣∣
xD=1−

− 2

p
, (B16)

where xD = 1± = limδ→0 1± δ, where δ is a small interval across the Dirac Delta source. These two conditions enforce head

or drawdown continuity at xD = 1 and define the flux discontinuity, respectively. Applying these two conditions to the solution

in Equation (B12) leads to

A2e
−η =A3 cosh(η)+A4 sinh(η), and (B17)565

−A2e
−η =A3 sinh(η)+A4 cosh(η)−

2

pη
. (B18)
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Also, applying continuity conditions at xD = 0 gives

A3 =A5, and (B19)

ηA4 = ϕA6 = η̂A6. (B20)

Finally, applying continuity conditions at xD =−WD leads to570

A5 cosh(η̂WD)−A6 sinh(η̂WD) =A7e
−ηWD , and (B21)

−A5 sinh(η̂WD)+A6 cosh(η̂WD) =
η

η̂
A7e

−ηWD . (B22)

Equations (B17)-(B22) fully define the linear system of equations needed to determine the coefficients A2–A7. These equations

were solved in the Wolfram Mathematica environment and checked manually, yielding the coefficients as

A2 =
2

pη

(
cosh(η)− η̂

∆1
e−ηχ̂2

)
, (B23)575

A3 =A5 =
2

p∆1
e−ηχ̂1, (B24)

A4 =
2η̂

pη∆1
e−ηχ̂2, (B25)

A6 =
2

p∆1
e−ηχ̂2, and (B26)

A7 =
2η̂

p∆1
e−η(1−WD) (B27)

where580

∆1 = 2η̂η cosh(η̂WD)+
(
η2 + η̂2

)
sinh(η̂WD), (B28)

χ̂1 = η̂ cosh(η̂WD)+ η sinh(η̂WD), and (B29)

χ̂2 = η cosh(η̂WD)+ η̂ sinh(η̂WD). (B30)

Substituting these coefficients into equations (B12) – (B14), the aquifer and stream drawdown solutions for NPS are obtained

and shown in Equations (18) and (20), respectively.585

Appendix C: Non-dimensionalization of FPS Flow Problem

The dimensionless governing equations for the FPS bounded by two aquifers are

∂sD
∂tD

=
∂2sD
∂x2

D

+κ
∂2sD
∂y2D

+ fD, (C1)

with

fD =

−2δ(xD − 1)δ(yD) xD > 0,

0 xD <−WD.
(C2)590

29



Equation (C1) is solved subject to the dimensionless initial condition.

sD|tD=0 = 0, (C3)

and far-field boundary condition

lim
xD→±∞
yD→±∞

sD = 0. (C4)

The dimensionless flux boundary conditions at the stream-aquifer interfaces 1 and 2, respectively, are595

∂sD,1

∂xD

∣∣∣∣
xD=0

= βD

(
sD,1|xD=0 − sD,r

)
, (C5)

∂sD,2

∂xD

∣∣∣∣
xD=−WD

= βD

(
sD,r − sD,2|xD=−WD

)
(C6)

The dimensionless stream-mass-balance condition becomes

CD,r
∂sD,r

∂tD
= βD

(
sD,1|xD=0 − sD,r

)
+βD

(
sD,r − sD,2|xD=−WD

)
. (C7)

Equations (C1) – (C7) fully describe the well-posed nondimensional flow problem for a fully penetrating stream considered600

herein.

Appendix D: Derivation of the FPS Solution

The Fourier cosine transform method can then be used to eliminate yD; meanwhile, the Laplace transform method can eliminate

tD in Equation (C1). The transformed flow equation for the pumped aquifer (j = 1) is

η2 ˜̄sD,1 +2δD(xD − 1) =
d2 ˜̄sD,1

dx2
D

, (D1)605

for xD ∈ [0,∞),yD ∈ [0,∞), and for the aquifer on the other side (j = 2) is

η2 ˜̄sD,2 =
d2 ˜̄sD,2

dx2
D

, (D2)

for xD ∈ [−WD,−∞),yD ∈ [0,∞), where η =
√

p+κξ2 with the Laplace parameter p and Fourier parameter ξ; the over-bar

and tilde represent the function of the Laplace and Fourier domains, respectively.

Similarly, the dimensionless Laplace-Fourier-domain boundary conditions in xD-direction are obtained as610

lim
xD→∞

˜̄sD,1 = lim
xD→−∞

˜̄sD,2 ≡ 0. (D3)

The dimensionless inner boundary conditions at xD = 0 and −WD, respectively, give the following.

d˜̄sD,1

dxD

∣∣∣∣
xD=0

= βD(˜̄sD,1 − ˜̄sD,r)|xD=0, (D4)

d˜̄sD,2

dxD

∣∣∣∣
xD=−WD

= βD(˜̄sD,r − ˜̄sD,2)|xD=−WD
. (D5)
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The dimensionless stream mass-balance condition, equation (C7), in the Laplace-Fourier domain is615

p˜̄sD,r = β∗
D(˜̄sD,1|xD=0 − ˜̄sD,r)−β∗

D(˜̄sD,r − ˜̄sD,2|xD=−WD
). (D6)

Rearranging equation (D6), one obtains

˜̄sD,r =
β∗
D

p+2β∗
D

( ˜̄sD,1|xD=0 + ˜̄sD,2|xD=−WD
). (D7)

The jump conditions at xD = 1 are same as equations (D8) and (E7),

˜̄sD,1|xD=1+ = ˜̄sD,1|xD=1− , (D8)620

d˜̄sD,1

dxD

∣∣∣∣
xD=1+

=
d˜̄sD,1

dxD

∣∣∣∣
xD=1−

− 2

p
. (D9)

After applying the far-field boundary conditions, the solutions are

˜̄sD,1 =

B2e
−ηxD ∀x≥ 1,

B3 cosh(ηxD)+B4 sinh(ηxD) ∀x ∈ [0,1]
(D10)

˜̄sD,2 =B5e
ηxD ∀xD <−WD (D11)

˜̄sD,r =
β∗
D

p+2β∗
D

( ˜̄sD,1|xD=0 + ˜̄sD,2|xD=−WD
) ∀xD ∈ [−WD,0]. (D12)625

where B2 – B5 are undetermined coefficients. Upon applying the boundary and jump conditions, it can be shown that

B2 =
2

p∆2
{χ1 cosh(η)+χ2 sinh(η)} (D13)

B3 =
2

p∆2
e−ηχ1 (D14)

B4 =
2

p∆2
e−ηχ2 (D15)

B5 =
2

∆2
βDβ∗

Deη(WD−1) (D16)630

where ∆2 = p(βD+η) [2β∗
Dη+ p(βD + η)]. Substituting these coefficients into Equations (D10) – (D12) leads to the solutions

given in equations (21) and (26), for aquifer and stream drawdown.

Appendix E: Derivation of the FPS Solution for Γ2 = 0

When Γ2 = 0, the FPS solution will ignore the effect of unpumped aquifer. The same integral transformations applied previ-

ously are used. For the case for Γ2 = 0, we only have to focus on solving the pumped aquifer, giving the following.635

η2 ˜̄sD +2δD(xD − 1) =
d2 ˜̄sD
dx2

D

, (E1)
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for xD ∈ [0,∞),yD ∈ [0,∞). We drop the subscript for drawdown because there is only one aquifer, that is, the pumped

aquifer. The dimensionless Laplace-Fourier-domain boundary conditions in xD-direction, are obtained as

lim
xD→∞

˜̄sD ≡ 0. (E2)

640

d˜̄sD
dxD

∣∣∣∣
xD=0

= βD(˜̄sD − ˜̄sD,r)|xD=0. (E3)

The dimensionless stream mass-balance condition is transformed as

p˜̄sD,r = β∗
D(˜̄sD|xD=0 − ˜̄sD,r). (E4)

Solving equation (E4), one can obtain

˜̄sD,r =
β∗
D

p+β∗
D

˜̄sD|xD=0 . (E5)645

To deal with the Dirac Delta function in equation (E1), the jump conditions in xD = 1 are imposed, that is,

˜̄sD|xD=1+ = ˜̄sD|xD=1− , (E6)

d˜̄sD
dxD

∣∣∣∣
xD=1+

=
d˜̄sD
dxD

∣∣∣∣
xD=1−

− 2

p
, (E7)

Therefore, The general solutions for ˜̄sD,L and ˜̄sD,R are

˜̄sD =

C1e
ηxD +C2e

−ηxD xD > 1, and

C3e
ηxD +C4e

−ηxD xD ∈ [0,1),
(E8)650

where C1 – C4 are undetermined coefficients. From the farfield boundary condition, it follows that C1 ≡ 0. Imposing equations

(E3) and (E4) on equation (E8), it can be shown that

C2 =
2

pη∆3
[(p+β∗

D)η cosh(η)+ pβD sinh(η)], (E9)

C3 =
2e−η(p+β∗

D)

p∆3
, (E10)

C4 =
2βe−η

η∆3
, (E11)655

where ∆3 = η(p+β∗
D)+pβD. From the coefficients obtained above, the dimensionless aquifer and stream drawdown solutions

for FPS are given in equations (27) and (28), respectively.

Appendix F: Model Verification

To check the correctness of the analytical solutions developed above, a verification exercise was undertaken by comparing these

solutions with a numerical solution based on the FEM. A 3D FEM model was built for comparison with the NPS case and to660
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evaluate the significance of vertical flow. The stream overlying the aquifer was allowed to drain through the streambed and

generate vertical flow. The domain is set as above with zD ∈ [0,1.5]. As mentioned above, the conceptual model comprises three

isotropic layers, namely the aquifer layer with zD ∈ [0,1], the streambed layer with zD ∈ (1,1+ b′D] with xD ∈ [−WD,0] and

yD ∈ [0,105], and the stream layer with zD ∈ (1+ b′D,1.5] with xD ∈ [−WD,0] and yD ∈ [0,105]. The drawdown computed

with the 3D FEM model is vertically averaged. Finer meshes were assigned near the stream and pumping well, while a coarser665

mesh was used elsewhere. The hydraulic parameter values used for the comparison were set to CD,r = 25, βD = 10, b′D = 0.01,

and WD = 0.5. The streambed storage was set the same as the aquifer and K ′ = 0.1Kx.

In the case of the FPS with a fully penetrating pumping well, the vertical flow is negligible and a 2D model in the (xD,yD)

plane is sufficient to describe the flow behavior. The numerical solution was developed in a domain with xD ∈ [−105,105]

and yD ∈ [0,105]. The flow domain was divided into multiple zones: the pumped aquifer zone: xD ∈ [0,105], aquifer zone670

on the far side: xD ∈ [−2b′D,−105], the stream zone: xD ∈ [−b′D,−b′D −WD), and streambed zones: xD ∈ [0,−b′D) and

[−b′D −WD,−2b′D −WD), where b′D is the dimensionless streambed thickness defined as b′/R. Figure F1 shows the aquifer

drawdown curves predicted by the (a) NPS and (b) FPS solutions versus the FEM solution. The observation points were

established at (xD,yD) = (0.1,0),(0.25,0),(0.5,0). The results show that the semi-analytical and FEM solutions agree well

with negligible residuals. Additionally, Butler Jr et al. (2001) tested the assumptions of the NPS model by comparing it with675

the seven-layer MODFLOW model. They found that the NPS assumptions are valid when the relative penetration (ratio of

stream penetration to aquifer thickness) is less than 85%. For the Cal Poly stream-aquifer system that motivated this study, the

relative penetration is 50%.

Figure F1. Comparison of the aquifer drawdown curves predicted by the (a) NPS and (b) FPS solutions and FEM solutions based on 3D and

2D model. The visual representations of the meshes near the well used in the 3D and 2D FEM models are included in the bottom right corner

of the figure.

Appendix G: Evaluation of the Depletion Integral

In Figure G1 we compare the QD,r curves with LD =RD,∞ given above versus the arbitrary upper bound of LD = 105. The680

two curves are nearly identical with a maximum relative error (RE) of less than 10% at the early time. For tD > 1, the RE is

less than 2%. The CPU time shows that the setting LD =RD,∞ computes faster than the use of LD = 105.

33



Figure G1. The QD,r curves showing evaluated depletion integral using upper limit of LD (solid line) and 105 (circle symbol), as well as

the relative error (RE) curve with a horizontal line standing for 5% RE. The curves of used CPU time for these two cases are also included

below.
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