
1 

 

Investigating the performance of Genetic Particle Filter in snow 1 

data assimilation across snow climates 2 

Yuanhong Youa, Chunlin Huangb, Jinliang Houb, Ying Zhangb 3 

 4 
aCollege of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China 5 

 6 
bNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 7 

730000, China 8 

 9 

 10 

 11 

 12 

 13 

Corresponding author: Chunlin Huang, Key Laboratory of Remote Sensing of Gansu Province, 14 

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 15 

Gansu, 730000, China. (huangcl@lzb.ac.cn) 16 

 17 

 18 

  21 

19  
20  

https://doi.org/10.5194/hess-2022-350
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



2 

 

Abstract 22 

With the aim of reducing the uncertainty of simulations, data assimilation methodology is 23 

increasingly being applied in operational purposes. This study aims to investigate the performance of 24 

genetic particle filter which used as snow data assimilation scheme, designed to assimilate ground-25 

based snow depth measurements across different snow climates. We employed the default 26 

parameterization scheme combination within Noah-MP model as model operator in the snow data 27 

assimilation system. And the feasibility of genetic particle filter used as snow data assimilation 28 

scheme was investigated at different sites, at the same time, the impact of measurement frequency, 29 

particle number on the filter updating of the snowpack state were also evaluated. The results 30 

demonstrated that the genetic particle filter can be used as snow data assimilation scheme and obtain 31 

satisfactory assimilation results across different snow climates. We found the particle number is not 32 

the crucial factor to impact the filter performance and one hundred particles can sufficient to represent 33 

the high dimensionality of the point-scale system. The frequency of measurements can significantly 34 

affect the performance of filter updating and a dense ground-based snow observational data always 35 

can dominate the accuracy of assimilation results. Finally, we concluded that the genetic particle filter 36 

is a suitable candidate approach to snow data assimilation and appropriate for different snow climates. 37 

1. Introduction 38 

Understanding snowpack dynamics is of critical importance to water resource management, 39 

agricultural production, avalanche prevention in mountain area and flood prediction. The presence of 40 

seasonal snow cover has highly sensitivity to climate change and a great influence on hydrological 41 

cycle (Barnett et al., 2005; Takala et al., 2011). High snow surface albedo can reduce the shortwave 42 

radiation absorption remarkably and the energy exchange between the land surface and atmosphere 43 

will be adjusted (You et al., 2020). Moreover, the property of low thermal conductivity can insulate 44 

the underlying soil, whose temperature variability is severely reduced towards a stable condition 45 

(Zhang et al., 2005; Piazzi et al., 2019). Snowmelt is an important water resource and plays a critical 46 

role in water supply in terms of soil moisture, runoff, and groundwater recharge (Dettinger, 2014; 47 

Griessinger et al., 2016; Oaida et al., 2019). Consequently, succeeds in catching snow dynamics is 48 

crucial for snowmelt runoff, atmospheric circulation, and hydrological predictions. 49 

Recently, a growing effort is aimed at investigating the potential of data assimilation (DA) 50 

scheme in consistently improving snow simulations and obtain the optimal posterior estimate of 51 

snowpack state (Bergeron et al., 2016; Piazzi et al., 2018; Smyth et al., 2020; Abbasnezhadi et al., 52 

2021). Many different DA methodologies have been developed with distinct degree of complexity, 53 

certainly, various performance since diverse level of complexity. The sequential DA techniques 54 
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including basic direct insertion, optimal interpolation schemes, Kalman filter and its variants and 55 

particle filter are widely employed in practical applications. The greatest strength of sequential DA 56 

technique is that the model state can be sequentially updated when observational data available 57 

(Piazzi et al., 2018). The basic direct insertion method simple replace the model predictions with 58 

observations when available on the assumption that the observation is perfect and model prior is 59 

wrong (Malik et al., 2012). However, this method possible result in model shocks due to physical 60 

inconsistencies among state variables (Magnusson et al., 2017). Although the optimal interpolation 61 

scheme takes into account the observational uncertainty, this method still has great limitations (Dee 62 

et al., 2011; Balsamo et al., 2015). More advanced are the Kalman filter and its variants, which are 63 

typical sequential DA techniques and most commonly used in various applications. The standard 64 

Kalman filter (KF) just can be used in linear dynamic models since it depends on the assumption of 65 

system linearity (Gelb, 1974). Ensemble Kalman filter (EnKF) was proposed by Evensen (2003), in 66 

this method, the Monte Carlo approach was used to approximate error estimates based on an ensemble 67 

of model simulations and this method does not require a model a model linearization. Precisely due 68 

to this advantage, the EnKF has been widely used in snow data assimilation. For example, the EnKF 69 

was employed to assimilate MODIS snow cover extent and AMSR-E SWE into hydrologic model to 70 

improve modeled SWE (Andreadis et al., 2005). The feasibility of assimilating fractional snow cover 71 

detected by MODIS into land surface model using EnKF was investigated, and the results show that 72 

the SWE estimates from the EnKF are most improved in various regions (Su et al., 2008). The impact 73 

of an EnKF-based assimilation of both ground-based SWE observations and snowfall and snowmelt 74 

rates on distributed SWE estimates was analyzed in Magnusson et al. (2014). More recently, three 75 

kinds of snow depth data which included the D-InSAR data retrieved from the remote sensing images, 76 

the automatically measured data using ultrasonic snow depth detectors, and the manually measured 77 

data were assimilated based on ensemble Kalman filter, and the results demonstrated that the 78 

assimilated snow depth data were spatiotemporally consecutive and integrated (Yang and Li, 2021). 79 

Although the EnKF was widely used in snow data assimilation and many studies generally stated that 80 

the EnKF has an excellent assimilation performance enabling to consistently improve snow 81 

simulations, some constraining limitations hinder filter performance (Chen, 2003). Firstly, this 82 

method was implemented at the assumption of model states follow gaussian distribution and just 83 

considers the first and second order moments, higher-order moments be ignored will makes relevant 84 

information be lost (Moradkhani et al., 2005). Unfortunately, the dynamic systems are usually 85 

strongly nonlinear and the involved probability distribution of state variables are not supposed to 86 

follow a Gaussian distribution (Weerts and El Serafy, 2006). Moreover, the filter performance was 87 

significantly affected by linear updating procedure in EnKF, and the state-averaging operations may 88 

be a huge challenge for highly complex models. 89 

Particle filter (PF) is developed based on sequential Monte Carlo and widely used in snow data 90 
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assimilation in recent years (Gordon et al., 1993). The greatest strength of PF scheme is free from the 91 

constraints of model linearity and error following Gaussian distribution, which makes the PF scheme 92 

suitable for nonlinear and non-Gaussian dynamic systems. This is also a significant advantage of PF 93 

over than other assimilation algorithms. Additionally, PF schemes give weights to individual particles 94 

but leave model states untouched, this makes PF more computationally efficient than ensemble 95 

Kalman filter and smoother (Margulis et al., 2015). An increasing interest focuses on applying PF 96 

scheme in snow data assimilation. For example, remotely sensed microwave radiance data was 97 

assimilated into snow model for updating model states by PF scheme, and the results demonstrated 98 

that the SWE simulations have great improvement (Dechant and Moradkhani, 2011). A newly PF 99 

approach proposed by Margulis et al. (2015) was used to improve SWE estimation through 100 

assimilating remotely sensed fractional snow-covered area. This technique was also implemented 101 

with the objective of obtaining high resolution retrospective SWE estimates over several Andean 102 

study basins (Cortes et al., 2016). PF scheme was also used to assimilate daily snow depth 103 

observations within a multi-layer energy-balance snow model, and result in an improvement of SWE 104 

and snowpack runoff simulations during the entire analysis period (Magnusson et al., 2017). Above 105 

studies generally state that the PF scheme is a well-performing data assimilation technique enabling 106 

to consistently improve model simulations. And either the assimilation of snow-related in-situ 107 

measurements or remotely sensed images through PF scheme succeeds in updating the predictions of 108 

snowpack dynamics. Nevertheless, particle degeneracy is the potential limitation for PF scheme, it 109 

occurs when the majority of particles have negligible weight and only a small number of particles 110 

with significant weights, such that the particles loss their ability to represent the state probability 111 

density function (Parrish et al., 2012; Abbaszadeh et al., 2017). Despite the resampling approach can 112 

effectively mitigate the particle degeneracy phenomenon, another potential limitation has been the 113 

sample impoverishment, that is, few particles have significant weight while most other particles with 114 

ignorable weight are abandoned during the resampling process, and the diversity of particles has been 115 

reduced. The Genetic Algorithm (GA) as an intelligent search and optimization method has been 116 

employed to mitigate the degeneracy and impoverishment problem (Kwok et al., 2005; Park et al., 117 

2009; Mechri et al., 2014). GA is known as an effective approach to improve the performance of 118 

particle filter and has received more attention. For example, the crossover operator within GA was 119 

performed on the prior particles (Kwok et al., 2005). Mechri et al. (2014) implemented the genetic 120 

particle filter as data assimilation scheme and applied to land surface model which simulates prior 121 

subpixel temperature, the results demonstrated that GPF outperforms prior model estimations. 122 

However, few studies have used GPF as a snow data assimilation scheme. Certainly, in view of the 123 

promising performances of GPF assimilation scheme in snow data assimilation, this paper aims to 124 

investigate the potential of GPF in performing snow data assimilation, and the main goal of this 125 

research is to address the following issues: (1) Can the GPF be employed as a snow data assimilation 126 

https://doi.org/10.5194/hess-2022-350
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

scheme? (2) How is the assimilation performance of GPF in snow data assimilation across different 127 

snow climates? (3) The sensitivity of DA simulations to the frequency of the assimilated 128 

measurements and the particle number. 129 

This paper is organized as follows. Section 2 describes the information of observation sites, snow 130 

module within Noah-MP model, GPF DA scheme, and DA experimental design. Experimental results 131 

are presented and discussed in Section 3. Section 4 summarizes the findings of this study. 132 

2. Materials and methods 133 

2.1 Study sites and data 134 

With the consideration of the filtering performance maybe different under different 135 

environments, we selected eight seasonally snow-covered study sites with different snow climates in 136 

total in this study (Sturm et al., 1995; Trujillo and Molotch, 2014). These sites are distributed at 137 

different latitudes in the northern hemisphere, and the sites included the Arctic Sodankylä site (SDA, 138 

179 m), located beside the Kitinen River in Finland and has a 2 m depths soil frost (Rautiainen et al., 139 

2014); the Snoqualmie site (SNQ, 921 m) with a rain-snow transitional climate in the Washington 140 

Cascades of the USA, in this site, the snow depth measured from snow stakes was employed (Wayand 141 

et al., 2015); the maritime Col de Porte (CDP, 1330 m) site in the Chartreuse Range in the Rhone-142 

Alpes of France; the Mediterranean climate Refugio Poqueira site (ROPA, 2510 m) in Sierra Nevada 143 

Mountains of Spain and has a high evaporation rate (Herrero et al., 2009); the Weissfluhjoch site 144 

(WFJ, 2540 m) in Davos of Switzerland, and automatic observations of snow depth were used in this 145 

study (Wever et al., 2015); the continental Swamp Angel Study Plot (SASP, 3370 m) site in the San 146 

Juan Mountains of Colorado, USA; and two sites from typical snow-covered regions in China, the 147 

Altay meteorological observation site (ATY, 735.3 m) in Northern Xinjiang, China, which has less 148 

wind in the winter season; the other one is the Mohe meteorological observation site (MOHE, 438.5 149 

m) in a county of Northeast China, which is the northernmost part of China and has a cold temperate 150 

continental climate. Serially complete meteorological measurements are available and can be used as 151 

forcing data in these sites, certainly, the downward longwave and shortwave radiation values of 152 

MOHE were extracted from the China Meteorological Forcing Dataset (CMFD) (Chen et al, 2011), 153 

since there are no radiation measurements in this site.  154 

It is noteworthy that the spatial variance on the performance of the model is negligible since 155 

these sites themselves are flat and surrounding vegetation types are uniform. We have used this data 156 

set to examine the sensitivity of snow depth to physics options, and the results showed that the dataset 157 

has a reliable quality, in addition, the location, detailed information of snow climates, and dataset 158 

process introduction of the eight sites can be also referenced in You et al. (2020a). 159 
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2.2 Snow module within Noah-MP model 160 

The snow partial within Noah-MP model can be divided into three layers at most according to 161 

snow depth. When the snow depth 0.045snowh  m, the snowpack is combined with the top soil layer 162 

and there are no dependent snow layer exists. When 0.045snowh  m, the snow layer is created with the 163 

thickness equal to snow depth. When 0.05snowh  m, the snowpack will be divided into two layers and 164 

both thickness 1 0 / 2snowz z h    . When 0.1snowh  m, the thickness of first layer is 1 0.05z  m and 165 

the thickness of second layer is 0 1( )snowz h z    m. When 0.15snowh  m, a third layer is created and 166 

the three thickness are: 2 0.05z  m and 1 0 2( ) / 2snowz z h z       m. When 0.45snowh  m, the layer 167 

thickness of the three snow layers are 2 0.05z   m, 1 0.2z   m,  0 2 1snowz h z z      m. 168 

Certainly, the snow layer is combined with the neighboring layer since sublimation or melt, and be 169 

redivided depending on the total snow depth. The model provides an estimate of snow-related 170 

variables using energy and mass balance which computing process requires a series of meteorological 171 

forcing data: near surface air temperature, wind speed and direction, relative humidity, precipitation, 172 

air pressure, downward longwave and shortwave radiation. Snow accumulation or ablation 173 

parameterization of the Noah-MP model is based on the mass and energy balance of the snowpack, 174 

and the snow water equivalent can be calculated by following equation: 175 

s
s s

dW
P M E

dt
   .                                   (1) 176 

Where sW is the snow water equivalent, sP is the solid precipitation, sM is the snow ablation rate,177 

E is the snow evaporation. 178 

Due to the interception of snowfall by the canopy and subsequent sublimation from the canopy 179 

snow can greatly reduce the quantity of snow falling on the ground, a snow interception model was 180 

implemented into Noah-MP model. Within this model, the ground surface albedo is parameterized as 181 

an area-weighted average of albedos of snow and bare soil, and the snow cover fraction of the canopy 182 

was used to calculate the ground surface albedo. As in the equation (2), 183 

 , ,1g snow g soil snow g snowf f     .                             (2) 184 

Where soil and snow are the albedo of bare soil and snow, respectively. ,snow gf is the snow cover 185 

fraction on the ground and parameterized as a function of snow depth, ground roughness length and 186 

snow density (Niu and Yang, 2006). 187 
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2.3 Genetic particle filter data assimilation scheme 188 

The Bayesian recursive estimation problem is solved by the Monte Carlo approach within PF 189 

technique, making this scheme is appropriate for nonlinear models and various probability 190 

distributions (Magnusson et al., 2017). The main idea of PF technique is to use a large number of 191 

random realizations (i.e., particles) of the system state to represent the posterior distribution, at the 192 

same time, the particles are propagated forward in time as the model evolved. The weights associated 193 

with the particles are updated based on the likelihood of each particle’s simulated proximity to the 194 

real observation, and the weight of the particles can be updated as follows: 195 

 1
i i i
t t t tw w p z x .                                    (3) 196 

where 1
i
tw   is the weight of i th particle at time 1t   and the weight is updated by the likelihood 197 

function  it tp z x  , the observation tz  of state variable is employed in this function. Usually, a 198 

Gaussian error distribution was considered to perturb the observation values and the likelihood 199 

function was defined to represent the errors. In this study, a normal probability distribution was 200 

employed to serve as likelihood function: 201 

   ,i i
t t t tp z x N z x   .                             (4) 202 

where N is the normal probability distribution of the residuals between the observed, tz , and 203 

simulated, tx  . Finally, the weights of the updated state variable would be normalized, and the 204 

assimilated value of state variable is the weighted average of all particles at time t . Although the 205 

particle filter has a broad vision of application in nonlinear system, the particle degeneracy and 206 

impoverishment are still the limitations of particle filter. To overcome the degeneration problem in 207 

the PF algorithm, the resampling methods like multinominal resampling, systematic resampling, etc. 208 

were used to resample the particles if the effective sample size, 209 

 2

1
1

N i
eff ti

N w


  .                             (5) 210 

fell below a specified number of particles. Although the particle degeneracy problem can be 211 

eliminated by the resampling methods, it can also make the particles lack of diversity. In this study, 212 

the genetic algorithm (GA) was chosen to resample the particles. The GA was inspired by Darwin’s 213 

evolution theory and emphasizes the principle of the survival of the fittest, exactly, the fitness of 214 

particles should be chosen in the particle filtering phase. And the crossover and mutation operator can 215 

be used to produce better offspring to improve the whole population fitness, this can prevent sample 216 

impoverishment or a lack of particle diversity, especially when the processing noise is low. As shown 217 

in Figure 1, the effective ensemble size fE was used to measure the degeneracy of the PF algorithm. 218 

https://doi.org/10.5194/hess-2022-350
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



8 

 

The GA algorithm will be used to improve whole particles when 0fE E , and the procedure of GA 219 

can be divided into three steps: resample, crossover and mutation. First, the fitness of each particle 220 

was calculated and were then sorted in ascending order. Obviously, the fifth percentile of particles are 221 

fitness and be resampled. Second, the resampled particles were used to produce offspring by the 222 

crossover operator. Last, in order to increase the diversity of particles, the mutation operator was 223 

employed. A large number of particles may lead to filter collapse (Mechri et al., 2014), we set the 224 

number of particles to 100 in this study. To avoid the particle ensemble unable to represent the prior 225 

of state variable due to the structurally deficient within model operator, in this study, a model error of 226 

gaussian noise type based on experience was added to the ensemble members before assimilating the 227 

measurements. 228 

2.4 DA experimental design 229 

2.4.1 Perturbation of meteorological input data 230 

The accuracy of model’s output largely depends on the input meteorological forcing dataset for 231 

land surface models, and meteorological forcing are one of the major sources of uncertainty affecting 232 

simulation results (Raleigh et al., 2015). The precipitation and air temperature are the most important 233 

input elements for snow simulations since their roles in determining the quantity of rainfall and 234 

snowfall. 235 

To produce the forcing data ensemble, the air temperature and precipitation were perturbed 236 

following the method of Lei et al. (2014). In this study, the precipitation was assumed to have an error 237 

with a log-normal distribution, and it is expressed as follows: 238 

 ln , lnexp / 2i
t P P i PP      .                            (6) 239 

 
 2

ln 2
ln 1

p t

P
t

P

P




   
 
 

.                             (7) 240 

 

2

ln 22

ln t
P

t p t

P

P P




 
   
   

.                            (8) 241 

where tP  and i
tP  are the observed and perturbed precipitation at time t  , respectively; the log 242 

transformation of i
tP is a Gaussian distribution with a mean ( lnP ) and a standard deviation ( lnP ); P243 

is the variance scaling factor of the precipitation, which was set to 0.5 in this study; and ,P i is a 244 

normally distributed random number. The number of particles was set to 100 according to the 245 

sensitivity experiment by Magnusson et al. (2017). The ensemble of the air temperature was obtained 246 
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as follows: 247 

   1 2 , 0,1i i i
t tT T w w U    .                         (9) 248 

where tT and i
tT are the observed and perturbed air temperatures at time t , respectively;  is the 249 

variance scaling factor of the temperature with a value of 2.0; and iw  is the random noise with a 250 

uniform distribution between 0 and 1. 251 

2.4.2 Evaluation metrics 252 

In order to properly quantify the filter performance, each experiment is evaluated by statistical 253 

analysis based on the daily mean values of simulations and observations. In this paper, the filter 254 

performance was evaluated using the Kling-Gupta efficiency (KGE) coefficient (Gupta et al., 2009) 255 

allows the analysis of how the assimilation of snow observations succeeds in properly updating the 256 

model simulations, on average: 257 

     2 2 2
1 1 1 1KGE r a b       .                        (10) 258 

Where r is the linear correlation coefficient between the simulated and observed SD; a  is the ratio 259 

of the standard deviation of simulated SD to the standard deviation of the observed ones; and b is the 260 

ratio of the mean of simulated SD to the mean of observed ones, obviously, the simulated SD is the 261 

mean SD ensemble simulations in this paper. Theoretically, when 1r  , 1a  and 1b   in formula (10), 262 

the KGE will obtain the optimal value which equal to 1, in this case, the simulated SD highly 263 

consistent with the observed ones. 264 

To evaluate the performance of the assimilation, the time series of SD obtained from assimilation 265 

scenarios is compared to observations, and the root-mean-square error (RMSE) was employed: 266 

                             2

1

1
( ) ( )

N

i

RMSE obs i sim i
N 

  .                        (11) 267 

Where N is the total number of observations, ( )sim i is the simulated value at time i , ( )obs i is the 268 

observed value at time i . 269 

Another statistical index employed as evaluation metric in this paper is the continuous ranked 270 

probability skill score (CRPSS), and the calculation scheme is shown in equation (12): 271 

1
ref

CRPS
CRPSS

CRPS
  .                                (12) 272 

Where CRPS is the continuous ranked probability score which can quantify the difference between 273 

continuous probability distribution and deterministic observation samples (detail in Hersbach, 2000). 274 

A smaller CRPS value indicates better probabilistic simulation and the CRPS score of a perfect 275 

simulation would equal to 0. Therefore, the changes in overall accuracy of the SD ensemble 276 
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simulations can be measured by CRPSS, certainly, unlike the CRPS score, the optimal CRPSS score 277 

is equal to 1 and negative values indicate a negative improvement with respect to the reference ones. 278 

3. Results and discussion 279 

3.1 Open-loop ensemble simulations 280 

To investigate the impact of meteorological perturbations, 100 ensemble snow depth simulations 281 

derived by as many different meteorological conditions are analyzed. For the sake of concision, a 282 

representative winter season was selected for each site and shown in Figure 2. As shown in Figure 2, 283 

the possible overestimation and underestimation of snow depth simulations produced by the 284 

perturbation forcing data were contained in the ensemble spread. And the ensemble simulations are 285 

the direct consequence of perturbation of the forcing data. Certainly, the nonlinearity of physical 286 

processes within model is the main reason for this issue under the condition of the meteorological 287 

perturbations are supposed to unbiased (Piazzi et al. 2018). During the winter season, precipitation 288 

and air temperature are primary factors which can determine the total amount of snow. As Figure 2 289 

shows, the intervals of SD ensemble are significant different in distinct sites though an identical 290 

meteorological perturbation method was used. In some sites, like ATY, MOHE, WFJ and CDP, a 291 

larger SD ensemble interval was obtained and most of SD observations were covered by the 292 

uncertainty spread. However, in other sites, like in ROPA, SDA and SASP, a narrow SD ensemble 293 

interval was obtained and the SD uncertainty spread can hardly cover observations, especially in 294 

ROPA, we can hardly figure out any variation rules of snow depth and the snow cover was extremely 295 

unstable. The narrow SD ensemble spread in these sites demonstrated that the precipitation and air 296 

temperature are not the main factors causing snow change in these sites. Like in ROPA site, 297 

sublimation losses at ROPA ranged from 24% to 33% of total annual ablation and occurred 60% of 298 

the time during which snow was present, and high sublimation rate may be the main reason for snow 299 

instability (Herrero et al., 2016; You et al., 2020a). At all sites, it was found that the spread of SD 300 

ensembles is increased when a snowfall event occurred due to the perturbation in precipitation would 301 

providing different input snow rates for model realization. It was expected to obtain a SD ensemble 302 

spread which can cover or nearly cover SD observations at all sites using the meteorological 303 

perturbation method, however, at some sites, like SNQ, SDA, etc., the spread of SD ensembles was 304 

found has a seriously underestimation. On the one hand, the precipitation and air temperature are not 305 

the dominant factors affecting snow cover change which lead to a narrowed ensemble spread at these 306 

sites. On the other hand, though the variation trend of snow cover can be accurately expressed by 307 

Noah-MP model, seriously underestimation of the simulated SD shows the snow simulation 308 

performance of Noah-MP is poor at these sites. Certainly, despite this, the simulated ensembles will 309 

be improved whenever the model and observation error are considered. 310 
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3.2 DA simulations with perturbed forcing data 311 

In this study, the SD measurements were assimilated into Noah-MP model and the frequency of 312 

SD observation is 5 days. The SD assimilation results across snow climates are shown in Figure 3. It 313 

can be found that the GPF show a satisfactory assimilation performance at all sites, the SD simulations 314 

obtain a great improvement and closer to observations. Not only can the GPF algorithm solve the 315 

seriously underestimation, like at SNQ, SDA etc., but also the overestimation occurred during snow 316 

ablation period, such as at CDP, SASP, ATY and MOHE site, can be handled correctly. It was 317 

demonstrated that the GPF algorithm used as snow data assimilation scheme can make a substantial 318 

improvement for SD simulations despite seriously overestimation and underestimation occurred in 319 

Noah-MP model snow simulation results across snow climates. 320 

With respect to the open-loop run, the KGE values of the SD simulations relying on the perturbed 321 

meteorological forcing data reveal the effectiveness of GPF in updating SD simulations, as shown in 322 

Figure 4. Although the mean ensemble simulations of SD show a substantial improvement at all sites, 323 

not all members were improved according to the distribution of KGE values. We found the ensemble 324 

members were actually obtained a substantial improvement at some sites, like SDA, SASP, MOHE 325 

and SNQ and a slight improvement at sites like ATY, WFJ. However, the update of SD model 326 

simulations at ROPA and WFJ site are more challenging. It was well known that the snow simulation 327 

performance of Noah-MP model was poor at ROPA site since the special weather condition. Certainly, 328 

the median value of SD ensemble prediction KGE values as expected below zero at this site, 329 

indicating that there are few qualified simulations in the prediction ensemble. Even though the GPF 330 

succeeds in enhancing the SD simulations at ROPA site, the distribution of GPF-DA KGE values is 331 

not concentrated enough. The 25th percentile approximately to 0.2 and the 75th percentile is about 332 

0.7, more than half of ensemble members are below 0.5. This indicated that the GPF assimilation 333 

algorithm cannot enhance all members but it can raise the mean level and obtain an approximation of 334 

the optimal posterior estimation. Conversely, the update of SD model predictions is more challenging 335 

at CDP site, and CDP is the only site which the assimilation of snow measurements actually results 336 

in a poor quality of the SD simulations with respect to the open-loop ensemble simulations. As shown 337 

in Figure 4, the median value of GPF-DA KGE is less than the median value of OL KGE, this indicates 338 

that a considerable number of ensemble simulations fail in well catching the observed values after 339 

assimilating snow data. Nevertheless, we still found the mean ensemble simulations after assimilating 340 

snow data is much closer to SD observations in Figure 3. This explains that the ensemble mean is an 341 

important quantity to characterize the filter effectiveness and the practical value of the optimal 342 

posterior estimation of model state. Certainly, the scale of model ensemble spread is the determinant 343 

factor which have a profound effect on assimilation results. A large ensemble spread can adjust the 344 

simulations toward the observed system state even if the model predictions are heavily biased. 345 

Figure 5 shows the CRPSS value of GPF-DA at different sites. The smaller the CRPSS value, 346 
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the worst the probabilistic simulation (the optimal score being equal to 1). The CRPSS at SASP gets 347 

the maximum value 0.91, and the lowest score is 0.44 at CDP site. That indicates the GPF enhance 348 

the overall accuracy of the ensemble simulations most at SASP site and least at CDP site with respect 349 

to the open-loop ensemble simulation. Certainly, this cannot be illustrated by the mean ensemble 350 

simulations (Figure 3) but consistent with the KGE statistical results (Figure 4). Even though the 351 

open-loop simulations at SNQ site show a very serious underestimation, a satisfactory assimilation 352 

result was obtained at this site and the CRPSS score is 0.87. At SNQ site, the snow simulation 353 

performance of Noah-MP model is poor and shows a seriously underestimation during snow stable 354 

phase, implementing data assimilation experiment in this case is a tricky business since it is very 355 

difficult to obtain a suitable simulated ensemble by perturbing the meteorological forcings. However, 356 

due to the model error and observation error are considered in GPF algorithm, the overall accuracy 357 

of the ensemble simulations will be substantial enhanced and this the reason why it can obtain a 358 

satisfactory assimilation result at SNQ site. It is not easy to enhance the overall accuracy of the 359 

ensemble simulations at ROPA, the CRPSS score is 0.58 at this site. The snow cover was extremely 360 

unstable and the variation in snow depth exhibited extreme irregularity may be the main obstacles to 361 

snow data assimilation at this site. 362 

Based on the above analysis, we concluded that the effectiveness of GPF varied among snow 363 

climates: it can be employed as snow data assimilation scheme across snow climates, however, it 364 

showed different performance at different sites. It is necessary to explore the sensitivity of 365 

measurement frequency and ensemble size to snow data assimilation scheme for different sites. 366 

3.3 Sensitivity analysis of DA scheme to SD measurement frequency 367 

With the aim of investigating the performance of GPF to SD measurement frequency, the 368 

sensitivity experiment was conducted at the eight sites to assess how the reduction of SD observed 369 

data affects the DA simulations. Obviously, a reduction in SD measurement frequency is expected to 370 

reduce the impact of the GPF updating on the model simulations, and the RMSE mean value gradually 371 

increased. Figure 6 shows the RMSE ensembles of snow depth simulations resulting from the 372 

assimilation of different frequency SD observations throughout the snow period at all sites. Obviously, 373 

assimilating higher frequency of SD observations is more helpful to improve the effectiveness of GPF, 374 

like the frequency of SD observation equals to 5 days, the ensemble simulations obtain lower RMSEs 375 

at all sites. Certainly, the range of RMSE values at different sites have a significant difference since 376 

it relates to the maximum snow depth, for instance, a thick snow at SNQ and WFJ site during the 377 

snow period lead to larger RMSEs of snow depth simulations. As shown in this figure, it is noteworthy 378 

that an increase in the length of assimilation window generally result in a significant increment of the 379 

simulation RMSE. Certainly, an abnormal situation occurred at SDA site, the assimilation effect of 380 

20 days SD observations is significantly better than the assimilation effect of 15 days SD observations. 381 

Actually, despite the RMSE distribution of SD assimilation result with 20 days observations seems 382 

https://doi.org/10.5194/hess-2022-350
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



13 

 

superior to the assimilation result with 15 days, however, the RMSE mean value of the two are very 383 

close, one is 0.08 m and the other is 0.07 m. Therefore, this anomaly can be ignored. It indicates that 384 

the frequency of SD observations has a significant impact on the effectiveness of GPF algorithm, and 385 

a dense observation data can effectively improve the assimilation result. 386 

3.4 Sensitivity analysis of DA scheme to ensemble size 387 

The main results of the experiment aiming to evaluate the impact of particle number on the 388 

assimilation performance of GPF is shown in Figure 7. As expected, an increase in the particle number 389 

which less than threshold generally result in a significant increment of the percent effective sample 390 

size. However, the filter performance is not significantly improved when the particle number greater 391 

than the threshold. Figure 7 shows that the GPF would get the minimum error at all sites when the 392 

particle number is 100, and one hundred particles can optimize the performance of GPF algorithm. 393 

Although large particle number can enhance particle diversity and prevent filter divergence, it will 394 

increase the computation burden, and this cannot reduce the error of the system. As shown in Figure 395 

7, the RMSEs are basically at the same level when the particle number equals to 120 and 160, and 396 

the RMSE is significantly larger than the RMSE when the particle number is equal to 100. A low 397 

system sensitivity to the ensemble size is also clearly proven by the slight impact of the change in the 398 

particle number on the performance of GPF when the particle number is less than the threshold, and 399 

this has been occurred at all sites. Essentially, the increase of the particle number does not ensure a 400 

better DA performance of GPF algorithm. As shown in Figure 7, although the particle number 401 

increased from 120 to 160, the RMSEs of simulated snow-depth are basically unchanged at all sites. 402 

It indicates that a blindly increasing ensemble size is futile to improve the performance of GPF, it just 403 

can increase the computational burden. 404 

4. Conclusions 405 

This study investigated the potential of GPF used as a snow data assimilation scheme at eight 406 

sites across different snow climates. To solve the problem of degeneration and impoverishment in PF 407 

algorithm, we used the genetic algorithm to resample particles when the particle threshold is below 408 

0.95. On this basis, we examined the sensitivity of GPF scheme to measurement frequency and 409 

ensemble size. The main findings of this study are as follows. 410 

1. The GPF was an effective snow data assimilation scheme and can be used across different snow 411 

climates. The genetic algorithm can effectively solve the problem of particle degeneration and 412 

impoverishment in PF algorithm. 413 

2. In this point-scale application of the ground SD measurement, the system has revealed a low 414 

sensitivity to the particle number, thereby proving that 100 particles can be obtained a better 415 

assimilation result across different snow climates, that is, 100 particles can be suited to represent 416 
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the high dimensionality of the system. 417 

3. The perturbation of the meteorological forcing data has turn out not to be sufficient for providing 418 

ensemble spread and resulting a poor filter performance. However, particle inflation can make up 419 

for this deficiency. The RMSE of simulated SD would decrease significantly with the increase of 420 

the frequency of SD measurement, that is, a dense observational data can dominate the 421 

assimilation results. 422 

The experiments conducted in this paper were based on forcing data and snow observations from the 423 

sites across different snow climates. On the one hand, the performance of the GPF on the regional 424 

scale is needed to be investigated; on the other hand, additional studies are need to explore the snow 425 

observational data which from remote sensing or wireless sensor network assimilated into LSM by 426 

GPF. Overall, the results of this study providing a reference for applying the GPF to snow data 427 

assimilation and the feasibility of GPF across different snow climates has been proved. 428 
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 515 

Figure 1. Flowchart of Genetic particle filter 516 
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 518 

Figure 2. Impact of the meteorological uncertainty on snow depth ensemble simulations 519 
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 521 

Figure 3. Evaluation of the SD at eight sites from mean ensemble simulation and assimilation with 522 

the measurements. 523 

 524 
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 526 

Figure 4. The KGE values of SD simulations, the OL and GPF-DA are in green, red, respectively. 527 

The bottom and top edges of each box indicate the 25th 75th percentiles, respectively. The line 528 

in the middle of each box is the median. 529 
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 531 

Figure 5. Comparison of the CRPSS value of GPF-DA at different sites. 532 

  533 

https://doi.org/10.5194/hess-2022-350
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



22 

 

 534 

Figure 6. The RMSE values of SD simulations at different sites, from left to right in each subfigure 535 

are the assimilation observation frequency is 5, 10, 15, 20 days, respectively, and with different 536 

colors. 537 
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 539 

Figure 7. Sensitivity analysis of the GPF snow DA scheme to particle number at eight sites, during 540 

different snow periods. 541 
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