
1 

 

A genetic particle filter scheme for univariate data assimilation 1 

into Noah-MP model across snow climates 2 

Yuanhong Youa, Chunlin Huangb, Zuo Wanga, Jinliang Houb, Ying Zhanga, Peipei Xub 3 

 4 
aCollege of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China 5 

 6 
bNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 7 

730000, China 8 

 9 

 10 

 11 

 12 

 13 

Corresponding author: Chunlin Huang, Key Laboratory of Remote Sensing of Gansu Province, 14 

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 15 

Gansu, 730000, China. (huangcl@lzb.ac.cn) 16 

 17 

 18 

Submitted to: Hydrology and Earth System Sciences 19 

May, 2023 20 

  21 



2 

 

Abstract 22 

Accurate snowpack simulations are critical for regional hydrological predictions, snow 23 

avalanche prevention, water resource management, and agricultural production, particularly during 24 

the snow ablation period. Data assimilation methodologies are increasingly being applied to for 25 

operational purposes to reduce the uncertainty in snowpack simulations and enhance their predictive 26 

capabilities. This study aims to investigates investigate the feasibility of using Genetic Particle Filter 27 

(GPF) as a snow data assimilation scheme designed to assimilate ground-based snow depth (SD) 28 

measurements across different snow climates. We employed the default parameterization scheme 29 

combination within the Noah-MP model as the model operator in the snow data assimilation system 30 

to evolve snow variables and evaluated the assimilation performance of GPF using observational data 31 

from the sites with different snow climates. We also explored the impact of measurement frequency 32 

and particle number on the filter updating of the snowpack state at different sites and compared the 33 

results of generic resampling methods compared tocompared to the genetic algorithm used in the 34 

resampling process. Our results demonstrate that GPF can be used as a snow data assimilation scheme 35 

to assimilate ground-based measurements and obtain satisfactory assimilation performance across 36 

different snow climates. We found that particle number is not crucial for the filter’s performance, and 37 

100 particles are sufficient to represent the high dimensionality of the point-scale system. The 38 

frequency of measurements can significantly affect the filter updating performance, and dense 39 

ground-based snow observational data always dominatedominates the accuracy of assimilation results. 40 

Compared to generic resampling methods, the genetic algorithm used to resample particles can 41 

significantly enhance the diversity of particles and avoid prevent particle degeneration and 42 

impoverishment. Finally, we concluded that the GPF is a suitable candidate approach to for snow data 43 

assimilation and is appropriate for different snow climates. 44 

1. Introduction 45 

Understanding snowpack dynamics is crucial for water resource management, agricultural 46 

production, avalanche prevention and flood preparedness in snow dominated regions (Piazzi et al., 47 

2019; Pulliainen et al., 2020). As a special land surface type, seasonal snow cover is highly sensitivity 48 

sensitive to climate change and has a significant impact on energy and hydrological processes (Barnett 49 

et al., 2005; Takala et al., 2011; Kwon et al., 2017; Che et al., 2014). On one hand, the high albedo of 50 

snow-covered surfacessnow surface albedo can significantly reduce shortwave radiation absorption, 51 

leading to adjustments in the energy exchange between the land surface and atmosphere (You et al., 52 

2020a; You et al., 2020b). On the other hand, the low thermal conductivity of snow cover can insulate 53 

the underlying soil, which resultsresulting in reduced temperature variability and a more stable 54 
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condition environment (Zhang et al., 2005; Piazzi et al., 2019). AdditionallyIn addition, snowmelt is 55 

an importanta vital source of water resource that plays a critical role in soil moisture, runoff, and 56 

groundwater recharge (Dettinger, 2014; Griessinger et al., 2016; Oaida et al., 2019). 57 

ConsequentlyTherefore, comprehendingunderstanding snow dynamics is crucial essential for 58 

predicting snowmelt runoff, atmospheric circulation, hydrological predictions, and climate change. 59 

Currently, there is a growing effort to investigate the potential of data assimilation (DA) schemes 60 

to improve snow simulations and obtain the optimal posterior estimate of the snowpack state 61 

(Bergeron et al., 2016; Piazzi et al., 2018; Smyth et al., 2020; Abbasnezhadi et al., 2021). Various DA 62 

methodologies with different degrees of complexity have been developed, resulting in diverse 63 

performance levels. Sequential DA techniques, including basic direct insertion, optimal interpolation 64 

schemes, ensemble-based Kalman filter, and particle filter, have been widely employed in real-time 65 

applications. The greatest strength of sequential DA techniques is that the model state can be 66 

sequentially updated when observational data become available (Piazzi et al., 2018). However, the 67 

direct insertion method, which replaces model predictions with observations when available, is based 68 

on the assumption that the observation is perfect and the model prior is wrong (Malik et al., 2012). 69 

This method can potentially result in model shocks due to physical inconsistencies among state 70 

variables (Magnusson et al., 2017). Although the optimal interpolation method is more advanced and 71 

takes into account observational uncertainty, it still has great limitations and is rarely used in real-72 

time operational systems (Dee et al., 2011; Balsamo et al., 2015). 73 

At a higher level are the Kalman filter and ensemble-based Kalman filter, which are most 74 

commonly used in various real-time applications. The Ensemble Kalman Filter (EnKF), which was 75 

first introduced by Evensen in 2003, uses a Monte Carlo approach to approximate error estimates 76 

based on an ensemble of model predictions. This approach does not require model linearization, 77 

making it particularly advantageous. Precisely due to this advantage, the EnKF has been widely used 78 

in snowpack prediction. For example, EnKF has been used to assimilate MODIS snow cover extent 79 

and AMSR-E SWE into a hydrologic hydrological model to improve modeled SWE (Andreadis et al., 80 

2006), as well as to assimilate MODIS fractional snow cover into a land surface model (Su et al., 81 

2008). Moreover, the EnKF method has been used to enhance snow water equivalent estimation by 82 

assimilating ground-based snowfall and snowmelt rates, assimilation of bothsimultaneous 83 

assimilation of D-InSAR (Differential Interferometric Synthetic Aperture Radar, ) and manually 84 

automatically and manually measured snow depth data simultaneously (Yang and Li, 2021). Even 85 

though there are numerous studies have generally stated that the EnKF has an excellent assimilation 86 

performance enabling it to consistently improve snow simulations, some constraining limitations 87 

hinder the filter performance (Chen, 2003). One of the main limitations is that the EnKF assumes that 88 

the model states follow a Gaussian distribution and only considers the first and second order moments, 89 

thereby losing relevant information contained in higher-order moments (Moradkhani et al., 2005). 90 
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Unfortunately, the dynamic dynamical system usually has strong nonlinearity and the involved 91 

probability distribution of system state variables are is not supposed to follow a Gaussian distribution 92 

(Weerts and El Serafy, 2006). Additionally, the filter performance of the EnKF is significantly 93 

influenced by the linear updating procedure, and the state-averaging operations can be particularly 94 

challenging for highly detailed complex snowpack models. 95 

In order to overcome these limitations, the particle filter (PF) which also based on Monte Carlo 96 

method has been developed for non-Gaussian, nonlinear dynamic models (Gordon et al., 1993). The 97 

greatest strength of PF technique is to be free from the constraints of model linearity and error 98 

following a Gaussian distribution, . This enables the successful application of this makes the PF 99 

technique succeed applied into nonlinear dynamical systems withand non-Gaussian dynamic 100 

systemserrors. Additionally, the PF technique givesgive weights to individual particles but leave 101 

model states untouched, which makes PF more computationally efficient than the ensemble Kalman 102 

filter and smoother techniques (Margulis et al., 2015). Thanks to these advantages, an increasing 103 

interest focuses on applying PF technique in snow data assimilation. For example, remotely sensed 104 

microwave radiance data was were assimilated into a snow model for to updating update model states 105 

by using the PF technique, and the results demonstrated that the SWE simulations have great 106 

improvement (Dechant and Moradkhani, 2011; Deschamps-Berger et al., 2022). A newly PF approach 107 

proposed by Margulis et al. (2015) was used to improve SWE estimation through assimilating 108 

remotely sensed fractional snow-covered area. At basin scale, PF technique was implemented with 109 

the objective of obtaining high resolution retrospective SWE estimates (Cortes et al., 2016). The PF 110 

technique was also used to assimilate daily snow depth observations within a multi-layer energy-111 

balance snow model to improve SWE and snowpack runoff simulations (Magnusson et al., 2017). 112 

Above The studies indicated above demonstrated that the either assimilated the snow-related in-situ 113 

measurements or the remotely sensed observation data through the PF technique can successfully 114 

update the predictions ofpredicted snowpack dynamics, and the PF scheme is a well-performing data 115 

assimilation technique enabling to consistently improve model simulations. Nevertheless, particle 116 

degeneracy is still one a potential limitation for of the PF technique, . it It occurs when most of 117 

particles have negligible weight, and only a few particles have carry significant weights, which makes 118 

hinders a realistic sampling of the underlying the state probability distribution of the state cannot be 119 

represented by the particles (Parrish et al., 2012; Abbaszadeh et al., 2017; Abbaszadeh et al., 2018). 120 

The particle resampling has been considered to be an efficient approach which that can effectively 121 

mitigate the problem of particle degeneracy., Howeverhowever, it may lead to the resultingresult in a 122 

sample will containcontaining many repeated points and a lack of diversity among the particles, which 123 

is defined referred to as sample impoverishment (Rings et al., 2012; Zhu et al., 2018). And the sample 124 

impoverishment was a tricky problem for generic resampling methods. Using intelligent search and 125 

optimization methods to mitigate the degeneracy problem may be a good choice since because it can 126 
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effectively avoid the sample impoverishment well (Park et al., 2009; Ahmadi et al., 2012; Abbaszadeh 127 

et al., 2018). The Genetic Algorithm (GA) as an intelligent search and optimization method has been 128 

known as an effective approach to mitigate the degeneracy problem and received more attention 129 

(Kwok et al., 2005; Park et al., 2009; Mechri et al., 2014). The GA applied in the particle filter, which 130 

is defined referred to as the genetic particle filter (GPF), has been successfully implemented to 131 

estimate parameters or states in nonlinear models (Van Leeuwen, 2010; Snyder, 2011). The GPF was 132 

also used as data assimilation scheme applied to land surface model which simulates prior subpixel 133 

temperature and the results showed the GPF outperformed prior model estimations (Mechri et al., 134 

2014). Despite a series of studies have having provenproved that the GPF is an effective data 135 

assimilation approach, however, few studies have investigated the performance of GPF as a snow 136 

data assimilation scheme, especially in different snow climates. In view of the promising 137 

performances of GPF as a snow data assimilation scheme, this paper aims to investigate the potential 138 

of GPF in performing snow data assimilation, and the main goal of this research is to address the 139 

following issues: (1) Can the GPF be employed as a snow data assimilation scheme? (2) How is the 140 

assimilation performance of GPF in snow data assimilation across different snow climates? (3) The 141 

sensitivity of DA simulations to the frequency of the assimilated measurements and the particle 142 

number. 143 

This paper is organized as follows. Section 2 introduces the information of study sites, the 144 

meteorological dataset, the snow module within the Noah-MP model, the calculation flow of the GPF 145 

scheme, and design of the numerical experimental. Section 3 explains the simulation results of SD by 146 

using the open-loop ensemble, explores the sensitivity of the measurement frequency and ensemble 147 

size. Finally, sectionSection 4 summarizes the findings of this study. 148 

2. Materials and methods 149 

2.1 Study sites and data 150 

With the consideration of the filtering performance, which may vary maybe diverse in snow 151 

climates, eight seasonally snow-covered study sites with different snow climates in total were selected 152 

to implement numerical experimental in this study (Sturm et al., 1995; Trujillo and Molotch, 2014). 153 

These sites are distributed at different latitudes in the northern hemisphereNorthern Hemisphere, and 154 

the sites included the Arctic Sodankylä site (SDA, 179 m), located beside the Kitinen River in Finland 155 

and has a 2 m depths soil frostthe upper 2 meters are frozen (Rautiainen et al., 2014); the Snoqualmie 156 

site (SNQ, 921 m) with a rain-snow transitional climate in the Washington Cascades of the USA, in 157 

this site, the SD measured from by snow stakes was employed (Wayand et al., 2015); the maritime 158 

Col de Porte (CDP, 1330 m) site in the Chartreuse Range in the Rhone-Alpes region of France; the 159 

Mediterranean climate Refugio Poqueira site (ROPA, 2510 m) in Sierra Nevada Mountains of Spain 160 
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and has a high evaporation rate (Herrero et al., 2009); the Weissfluhjoch site (WFJ, 2540 m) in Davos 161 

of Switzerland, and automatic SD observations of SD were used in this study (Wever et al., 2015); 162 

the continental Swamp Angel Study Plot (SASP, 3370 m) site in the San Juan Mountains of Colorado, 163 

USA; and two sites from typical snow-covered regions in China, the Altay meteorological observation 164 

site (ATY, 735.3 m) in Northern Xinjiang, China, where there iswhich has less wind in the winter 165 

season; the other one is the Mohe meteorological observation site (MOHE, 438.5 m) in a county of 166 

Northeast China, which is the northernmost part of China and has a cold temperate continental climate 167 

and is the northernmost part of China. Serially complete meteorological measurements are available 168 

and can be used as forcing data in these sites, certainly, the downward longwave and shortwave 169 

radiation values of MOHE were extracted from the China Meteorological Forcing Dataset (CMFD) 170 

(Chen et al, 2011), since there are no radiation measurements in this site.  171 

It is noteworthy that the spatial variance on of the performance of the model is negligible since 172 

these sites themselves are flat and the surrounding vegetation types are uniform. We have used this 173 

data set to examine the sensitivity of simulated SD to physics options, and the results showed shown 174 

that the dataset has a reliable quality. In addition, the location, the detailed information of snow 175 

climates, and dataset process introduction ofdetails about the dataset processing for the eight sites can 176 

be also referenced in You et al. (2020a). 177 

2.2 Snow module within Noah-MP model 178 

The snow partial module within Noah-MP model can be divided into up to three layers, 179 

depending on the depth of the snow at most according to snow depth (Yang et al., 2011). The SD 180 

snowh  is calculated by 181 

,1 s gt t
snow snow

sf

P
h h dt


  .                                  (1) 182 

where ,s gP   is the snowfall rate at the ground surface, dt   is the timestep, and sf   is the bulk 183 

density of the snowfall. When 0.025snowh  m, the snowpack is combined with the top soil layer, and 184 

there are no dependent snow layer exists. When 0.025 0.05snowh  m, the a snow layer is created with 185 

the a thickness equal to SD. When 0.05 0.1snowh  m, the snowpack will be divided into two layers, 186 

and botheach with a thickness of 1 0 / 2snowz z h    . When 0.1 0.25snowh  m, the thickness of the 187 

first layer is 1 0.05z   m, and the thickness of the second layer is 0 1( )snowz h z     m. When188 

0.25 0.45snowh   m, a third layer is created, and the three thickness are: 2 0.05z   m and 189 
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1 0 2( ) / 2snowz z h z       m. When 0.45snowh  m, the layer thickness of the three snow layers are190 

2 0.05z   m, 1 0.2z   m,  0 2 1snowz h z z      m. Certainly, the snow cover is highly 191 

influenced by air and ground temperature, and the snow layer is combinedcombines with the 192 

neighboring layer since due to sublimation or melt,melting and isbe redivided depending on the total 193 

SD. The snow module of the Noah-MP model provides an estimate of snow-related variables using 194 

energy and mass balance. which This computing process requires a series of meteorological forcing 195 

data, such as, near near-surface air temperature, precipitation, and downward solar radiation. The 196 

snowSnow accumulation or ablation parameterization of the Noah-MP model is based on the mass 197 

and energy balance of the snowpack, and the snow water equivalent can be calculated by using the 198 

following equation: 199 

,
s

s g s

dW
P M E

dt
   .                                   (2) 200 

where sW  is the snow water equivalent (mm), ,s gP  is the solid precipitation (mm s-1), sM  is the 201 

snowmelt rate (mm s-1), E  is the snow sublimation rate (mm s-1). 202 

A snow interception model was implemented into the Noah-MP model to describe the process 203 

of snowfall intercepted by the vegetation canopy (Niu and Yang, 2004). Within this model, the 204 

snowfall rate at the ground surface ,s gP  is then calculated by 205 

, , ,s g s drip s throuP P P  .                                 (3) 206 

where ,s dripP (mm s-1) is the drip rate of snow, and ,s throuP (mm s-1) is the through-fall rate of snow. In 207 

the Noah-MP model, the ground surface albedo is parameterized as an area-weighted average of the 208 

albedos of snow and bare soil, and the snow cover fraction of the canopy was is used to calculate the 209 

ground surface albedo,. asAs shown in the equation Equation (4), 210 

 , ,1g snow g soil snow g snowf f     .                             (4) 211 

where soil  and snow  are the albedo of bare soil and snow, respectively. ,snow gf  is the snow cover 212 

fraction on the ground and is parameterized as a function of snow depth, ground roughness length, 213 

and snow density (Niu and Yang, 2006). 214 

2.3 Genetic particle filter data assimilation scheme 215 

The Bayesian recursive estimation problem is solved by the Monte Carlo approach within PF 216 

technique, making this scheme is appropriate for nonlinear system with a non-gaussian Gaussian 217 

probability distribution (Magnusson et al., 2017). The basic concept of PF technique is to use a large 218 
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number of random randomly generated realizations (i.e., particles) of the system state to represent the 219 

posterior distribution, . meanwhileMeanwhile, the particles are propagated forward in time as the 220 

model evolvedevolves. The weights associated with the particles are updated based on the likelihood 221 

of each particle’s simulated proximity to the real observation each particle’s simulated proximity to 222 

the real observation., Theand the weight of the particles can be updated as follows: 223 

 1
i i i
t t t tw w p z x .                                    (5) 224 

where 1
i
tw   is the weight of i th particle at time 1t   and the weight is updated by the likelihood 225 

function  it tp z x  , which measures the likelihood of a given model state with respect to the 226 

observation tz . In general, a Gaussian distribution was assumed to perturb the observations and the 227 

likelihood function was defined to represent the errors.The observation errors are generally assumed 228 

to follow a Gaussian distribution, and the chosen likelihood function represents this assumption. In 229 

this study, we employed a normal probability distribution to serve as likelihood function: 230 

   ,i i
t t t tp z x N z x   .                             (6) 231 

where N  represents the normal probability distribution of the residuals between observed, tz , and 232 

simulated, tx  . Finally, the weights of the updated model state would be normalized, and the 233 

assimilated value of model state is the weighted average of all particles at time t . Although the 234 

particle filter has been widely applied in various nonlinear systems, the particle degeneracy and 235 

impoverishment in particle filter are still the fatal limitations need to be urgently addressed. To 236 

address the degeneration problem in PF technique, traditional resampling methods like multinominal 237 

resampling, systematic resampling were employed to resample the particles if the effective sample 238 

size, 239 

 2

1
1

N i
eff ti

N w


  .                             (7) 240 

fell below a specified number. Where N  is the ensemble size and i
tw  is the normalized weights 241 

defined in Equation (5). To be honest, the traditional resampling methods can effectively mitigate the 242 

problem of particle degeneracy problem by resampling high-quality particles, . howeverHowever, 243 

after multiple iterations, these methods oftenit will leads lead to a serious lack of the particles lack of 244 

diversity seriouslyamong particles, after multiple iterations, that is the so-calledwhich is known as 245 

the particle impoverishment problem. For the sake of mitigatingTo mitigate both of these issues 246 

simultaneously, these two problems simultaneously, we employed the genetic algorithm (GA) to 247 

resample the particles, and this isresulting in the genetic particle filter algorithm (GPF). The GA was 248 

is inspired by Darwin’s evolution theory of evolution and emphasizes the principle of the survival of 249 

域代码已更改
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the fittest, . in In fact, in the resampling phase, the “fitness”fitness of particles should be reselected in 250 

the resampling phase according to the theory of particle filterfiltering. The selectionSelection, 251 

crossover, and mutation are major steps used to simulate population evolution, . as As shown in Figure 252 

1, we used thethese three operators are utilized to produce better offspring and improve the whole 253 

overall population fitness, which was expected towith the aim of preventingprevent particle 254 

degeneracy and impoverishment. These three operators will be used to improve the particle fitness 255 

when the fitnessit falls below less than a threshold value. The three operators are described as below. 256 

Selection mechanism: At the time of assimilation, the selection operator will preferentially select the 257 

particles which that are close to the observed SD. This process is usually achieved by sorting the 258 

fitness value of all particles and selecting a certain proportion of particles. Here, we calculated the 259 

survival rate of all individuals and sorted them in ascending order, . the The top fifth percentile of 260 

particles were considered as high-quality particles and were selected as parents in genetic algorithm. 261 

This can ensure ensures that the fitnessfit individuals can be delivered to the next generation group. 262 

The survival rate of particles can be calculated by using the following equation: 263 

   2

, , 1

1
expt i ki k k

k

P x x z
R 

 
   

 
.                            (8) 264 

where kR   is the observation error at time k  , 0.01 m was set in this study; kz  represents the 265 

observed SD. 266 

Crossover mechanism: The purpose of crossover operator is to exchange some genes for two or 267 

more chromosomes in a specified way, creating to form new individuals. GA mainly generates new 268 

individuals by this waythrough this process, which also determines the capability of global search. In 269 

this study, the arithmetic crossover method was used as the crossover operator to generate new 270 

individuals. and play the role of crossover operator. Selecting twoTwo particles were randomly 271 

selected from the resampled particle group and combining combined them linearly to form a new 272 

particle. Assumed Assuming the two selected particles are  ,m nx x  , and the new particles were 273 

formed bythe following equations were used to form the new particles: 274 

 ' 1m m nx x x    .                             (9) 275 

 ' 1n n mx x x    .                            (10) 276 

where  ,   are the empirical crossover coefficients, and 0.45  , 0.55   in this study. In 277 

order to ensure the diversity amongof particles, the newlynew formed particles will be abandoned 278 

discarded when the ' '
m nx x  occurred, and the parent individuals will be re-selected from the particle 279 

group. 280 
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Mutation mechanism: The mutation in GA refers to replacing the gene values at some loci with 281 

other alleles to form a new individual. The mutation mechanism can be considered as a supplement 282 

to the crossover mechanism, which can increase the diversity of the population. Assuming that the 283 

randomly selected particle from the crossed particle set is kx , the mutation operation is performed 284 

on the particle by using the following equation: 285 

'
k kx x Uniform   .                             (11) 286 

where Uniform  refers a random number from a uniform distribution,   is an empirical coefficient, 287 

and 0.01 was set in this study. 288 

It is noteworthy that a large number of particles may lead to filter collapse., In this studyhere, 289 

we set the number of particles equals equal to 100 following based on previous references (Mechri et 290 

al., 2014; Magnusson et al., 2017; Piazzi et al., 2018). Moreover, to prevent the particle ensemble 291 

from being unable to represent the prior of model state due to the model structurally 292 

deficientstructural deficiencies, a gaussian typeGaussian-type model error,  ,N   , was added to 293 

the ensemble members. The   was obtained from the mean value of residual between simulation 294 

and observation, and the variance   was set to 0.01.  295 

2.4 DA experimental design 296 

2.4.1 Perturbation of meteorological input data 297 

The accuracy of model’s models’ output largely depends on the input meteorological forcing 298 

dataset for land surface models, and meteorological forcing are one of the major sources of 299 

uncertainty affecting simulation results (Raleigh et al., 2015). The precipitation and air temperature 300 

are the most important input elements for snow simulations since their roles in determining the 301 

quantity of rainfall and snowfall. 302 

To produce the forcing data ensemble, the air temperature and precipitation were perturbed 303 

following the method of Lei et al. (2014). In this study, the precipitation was assumed to have an error 304 

with a log-normal distribution, and it is expressed as follows: 305 

 ln , lnexp / 2i
t P P i PP      .                            (12) 306 

  2

ln 2
ln 1

p t

P
t

P

P




   
 
 

.                             (13) 307 
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 

2

ln 22

ln t
P

t p t

P

P P




 
   
   

.                            (14) 308 

Wherewhere tP  and i
tP  are the observed and perturbed precipitation at time t , respectively; . 309 

Thethe log transformation of i
tP  is a Gaussian distribution with a mean ( lnP  ) and a standard 310 

deviation ( lnP ); P  is the variance scaling factor of the precipitation, which was set to 0.5 in this 311 

study; and ,P i  is a normally distributed random number. Meanwhile, the ensemble of the air 312 

temperature was obtained as follows: 313 

   1 2 , 0,1i i i
t tT T w w U    .                         (15) 314 

Where tT  and i
tT  are the observed and perturbed air temperatures at time t , respectively; 315 

is the variance scaling factor of the temperature with a value of 2.0; and iw  is the random noise with 316 

a uniform distribution between 0 and 1. An A forcing ensemble containing 100 particles was obtained 317 

through above perturbation method in this study. 318 

2.4.2 Evaluation metrics 319 

In order to properly quantify the filter performance, each experiment is evaluated by statistical 320 

analysis based on the daily mean values of simulations and observations. In this study, we used the 321 

Kling-Gupta efficiency (KGE) coefficient (Gupta et al., 2009) to evaluate the filter performance, 322 

which allows the analysis of how the assimilation of snow observations succeeds in properly updating 323 

the model simulations, on average: 324 

     2 2 2
1 1 1 1KGE r a b       .                        (16) 325 

Where where r  is the linear correlation coefficient between the simulated and observed SD; a is 326 

the ratio of the standard deviation of simulated SD to the standard deviation of the observed ones; 327 

and bis the ratio of the mean of simulated SD to the mean of observed ones, here, the simulated SD 328 

is the mean SD ensemble simulations. Theoretically, when 1r   , 1a   and 1b   in 329 

Equationequation (16), the KGE will obtain the optimal value which equals to 1, and this illustrates 330 

that the simulated SD highly consistent consistently with the observed ones. 331 

The time series of SD obtained from assimilation scenarios was compared to observations for 332 

evaluating the performance of the assimilation, and the root-mean-square error (RMSE) was 333 

employed: 334 
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 2

1

1
( ) ( )

N

i

RMSE obs i sim i
N 

  .                        (17) 335 

where N  is the total number of observations, ( )sim i  is the simulated value at time i , and ( )obs i  336 

is the observed value at time i . 337 

Another statistical index is the continuous ranked probability skill score (CRPSS), which is 338 

evaluated to assess changes to the overall accuracy of the ensemble simulations of each experiment 339 

(CRPS) by considering the open-loop ensemble control run as the reference one ( refCRPS ), and the 340 

calculation scheme is shown in the following formula: 341 

1
ref

CRPS
CRPSS

CRPS
  .                                (18) 342 

where CRPS is the continuous ranked probability score which can measure the difference between 343 

continuous probability distribution and deterministic observation samples (detail in Hersbach, 2000). 344 

A smaller CRPS value indicates better probabilistic simulation and the CRPS score of a perfect 345 

simulation would equals equal to 0. Therefore, the changes in overall accuracy of the SD ensemble 346 

simulations can be measured by CRPSS. However, unlike the CRPS score, the optimal CRPSS score 347 

is equal to 1 and negative values indicate a negative improvement with respect to the reference control 348 

run. 349 

3. Results and discussion 350 

3.1 Open-loop ensemble simulations 351 

In order to investigate the impact of meteorological perturbations on snow simulations, an 352 

ensemble containedcontaining 100 SD simulations derived by from as many different meteorological 353 

conditions were was analyzed. For the sake of concision and clarity, we considered only 1 one winter 354 

season for implementing snow simulation experiment at each site, and the results were are shown in 355 

Figure 2. As shown in Figure 2, the possible overestimation and underestimation of SD simulations 356 

produced by the perturbation forcing data were contained in within the ensemble spread, which are 357 

is athe direct consequence of the perturbation of the forcing data. Since the meteorological 358 

perturbations are unbiased, the nonlinearity of physical processes with nonlinear characteristics 359 

within the model is supposed to be the main reason for the uncertainty (Piazzi et al. 2018). During 360 

the winter season in northern hemisphere, precipitation and air temperature are primary factors which 361 

that can determine the total amount of snow.  362 

As Figure 2 shows, the intervals of SD ensemble are significant significantly different at 363 

different sites, though although an identical meteorological perturbation method was used. At some 364 
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sites, like such as ATY, MOHE, WFJ, and CDP, larger SD ensemble spreads were obtained, and most 365 

of the SD observations were covered by the ensemble spread., Inin this case, high-quality particles 366 

can be directly selected from the ensemble. However, at some other sites, like such as ROPA, SDA, 367 

and SASP, narrow SD ensemble spreads were obtained, and the uncertainty interval of simulated SD 368 

can hardly cover the observations., Inin this case, the so-called high-quality particles even cannot 369 

even be found in the ensemble, and the model prior error become becomes a prerequisite for succeed 370 

successful assimilation at this time. Especially at the ROPA site, the snow cover was extremely 371 

unstable, resulting in difficulty in figuring with the result that we can hardly figure out any variation 372 

rules of SD. The narrow SD ensemble spread at this site also demonstrated demonstrates that the 373 

precipitation and air temperature were not the main factors causing snow change. According to the 374 

literaturesliterature, sublimation losses at ROPA ranged from 24% to 33% of total annual ablation 375 

and occurred 60% of the time during which snow was present, . and A high sublimation rate may be 376 

the main reason for snow instability (Herrero et al., 2016; You et al., 2020a). This directly leads to a 377 

perfect ensemble spread which that can cover all observations cannot be produced by perturbing the 378 

air temperature and precipitation. Generally speaking, the ensemble produced by perturbing air 379 

temperature and precipitation does not contain high-quality particles at this site. It was found that the 380 

spread of SD ensembles is increasedincreases when a snowfall event occurred occurs due tobecause 381 

the perturbation in precipitation would providing provide different input snow rates for model 382 

realization at all sites. Despite this, we still found that the simulated SD deviated significantly from 383 

the observation seriously,. For example, like at SNQ site, the maximum value of simulated SD was 384 

almost half of the maximum value of observed SD. In this case, it is impossible to obtain a simulated 385 

SD ensemble spread which that can cover or nearly cover the observation through perturbing the 386 

meteorological forcing data. On the one hand, the precipitation and air temperature are not the 387 

dominant factors affecting snow cover change, which lead leads to a narrowed ensemble spread at 388 

these sites. On the other hand, though although the variation trend of snow cover can be accurately 389 

expressed by the Noah-MP model, seriously serious underestimation of the simulated SD shows that 390 

the snow simulation performance of Noah-MP is poor at these sites. Nonetheless, the simulated 391 

ensembles will be improved whenever the prior error of model state is considered. 392 

3.2 DA simulations with perturbed forcing data 393 

Generally, the ability of a model to simulate autonomously can be limited if observation data is 394 

assimilated too frequently, resulting in assimilation results that are essentially the same as the 395 

observations and do not reflect the differences among models. To address this, the site’ssite SD 396 

measurements were assimilated into the Noah-MP model with an observation frequency of five days 397 

in this study, enabling the GPF to perform differently at distinct sites. Figure 3 shows the SD 398 

assimilation results across snow climates, indicating a substantial improvement in the SD simulations 399 

with satisfactory assimilation performance at all sites. The GPF algorithm can handle not only the 400 
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seriously serious underestimationunderestimations, such as at SNQ, SDA, but also the 401 

overestimationoverestimations during the snow ablation period, as seen at CDP, SASP, ATY, and 402 

MOHE sitesites. These results demonstrate the effectiveness of the GPF algorithm as a snow data 403 

assimilation scheme and its ability to significantly improve SD simulations, despite the numerous 404 

overestimations and underestimations that may occur in the Noah-MP model’s snow simulation 405 

results across snow climates. 406 

The effectiveness of GPF in updating SD simulations is demonstrated by the KGE values of the 407 

DA simulations with perturbed meteorological forcing data, as shown in Figure 4. Although the mean 408 

ensemble simulations of SD exhibit substantial improvement at all sites, not all ensemble members 409 

were improved, as per the distribution of GPF-DA KGE values. Some ensemble members achieved 410 

significant improvement at sites like SDA, SASP, MOHE, and SNQ, while others showed only slight 411 

improvement at sites like ATY, WFJ. Figure 4 also reveals that the updateupdating of SD model 412 

simulations at ROPA and WFJ sites is more challenging. Snow simulation performance at the ROPA 413 

site is known to be poor due to the high sublimation rate. Certainly, the median value of SD ensemble 414 

prediction KGE values as is expected to be below zero at this site, indicating that there are few 415 

qualified simulations in the prediction ensemble. While the GPF succeeds in enhancing the SD 416 

simulations at ROPA, the distribution of GPF-DA KGE values is not concentrated enough, with the 417 

25th percentile approximately at 0.2 and the 75th percentile at about 0.7, indicating that the GPF 418 

assimilation algorithm cannot enhance all members but can raise the mean level and obtain an 419 

approximation of the optimal posterior estimation. Conversely, the assimilation of snow 420 

measurements at CDP site resulted in poor quality of the SD simulations compared to the open-loop 421 

ensemble simulations. The median value of GPF-DA KGE was lower than the median value of OL 422 

KGE, indicating that a considerable number of ensemble simulations failed to capture the observed 423 

values after assimilating snow measurements. However, Figure 3 shows that the mean ensemble 424 

simulations after assimilating snow measurements are much closer to SD observations. Thus, it 425 

underscores the importance of the ensemble mean in characterizing the filter effectiveness and the 426 

approximate value of the optimal posterior estimation of model state. Additionally, the scale of the 427 

model ensemble spread was found to be the determinant factor that significantly affects assimilation 428 

results. A large ensemble spread can adjust the simulations toward the observed system state even if 429 

the model predictions are heavily biased. 430 

Figure 5 displays the CRPSS value of GPF-DA at different sites. The smaller the CRPSS value, 431 

the worst worse the probabilistic simulation (the with an optimal score being equal toof 1). The 432 

highest CRPSS score of 0.91 was achieved at SASP, while the lowest score of 0.44 was observed at 433 

CDP. These results indicate that the GPF enhances the overall accuracy of ensemble simulations most 434 

at SASP and least at CDP with respect to the open-loop ensemble simulation. Certainly, this cannot 435 

be illustrated by the mean ensemble simulations (Figure 3) but is consistent with the KGE statistical 436 
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results (Figure 4). Although the open-loop simulations at SNQ exhibited serious underestimation, a 437 

satisfactory assimilation result was obtained at this site with a CRPSS score of 0.87. At the SNQ site, 438 

the snow simulation performance of Noah-MP model is poor and the model shows a serious 439 

underestimation during snow stable phase, . implementing Implementing a data assimilation 440 

experiment in this case is a tricky business since it is difficult to obtain a suitable simulated ensemble 441 

by perturbing the meteorological forcings. However, since the model prior error was considered in 442 

GPF algorithm, the overall accuracy of the ensemble simulations will be substantial substantially 443 

enhanced and this is the reason why a satisfactory assimilation result at SNQ site can be obtained. 444 

ROPA was found to be a difficult site to enhance the overall accuracy of ensemble simulations, with 445 

a CRPSS score of only 0.58. The snow cover was highly unstable, and the variation of SD exhibited 446 

extreme irregularity, which may be the main obstacles to snow data assimilation at this site. 447 

Based on these findings, we conclude that the effectiveness of GPF varied among snow climates: 448 

it can be employed as a snow data assimilation scheme across snow climates, however, it showed 449 

differentits performance at varied across different sites. It is necessary to explore the sensitivity of 450 

measurement frequency and ensemble size for the GPF assimilation scheme across differentat various 451 

sites. 452 

3.3 Sensitivity analysis of DA scheme to SD measurement frequency 453 

For complex land/snow process models, model errors can gradually lead to the system deviating 454 

from the true value. Therefore, it is necessary to continuously incorporate observations into the model 455 

framework to adjust the operating trajectory of the state. Obviously, the frequency of incorporating 456 

observations, that is, the assimilation interval, has an important impact on the assimilation system. To 457 

investigate the effect of the SD measurement frequency on the performance of GPF, we conducted a 458 

sensitivity experiment at eight sites. We aimed to determine how reducing the frequency of SD 459 

measurements affects the DA simulations. As expected, a decrease in SD measurement frequency led 460 

to a reduction in the impact of the GPF updating on the model simulations, resulting in a gradual 461 

increase in the mean value of RMSE value. Figure 6 illustrates the RMSE ensembles of SD 462 

simulations resulting from assimilating different frequency SD measurements over the snow period 463 

at each site. Higher frequency SD assimilation is beneficial in mitigating the RMSE value of 464 

simulated SDimproves the accuracy of the simulated SD, as shown by the lower RMSE value 465 

achieved when the frequency of SD measurement was set to five days. This means that more frequent 466 

SD measurements improve the accuracy of the model, which is particularly useful in regions where 467 

snow conditions can change rapidly. The range of RMSE values at different sites varied significantly, 468 

as it was related to the maximum value of SD. For instance, a thick snow at SNQ and WFJ sites during 469 

the snow period led to larger RMSEs of SD simulations. Notably, an increase in the length of the 470 

assimilation window generally resulted in a significant increment increase of in the RMSE value. 471 

However, an abnormal occurrence was observed at the SDA site, where the assimilation effect of 20 472 
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days of SD measurements was significantly better than that of 15 days. Although the RMSE 473 

distribution of SD assimilation results with 20 days of observations appeared superior to that of 15 474 

days, the RMSE mean values of the two were very close: 0.08 m and 0.07 m, respectively. Therefore, 475 

this anomaly can be ignored. These results indicate that the frequency of SD observations has a 476 

significant impact on the effectiveness of the GPF algorithm and that a dense amount of 477 

observationalobservation data can effectively improve the assimilation resultresults. 478 

3.4 Sensitivity analysis of DA scheme to ensemble size 479 

The results of the experiment aimed at evaluating the impact of particle number on the 480 

assimilation performance of GPF are presented in Figure 7. As expected, increasing the particle 481 

number below up to the threshold leads to a significant improvement in the percent effective sample 482 

size. However, the filter performance does not improve significantly when the particle number 483 

exceeds the threshold. Figure 7 shows that the GPF algorithm yields the minimum error at all sites 484 

when the particle number is set to 100, indicating that one hundred particles can optimize the 485 

performance of the GPF algorithm. Although a large particle number can enhance particle diversity 486 

and prevent filter divergence, it increases the computation burden without reducing the system error 487 

of the system. As illustrated in Figure 7, the RMSEs are generally at the same level when the particle 488 

number equals 120 and 160, and the RMSEthey are significantly larger than the RMSE when the 489 

particle number is equal to 100. The slight impact of the change in the particle number on the 490 

performance of GPF, when the particle number is below the threshold, indicates low system 491 

sensitivity to the ensemble size, and this is observed at all sites. Essentially, increasing the particle 492 

number blindly increasing the particle number does not guarantee a better DA performance of the 493 

GPF algorithm. As demonstrated in Figure 7, the RMSEs of simulated snow-depth are virtually 494 

unchanged at all sites, despite an increase in the particle number from 120 to 160. This suggests that 495 

blindly increasing the ensemble size only increases the computational burden without improving the 496 

performance of the GPF. 497 

3.5 Compared to traditional resampling methods 498 

To demonstrate the effectiveness of using genetic algorithms for particle resampling, we 499 

compared the results of our genetic algorithm (PF-G) to those of traditional resampling methods: 500 

systematic resampling (PF-S) and multinomial resampling (PF-M), both of which arewhich are both 501 

commonly used in particle resampling. The calculation process for these methods is detailed in the 502 

particle filter introduction references. Figure 8 shows the RMSE values of for SD simulations 503 

obtained using these three methods. We found that the PF-G outperforms PF-M and PF-S at all sites, 504 

as evidenced by the significantly smaller mean and median RMSE values. This indicates that the PF-505 

G is suitable for snow data assimilation in different various snow climates and is somewhat is superior 506 

to traditional particle filters to a certain extent. At most sites (MOHE, ATY, SDA, and ROPA), PF-M 507 
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and PF-S showed similar performance, meaning that these methods did not produce a significant 508 

difference in the assimilation results. This is because these traditional resampling methods can only 509 

address mitigate particle degeneration by resampling particles, but cannot are unable to prevent 510 

particle impoverishment. Therefore, they are unable to select high-quality particles and keep the 511 

particles have variety. NotablySignificantly, the mean and median RMSE values for PF-G were 512 

significantly lower than those of PF-M and PF-S at some several sites (SASP, SNQ, and WFJ) where 513 

the snow cover was relatively thick, with maximum SD during the snow period reaching 2.45 m, 2.95 514 

m, and 2.40 m, respectively. This suggests that PF-G performs better in assimilating data from thick 515 

snow covers. 516 

The multinomial and systematic resampling methods select particles from the original particle 517 

set at different levels or based on the accumulation of particle weights. Both of the two resampling 518 

methods extract particles from the entire particle set, and the corresponding particle values do not 519 

undergo any essential changes. However, when compared with to the two traditional particle 520 

resampling methods, the genetic algorithm first uses the fitness function to calculate the "survival 521 

rate" of each particle one by one, and then performs crossover, mutation and other operations on the 522 

selected particles. This approach ensures that the resampled particles are high-quality particles, which 523 

is the main reason why genetic particle filtering has an advantage in the snow data assimilation 524 

experiments. As can be seen from Figure 8 shows, the assimilation error ofby the genetic particle 525 

filter is the smallest one at all sites. From the results of the real assimilation experiment, it can be seen 526 

that genetic particle filtering have has more advantages over than the other two methods. 527 

4. Conclusions 528 

In this study, we investigated the potential of using GPF as a snow data assimilation scheme 529 

across eight sites with varying snow climates. We addressed the problem of degeneration and 530 

impoverishment in PF algorithm by using the genetic algorithm to resample particles. We also 531 

examined the sensitivity of GPF scheme to measurement frequency and ensemble size. The main 532 

findings of this study are as follows: 533 

1. The GPF was an effective snow data assimilation scheme and can be used across different snow 534 

climates. The genetic algorithm effectively addressed the problem of particle degeneration and 535 

impoverishment in the PF algorithm. 536 

2. Our experiment showed that the system has a low sensitivity to the particle number, and 100 537 

particles can achieve a better assimilation result across different snow climates. This indicates 538 

that 100 particles are suitable for representing the high dimensionality of the system. 539 

3. We found that perturbations of in meteorological forcing data were not sufficient to provide 540 

ensemble spread, resulting in poor filter performance. Particle inflation can make up for this 541 
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deficiency. Moreover, we observed that the RMSE of simulated SD decreased significantly with 542 

the increase of the frequency of SD measurement, indicating that dense observational data can 543 

improve the assimilation results. 544 

4.  Compared to the two classic resampling methods, the particle filter with genetic algorithm as 545 

resampling method shows a better assimilation performance especially in a thick snow cover, the 546 

distribution distributed RMSEs are more centralized and a smaller mean error will be obtained. 547 

Our experiments were based on forcing data and snow observations from various sites with different 548 

snow climates. While our results provide a reference for applying GPF to snow data assimilation, 549 

further research is needed to investigate the performance of GPF on a regional scale and to explore 550 

the assimilation of snow observational data from remote sensing or wireless sensor networks into 551 

land surface model models by using GPF. In summary, our study demonstrates the feasibility of using 552 

GPF for snow data assimilation and provides valuable insights for future research in this area. 553 
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 744 

Figure 1. Flowchart of Genetic particle filter 745 
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 747 

Figure 2. Impact of the meteorological uncertainty on snow depth ensemble simulations 748 
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 750 

Figure 3. Evaluation of the SD at eight sites from mean ensemble simulation and assimilation with 751 

the measurements. 752 
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 755 

Figure 4. The KGE values of SD simulations, the OL and GPF-DA are in green, red, respectively. 756 

The bottom and top edges of each box indicate the 25th 75th percentiles, respectively. The line in the 757 

middle of each box is the median. 758 
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 760 

Figure 5. Comparison of the CRPSS value of GPF-DA at different sites. 761 

  762 



29 

 

 763 

Figure 6. The RMSE values of SD simulations at different sites, from left to right in each subfigure 764 

are the assimilation observation frequency is 5, 10, 15, 20 days, respectively, and with different colors. 765 
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 767 

Figure 7. Sensitivity analysis of the GPF snow DA scheme to particle number at eight sites, during 768 

different snow periods. 769 
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 771 

Figure 8. The RMSE values of SD simulations by three different resampling methods. For each 772 

subfigure, from left to right are the particles resampled by genetic algorithm, multinominal method, 773 

systematic method, respectively, and with different colors, the black line indicates the mean, and the 774 

red line indicates the median; the kernel bandwidth was 0.05. 775 

 776 


