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Abstract 24 

Accurate snowpack simulations are critical for regional hydrological predictions, snow 25 

avalanche prevention, water resource management, and agricultural production, particularly during 26 

the snow ablation period. Data assimilation methodologies are increasingly being applied to 27 

operational purposes to reduce the uncertainty in snowpack simulations and enhance their predictive 28 

capabilities.With the aim of reducing the uncertainty of simulations, data assimilation methodology 29 

is increasingly being applied in operational purposes. This study aims to investigate investigates the 30 

feasibility of performance of using Genetic Particle Filter (GPF)genetic particle filter which used as 31 

a snow data assimilation scheme, designed designed to assimilate ground-based snow depth (SD) 32 

measurements across different snow climates. We employed the default parameterization scheme 33 

combination within the Noah-MP model as the model operator in the snow data assimilation system 34 

in the snow data assimilation systemto evolve snow variables and evaluated the assimilation 35 

performance of GPF using observational data from the sites with different snow climates..  We also 36 

explored the impact of measurement frequency and particle number on the filter updating of the 37 

snowpack state at different sites and compared the results of generic resampling methods with the 38 

genetic algorithm used in the resampling process. And the feasibility of genetic particle filter used as 39 

snow data assimilation scheme was investigated at different sites, at the same time, the impact of 40 

measurement frequency, particle number on the filter updating of the snowpack state were also 41 

evaluated. The Our results demonstrated that the genetic particle filterGPF can be used as a snow data 42 

assimilation scheme to assimilate ground-based measurements and obtain obtain satisfactory 43 

assimilation performanceresults across different snow climates. We found that the particle number is 44 

not the crucial factor to impact thefor the filter’s performance, and one hundred100 particles can are 45 

sufficient to represent the high dimensionality of the point-scale system. The frequency of 46 

measurements can significantly affects the filter updating performance, of filter updating and a dense 47 

ground-based snow observational data always can dominates the accuracy of assimilation results. 48 

Compared to generic resampling methods, the genetic algorithm used to resample particles can 49 

significantly enhance the diversity of particles and avoid particle degeneration and impoverishment. 50 

Finally, we concluded that the genetic particle filterGPF is a suitable candidate approach to snow data 51 

assimilation and is appropriate for different snow climates. 52 

1. Introduction 53 

Understanding snowpack dynamics is of critical importance tocrucial for water resource 54 

management, agricultural production, avalanche prevention and flood preparedness in mountain area 55 

and flood predictionsnow dominated regions (Piazzi et al., 2019; Pulliainen et al., 2020). As a special 56 
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land surface type, The presence of seasonal snow cover is highly sensitivity to climate change and 57 

has highly sensitivity to climate change and a great significant impact influence on energy and 58 

hydrological cycleprocesses (Barnett et al., 2005; Takala et al., 2011; Kwon et al., 2017; Che et al., 59 

2014). On one hand, the highHigh snow surface albedo can significantly reduce the shortwave 60 

radiation absorption, leading to adjustments in remarkably and the energy exchange between the land 61 

surface and atmosphere will be adjusted (You et al., 2020a; You et al., 2020b). MoreoverOn the other 62 

hand, the property of low thermal conductivity of snow cover can insulate the underlying soil, 63 

resulting in reduced whose temperature variability is severely reduced towardsand more a stable 64 

conditions (Zhang et al., 2005; Piazzi et al., 2019). Additionally, snowmeltSnowmelt is an important 65 

water resource and that plays a critical role in water supply in terms of soil moisture, runoff, and 66 

groundwater recharge (Dettinger, 2014; Griessinger et al., 2016; Oaida et al., 2019). Consequently, 67 

succeedsunderstanding  in catching snow dynamics is crucial for predicting snowmelt runoff,for 68 

snowmelt runoff, atmospheric circulation, and hydrological predictions, and climate change. 69 

RecentlyCurrently, there is a growing effort is aimed atto investigating investigate the potential 70 

of data assimilation (DA) schemes in consistentlyto improveimproving snow simulations and obtain 71 

the optimal posterior estimate of the snowpack state (Bergeron et al., 2016; Piazzi et al., 2018; Smyth 72 

et al., 2020; Abbasnezhadi et al., 2021). Many Various different DA methodologies with different 73 

degrees of complexity have been developed, with distinct degree of complexity, certainly, various 74 

performance since diverse level of complexity.resulting in diverse performance levels. Sequential DA 75 

techniques, including basic direct insertion, optimal interpolation schemes, ensemble-based Kalman 76 

filter, and particle filter, have been widely employed in real-time applications. The greatest strength 77 

of sequential DA techniques is that the model state can be sequentially updated when observational 78 

data become available (Piazzi et al., 2018).The sequential DA techniques including basic direct 79 

insertion, optimal interpolation schemes, Kalman filter and its variants and particle filter are widely 80 

employed in practical applications. The greatest strength of sequential DA technique is that the model 81 

state can be sequentially updated when observational data available (Piazzi et al., 2018). However, 82 

the direct insertion method, which replaces model predictions with observations when available, is 83 

based on the assumption that the observation is perfect and the model prior is wrong (Malik et al., 84 

2012). This method can potentially result in model shocks due to physical inconsistencies among 85 

state variables (Magnusson et al., 2017). The basic direct insertion method simple replace the model 86 

predictions with observations when available on the assumption that the observation is perfect and 87 

model prior is wrong (Malik et al., 2012). However, this method possible result in model shocks due 88 

to physical inconsistencies among state variables (Magnusson et al., 2017). Although the optimal 89 

interpolation method is more advanced schemeand takes into account the observational uncertainty, 90 

it still this method still has great limitations and is rarely used in real-time operational systems (Dee 91 

et al., 2011; Balsamo et al., 2015).  92 
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More advancedAt a higher level are the Kalman filter and its variantsensemble-based Kalman 93 

filter, which are typical sequential DA techniques and most commonly used in various real-time 94 

applications. The standard Kalman filter (KF) just can be used in linear dynamic models since it 95 

depends on the assumption of system linearity (Gelb, 1974). The Ensemble Kalman Filter (EnKF), 96 

which was first introduced by Evensen in 2003, uses a Monte Carlo approach to approximate error 97 

estimates based on an ensemble of model predictions. Ensemble Kalman filter (EnKF) was proposed 98 

by Evensen (2003), in this method, the Monte Carlo approach was used to approximate error estimates 99 

based on an ensemble of model simulations and this This approach method does not require a model 100 

a model linearization, making it particularly advantageous. Precisely due to this advantage, the EnKF 101 

has been widely used in snow data assimilationsnowpack prediction. For example, the EnKF has been 102 

used was employed to assimilate MODIS snow cover extent and AMSR-E SWE into a hydrologic 103 

model to improve modeled SWE (Andreadis et al., 20052006),. as well as to assimilate MODIS 104 

fractional snow cover into a land surface model (Su et al., 2008). Moreover, the EnKF method has 105 

been used to enhance snow water equivalent estimation by assimilating ground-based snowfall and 106 

snowmelt rates, simultaneous assimilation of D-InSAR, automatically and manually measured snow 107 

depth data (Yang and Li, 2021).The feasibility of assimilating fractional snow cover detected by 108 

MODIS into land surface model using EnKF was investigated, and the results show that the SWE 109 

estimates from the EnKF are most improved in various regions (Su et al., 2008). The impact of an 110 

EnKF-based assimilation of both ground-based SWE observations and snowfall and snowmelt rates 111 

on distributed SWE estimates was analyzed in Magnusson et al. (2014). More recently, three kinds of 112 

snow depth data which included the D-InSAR data retrieved from the remote sensing images, the 113 

automatically measured data using ultrasonic snow depth detectors, and the manually measured data 114 

were assimilated based on ensemble Kalman filter, and the results demonstrated that the assimilated 115 

snow depth data were spatiotemporally consecutive and integrated (Yang and Li, 2021). Although 116 

Even though there are numerous the EnKF was widely used in snow data assimilation and many 117 

studies generally stated that the EnKF has an excellent assimilation performance enabling to 118 

consistently improve snow simulations, some constraining limitations hinder the filter performance 119 

(Chen, 2003). One of the main limitations is that the EnKF assumes that the model states follow a 120 

Gaussian distribution and only considers the Firstly, this method was implemented at the assumption 121 

of model states follow gaussian distribution and just considers the first and second order moments, 122 

thereby losing relevant information contained in higher-order moments higher-order moments be 123 

ignored will makes relevant information be lost (Moradkhani et al., 2005). Unfortunately, the dynamic 124 

systems are usually has strongly nonlinearitynonlinear and the involved probability distribution of 125 

system state variables are not supposed to follow a Gaussian distribution (Weerts and El Serafy, 2006). 126 

AdditionallyMoreover, the filter performance of the EnKF iswas significantly affected influenced by 127 

the linear updating procedure in EnKF, and the state-averaging operations can be particularly 128 
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challenging may be a huge challenge for highly detailed complex snowpack models. 129 

In order to overcome these limitations, the particleParticle filter (PF) which also based on Monte 130 

Carlo method hasis been developed for non-Gaussian, nonlinear dynamic models (Gordon et al., 131 

1993). based on sequential Monte Carlo and widely used in snow data assimilation in recent years 132 

(Gordon et al., 1993). The greatest strength of PF scheme technique is free from the constraints of 133 

model linearity and error following Gaussian distribution, whichthis makes the PF techniquescheme 134 

succeed applied insuitable for nonlinear and non-Gaussian dynamic systems. This is also a significant 135 

advantage of PF over than other assimilation algorithms. Additionally, PF schemes technique give 136 

weights to individual particles but leave model states untouched, this which makes PF more 137 

computationally efficient than ensemble Kalman Kalman filter and smoother (Margulis et al., 2015). 138 

Thanks to these advantages, An an increasing interest focuses on applying PF scheme technique in 139 

snow data assimilation. For example, remotely sensed microwave radiance data was assimilated into 140 

snow model for updating model states by PF schemetechnique, and the results demonstrated that the 141 

SWE simulations have great improvement (Dechant and Moradkhani, 2011; Deschamps-Berger et al., 142 

2022). A newly PF approach proposed by Margulis et al. (2015) was used to improve SWE estimation 143 

through assimilating remotely sensed fractional snow-covered area. At basin scale, This PF technique 144 

was also implemented with the objective of obtaining high resolution retrospective SWE estimates 145 

over several Andean study basins (Cortes et al., 2016). The PF techniquescheme was also used to 146 

assimilate daily snow depth observations within a multi-layer energy-balance snow model, and result 147 

in an improvement of to improve SWE and snowpack runoff simulations during the entire analysis 148 

period (Magnusson et al., 2017). Above studies demonstrated that generally state that the PF scheme 149 

is a well-performing data assimilation technique enabling to consistently improve model simulations. 150 

And either the assimilation of assimilated the snow-related in-situ measurements or remotely sensed 151 

images observation data through PF scheme technique can successfullysucceeds in updatingupdate 152 

the predictions of snowpack dynamics., and the PF scheme is a well-performing data assimilation 153 

technique enabling to consistently improve model simulations. Nevertheless, particle degeneracy is 154 

still onethe potential limitation for PF techniquescheme, it occurs when the majoritymost of particles 155 

have negligible weight and only a small number offew particles with have significant weights, such 156 

thatwhich makes the state probability distribution cannot be represented by the particles loss their 157 

ability to represent the state probability density function (Parrish et al., 2012; Abbaszadeh et al., 2017; 158 

Abbaszadeh et al., 2018). The particle resampling has been considered to be an efficient approach 159 

which can effectively mitigate the degeneracy problem, however, it may lead to the resulting sample 160 

will contain many repeated points and a lack of diversity among the particles, which is defined sample 161 

impoverishment (Rings et al., 2012; Zhu et al., 2018).Despite the resampling approach can effectively 162 

mitigate the particle degeneracy phenomenon, another potential limitation has been the sample 163 

impoverishment, that is, few particles have significant weight while most other particles with 164 
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ignorable weight are abandoned during the resampling process, and the diversity of particles has been 165 

reduced. And the sample impoverishment was a tricky problem for generic resampling methods. 166 

Using intelligent search and optimization methods to mitigate the degeneracy problem may be a good 167 

choice since it can avoid the sample impoverishment well (Park et al., 2009; Ahmadi et al., 2012; 168 

Abbaszadeh et al., 2018). The Genetic Algorithm (GA) as an intelligent search and optimization 169 

method has been known as an effective approach to mitigate the degeneracy problem and received 170 

more attention employed to mitigate the degeneracy and impoverishment problem (Kwok et al., 2005; 171 

Park et al., 2009; Mechri et al., 2014). GA is known as an effective approach to improve the 172 

performance of particle filter and has received more attention. The GA applied in particle filter, which 173 

is defined genetic particle filter (GPF), has been successfully implemented to estimate parameters or 174 

states in nonlinear models (Van Leeuwen, 2010; Snyder, 2011). The GPF was also used as data 175 

assimilation scheme applied to land surface model which simulates prior subpixel temperature and 176 

the results showed the GPF outperformed prior model estimations (Mechri et al., 2014). For example, 177 

the crossover operator within GA was performed on the prior particles (Kwok et al., 2005). Mechri 178 

et al. (2014) implemented the genetic particle filter as data assimilation scheme and applied to land 179 

surface model which simulates prior subpixel temperature, the results demonstrated that GPF 180 

outperforms prior model estimations. Despite a series of studies have proved that the GPF is an 181 

effective data assimilation approach, howeverHowever, few studies have used investigated the 182 

performance of GPF as a snow data assimilation scheme, especially in different snow climates. 183 

Certainly, inIn view of the promising performances of GPF assimilation scheme inas a snow data 184 

assimilation scheme, this paper aims to investigate the potential of GPF in performing snow data 185 

assimilation, and the main goal of this research is to address the following issues: (1) Can the GPF 186 

be employed as a snow data assimilation scheme? (2) How is the assimilation performance of GPF 187 

in snow data assimilation across different snow climates? (3) The sensitivity of DA simulations to the 188 

frequency of the assimilated measurements and the particle number. 189 

This paper is organized as follows. Section 2 describes introduces the information of observation 190 

study sites, the meteorological dataset, the snow module within the Noah-MP model, calculation flow 191 

of GPF DA scheme, and DA design of numerical experimental design. Section 3 explains the 192 

simulation results of SD by open-loop ensemble, explores the sensitivity of measurement frequency 193 

and ensemble size.Experimental results are presented and discussed in Section 3. Section 4 194 

summarizes the findings of this study. 195 

2. Materials and methods 196 

2.1 Study sites and data 197 

With the consideration of the filtering performance maybe different under different 198 
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environmentsdiverse in snow climates, we selected eight seasonally snow-covered study sites with 199 

different snow climates in total were selected to implement numerical experimental in this study 200 

(Sturm et al., 1995; Trujillo and Molotch, 2014). These sites are distributed at different latitudes in 201 

the northern hemisphere, and the sites included the Arctic Sodankylä site (SDA, 179 m), located 202 

beside the Kitinen River in Finland and has a 2 m depths soil frost (Rautiainen et al., 2014); the 203 

Snoqualmie site (SNQ, 921 m) with a rain-snow transitional climate in the Washington Cascades of 204 

the USA, in this site, the snow depthSD measured from snow stakes was employed (Wayand et al., 205 

2015); the maritime Col de Porte (CDP, 1330 m) site in the Chartreuse Range in the Rhone-Alpes of 206 

France; the Mediterranean climate Refugio Poqueira site (ROPA, 2510 m) in Sierra Nevada 207 

Mountains of Spain and has a high evaporation rate (Herrero et al., 2009); the Weissfluhjoch site 208 

(WFJ, 2540 m) in Davos of Switzerland, and automatic observations of snow depthSD were used in 209 

this study (Wever et al., 2015); the continental Swamp Angel Study Plot (SASP, 3370 m) site in the 210 

San Juan Mountains of Colorado, USA; and two sites from typical snow-covered regions in China, 211 

the Altay meteorological observation site (ATY, 735.3 m) in Northern Xinjiang, China, which has less 212 

wind in the winter season; the other one is the Mohe meteorological observation site (MOHE, 438.5 213 

m) in a county of Northeast China, which is the northernmost part of China and has a cold temperate 214 

continental climate. Serially complete meteorological measurements are available and can be used as 215 

forcing data in these sites, certainly, the downward longwave and shortwave radiation values of 216 

MOHE were extracted from the China Meteorological Forcing Dataset (CMFD) (Chen et al, 2011), 217 

since there are no radiation measurements in this site.  218 

It is noteworthy that the spatial variance on the performance of the model is negligible since 219 

these sites themselves are flat and surrounding vegetation types are uniform. We have used this data 220 

set to examine the sensitivity of snow depthSD to physics options, and the results showed that the 221 

dataset has a reliable quality., in In addition, the location, detailed information of snow climates, and 222 

dataset process introduction of the eight sites can be also referenced in You et al. (2020a). 223 

2.2 Snow module within Noah-MP model 224 

The snow partial within Noah-MP model can be divided into three layers at most according to 225 

snow depth (Yang et al., 2011). The SD snowh is calculated by 226 

,1 s gt t
snow snow

sf

P
h h dt


  .                                  (1) 227 

where ,s gP   is the snowfall rate at the ground surface, dt   is the timestep, and sf   is the bulk 228 

density of the snowfall. When the snow depth 0.025snowh  m, the snowpack is combined with the top 229 

soil layer and there are no dependent snow layer exists. When 0.025 0.05snowh  m, the snow layer is 230 
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created with the thickness equal to snow depthSD. When 0.05 0.1snowh  m, the snowpack will be 231 

divided into two layers and both thickness 1 0 / 2snowz z h    . When 0.1 0.25snowh  m, the thickness 232 

of first layer is 1 0.05z   m and the thickness of second layer is 0 1( )snowz h z     m. When233 

0.25 0.45snowh   m, a third layer is created and the three thickness are: 2 0.05z   m and 234 

1 0 2( ) / 2snowz z h z        m. When 0.45snowh   m, the layer thickness of the three snow layers are235 

2 0.05z   m, 1 0.2z   m,  0 2 1snowz h z z      m. Certainly, the snow cover is highly 236 

influenced by air and ground temperature, the snow layer is combined with the neighboring layer 237 

since sublimation or melt, and be redivided depending on the total snow depthSD. The snow module 238 

of Noah-MP model provides an estimate of snow-related variables using energy and mass balance 239 

which computing process requires a series of meteorological forcing data:  such as, near surface air 240 

temperature, wind speed and direction, relative humidity, precipitation, andair pressure,  downward 241 

solar longwave and shortwave radiation. Snow accumulation or ablation parameterization of the 242 

Noah-MP model is based on the mass and energy balance of the snowpack, and the snow water 243 

equivalent can be calculated by following equation: 244 

,
s

s g s

dW
P M E

dt
   .                                   (21) 245 

Where where sW  is the snow water equivalent (mm), ,s gP  is the solid precipitation (mm s-1), sM  is the 246 

snow ablationsnowmelt rate (mm s-1), E E  is the snow evaporationsublimation rate (mm s-1). 247 

A snow interception model was implemented into Noah-MP model to describe the process of 248 

snowfall intercepted by the vegetation canopy (Niu and Yang, 2004).Due to the interception of 249 

snowfall by the canopy and subsequent sublimation from the canopy snow can greatly reduce the 250 

quantity of snow falling on the ground, a snow interception model was implemented into Noah-MP 251 

model. Within this model, the snowfall rate at the ground surface ,s gP  is then calculated by 252 

, , ,s g s drip s throuP P P  .                                 (3) 253 

where ,s dripP (mm s-1) is the drip rate of snow, ,s throuP (mm s-1) is the through-fall rate of snow. In 254 

Noah-MP model, the ground surface albedo is parameterized as an area-weighted average of albedos 255 

of snow and bare soil, and the snow cover fraction of the canopy was used to calculate the ground 256 

surface albedo. As in the equation (42), 257 

 , ,1g snow g soil snow g snowf f     .                             (42) 258 
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Wherewhere soil  and snow  are the albedo of bare soil and snow, respectively. ,snow gf  is the snow 259 

cover fraction on the ground and parameterized as a function of snow depth, ground roughness length 260 

and snow density (Niu and Yang, 2006). 261 

2.3 Genetic particle filter data assimilation scheme 262 

The Bayesian recursive estimation problem is solved by the Monte Carlo approach within PF 263 

technique, making this scheme is appropriate for nonlinear models system withand a non-264 

gaussianvarious probability distributions (Magnusson et al., 2017). The main basic idea concept of 265 

PF technique is to use a large number of random realizations (i.e., particles) of the system state to 266 

represent the posterior distribution, at the same timemeanwhile, the particles are propagated forward 267 

in time as the model evolved. The weights associated with the particles are updated based on the 268 

likelihood of each particle’s simulated proximity to the real observation, and the weight of the 269 

particles can be updated as follows: 270 

 1
i i i
t t t tw w p z x .                                    (35) 271 

where 1
i
tw   is the weight of i th particle at time 1t   and the weight is updated by the likelihood 272 

function  it tp z x   it tp z x , which measures the likelihood of a given model state with respect to the 273 

observation tz  of state variable is employed in this function. UsuallyIn general, a Gaussian error 274 

distribution was considered assumed to perturb the observation valuesobservations and the likelihood 275 

function was defined to represent the errors. In this study, we employed a normal probability 276 

distribution was employed to serve as likelihood function: 277 

   ,i i
t t t tp z x N z x   .                             (46) 278 

Wherewhere N  is represents the normal probability distribution of the residuals between the 279 

observed, tz , and simulated, tx . Finally, the weights of the updated model state variable would be 280 

normalized, and the assimilated value of model state variable is the weighted average of all particles 281 

at time t . Although the particle filter has a broad vision of applicationbeen widely applied in various 282 

nonlinear systems, the particle degeneracy and impoverishment in particle filter are still the fatal 283 

limitations of particle filterneed to be urgently addressed. To overcome address the degeneration 284 

problem in the PF techniquealgorithm, the traditional resampling methods like multinominal 285 

resampling, systematic resampling, etc. were used employed to resample the particles if the effective 286 

sample size, 287 

 2

1
1

N i
eff ti

N w


  .                             (57) 288 

fell below a specified number of particles. To be honest, the traditional resampling methods can 289 
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effectively mitigate the Although the particle degeneracy problem can be eliminated by the 290 

resampling methods resampling high-quality particles, however, it will can also makeleads to the 291 

particles lack of diversity seriously after multiple iterations, that is the so-called particle 292 

impoverishment problem. For the sake of mitigating these two problems simultaneously, we 293 

employed theIn this study, the genetic algorithm (GA) was chosen to resample the particles, and this 294 

is the genetic particle filter algorithm (GPF). The GA was inspired by Darwin’s evolution theory and 295 

emphasizes the principle of the survival of the fittest, exactlyin fact, the “fitness”fitness  of particles 296 

should be chosen reselected in the particle filteringresampling phase according to the theory of 297 

particle filter. The selection, crossover and mutation are major steps to simulate population evolution, 298 

as shown in Figure 1, we used the three operators to produce better offspring and improve the whole 299 

population fitness, which was expected to prevent particle degeneracy and impoverishment. These 300 

three operators will be used to improve the particle fitness when the fitness less than a threshold value. 301 

The three operators are described as below. 302 

Selection mechanism: At the time of assimilation, the selection operator will preferentially select the 303 

particles which close to the observed SD. This process is usually achieved by sorting the fitness value 304 

of all particles and selecting a certain proportion of particles. Here, we calculated the survival rate of 305 

all individuals and sorted them in ascending order, the top fifth percentile of particles were considered 306 

as high-quality particles and were selected as parents in genetic algorithm. This can ensure the fitness 307 

individuals can be delivered to next generation group. The survival rate of particles can be calculated 308 

by following equation: 309 

   2

, , 1

1
expt i ki k k

k

P x x z
R 

 
   

 
.                            (8) 310 

where kR   is the observation error at time k  , 0.01 m was set in this study; kz  represents the 311 

observed SD. 312 

Crossover mechanism: The purpose of crossover operator is to exchange some genes for two or 313 

more chromosomes in a specified way to form new individuals. GA mainly generates new individuals 314 

by this way, which also determines the capability of global search. In this study, the arithmetic 315 

crossover method was used to generate new individuals and play the role of crossover operator. 316 

Selecting two particles randomly from the resampled particle group and combining them linearly to 317 

form a new particle. Assumed the two selected particles are  ,m nx x , and the new particles were 318 

formed by following equations: 319 

 ' 1m m nx x x    .                             (9) 320 

 ' 1n n mx x x    .                            (10) 321 
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where  ,   are the empirical crossover coefficients, and 0.45  , 0.55   in this study. In 322 

order to ensure the diversity of particles, the new formed particles will be abandoned when the 323 

' '
m nx x  occurred, and the parent individuals will be re-selected from the particle group. 324 

Mutation mechanism: The mutation in GA refers to replacing the gene values at some loci with 325 

other alleles to form a new individual. The mutation mechanism can be considered as a supplement 326 

to the crossover mechanism which can increase the diversity of the population. Assuming that the 327 

randomly selected particle from the crossed particle set is, the mutation operation is performed on the 328 

particle by the following equation: 329 

'
k kx x Uniform   .                             (11) 330 

where Uniform  refers a random number from uniform distribution,   is empirical coefficient and 331 

0.01 was set in this study. 332 

And the crossover and mutation operator can be used to produce better offspring to improve the whole 333 

population fitness, this can prevent sample impoverishment or a lack of particle diversity, especially 334 

when the processing noise is low. As shown in Figure 1, the effective ensemble size fE was used to 335 

measure the degeneracy of the PF algorithm. The GA algorithm will be used to improve whole 336 

particles when 0fE E , and the procedure of GA can be divided into three steps: resample, crossover 337 

and mutation. First, the fitness of each particle was calculated and were then sorted in ascending order. 338 

Obviously, the fifth percentile of particles are fitness and be resampled. Second, the resampled 339 

particles were used to produce offspring by the crossover operator. Last, in order to increase the 340 

diversity of particles, the mutation operator was employed.  341 

It is noteworthy that aA large number of particles may lead to filter collapse (Mechri et al., 2014), 342 

here, we set the number of particles equals to 100 following references (Mechri et al., 2014; 343 

Magnusson et al., 2017; Piazzi et al., 2018) in this study. Moreover, toTo avoid prevent the particle 344 

ensemble unable to represent the prior of state variablemodel state due to the model structurally 345 

deficient, a gaussian type model error,  ,N   , was added to the ensemble members. The   was 346 

obtained from the mean value of residual between simulation and observation, and the variance   347 

was set to 0.01.deficient within model operator, in this study, a model error of gaussian noise type 348 

based on experience was added to the ensemble members before assimilating the measurements. 349 

2.4 DA experimental design 350 

2.4.1 Perturbation of meteorological input data 351 
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The accuracy of model’s output largely depends on the input meteorological forcing dataset for 352 

land surface models, and meteorological forcing are one of the major sources of uncertainty affecting 353 

simulation results (Raleigh et al., 2015). The precipitation and air temperature are the most important 354 

input elements for snow simulations since their roles in determining the quantity of rainfall and 355 

snowfall. 356 

To produce the forcing data ensemble, the air temperature and precipitation were perturbed 357 

following the method of Lei et al. (2014). In this study, the precipitation was assumed to have an error 358 

with a log-normal distribution, and it is expressed as follows: 359 

 ln , lnexp / 2i
t P P i PP      .                            (612) 360 
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Where tP  and i
tP  are the observed and perturbed precipitation at time t , respectively; the log 363 

transformation of i
tP  is a Gaussian distribution with a mean ( lnP ) and a standard deviation ( lnP );364 

P  is the variance scaling factor of the precipitation, which was set to 0.5 in this study; and ,P i  is 365 

a normally distributed random number. The number of particles was set to 100 according to the 366 

sensitivity experiment by Magnusson et al. (2017). Meanwhile, theThe ensemble of the air 367 

temperature was obtained as follows: 368 

   1 2 , 0,1i i i
t tT T w w U    .                         (915) 369 

Where tT  and i
tT  are the observed and perturbed air temperatures at time t , respectively; 370 

is the variance scaling factor of the temperature with a value of 2.0; and iw  is the random noise with 371 

a uniform distribution between 0 and 1. An forcing ensemble containing 100 particles was obtained 372 

through above perturbation method in this study. 373 

2.4.2 Evaluation metrics 374 

In order to properly quantify the filter performance, each experiment is evaluated by statistical 375 

analysis based on the daily mean values of simulations and observations. In this paperstudy, we used 376 

the Kling-Gupta efficiency (KGE) coefficient (Gupta et al., 2009) to evaluate the filter performance, 377 

was evaluated using the Kling-Gupta efficiency (KGE) coefficient (Gupta et al., 2009) which allows 378 
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the analysis of how the assimilation of snow observations succeeds in properly updating the model 379 

simulations, on average: 380 

     2 2 2
1 1 1 1KGE r a b       .                        (1016) 381 

Where r  r  is the linear correlation coefficient between the simulated and observed SD; a  is the 382 

ratio of the standard deviation of simulated SD to the standard deviation of the observed ones; and b383 

is the ratio of the mean of simulated SD to the mean of observed ones, obviouslyhere, the simulated 384 

SD is the mean SD ensemble simulations in this paper. Theoretically, when 1r  , 1a   and 1b   385 

in formula equation (1610), the KGE will obtain the optimal value which equalsequal to 1, in this 386 

case, and this illustrates that the simulated SD highly consistent with the observed ones. 387 

To evaluate the performance of the assimilation, the The time series of SD obtained from 388 

assimilation scenarios is was compared to observations for evaluating the performance of the 389 

assimilation, and the root-mean-square error (RMSE) was employed: 390 

 2

1

1
( ) ( )

N

i

RMSE obs i sim i
N 

  .                        (1117) 391 

Wherewhere N  is the total number of observations, ( )sim i  is the simulated value at time i , and392 

( )obs i  is the observed value at time i . 393 

Another statistical index employed as evaluation metric in this paper is the continuous ranked 394 

probability skill score (CRPSS), which is evaluated to assess changes to the overall accuracy of the 395 

ensemble simulations of each experiment (CRPS) by considering the open-loop ensemble control run 396 

as the reference one ( refCRPS ), and the calculation scheme is shown in the following equationformula 397 

(12): 398 

1
ref

CRPS
CRPSS

CRPS
  .                                (1218) 399 

Where where CRPS is the continuous ranked probability score which can quantify measure the 400 

difference between continuous probability distribution and deterministic observation samples (detail 401 

in Hersbach, 2000). A smaller CRPS value indicates better probabilistic simulation and the CRPS 402 

score of a perfect simulation would equal equals to 0. Therefore, the changes in overall accuracy of 403 

the SD ensemble simulations can be measured by CRPSS, . certainlyHowever, unlike the CRPS score, 404 

the optimal CRPSS score is equal to 1 and negative values indicate a negative improvement with 405 

respect to the reference onescontrol run. 406 

3. Results and discussion 407 
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3.1 Open-loop ensemble simulations 408 

To In order to investigate the impact of meteorological perturbations on snow simulations, 100 409 

an ensemble contained 100 snow depthSD simulations derived by as many different meteorological 410 

conditions are were analyzed. For the sake of concision and clarity, we considered only 1 winter 411 

season for implementing snow simulation experiment at each site and the results were shown in 412 

Figure 2. For the sake of concision, a representative winter season was selected for each site and 413 

shown in Figure 2. As shown in Figure 2, the possible overestimation and underestimation of snow 414 

depthSD simulations produced by the perturbation forcing data were contained in the ensemble spread 415 

which are the direct consequence of perturbation of the forcing data. And the ensemble simulations 416 

are the direct consequence of perturbation of the forcing data. Certainly,Since the meteorological 417 

perturbations are unbiased, the nonlinearity of physical processes within model is supposed to be the 418 

main reason for this issue under the condition of the meteorological perturbations are supposed to 419 

unbiasedthe uncertainty (Piazzi et al. 2018). During the winter season in northern hemisphere, 420 

precipitation and air temperature are primary factors which can determine the total amount of snow. 421 

As Figure 2 shows, the intervals of SD ensemble are significant different in distinctat different sites 422 

though an identical meteorological perturbation method was used. In At some sites, like ATY, MOHE, 423 

WFJ and CDP, a larger SD ensemble interval spreads werewas obtained and most of SD observations 424 

were covered by the uncertainty spreadensemble spread, in this case, high-quality particles can be 425 

directly selected from the ensemble. However, in at some other sites, like in ROPA, SDA and SASP, 426 

a narrow SD ensemble interval spreads werewas obtained and the SD uncertainty spread interval of 427 

simulated SD can hardly cover the observations, in this case, the so-called high-quality particles even 428 

cannot be found in the ensemble and the model prior error become a prerequisite for succeed 429 

assimilation at this time. Eespecially atin ROPA site, the snow cover was extremely unstable with the 430 

result that we can hardly figure out any variation rules of snow depthSD. and the snow cover was 431 

extremely unstable. The narrow SD ensemble spread in these sitesat this site also demonstrated that 432 

the precipitation and air temperature are were not the main factors causing snow change in these sites.. 433 

Like in ROPA site According to literatures, sublimation losses at ROPA ranged from 24% to 33% of 434 

total annual ablation and occurred 60% of the time during which snow was present, and high 435 

sublimation rate may be the main reason for snow instability (Herrero et al., 2016; You et al., 2020a). 436 

This directly leads to a perfect ensemble spread which cover all observations cannot be produced by 437 

perturbing the air temperature and precipitation. Generally speaking, the ensemble produced by 438 

perturbing air temperature and precipitation does not contain high-quality particles at this site. It was 439 

found that the spread of SD ensembles is increased when a snowfall event occurred due to the 440 

perturbation in precipitation would providing different input snow rates for model realization at all 441 

sites. Despite this, we still found the simulated SD deviated from the observation seriously, like at 442 

SNQ site, the maximum value of simulated SD almost half of the maximum value of observed SD. 443 
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In this case, it is impossible to obtain a simulated SD ensemble spread which can cover or nearly 444 

cover the observation through perturbing the meteorological forcing data.  At all sites, it was found 445 

that the spread of SD ensembles is increased when a snowfall event occurred due to the perturbation 446 

in precipitation would providing different input snow rates for model realization. It was expected to 447 

obtain a SD ensemble spread which can cover or nearly cover SD observations at all sites using the 448 

meteorological perturbation method, however, at some sites, like SNQ, SDA, etc., the spread of SD 449 

ensembles was found has a seriously underestimation. On the one hand, the precipitation and air 450 

temperature are not the dominant factors affecting snow cover change which lead to a narrowed 451 

ensemble spread at these sites. On the other hand, though the variation trend of snow cover can be 452 

accurately expressed by Noah-MP model, seriously underestimation of the simulated SD shows the 453 

snow simulation performance of Noah-MP is poor at these sites. Certainly, despite thisNonetheless, 454 

the simulated ensembles will be improved whenever the model and observation prior error of model 455 

state are is considered. 456 

3.2 DA simulations with perturbed forcing data 457 

Generally, the ability of a model to simulate autonomously can be limited if observation data is 458 

assimilated too frequently, resulting in assimilation results that are essentially the same as the 459 

observations and do not reflect the differences among models. To address this, In this study, the site 460 

SD measurements were assimilated into Noah-MP model and with an observationthe frequency of 461 

SD observation is five5 days in this study,. enabling the GPF to perform differently at distinct sites. 462 

Figure 3 shows theThe SD assimilation results across snow climates, indicating a substantial 463 

improvement in the SD simulations with satisfactory assimilation performance at all sites. are shown 464 

in Figure 3. It can be found that the GPF show a satisfactory assimilation performance at all sites, the 465 

SD simulations obtain a great improvement and closer to observations. Not only can theThe GPF 466 

algorithm can handle not only algorithm solve the seriously underestimation, like such as at SNQ, 467 

SDA etc.,, but also the overestimation occurred during snow ablation period, such asas seen at CDP, 468 

SASP, ATY and MOHE site, can be handled correctly.. These results It was demonstrateddemonstrate 469 

the effectiveness that of the GPF algorithm used as a snow data assimilation scheme and its ability to 470 

significantly can make a substantial improvement forimprove SD simulations, despite the numerous 471 

seriously overestimations and underestimations that may occurred in the Noah-MP model’s snow 472 

simulation results across snow climates. 473 

With respect to the open-loop run, the KGE values of the SD simulations relying on the perturbed 474 

meteorological forcing data reveal the effectiveness of GPF in updating SD simulations,The 475 

effectiveness of GPF in updating SD simulations is demonstrated by the KGE values of the DA 476 

simulations with perturbed meteorological forcing data, as shown in Figure 4. Although the mean 477 

ensemble simulations of SD show exhibit a substantial improvement at all sites, not all ensemble 478 

members were improved according to the distribution of KGE valuesas per the distribution of GPF-479 
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DA KGE values. We Somefound the ensemble members were actually obtained a substantialachieved 480 

significant improvement at some sites, like SDA, SASP, MOHE and SNQ, while others showed only 481 

and a slight improvement at sites like ATY, WFJ. However, Figure 4 also reveals that the update of 482 

SD model simulations at ROPA and WFJ sites are is more challenging. It was well known that the 483 

snowSnow simulation performance of Noah-MP model was poor at the ROPA site is known to be 484 

poor due tosince the high sublimation ratespecial weather condition. Certainly, the median value of 485 

SD ensemble prediction KGE values as expected below zero at this site, indicating that there are few 486 

qualified simulations in the prediction ensemble. Even though the GPF succeeds in enhancing the SD 487 

simulations at ROPA site, the distribution of GPF-DA KGE values is not concentrated enough. The 488 

25th percentile approximately to 0.2 and the 75th percentile is about 0.7, more than half of ensemble 489 

members are below 0.5. This indicated that the GPF assimilation algorithm cannot enhance all 490 

members but it can raise the mean level and obtain an approximation of the optimal posterior 491 

estimation. While the GPF succeeds in enhancing the SD simulations at ROPA, the distribution of 492 

GPF-DA KGE values is not concentrated enough, with the 25th percentile approximately at 0.2 and 493 

the 75th percentile at about 0.7, indicating that the GPF assimilation algorithm cannot enhance all 494 

members but can raise the mean level and obtain an approximation of the optimal posterior estimation. 495 

Conversely, the assimilation of snow measurements at CDP site resulted in poor quality of the SD 496 

simulations compared to the open-loop ensemble simulations.the update of SD model predictions is 497 

more challenging at CDP site, and CDP is the only site which the assimilation of snow measurements 498 

actually results in a poor quality of the SD simulations with respect to the open-loop ensemble 499 

simulations. The median value of GPF-DA KGE was lower than the median value of OL KGE, 500 

indicating that a considerable number of ensemble simulations failed to capture the observed values 501 

after assimilating snow measurements.As shown in Figure 4, the median value of GPF-DA KGE is 502 

less than the median value of OL KGE, this indicates that a considerable number of ensemble 503 

simulations fail in well catching the observed values after assimilating snow data. 504 

NeverthelessHowever, we still found Figure 3 shows that the mean ensemble simulations after 505 

assimilating snow data measurements areis much closer to SD observations in Figure 3. Thus, This 506 

explainsit underscores the importance of that the ensemble mean in characterizing the filter 507 

effectiveness and the approximateis an important quantity to characterize the filter effectiveness and 508 

the practical  value of the optimal posterior estimation of model state. CertainlyAdditionally, the 509 

scale of the model ensemble spread was found to beis the determinant factor thatwhich have a 510 

profound significantly affectseffect on assimilation results. A A large ensemble spread can adjust the 511 

simulations toward the observed system state even if the model predictions are heavily biased. 512 

Figure 5 shows displays the CRPSS value of GPF-DA at different sites. The smaller the CRPSS 513 

value, the worst the probabilistic simulation (the optimal score being equal to 1). The highest CRPSS 514 

score of 0.91 was achieved at SASP, gets the maximum value 0.91, and while the lowest score is of 515 
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0.44 was observed at CDP. site. That These results indicates that the GPF enhances the overall 516 

accuracy of the ensemble simulations most at SASP site and least at CDP site with respect to the 517 

open-loop ensemble simulation. Certainly, this cannot be illustrated by the mean ensemble 518 

simulations (Figure 3) but consistent with the KGE statistical results (Figure 4). Even 519 

thoughAlthough the open-loop simulations at SNQ site show a veryexhibited  serious 520 

underestimation, a satisfactory assimilation result was obtained at this site and thewith a CRPSS score 521 

is of 0.87. At SNQ site, the snow simulation performance of Noah-MP model is poor and the model 522 

shows a a seriousseriously underestimation during snow stable phase, implementing data assimilation 523 

experiment in this case is a tricky business since it is very difficult to obtain a suitable simulated 524 

ensemble by perturbing the meteorological forcings. However, due tosince the model prior error and 525 

observation error arewas considered in GPF algorithm, the overall accuracy of the ensemble 526 

simulations will be substantial enhanced and this is the reason why it can obtain a satisfactory 527 

assimilation result at SNQ site can be obtained. It is not easy to enhance the overall accuracy of the 528 

ensemble simulations at ROPA, the ROPA was found to be a difficult site to enhance the overall 529 

accuracy of ensemble simulations, with a CRPSS score ofis only 0.58. at this site. The snow cover 530 

was extremely highly unstable and the variation in of SD snow depth exhibited extreme irregularity 531 

may be the main obstacles to snow data assimilation at this site. 532 

Based on the above analysisthese findings, we concluded that the effectiveness of GPF varied 533 

among snow climates: it can be employed as snow data assimilation scheme across snow climates, 534 

however, it showed different performance at different sites. It is necessary to explore the sensitivity 535 

of measurement frequency and ensemble size to for snow dataGPF assimilation scheme acrossfor 536 

different sites. 537 

3.3 Sensitivity analysis of DA scheme to SD measurement frequency 538 

For complex land/snow process models, model errors can gradually lead to the system deviating 539 

from the true value. Therefore, it is necessary to continuously incorporate observations into the model 540 

framework to adjust the operating trajectory of the state. Obviously, the frequency of incorporating 541 

observations, that is, the assimilation interval, has an important impact on the assimilation system. To 542 

investigate the effect of the SD measurement frequency onWith the aim of investigating the 543 

performance of GPF to SD measurement frequency, we conducted a the sensitivity experiment was 544 

conducted at the eight sites. We aimed to determine how reducing the frequency of SD measurements 545 

affects the DA simulations. to assess how the reduction of SD observed data affects the DA 546 

simulations. As expected, a decrease in SD measurement frequency led to a reduction in the impact 547 

of the GPF updating on the model simulations, resulting in a gradual increase in the mean value of 548 

RMSE.Obviously, a reduction in SD measurement frequency is expected to reduce the impact of the 549 

GPF updating on the model simulations, and the RMSE mean value gradually increased. Figure 6 550 

shows illustrates the RMSE ensembles of snow depthSD simulations resulting from the 551 
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assimilationassimilating of different frequency SD observations measurements throughout over the 552 

snow period at all siteseach site. Higher frequency SD assimilation is beneficial in mitigating the 553 

RMSE value of simulated SD, as shown by the lower RMSE value achieved when the frequency of 554 

SD measurement was set to five days.Obviously, assimilating higher frequency of SD observations 555 

is more helpful to improve the effectiveness of GPF, like the frequency of SD observation equals to 556 

5 days, the ensemble simulations obtain lower RMSEs at all sites. This means that more frequent SD 557 

measurements improve the accuracy of the model, which is particularly useful in regions where snow 558 

conditions can change rapidly. The range of RMSE values at different sites varied significantly, as it 559 

was related to the maximum value of SD. For instance, a thick snow at SNQ and WFJ sites during 560 

the snow period led to larger RMSEs of SD simulations. Notably, an increase in the length of the 561 

assimilation window generally resulted in a significant increment of the RMSE value. However, an 562 

abnormal occurrence was observed at the SDA site, where the assimilation effect of 20 days of SD 563 

measurements was significantly better than that of 15 days. Although the RMSE distribution of SD 564 

assimilation results with 20 days of observations appeared superior to that of 15 days, the RMSE 565 

mean values of the two were very close: 0.08 m and 0.07 m, respectively. Therefore, this anomaly 566 

can be ignored. These results indicate that the frequency of SD observations has a significant impact 567 

on the effectiveness of the GPF algorithm and that dense observation data can effectively improve 568 

the assimilation result. Certainly, the range of RMSE values at different sites have a significant 569 

difference since it relates to the maximum snow depth, for instance, a thick snow at SNQ and WFJ 570 

site during the snow period lead to larger RMSEs of snow depth simulations. As shown in this figure, 571 

it is noteworthy that an increase in the length of assimilation window generally result in a significant 572 

increment of the simulation RMSE. Certainly, an abnormal situation occurred at SDA site, the 573 

assimilation effect of 20 days SD observations is significantly better than the assimilation effect of 574 

15 days SD observations. Actually, despite the RMSE distribution of SD assimilation result with 20 575 

days observations seems superior to the assimilation result with 15 days, however, the RMSE mean 576 

value of the two are very close, one is 0.08 m and the other is 0.07 m. Therefore, this anomaly can be 577 

ignored. It indicates that the frequency of SD observations has a significant impact on the 578 

effectiveness of GPF algorithm, and a dense observation data can effectively improve the assimilation 579 

result. 580 

3.4 Sensitivity analysis of DA scheme to ensemble size 581 

The main results of the experiment aiming aimed at to evaluate evaluating the impact of particle 582 

number on the assimilation performance of GPF is shownare presented in Figure 7. As expected, an 583 

increaseincreasing in the particle number which less thanbelow the threshold leads to generally result 584 

in a significant increment improvement in of the percent effective sample size. However, the filter 585 

performance is does not improve significantly improved when the particle number greater 586 

thanexceeds the threshold. Figure 7 shows that the GPF algorithm yields would get the minimum 587 
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error at all sites when the particle number is set to 100, and indicating that one hundred particles can 588 

optimize the performance of GPF algorithm. Although a large particle number can enhance particle 589 

diversity and prevent filter divergence, it will increases the computation burden without reducing, 590 

and this cannot reduce the error of the system. As shown illustrated in Figure 7, the RMSEs are 591 

basically generally at the same level when the particle number equals to 120 and 160, and the RMSE 592 

is are significantly larger than the RMSE when the particle number is equal to 100. The slight impact 593 

of the change in the particle number on the performance of GPF, when the particle number is below 594 

the threshold, indicates low system sensitivity to the ensemble size, and this is observed at all sites.A 595 

low system sensitivity to the ensemble size is also clearly proven by the slight impact of the change 596 

in the particle number on the performance of GPF when the particle number is less than the threshold, 597 

and this has been occurred at all sites. Essentially, the increase ofincreasing the particle number 598 

blindly does not ensure guarantee a better DA performance of the GPF algorithm. As shown 599 

demonstrated in Figure 7, although the particle number increased from 120 to 160, the RMSEs of 600 

simulated snow-depth are basically virtually unchanged at all sites, despite an increase in the particle 601 

number from 120 to 160. It indicatesThis suggests that a blindly increasing the ensemble size only 602 

increases the computational burden is futile towithout improvinge the performance of GPF, it just can 603 

increase the computational burden.. 604 

3.5 Compared to traditional resampling methods 605 

To demonstrate the effectiveness of using genetic algorithms for particle resampling, we 606 

compared the results of our genetic algorithm (PF-G) to those of traditional resampling methods: 607 

systematic resampling (PF-S) and multinomial resampling (PF-M), both of which are commonly used 608 

in particle resampling. The calculation process for these methods is detailed in the particle filter 609 

introduction references. Figure 8 shows the RMSE values of SD simulations using these three 610 

methods. We found that the PF-G outperforms PF-M and PF-S at all sites, as evidenced by the 611 

significantly smaller mean and median RMSE values. This indicates that the PF-G is suitable for 612 

snow data assimilation in different snow climates and is superior to traditional particle filters to a 613 

certain extent. At most sites (MOHE, ATY, SDA, and ROPA), PF-M and PF-S showed similar 614 

performance, meaning that these methods did not produce a significant difference in the assimilation 615 

results. This is because these traditional resampling methods can only address particle degeneration 616 

by resampling particles, but cannot prevent particle impoverishment. Therefore, they are unable to 617 

select high-quality particles and keep the particles have variety. Notably, the mean and median RMSE 618 

values for PF-G were significantly lower than those of PF-M and PF-S at some sites (SASP, SNQ, 619 

and WFJ) where the snow cover was relatively thick, with maximum SD during the snow period 620 

reaching 2.45 m, 2.95 m, and 2.40 m, respectively. This suggests that PF-G performs better in 621 

assimilating data from thick snow covers. 622 

The multinomial and systematic resampling methods select particles from the original particle 623 
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set at different levels or based on the accumulation of particle weights. Both the two resampling 624 

methods extract particles from the entire particle set, and the corresponding particle values do not 625 

undergo any essential changes. However, compared with the two traditional particle resampling 626 

methods, genetic algorithm first uses the fitness function to calculate the "survival rate" of each 627 

particle one by one, and then performs crossover, mutation and other operations on the selected 628 

particles. This approach ensures that the resampled particles are high-quality particles, which is the 629 

main reason why genetic particle filtering has an advantage in the snow data assimilation experiments. 630 

As can be seen from Figure 8, the assimilation error by genetic particle filter is the smallest one at all 631 

sites. From the results of the real assimilation experiment, it can be seen that genetic particle filtering 632 

have more advantages over than other two methods. 633 

4. Conclusions 634 

This In this study, we investigated the potential of using GPF used as a snow data assimilation 635 

scheme acrossat eight sites across with varying different snow climates. We addressed To solve the 636 

problem of degeneration and impoverishment in PF algorithm by using the genetic algorithm to 637 

resample particles., We also examined the sensitivity of GPF scheme to measurement frequency and 638 

ensemble size. we used the genetic algorithm to resample particles when the particle threshold is 639 

below 0.95. On this basis, we examined the sensitivity of GPF scheme to measurement frequency and 640 

ensemble size. The main findings of this study are as follows:. 641 

1. The GPF was an effective snow data assimilation scheme and can be used across different snow 642 

climates. The genetic algorithm can effectively addressedsolve the problem of particle 643 

degeneration and impoverishment in PF algorithm. 644 

2. Our experiment showed that In this point-scale application of the ground SD measurement, the 645 

system has revealed a low sensitivity to the particle number, thereby proving thatand 100 particles 646 

can be obtainedachieve a better assimilation result across different snow climates, . that is,This 647 

indicates that 100 particles can be suited toare suitable for representing the high dimensionality 648 

of the system. 649 

3. The We found that perturbations of the meteorological forcing data has turn out not to bewere not 650 

sufficient for to providing provide ensemble spread, and resulting in a poor filter performance. 651 

However, particleParticle inflation can make up for this deficiency. Moreover, we observed that 652 

theThe RMSE of simulated SD would decreaseddecrease significantly with the increase of the 653 

frequency of SD measurement, that is,indicating that a dense observational data can dominate 654 

improve the assimilation results. 655 

3.4.  Compared to the two classic resampling methods, the particle filter with genetic algorithm as 656 

resampling method shows a better assimilation performance especially in a thick snow cover, the 657 
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distribution RMSEs are more centralized and a smaller mean error will be obtained. 658 

The Our experiments conducted in this paper were based on forcing data and snow observations from 659 

the various sites withacross different snow climates. While our results provide a reference for 660 

applying GPF to snow data assimilation, On the one hand, the performance of the GPF on the regional 661 

scale is needed to be investigated; on the other hand, additional studiesfurther research is are needed 662 

need to explore investigate the performance of GPF on a regional scale and to explore the assimilation 663 

ofthe snow observational data  which from remote sensing or wireless sensor network networks 664 

assimilated into LSM land surface model by GPF. OverallIn summary, our study demonstrates the 665 

results of this study providing a reference for applying the GPF to snow data assimilation and the 666 

feasibility of using GPF for snow data assimilation and provides valuable insights for future research 667 

in this area. across different snow climates has been proved. 668 
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 864 

Figure 1. Flowchart of Genetic particle filter 865 
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 867 

Figure 2. Impact of the meteorological uncertainty on snow depth ensemble simulations 868 
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 870 

Figure 3. Evaluation of the SD at eight sites from mean ensemble simulation and assimilation with 871 

the measurements. 872 
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 875 

Figure 4. The KGE values of SD simulations, the OL and GPF-DA are in green, red, respectively. 876 

The bottom and top edges of each box indicate the 25th 75th percentiles, respectively. The line in the 877 

middle of each box is the median. 878 
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 880 

Figure 5. Comparison of the CRPSS value of GPF-DA at different sites. 881 
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 883 

Figure 6. The RMSE values of SD simulations at different sites, from left to right in each subfigure 884 

are the assimilation observation frequency is 5, 10, 15, 20 days, respectively, and with different colors. 885 
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 887 

Figure 7. Sensitivity analysis of the GPF snow DA scheme to particle number at eight sites, during 888 

different snow periods. 889 
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 891 

Figure 8. The RMSE values of SD simulations by three different resampling methods. For each 892 

subfigure, from left to right are the particles resampled by genetic algorithm, multinominal method, 893 

systematic method, respectively, and with different colors, the black line indicates the mean, and the 894 

red line indicates the median; the kernel bandwidth was 0.05. 895 
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