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Abstract. There is a general trend for increasing inclusion of uncertainty estimation in the environmental modelling domain.   

We present the CREDIBLE Uncertainty Estimation (CURE) Toolbox, an open source MATLABTM toolbox for uncertainty 15 

estimation aimed at scientists and practitioners that are not necessarily experts in uncertainty estimation.  The toolbox focusses 

on environmental simulation models and hence employs a range of different Monte Carlo methods for forward and conditioned 

uncertainty estimation. The methods included span both formal statistical and informal approaches, which are demonstrated 

using a range of modelling applications set up as workflow scripts. The workflow scripts provide examples of how to utilise 

toolbox functions for a variety of modelling applications and hence aid the user in defining their own workflow: additional 20 

help is provided by extensively commented code. The toolbox implementation aims to increase the uptake of uncertainty 

estimation methods within a framework designed to be open and explicit, in a way that tries to represent best practice in 

applying the methods included. Best practice in the evaluation of modelling assumptions and choices, specifically including 

epistemic uncertainties, is also included by the incorporation of a condition tree that allows users to record assumptions and 

choices made as an audit trail log.  25 

 

1 Introduction 

Environmental simulation models are used extensively for research and environmental management. There is a 

general trend for increasing inclusion of uncertainty estimation (UE) in the environmental modelling domain, 
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including applications used in decision making (Alexandrov et al., 2011; Ascough et al., 2008).   Effective use of 30 

model estimates in decision making requires a level of confidence to be established (Bennett et al., 2013) and UE 

is one element of determining this. Another required element is an assessment of the conditionality of any UE; i.e. 

the conditionality associated with the implicit and explicit choices and assumptions made during the modelling and 

UE process, given the information available (e.g. see Rougier and Beven, 2013). 

 35 

Here we present the CREDIBLE Uncertainty Estimation (CURE) Toolbox; an open source MATLABTM toolbox 

for UE associated with environmental simulation models. It is aimed at scientists and practitioners with some 

modelling experience, that are not necessarily experts in UE. The toolbox structure is similar to that of the SAFE 

toolbox (Sensitivity Analysis For Everyone; Pianosi et al., 2016) such that it allows more experienced users to 

modify and enhance the code and to add new UE methods. The implementation of the toolbox also aims to increase 40 

the uptake of UE methods within a framework designed to be open and explicit, in a way that tries to represent best 

practice.  That is, best practice in applying the various UE methods included as well as best practice in being explicit 

about modelling choices and assumptions.  

 

As the focus of the toolbox is UE for simulation models, often with relatively complex structures and many model 45 

parameters, the toolbox employs a range of different Monte Carlo methods.  These are used for forward propagation 

of uncertainties by sampling from a priori defined input and parameter distributions, for forward UE, or in the 

estimation of refined model structures and/or associated posterior parameter distributions when conditioned on 

observations (conditioned UE).  The methods included span both formal statistical and informal approaches to UE, 

which are demonstrated using a range of modelling applications set up as workflow scripts  that provide examples 50 

of how to utilise toolbox functions.   

 

Formal statistical and informal methods are included as there are no commonly agreed techniques for UE in 

environmental modelling applications, as evidenced by continuing debates and disputes in the literature (e.g. Clark 

et al., 2011; Beven et al., 2012; Beven, 2015; Nearing et al., 2016). The lack of consensus on the most appropriate 55 

UE method is to be expected given that the sources of uncertainty associated with environmental modelling 

applications are dominated by a lack of knowledge (epistemic uncertainties; e.g. see Refsgaard et al., 2007, Beven, 

2009; Beven et al. 2016; Beven and Lane, 2022) rather than solely natural variability (aleatory uncertainties). 

Rigorous statistical inference applies to the latter, but might lead to unwarranted confidence if applied to the former, 
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especially where some data might be disinformative in model evaluation (e.g. see Beven and Westerberg, 2011; 60 

Beven and Smith, 2015).   

 

Assessing the impact of epistemic uncertainties for environmental modelling requires assumptions about their 

nature (which are difficult to define) such that the outputs from any UE will be conditional upon these assumptions. 

This poses the question of what is good practice in evaluating assumptions and choices made during the modelling 65 

process and what is good practice in communicating the meaning of any subsequent analyses (Walker et al., 2003; 

Sutherland et al., 2013; see also the TRACE framework of Grimm et al., (2014) for documenting the modelling 

process).  Beven and Alcock (2012) suggest a condition tree approach, that records the modelling choices and 

assumptions made during analyses and thus provides a clear audit trail (e.g. see Beven et al., 2014). The audit trail 

consequently provides a vehicle that promotes transparency, best practice and communication with stakeholders 70 

(Refsgaard et al., 2007; Beven and Alcock, 2012).  To encourage best practice, the process of defining a condition 

tree and recording an audit trail has been made an integral part of the CURE Toolbox via a condition tree Graphical 

User Interface (GUI).  

 
Other freely available toolboxes include for forward UE: the Data Uncertainty Engine1 (DUE; Brown et al., 2007) and the 75 

SIMLAB2 toolbox (Saltelli et al., 2004); and for conditioned UE: GLUEWIN 3, UCODE 20144 (Poeter et al., 2014), the Monte 

Carlo Analysis Toolbox5 (MCAT; Wagener and Kollat, 2007), the MATLAB UQLAB6 and the DREAM7Toolbox (Vrugt et 

al., 2008; 2009; Vrugt, 2016). See also the broader review of uncertainty tools undertaken by UNCERTWEB (Bastin et al., 

2013) which includes tools supporting elicitation, visualisation, uncertainty and sensitivity analysis. The CURE Toolbox 

presented here is open source and brings together formal and informal modelling methodologies, underpinned by different 80 

philosophies, that users are encouraged to explore via the example workflows (Table 1). It also includes a method not included 

in previous toolboxes (i.e. the GLUE-Limits of Acceptability (LoA) method; Beven, 2006; Blazkova and Beven, 2009; 

Hollaway et al., 2018) and explicitly sets out to encourage best practice regarding the conditionality of modelling results using 

the condition tree approach.  

 85 

 
1http://harmonirib.geus.info/due_download/index.html;  2https://ec.europa.eu/jrc/en/samo/simlab; 
3https://ec.europa.eu/jrc/en/econometric-statistical-software;  4http://igwmc.mines.edu/freeware/ucode;                   
5http://www.imperial.ac.uk/environmental-and-water-resource-engineering/research/software/; 6http://www.uqlab.com;  
7http://faculty.sites.uci.edu/jasper/files/2015/03/manual_DREAM.pdf 
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2 The CURE Toolbox 

The CURE Toolbox essentially has two linked structures. There is an overall structure with which the user interacts throughout 

the analysis (Figure 1) and an underlying folder structure (Figure 2) containing the toolbox functions and example model 

specific files.  The toolbox folder structure has specific folders for the UE methods where method-specific functions are 

collated (e.g. method-specific sampling, diagnostics and visualisation) and for the individual example modelling applications 90 

(i.e. the model functions and input files as well as any links to any ‘external models’: i.e. models not coded as a MATLABTM 

function, but which can be executed from the command line).  Folders also exist for general (i.e. not method-specific) sampling 

methods, visualisations and utility functions.  Additionally, there are project folders for each example workflow where audit 

trail logs, diagnostics and results are written. 

The functions for general sampling of parameter distributions (e.g. uniform, low discrepancy or Latin Hypercube sampling of 95 

the large number of supported distributions) are common with the SAFE toolbox. In addition, and of particular importance for 

forward uncertainty analysis, the sampling functions have been extended to represent parameter and forcing input dependencies 

using copulas (e.g. workflow 3 in Table 1 uses copula sampling based on results from previous analyses to describe parameter 

dependencies for forward uncertainty propagation). Other specific sampling functions are associated with the adaptive 

sampling (“on-line” sampling) for Markov Chain Monte Carlo (MCMC) approaches where distributions and correlation 100 

structures are modified as the chain(s) evolve.  Modelling diagnostics, both numeric and graphical are provided for both on-

line adaptive sampling and “off-line” methods (i.e. those which are not adaptively sampled within a given method).  In the 

case of on-line MCMC methods, visualisation of the evolution of the states of the chain(s) and tests for convergence to 

stationary distributions are included (e.g. Figure 3 a and b).   

Functions used in fitting error models, as outlined below, also serve as an approximate check of error model validity when 105 

analysing posterior simulations (e.g. Figure 3 c and d).   For the GLUE methods (see Beven and Binley, 1992, 2014), 

diagnostics are included for exploration of the acceptable parameter space and which criterion (or criteria) and at which 

timesteps (or locations) simulations were rejected. There are also method-specific and generic toolbox functions for 

visualisation and presentation of simulation results and associated uncertainties (e.g. see Figure 4).  Results are both 

alphanumeric and graphical; alphanumeric results (including those from diagnostic statistics and summary variables where 110 

appropriate) can be automatically written to the audit trail log and plots are saved to the project folder. 

Table 1 lists the example workflows included in the first release of the CURE Toolbox and the methods employed.   

 

Table 1 – Toolbox workflow examples and uncertainty estimation methods employed  

Workflow Uncertainty estimation method Example Model Shot Description 

1 Forward (independent sampling) CHASM1,§ 

Case study - uniform 

sampling of statistical 

distributions 
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2 Forward (independent) HYMOD2  Fuzzy parameter distributions 

3 
Forward (dependent sampling - 

copula) 
HYMOD  

Marginal gamma distributions 

and rank correlation derived 

copula  

4 
Forward€  (dependent sampling - 

copula) 
LISFLOOD3, § 

Case study - statistical model4 

fitted as copula for inflows to 

LISFLOOD 

5 
Conditioned; Adaptive Metropolis 

MCMC4,5,6 
HYMOD 

Single chain MCMC; formal 

likelihood 

6 Conditioned; DREAM7  HYMOD 
Multi-chain MCMC; formal 

likelihood 

7 
Conditioned; DREAM-ABC8 – 

LoA 
HYMOD 

Multi-chain MCMC; informal 

treatment with ABCѱ & LoA¥ 

8 
Conditioned; DREAM-ABC - 

LoA 
PROTECH4, § 

Multi-chain MCMC; informal 

treatment with ABC & LoA 

9 Conditioned; GLUE9  HYMOD 

GLUE using threshold of 

informal likelihood for 

acceptance 

10 Conditioned; GLUE PROTECH§ 

GLUE using threshold of 

informal likelihood for 

acceptance 

11 Conditioned; GLUE-LoA10 PROTECH§ 
GLUE using multi-variable 

LoA 

12 Conditioned; GLUE-LoA HYMOD 
GLUE using single-variable 

LoA 
€ In this example the inputs were sampled in a forward uncertainty analysis but the LISFLOOD model was 

conditioned in a prior analysis;   1 Almeida et al. (2017); 2 Wagener et al. (2001); 3 Neal et al. (2013); 4Haario, et 

al. (2001); 5 Roberts and Rosenthal (2001); 6 Roberts and Rosenthal (2009); 7 DiffeRential Evolution Adaptive 

Metropolis, Vrugt (2016);  8 Sadegh and Vrugt (2014); 9 Generalised Likelihood Uncertainty Estimation, Beven 

and Binley (1992); 10 Blazkova and Beven (2009); § Owing to long model run times this example uses  pre-run 

simulation output;  ѱ Approximate Bayesian Computation; ¥Limits of Acceptability. 

 115 

 

https://doi.org/10.5194/hess-2022-349
Preprint. Discussion started: 17 November 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

3 Condition Tree Implementation 

As part of any CURE toolbox application, users can explore and document modelling choices, assumptions and uncertainties 

using the condition tree GUI (e.g. Figure 5). The GUI aids in the elicitation of primary modelling uncertainties, their likely 

sources and how they are to be treated during the analysis. It is also designed to elicit other important choices and assumptions, 120 

including those regarding elements of the analysis assumed to be associated with insignificant uncertainties and perhaps treated 

deterministically; for example, where only one model structure is considered or where uncertainties are assumed negligible 

for certain elements or are perhaps subsumed into other uncertain elements. Similarly to the incorporation of UE, the condition 

tree would, ideally, be completed as an integral part of any modelling application and can help in the definition of an 

appropriate workflow structure. 125 

The GUI takes the form of a number of simple, sequential dialogue boxes where the user is asked to enter text.  In the initial 

release of the toolbox there are 5 primary dialogue boxes covering:  

1. Project aims and model(s)/model structures considered 

2. Modelling uncertainties - overview: model structure, parameters, inputs, observations for model conditioning 

3. Uncertainties - observations for model conditioning - specific: associated uncertainties and basis for assessing 130 

simulation performance 

4. Uncertainties - inputs - specific: sampling strategy, distributions, dependencies 

5. Uncertainties -  parameters - specific: choice of parameters, sampling strategy, distributions, dependencies 

The information elicited using the dialogue boxes can be automatically written to the project audit trail log during the initial 

phase of entry;  the audit trail log remains editable as the user defines their own workflow and during any subsequent 135 

modifications to the analysis contained within a workflow. 

4 Defining a workflow 

The a priori consideration of modelling uncertainties via the condition tree is an optional first step to help structure a workflow; 

an additional aid is provided in the form of a decision-tree (e.g. Figure 6) to guide the user to example toolbox workflows 

which most closely match their application and to help in the choice of UE method(s) (Pappenberger et al., 2006).  These 140 

complement the toolbox documentation and help text which are available via the workflows and functions; documentation and 

help are in the form of targeted comments within the code and function header text available by typing help “function name” 

at the command line (e.g. headers may include a definition of function variables and references for a specific UE method). 

Each workflow is also linked, where possible, to the relevant chapters of Beven (2009): specified in the header text of each 

workflow script.   Clarification of the terminology used in the help and documentation is provided by a glossary of terms 145 

included as part of the toolbox.  
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It is assumed that the user has completed pre-processing analyses such as forcing input error assessment and disinformation 

screening (e.g. Beven and Smith, 2015) as well as an assessment of errors associated with conditioning observations where 

used.  An exception is the toolbox facility for fitting error models when formal statistical likelihoods are to be used. This is 

done interactively, using command line prompts, and can form part of a workflow (or used stand-alone).  Error model fitting 150 

utilises functions which transform the data to remove heteroscedasticity and non-normality using Box-Cox transformations, 

which cover a broad continuum of transformations (Box and Cox, 1964), and autocorrelation (by fitting an autoregressive 

model of suitable order) in an iterative way as proposed by (Beven et al., 2008; see Figure 3 c and d for example error model 

fitting visualisations). 

The example workflows have been chosen to span the UE methods included in the toolbox and, in some cases, provide 155 

comparison of different UE methods for similar modelling applications. The structure of the workflows themselves includes 

the primary steps to be ‘populated’ as follows:  

1. Condition tree GUI: project setup and interactive dialogue boxes 

2. Set up inputs and observations  

3. Set up parameter ranges, distributions and sampling strategy  160 

4. Define performance measure (if conditioned UE)  

5. Simulations (on-line or off-line; MATLABTM function or ‘external model’)  

6. Post-processing: diagnostics, results, propagation and visualisation of uncertainty 

Associated with these main steps, example workflows include automatic ‘text writes’ which are appended to the audit trail 

log.  These include specific choices which are made when implementing steps 1-5 above: such as the ranges of parameter 165 

values used and their distributions, the sampling strategy employed as well as diagnostic and simulation results.   

In general, users will not need to modify any toolbox functions; they will only need to build a workflow. However, given the 

requirement for on-line simulation performance to be assessed for MCMC methods, and the many permutations of performance 

measures, and ways of combining them where multiple criteria are used, users are also required to modify an additional 

function that returns an overall measure of individual simulation performance.  In addition, where ‘external’ models are to be 170 

used for on-line approaches, additional modifications may be required for modification of input/parameter files, using some 

form of wrapper code. 

5 An Example Application 

The CURE Workflows can be applied to a wide range of geoscience applications, including the water science examples set 

out in Table 1.    In particular, it is well suited to the specification of assumptions about espitemic uncertainties, conditioning 175 

using uncertain observational data, and rejectionist approaches to model evaluation (see also Beven et al., 2016; 2022a,b).   

Here we provide some more detail on the application of the PROTECH model within such a rejectionist conditioning 

framework (Workflow 11 in Table 1).    The full workflow and outputs are given in the Electronic Supplement to this article.   
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PROTECH is a lake algal community model that has been applied to predict concentrations for functional classes of algae in 

Lake Windermere in Cumbria, UK (Page et al., 2017).   It is a 1D model with water volumes related to the lake bathymetry 180 

and runs with a daily time step.   In this case the model is provided in an executable form and was run off-line for randomly 

sampled parameter sets, so that the workflow takes the simulated output files as inputs.    The model requires flow, weather 

and nutrient information as inputs.   A reduced set of six parameters were sampled as in Table 2 (see Page et al., 2017, for a 

more complete analysis).   Model evaluation is based on limits of acceptability for three variables: chlorophyll, and the 

concentrations of R-type and CS-type algae.   Figure 7 shows the resulting chlorophyll outputs for the surviving models from 185 

the analysis after evaluation against all three sets of limits of acceptability.    The full workflow and resulting audit trail and 

output figures are presented in the Electronic Supplement. 

 

Table 2.   Parameters and uniform distribution sampling ranges for the application of the PROTECH model to Lake 

Windermere.         190 

Parameter Meaning Min Max 

EPSW  Background light extinction coefficient 0.15 0.35 

Pf Growth rate factor for phosphorus 0.5 2.5 

Nf Growth rate factor for nitrate  0.5 1.5 

Sif Growth rate factor for silica 0.5 1.5 

Kz Vertical effective eddy diffusion coefficient 0.05 0.4 

WWf Waste Water Treatment Works adjustment 

factor for phosphorus 

0.05 0.6 

 

6 Toolbox Evolution 

The toolbox structure is such that new methods can be easily added and it will be subject to ongoing development and 

augmentation with additional workflow examples. It is hoped that the CURE toolbox will contribute to the ongoing 

development and testing of UE methods and good practice in their application. In particular, the condition tree approach could 195 

be further developed via feedback from toolbox users and end-users of the conditional uncertainty estimates. The toolbox is 

freely available for non-commercial research and education from: 

https://www.lancaster.ac.uk/lec/sites/qnfm/credible/default.htm. 
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Figure 1 CREDIBLE Uncertainty Estimation Toolbox: overall structure   
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Figure 2 Outline folder structure of the CURE Toolbox 
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 325 

 
Figure 3  Visualisation of simulation diagnostics: (a) the evolution of 12 chains using DREAM; (b) evolution of the 

Gelman Rubin convergence statistic for 5 parameters; (c) & (d) visualisation of error structure during error model 

fitting;   
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Figure 4 Visualisation of results: (a) The distribution of simulated minimum factor of safety from a forward UE using 

the CHASM landslide model;  (b) 5th; 50th and 95th percentiles of simulated discharge (black lines)  and observed 

discharge from an MCMC conditioned UE method using HYMOD; (c) Posterior parameter distributions for the same 

example as (b) and (d) dotty plots showing both all and acceptable parameter sets from a GLUE analysis using the 335 

PROTECH model. 
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Figure 5.  Condition Tree example: GUI dialogue box for (a) Project Setup, (b)  the Condition Tree tree navigation 

pane and (c) part of an example audit trail log. 340 
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Figure 6.  Decision tree guiding users towards different methodologies and workflows 345 
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Figure 7.  PROTECH application to Lake Windermere example:  Observed chlorophyll data (red circles), limits of 350 

acceptability (green circles) and predictions of models that satisfy all of chlorophyll, R-type and CS-type algae limits. 
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