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Abstract. There is a general trend for increasing inclusion of uncertainty estimation in the environmental modelling domain.   

We present the CREDIBLE Uncertainty Estimation (CURE) Toolbox, an open source MATLABTM toolbox for uncertainty 15 

estimation aimed at scientists and practitioners that are not necessarily experts in uncertainty estimation.  The toolbox focusses 

on environmental simulation models and hence employs a range of different Monte Carlo methods for forward and conditioned 

uncertainty estimation. The methods included span both formal statistical and informal approaches, which are demonstrated 

using a range of modelling applications set up as workflow scripts. The workflow scripts provide examples of how to utilise 

toolbox functions for a variety of modelling applications and hence aid the user in defining their own workflow: additional 20 

help is provided by extensively commented code. The toolbox implementation aims to increase the uptake of uncertainty 

estimation methods within a framework designed to be open and explicit, in a way that tries to represent best practice in 

applying the methods included. Best practice in the evaluation of modelling assumptions and choices, specifically including 

epistemic uncertainties, is also included by the incorporation of a condition tree that allows users to record assumptions and 

choices made as an audit trail log.  25 

 

1 Introduction 

Environmental simulation models are used extensively for research and environmental management. There is a 

general trend for increasing inclusion of uncertainty estimation (UE) in the environmental modelling domain, 
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including applications used in decision making (Alexandrov et al., 2011; Ascough et al., 2008).   Effective use of 

model estimates in decision making requires a level of confidence to be established (Bennett et al., 2013) and UE 

is one element of determining this. Another required element is an assessment of the conditionality of any UE; i.e. 

the conditionality associated with the implicit and explicit choices and assumptions made during the modelling and 35 

UE process, given the information available (e.g. see Rougier and Beven, 2013). 

 

Here we present the CREDIBLE Uncertainty Estimation (CURE) Toolbox; an open source MATLABTM toolbox 

for UE associated with environmental simulation models. It is aimed at scientists and practitioners with some 

modelling experience, that are not necessarily experts in UE. The toolbox structure is similar to that of the SAFE 40 

toolbox (Sensitivity Analysis For Everyone; Pianosi et al., 2016) such that it allows more experienced users to 

modify and enhance the code and to add new UE methods. The implementation of the toolbox also aims to increase 

the uptake of UE methods within a framework designed to be open and explicit, in a way that tries to represent best 

practice.  That is, best practice in applying the various UE methods included as well as best practice in being explicit 

about modelling choices and assumptions.  45 

 

As the focus of the toolbox is UE for simulation models, often with relatively complex structures and many model 

parameters, the toolbox employs a range of different Monte Carlo methods.  These are used for forward propagation 

of uncertainties by sampling from a priori defined input and parameter distributions, for forward UE, or in the 

estimation of refined model structures and/or associated posterior parameter distributions when conditioned on 50 

observations (conditioned UE).  The methods included span both formal statistical and informal approaches to UE, 

which are demonstrated using a range of modelling applications set up as workflow scripts  that provide examples 

of how to utilise toolbox functions.   As noted in the comments in the code, many of the Workflows can be linked 

to the description of methods in Beven (2009). 

 55 

Formal statistical and informal methods are included as there are no commonly agreed techniques for UE in 

environmental modelling applications, as evidenced by continuing debates and disputes in the literature (e.g. Clark 

et al., 2011; Beven et al., 2012; Beven, 2015; Nearing et al., 2016). The lack of consensus on the most appropriate 

UE method is to be expected given that the sources of uncertainty associated with environmental modelling 

applications are dominated by a lack of knowledge (epistemic uncertainties; e.g. see Refsgaard et al., 2007, Beven, 60 

2009; Beven et al. 2016; Beven and Lane, 2022) rather than solely random variability (aleatory uncertainties). 

Rigorous statistical inference applies to the latter, but might lead to unwarranted confidence if applied to the former, 
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especially where some data might be disinformative in model evaluation (e.g. see Beven and Westerberg, 2011; 

Beven and Smith, 2015; Beven, 2019; Beven and Lane, 2022).   65 

 

Assessing the impact of epistemic uncertainties for environmental modelling requires assumptions about their 

nature (which are difficult to define) such that the outputs from any UE will be conditional upon these assumptions. 

This poses the question of what is good practice in evaluating assumptions and choices made during the modelling 

process and what is good practice in communicating the meaning of any subsequent analyses (Walker et al., 2003; 70 

Sutherland et al., 2013; Beven et al., 2018b; see also the TRACE framework of Grimm et al., (2014) for 

documenting the modelling process).  Beven and Alcock (2012) suggest a condition tree approach, that records the 

modelling choices and assumptions made during analyses and thus provides a clear audit trail (e.g. see Beven et 

al., 2014; Beven and Lane, 2022). The audit trail consequently provides a vehicle that promotes transparency, best 

practice and communication with stakeholders (Refsgaard et al., 2007; Beven and Alcock, 2012).  To encourage 75 

best practice, the process of defining a condition tree and recording an audit trail has been made an integral part of 

the CURE Toolbox via a condition tree Graphical User Interface (GUI).  

 

Other freely available toolboxes include for forward UE: the Data Uncertainty Engine1 (DUE; Brown et al., 2007) 

and the SIMLAB2 toolbox (Saltelli et al., 2004); and for conditioned UE: GLUEWIN 3 (Ratto and Saltelli, 2001), 80 

UCODE 20144 (Poeter et al., 2014), the Monte Carlo Analysis Toolbox5 (MCAT; Wagener and Kollat, 2007), the 

MATLAB UQLAB6, the Interactive Probabilistic Prediction software7 (McInerney et al., 2018) and the DREAM8 

Toolbox (Vrugt et al., 2008; 2009; Vrugt, 2016). See also the broader review of uncertainty tools undertaken by 

UNCERTWEB (Bastin et al., 2013) which includes tools supporting elicitation, visualisation, uncertainty and 

sensitivity analysis. While links exist for these toolboxes, it is not clear that all continue to be maintained and 85 

supported.  The CURE Toolbox presented here is open source and brings together formal and informal modelling 

methodologies, underpinned by different philosophies, that users are encouraged to explore via the example 

workflows (Table 1). It also includes a method not included in previous toolboxes (i.e. the GLUE-Limits of 

 
1http://harmonirib.geus.info/due_download/index.html;  
 2https://ec.europa.eu/jrc/en/samo/simlab;  
3https://ec.europa.eu/jrc/en/econometric-statistical-software;  
 4http://igwmc.mines.edu/freeware/ucode;                   
 5http://www.imperial.ac.uk/environmental-and-water-resource-engineering/research/software/; 
 6http://www.uqlab.com;   
7http://www.probabilisticpredictions.org;  
8 http://faculty.sites.uci.edu/jasper/files/2015/03/manual_DREAM.pdf 

Deleted:  

Deleted: 790 
Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: (Default) +Body (Times New Roman), 10
pt

Formatted: Font: (Default) +Body (Times New Roman), 10
pt

Formatted: Normal (Web)

Formatted: Font: 10 pt



4 
 

Acceptability (LoA) method; Beven, 2006; Blazkova and Beven, 2009; Hollaway et al., 2018; Beven et al., 2022) 

and explicitly sets out to encourage best practice regarding the conditionality of modelling results using the 

condition tree approach.  

 

2 Choosing a Workflow 95 

Table 1 lists the example Workflows included in the first release of the CURE Toolbox and the methods employed, 

with references to published papers where the methods have been applied.    A variety of Workflows covering both 

Forward UE and both formal statistical and informal methods of Conditioned UE.  Figure 1 provides an illustration 

of the choices that might be made in deciding on a Workflow within the CURE Toolbox (see also the earlier 

decision trees of this type in Pappenberger et al., 2006; Beven, 2009).   Forward UE methods (Workflows 1, 2) 100 

must be used when there are no observational data with which to condition the model outputs.  The outcomes will 

then be directly dependent on the assumptions about prior distributions and covariation of parameters and input 

variables.   Copula methods are used to sample covariates (Workflows 3,4).    In the case of both Forward and 

Conditioned UE Workflows, input uncertainties are parameterised to be applied as ranges or distributions, for 

example, as multipliers or an additive bias applied when the model is run. 105 

 

When observational data are available, formal statistical likelihood methods (Workflows 5 and 6) will be most 

appropriate in cases where any model residuals can be assumed to be aleatory and represented by a simple stochastic 

model.   Where such assumptions are difficult to justify because of epistemic sources of uncertainty, then there is 

a choice between Approximate Bayesian Estimation (ABC) using Monte Carlo Markov Chain (MCMC) sampling  110 

and GLUE methods.    Within ABC, a threshold of acceptability for some informal summary measure of 

performance is chosen.  The MCMC sampling is implemented using the DREAM code described in Vrugt (2015; 

see Vrugt, 2016, for a more recent description).  This aims to produce an ensemble of model parameter sets 

comprising the samples from the final iterations of the DREAM algorithm (defined by the user) that are considered 

as equally probable (Workflows 7,8).  Convergence of the sampling can be tested using the Gelman and Rubin 115 

(1992) diagnostic statistic. 

 

Within GLUE each model is associated with a likelihood measure that initially reflects sampling of the assumed 

prior distributions and is then modified during the conditioning process.  GLUE allows for different ways of 

updating the likelihood measure including both Bayesian multiplication and fuzzy operators (Beven and Binley, 120 
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1992, 2104).  Uniform independent priors across specified are often assumed when there is a lack of robust 

knowledge about the parameters but, as in the options for the forward UE workflows, other prior distributions can 

be used..  Deciding on whether a model is acceptable or behavioural can again be based on some informal summary 

measure of performance (Workflows 9,10) or some predefined limits of acceptability (Workflows, 11,12).  A 

particular case of defining limits of acceptability for rainfall-runoff models based on historic event runoff 125 

coefficients as a way of reflecting epistemic uncertainties in observed inputs and outputs is included (Workflows 

13,14).   Vrugt and Beven (2018) have demonstrated an adaptive sampling methodology for applying the limits of 

acceptability (DREAM(LoA)) that aims to find feasible samples that satisfy all the limits applied.  The DREAM 

algorithm used in Workflows 7 and 8 can be adapted to be used in this way.     

 130 

It should be noted that the examples associated with each workflow are intended to be illustrative.  They cannot all 

be described in detail in this Technical Note intended to introduce the Toolbox.  However, the MatlabTM code is 

freely available and can be easily adapted by users for their own applications.   Extensive comments are included 

in each workflow to aid this process. 

 135 

 

Table 1 – Toolbox workflow examples and uncertainty estimation methods employed  

Workflow Uncertainty estimation method Example Model Shot Description 

1 Forward (independent sampling) CHASM1,§ 

Application of uniform 

sampling of statistical 

distributions 

2 Forward (independent) HYMOD2  Fuzzy parameter distributions 

3 
Forward (dependent sampling - 

copula) 
HYMOD  

Marginal gamma distributions 

and rank correlation derived 

copula  

4 
Forward€  (dependent sampling - 

copula) 
LISFLOOD3, § 

Application of covariant  

model4 fitted as copula for 

inflows to LISFLOOD 

5 
Conditioned; Adaptive Metropolis 

MCMC4,5,6 
HYMOD 

Single chain MCMC; formal 

likelihood 

6 Conditioned; DREAM7  HYMOD 
Multi-chain MCMC; formal 

likelihood 
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The CURE Toolbox essentially has two linked structures. There is an 190 
overall structure with which the user interacts throughout the analysis 
(Figure 1) and an underlying folder structure (Figure 2) containing 
the toolbox functions and example model specific files.  The toolbox 
folder structure has specific folders for the UE methods where 
method-specific functions are collated (e.g. method-specific 195 
sampling, diagnostics and visualisation) and for the individual 
example modelling applications (i.e. the model functions and input 
files as well as any links to any ‘external models’: i.e. models not 
coded as a MATLABTM function, but which can be executed from the 
command line).  Folders also exist for general (i.e. not method-200 
specific) sampling methods, visualisations and utility functions.  
Additionally, there are project folders for each example workflow 
where audit trail logs, diagnostics and results are written.¶
The functions for general sampling of parameter distributions (e.g. 
uniform, low discrepancy or Latin Hypercube sampling of the large 205 
number of supported distributions) are common with the SAFE 
toolbox. In addition, and of particular importance for forward 
uncertainty analysis, the sampling functions have been extended to 
represent parameter and forcing input dependencies using copulas 
(e.g. workflow 3 in Table 1 uses copula sampling based on results 210 
from previous analyses to describe parameter dependencies for 
forward uncertainty propagation). Other specific sampling functions 
are associated with the adaptive sampling (“on-line” sampling) for 
Markov Chain Monte Carlo (MCMC) approaches where distributions 
and correlation structures are modified as the chain(s) evolve.  215 
Modelling diagnostics, both numeric and graphical are provided for 
both on-line adaptive sampling and “off-line” methods (i.e. those 
which are not adaptively sampled within a given method).  In the 
case of on-line MCMC methods, visualisation of the evolution of the 
states of the chain(s) and tests for convergence to stationary 220 
distributions are included (e.g. Figure 3 a and b).  ¶
Functions used in fitting error models, as outlined below, also serve 
as an approximate check of error model validity when analysing 
posterior simulations (e.g. Figure 3 c and d).   For the GLUE methods 
(see Beven and Binley, 1992, 2014), diagnostics are included for 225 
exploration of the acceptable parameter space and which criterion (or 
criteria) and at which timesteps (or locations) simulations were 
rejected. There are also method-specific and generic toolbox 
functions for visualisation and presentation of simulation results and 
associated uncertainties (e.g. see Figure 4).  Results are both 230 
alphanumeric and graphical; alphanumeric results (including those 
from diagnostic statistics and summary variables where appropriate) ... [1]
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7 Conditioned; DREAM8 ѱ HYMOD 

Multi-chain MCMC with 

thresholding of informal 

likelihood measure 

8 Conditioned; DREAM PROTECH4, § 

Multi-chain MCMC using 

thresholding of informal 

likelihood measure 

9 Conditioned; GLUE9  HYMOD 
GLUE using threshold of 

informal likelihood measure  

10 Conditioned; GLUE PROTECH§ 
GLUE using threshold of 

informal likelihood measure. 

11 Conditioned; GLUE-LoA HYMOD 
GLUE using single-variable 

Limits of Acceptabilty 

12 Conditioned; GLUE-LoA10 PROTECH§ 
GLUE using multi-variable 

Limits of Acceptability 

13 
Analysis of rainfall-runoff 

observations 
Event analysis11 

Derivation of Limits of 

Acceptability based on 

event runoff coefficients 

14 Conditioned GLUE-LoA 
Dynamic 

TOPMODEL11 

GLUE using Limits of 

Acceptability based on 

runoff coefficients 
€ In this example the inputs were sampled in a forward uncertainty analysis but the LISFLOOD model was 

conditioned in a prior analysis;   1 Almeida et al. (2017); 2 Wagener et al. (2001); 3 Neal et al. (2013); 4Haario, et 

al. (2001); 5 Roberts and Rosenthal (2001); 6 Roberts and Rosenthal (2009); 7 DiffeRential Evolution Adaptive 

Metropolis, Vrugt (2016);  8 Sadegh and Vrugt (2014); 9 Generalised Likelihood Uncertainty Estimation, Beven 

and Binley (1992); 10 Blazkova and Beven (2009); § Owing to long model run times this example uses  pre-run 

simulation output;11 Beven et al. (2022)  ѱ Approximate Bayesian Computation; ¥Limits of Acceptability. 

 

3 The CURE Toolbox Structure Version 1.0 

The CURE Toolbox essentially has two linked structures. There is an overall structure with which the user interacts 235 

throughout the analysis (Figure 2) and an underlying folder structure (Figure 3) containing the toolbox functions 

and example model specific files.  The toolbox folder structure has specific folders for the UE methods where 

method-specific functions are collated (e.g. method-specific sampling, diagnostics and visualisation) and for the 
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individual example modelling applications (i.e. the model functions and input files as well as any links to any 250 

‘external models’: i.e. models not coded as a MATLABTM function, but which can be executed from the command 

line).  Folders also exist for general (i.e. not method-specific) sampling methods, visualisations and utility 

functions.  Additionally, there are project folders for each example workflow where audit trail logs, diagnostics 

and results are written. 

 255 

The functions for general sampling of parameter distributions (e.g. uniform, low discrepancy or Latin Hypercube 

sampling of the large number of supported distributions) are common with the SAFE toolbox of Pianosi et al. 

(2016). In addition, and of particular importance for forward uncertainty analysis, the sampling functions have been 

extended to represent parameter and forcing input dependencies using copulas (e.g. Workflow 3 in Table 1 uses 

copula sampling based on results from previous analyses to describe parameter dependencies for forward 260 

uncertainty propagation). Other specific sampling functions are associated with the adaptive sampling (“on-line” 

sampling) for Markov Chain Monte Carlo (MCMC) approaches, implemented using the DREAM algorithm of 

Vrugt (2016), where distributions and correlation structures are modified as the chain(s) evolve.  Modelling 

diagnostics, both numeric and graphical are provided for both on-line adaptive sampling and “off-line” methods 

(i.e. those which are not adaptively sampled within a given method).  In the case of on-line MCMC methods, 265 

visualisation of the evolution of the states of the chain(s) and tests for convergence to stationary distributions are 

included (e.g. Figure 4 a and b).   

 

In the case of formal statistical likelihood methods (see, for example, Evin et al., 2013, 2014, and the recent 

“universal likelihood” of Vrugt et al., 2022), residual model fitting can be carried interactively, using command 270 

line prompts, and can form part of a workflow (or used stand-alone).  The approach uses Box-Cox transformations 

which provide flexibility in transforming the data to remove heteroscedasticity and non-normality (Box and Cox, 

1964), and also provides for fitting an autoregressive model of suitable order in an iterative way as proposed by 

Beven et al., (2008). Figures 4 c and d, for example, show the use of the residual model fitting visualisations in 

Workflow 5. The visualisations also serve as an approximate check of the residual model assumptions when 275 

analysing posterior simulations.    

 

For the GLUE methods (see Beven and Binley, 1992, 2014; Beven and Freer, 2001; Beven et al., 2008; Beven and 

Lane, 2022), diagnostics are included for exploration of the acceptable parameter space and which criterion (or 

criteria) and at which timesteps (or locations) simulations were rejected. There are also method-specific and generic 280 
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toolbox functions for visualisation and presentation of simulation results and associated uncertainties (e.g. see 

Figure 5 for the application in Workflow 1).  Results are both alphanumeric and graphical; alphanumeric results 

(including those from diagnostic statistics and summary variables where appropriate) can be automatically written 

to the audit trail log and plots are saved to the project folder. 

 285 

4 Condition Tree Implementation within CURE 

An important part of any CURE toolbox application, is the way that users can explore and document modelling 

choices, assumptions and uncertainties using the condition tree GUI (e.g. Figure 6). The GUI aids in the elicitation 

of primary modelling uncertainties, their likely sources and how they are to be treated during the analysis. It is also 

designed to elicit other important choices and assumptions, including those regarding elements of the analysis 290 

assumed to be associated with insignificant uncertainties and perhaps treated deterministically; for example, where 

only one model structure is considered or where uncertainties are assumed negligible for certain elements or are 

perhaps subsumed into other uncertain elements. Similarly to the incorporation of UE, the condition tree would, 

ideally, be completed as an integral part of any modelling application and can help in the definition of an appropriate 

workflow structure.   This is particularly important in considering epistemic sources of uncertainty.  We fully 295 

understand that non-probabilistic approaches to uncertainty estimation remain controversial (e.g. Nearing et al., 

2016) but have demonstrated in the past that the assumptions required to use formal statistical methods (e.g. the 

recent paper of Vrugt et al., 2022) may lead to overconfidence in the resulting inference when epistemic 

uncertainties are important (Beven and Smith, 2015; Beven, 2016). Because the epistemic uncertainties are the 

result of lack of knowledge their nature and impacts cannot be easily defined.   That means that effectively there 300 

can be no right answer (e.g. Beven et al., 2018a,b; Beven and Lane, 2022) so that the recording of assumptions in 

the audit trail for analysis should be a requisite of any analysis to allow later evaluation by others.   

 

The GUI takes the form of a number of simple, sequential dialogue boxes where the user is asked to enter text.  In 

the initial release of the toolbox there are 5 primary dialogue boxes covering:  305 

1. Project aims and model(s)/model structures considered 

2. Modelling uncertainties - overview: model structure, parameters, inputs, observations for model 

conditioning 
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3. Uncertainties - observations for model conditioning - specific: associated uncertainties and basis for 

assessing simulation performance 

4. Uncertainties - inputs - specific: sampling strategy, distributions, dependencies 315 

5. Uncertainties -  parameters - specific: choice of parameters, sampling strategy, distributions, dependencies 

The information elicited using the dialogue boxes can be automatically written to the project audit trail log during 

the initial phase of entry;  the audit trail log remains editable as the user defines their own workflow and during 

any subsequent modifications to the analysis contained within a workflow. 

 320 

5 Defining a workflow 

The a priori consideration of modelling uncertainties via the condition tree is an optional first step to help choose 

and structure an appropriate workflow.   The decision tree of Figure 1 can also be a guide in this respect.  These 

are complemented by the toolbox documentation and help text which are available via the workflows and functions; 

documentation and help are in the form of targeted comments within the code and function header text available 325 

by typing help “function name” at the command line (e.g. headers may include a definition of function variables 

and references for a specific UE method). Each workflow is also linked, where possible, to the relevant chapters of 

Beven (2009): specified in the header text of each workflow script.   Clarification of the terminology used in the 

help and documentation is provided by a glossary of terms included as part of the toolbox.  

 330 

It is assumed that the user has completed any necessary pre-processing analyses such as forcing input uncertainty 

assessment and disinformation screening (e.g. Beven and Smith, 2015) as well as an assessment of uncertainties 

associated with conditioning observations where used.  An exception is interactive the toolbox facility for fitting 

residual models mentioned earlier when formal statistical likelihoods are to be used.  

 335 

The example workflows have been chosen to span the UE methods included in the toolbox and, in some cases, 

provide comparison of different UE methods for similar modelling applications. The structure of the workflows 

themselves includes the primary steps to be ‘populated’ as follows:  

1. Condition tree GUI: project setup and interactive dialogue boxes 

2. Set up inputs and observations  340 
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3. Set up parameter ranges, distributions and sampling strategy  

4. Define performance measure (if conditioned UE)  360 

5. Simulations (on-line or off-line; MATLABTM function or ‘external model’)  

6. Post-processing: diagnostics, results, propagation and visualisation of uncertainty 

Associated with these main steps, example workflows include automatic ‘text writes’ which are appended to the 

audit trail log for each analysis.  These include specific choices which are made when implementing steps 1-5 

above: such as the ranges of parameter values used and their distributions, the sampling strategy employed as well 365 

as diagnostic and simulation results.   

 

In general, users will not need to modify any toolbox functions; they will only need to build a workflow. However, 

given the requirement for on-line simulation performance to be assessed for MCMC methods, and the many 

permutations of performance measures, and ways of combining them where multiple criteria are used, users are 370 

also required to specify the function that returns an overall measure of individual simulation performance.  In 

addition, where ‘external’ models are to be used for on-line approaches, additional modifications may be required 

for modification of input/parameter files, using some form of wrapper code. 

 

6 An Example Workflow 375 

The CURE Workflows can be applied to a wide range of geoscience applications, including the water science 

examples set out in Table 1.    In particular, it is well suited to the specification of assumptions about epistemic 

uncertainties, conditioning using uncertain observational data, and rejectionist approaches to model evaluation (see 

also Beven et al., 2018a,b; 2022a,b).   Here we provide some more detail on the application of the PROTECH 

model within such a multi-variable rejectionist conditioning framework (Workflow 12 in Table 1).    The full 380 

workflow and outputs are given in the Electronic Supplement to this article.   

 

PROTECH is a lake algal community model that has been applied to predict concentrations for functional classes 

of algae in Lake Windermere in Cumbria, UK (Page et al., 2017).   It is a 1D model with water volumes related to 

the lake bathymetry and runs with a daily time step.   In this case the model is provided in an executable form and 385 

was run off-line for randomly sampled parameter sets, so that the workflow takes the simulated output files as 
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inputs.    The model requires flow, weather and nutrient information as inputs.   A reduced set of six parameters 

were sampled as in Table 2 (see Page et al., 2017, for a more complete analysis).   Model evaluation is based on 395 

limits of acceptability for three variables: chlorophyll, and the concentrations of R-type and CS-type algae.   Figure 

7 shows the resulting chlorophyll outputs for the surviving models from the analysis after evaluation against all 

three sets of limits of acceptability.    The full workflow and resulting audit trail and output figures are presented 

in the Electronic Supplement. 

 400 

Table 2.   Parameters and uniform distribution sampling ranges for the application of the PROTECH model to Lake 

Windermere (Workflow 12 application).         

Parameter Meaning Min Max 

EPSW  Background light extinction coefficient 0.15 0.35 

Pf Growth rate factor for phosphorus 0.5 2.5 

Nf Growth rate factor for nitrate  0.5 1.5 

Sif Growth rate factor for silica 0.5 1.5 

Kz Vertical effective eddy diffusion coefficient 0.05 0.4 

WWf Waste Water Treatment Works adjustment 

factor for phosphorus 

0.05 0.6 

 

7 Toolbox Evolution 

The toolbox structure is such that new methods can be easily added and it will be subject to ongoing development 405 

and augmentation with additional workflow examples. It is hoped that the CURE toolbox will contribute to the 

ongoing development and testing of UE methods and good practice in their application. In particular, the condition 

tree approach could be further developed via feedback from toolbox users and end-users of the conditional 

uncertainty estimates. The toolbox is freely available for non-commercial research and education from: 

https://www.lancaster.ac.uk/lec/sites/qnfm/credible/default.htm. 410 
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Figure 1.  Decision tree guiding users towards different methodologies and workflows 585 
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Figure 2 CREDIBLE Uncertainty Estimation Toolbox: overall structure   
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Figure 3 Outline folder structure of the CURE Toolbox 
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Figure 4  Visualisation of simulation diagnostics in conditioning of parameters of HYMOD in Workflow 5 using 

DREAM with a formal likelihood: (a) the evolution of 12 chains using DREAM; (b) evolution of the Gelman Rubin 

convergence statistic for 5 parameters; (c) & (d) visualisation of  structural parameters during residual model fitting;   600 
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Figure 5 Visualisation of results: (a) The distribution of simulated minimum factor of safety from a forward UE using 

the CHASM landslide model in Workflow 1;  (b) 5th; 50th and 95th percentiles of simulated discharge (black lines)  and 

observed discharge from an MCMC conditioned UE method using HYMOD; (c) Posterior parameter distributions for 

the same example as (b) and (d) dotty plots showing both all and acceptable parameter sets from a GLUE analysis 610 

using the PROTECH model. 
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Figure 6.  Condition Tree example: GUI dialogue box for (a) Project Setup, (b) the Condition Tree navigation pane and 615 

(c) part of an example audit trail log. 
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Figure 7.  PROTECH application to Lake Windermere example in Workflow 12:  Observed chlorophyll data (red 630 

circles), limits of acceptability (green circles) and predictions of models that satisfy all of chlorophyll, R-type and CS-

type algae limits. 
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