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Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides subseasonal to seasonal (S2S) 

precipitation forecasts; S2S forecasts extend from two weeks to two months ahead; however, the accuracy of S2S 

precipitation forecasting is still underdeveloped, and a lot of research and competitions have been proposed to study how 

machine learning (ML) can be used to improve forecast performance. This research explores the use of machine learning 15 

techniques to improve the ECMWF S2S precipitation forecast, here following the AI competition guidelines proposed by the 

S2S project and the World Meteorological Organisation (WMO). A baseline analysis of the ECMWF S2S precipitation 

hindcasts (2000–2019) targeting three categories (above normal, near normal and below normal) was performed the ranked 

probability skill score (RPSS) and the receiver operating characteristic curve (ROC). A regional analysis of a time series was 

done to group similar (correlated) hydrometeorological time series variables. Three regions were finally selected based on 20 

their spatial and temporal correlations. The methodology first replicated the performance of the ECMWF forecast data 

available and used it as a reference for the experiments (baseline analysis). Two approaches were followed to build 

categorical classification correction models: (1) using ML and (2) using a committee model. The aim of both was to correct 

the categorical classifications (above normal, near normal and below normal) of the ECMWF S2S precipitation forecast. In 

the first approach, the ensemble mean was used as the input, and five ML techniques were trained and compared: k-nearest 25 

neighbours (k-NN), logistic regression (LR), artificial neural network multilayer perceptron (ANN-MLP), random forest 

(RF) and long–short-term memory (LSTM). Here, we have proposed a gridded spatial and temporal correlation analysis 

(autocorrelation, cross-correlation and semivariogram) for the input variable selection, allowing us to explore neighbours’ 

time series and their lags as inputs. These results provided the final data sets that were used for the training and validation of 

the machine learning models. The total precipitation (tp), two-metre temperature (t2m) and time series with a resolution of 30 

1.5 by 1.5 degrees were the main variables used, and these two variables were provided as the global ECMWF S2S real-time 

forecasts, ECMWF S2S reforecasts/hindcasts and observation data from the National Oceanic and Atmospheric 
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Administration (Climate Prediction Centre, CPC). The forecasting skills of the ML models were compared against a 

reference model (ECMWF S2S precipitation hindcasts and climatology) using RPSS, and the results from the first approach 

showed that LR and MLP were the best ML models in terms of RPSS values. In addition, a positive RPSS value with respect 35 

to climatology was obtained using MLP. It is important to highlight that LSTM models performed quite similarly to MLP yet 

had slightly lower scores overall. In the second approach, the committee model (CM) was used, in which, instead of using 

one ECMWF hindcast (ensemble mean), the problem is divided into many ANN-MLP models (train each ensemble member 

independently) that are later combined in a smart ensemble model (trained with LR). The cross-validation and testing of the 

CMs showed positive RPSS values regarding climatology, which can be interpreted as improved ECMWF on the three 40 

climatological regions. In conclusion, ML models have very low—if any—improvement, but by using a CM, the RPSS 

values are all better than the reference forecast. This study was done only on random samples over three global regions; a 

more comprehensive study should be performed to explore the whole range of possibilities.  

1 Introduction 

The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) started a five-45 

year project named subseasonal to seasonal (S2S) in 2013. The project was a research initiative aiming to enhance the 

understanding and skills of forecasting for the S2S range of time (World Meteorological Organisation (WMO), 2013). Vitart 

and Robertson (2018) indicated that this range of forecasting is significant and has a substantial socioeconomic impact 

because many management decisions regarding food security, agriculture and risk mitigation are within this range. For 

instance, this forecast would give a margin of time for the implementation of the necessary management measures that 50 

would take two or three weeks.  

In 2021, the World Meteorological Organisation (WMO), together with the S2S project coordinators, launched an open 

challenge for using artificial intelligence (AI) or machine learning (ML) to improve the current precipitation and temperature 

S2S forecasts (WMO et al., 2021). 

An extensive database consisting of S2S model forecasts was created as part of the S2S project (Vitart et al., 2017). In the 55 

context of the S2S AI challenge, Pinault et al. (2022) provided an S2S predictions data pipeline for machine learning.  

The main data provided for the challenge consisted of ECMWF real-time forecasts and reforecasts (hindcasts) for 

precipitation and temperature, in addition to precipitation and temperature observations provided by the National Oceanic 

and Atmospheric Administration, Climate Prediction Centre (NOAA, CPC). 

The current study was carried out as part of the Climate Intelligence (CLINT) project. The main objective of the project is 60 

the use of AI to improve climate science, services and information systems. The project is funded by the European Union 

(EU) and started in July 2021. 
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2 Methodology 

The categorical classification correction models were built using machine learning (ML) to correct the categorical 

classifications (above normal, near normal and below normal) of the ECMWF S2S precipitation forecast. Various input 65 

datasets were used (four datasets) following spatial and temporal correlation analysis (autocorrelation, cross-correlation and 

semivariogram). The target output for the categorical classification models was the CPC observed categorical class (above 

normal, near normal and below normal), which was calculated using the 0.67 and 0.33 quantiles. 

The categorical classification correction models were built following two approaches. In the first approach, the ECMWF 

ensemble mean was used as the input, and various ML techniques were used to build individual models: k-nearest 70 

neighbours (k-NN), logistic regression (LR), artificial neural network multilayer perceptron (ANN-MLP), random forest 

(RF) and long–short-term memory (LSTM). Except for the K-NN, these ML models have the same output layer, which 

contains three neurons, and the activation function is the SoftMax function, which is used to make the ML models predict the 

tercile categorical probabilities (above normal, near normal and below normal) at each time step. A schematic representation 

of how the models in the first approach were built is shown in Fig. 1. 75 

In the second approach, the CM concept was used, in which, instead of using the ECMWF ensemble mean as the input, each 

realisation or ensemble member (there are 11 ensemble members in the ECMWF hindcast) was trained using a separate ML 

model and the ensemble output was combined using a logistic regression model. The output layer of the CMs was the same 

as for the individual ML models with three neurons, and the activation function was the SoftMax function. The CM output 

was the tercile categorical probabilities (above normal, near normal and below normal) at each time step. A schematic 80 

representation of how the models in the second approach were built is shown in Fig. 1.   

The models from the first and the second approaches were evaluated in selected assessment regions, which were selected 

based on the spatial and temporal correlation analysis. The evaluation of the models was done using the RPSS verification 

metric. 
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2.1 Data 

2.1.1 ECMWF model data 

The meteorological atmosphere is considered a chaotic system on longer time scales (from a few days to weeks); this also 

depends on the spatial scales. Therefore, in the case of ECMWF, probabilistic forecasting is used to account for uncertainty 90 

(ECMWF, 2022). 

ECMWF extended-range forecasts are used for the S2S predictions; these forecasts evaluate the predictability in the range 

between 10 and 46 days. Furthermore, the ECMWF extended-range forecast provided 51 ensemble members for real-time 

forecasting and 11 ensemble members for hindcast or reforecast (ECMWF, 2021). 

2.1.2 CPC observations 95 

CPC precipitation observations were constructed using an analysis of gauge-based data consisting of daily precipitation, and 

the data were collected from more than 30,000 stations from different sources, including the Cooperative Observer 

Programme (COOP), Global Telecommunications System (GTS) and other national and international organisations (NCAR, 

2021). 

Figure 1. Schematic representation of how the classification correction models work 
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2.1.3 S2S AI challenge data 100 

The data provided comprised ECMWF real-time forecasts for 2020, ECMWF hindcasts from 2000 to 2019 and CPC 

observations from 2000 to 2020. The data were global data consisting of 240 longitudes and 121 latitudes with a spatial 

resolution of 1.5*1.5 degrees and a forecast time dimension composed of 1060 time-steps (the result of the weekly forecasts 

for 20 years (1060 = 53 * 20)). At each time step, there were two lead times: first, 14 days lead time, which corresponded to 

the aggregation of weeks 3 and 4, and, second, 28 days lead time, which corresponded to the aggregation of weeks 5 and 6. 105 

A plot of the lead times for weeks 3 and 4 for ECMWF hindcasts (ensemble mean) and CPC observations are shown in Fig. 

2. 

 

 

2.2 Spatial and temporal correlation analysis 110 

Spatial and temporal correlation analysis was used for the preparation of temporal and spatial correlated datasets for the 

training and validation of the machine learning models. 

The autocorrelation and cross-correlation were measured using the Pearson correlation coefficient (r). 

Figure 2. A single forecast time plot for the tp and the t2m variables using a 14-day lead 

time (weeks 3 and 4) using the ECMWF hindcasts (ensemble mean) and CPC 

observations 
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(1) 115 

where 

r (x, y) ≡ the Pearson correlation coefficient 

𝑥𝑖,  𝑦𝑖   ≡ x and y variable values in a sample 

�̅�,  �̅�    ≡ mean of the x and y variables 

The spatial correlation was measured through the calculation of the experimental semivariogram, which was a function of 120 

the difference over a distance that measures the rate of change of variables that vary in space (Olea, 1994; Pyrcz, 2019). 

𝛾(ℎ) =  
1

2𝑁(ℎ)
 ∑ (𝑧(𝑢𝛼) −  𝑧(𝑢𝛼 + ℎ))2

𝑁(ℎ)

𝛼=1

 

(2) 

where 𝑧(𝑢𝛼) is the tail value and 𝑧(𝑢𝛼 + ℎ) the head value. 

The direct relation between the variogram and covariance function is shown in the following equation: 125 

𝐶𝑥(ℎ) =  𝜎𝑥
2 − 𝛾𝑥(ℎ) 

(3) 

where 𝐶𝑥(ℎ) is the covariance function and 𝜎𝑥
2 the variance. 

The covariance function is related to the correlogram, as follows: 

𝜌𝑥(ℎ) =  
𝐶𝑥(ℎ)

𝜎𝑥
2

 130 

(4) 

A comparison between the semivariance and covariance is shown in Fig. 3; the figure also shows three important terms for 

the variogram interpretation: the sill, nugget and range (Hengl, 2009). 
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The sill is the variable’s variance, the nugget represents either a measurement error or a short-distance spatial discontinuity, 

and the range is the distance of spatial continuity  (Hengl, 2009). 

2.3 Selection of the assessment regions 140 

The selection of the assessment regions is important because it would create bias to assess the models based on one cell and 

would be impractical to assess the models based on the entire world because running a machine learning model for the whole 

world would take a longer time and, in the current study, many machine learning models were investigated. 

The selection of the assessment regions was formed in two steps. The first step was the regionalisation of the climatic 

variables (mainly the total precipitation (tp)) using a cross-correlation analysis, and the second step was the random sample 145 

selection per region. 

2.4 Baseline analysis (ECMWF hindcast) 

To evaluate the ECMWF hindcasts, the categorical probabilities were calculated using the 0.67 and 0.33 quantiles, and three 

categories (above normal, near normal, and below normal) were created from the CPC observations and the ECMWF 

hindcasts. 150 

The accuracy of the ECWMF hindcasts was evaluated using two verification methods; the first method was the receiver 

operating characteristic curve (ROC) and the second method the ranked probability skill score (RPSS). 

2.5 Machine learning techniques 

For more information about machine learning techniques and committee model concepts and algorithms, see annexe (1). 

Figure 3. Basic variogram concepts. Source: Hengl 

(2009) 
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2.6 Verification metrics 155 

Two verification metrics were used for the evaluation of the baseline model (ECMWF hindcast) and the classification 

correction models (ML models and CMs): the ROC curve and RPSS. 

 

Figure 4. A demonstrative example of the ROC curve 

The ROC curve measures the forecasting model resolution; it indicates the forecasting model’s ability to differentiate 160 

between two possible outcomes (an event and a nonevent) (WWRP and WGNE, 2021). A demonstrative example is shown 

in Fig. 4. 

To plot the ROC curve, the TPR and FPR were calculated from a confusion matrix, which is illustrated in Fig. 5 (Narkhede, 

2018). 

 165 

                                                                              Source: (Narkhede, 2018) 

Figure 5. Confusion matrix 
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The TPR and FPR were calculated using the following equations: 

𝑇𝑃𝑅, 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  170 

(5) 

𝐹𝑃𝑅 =  1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(6) 

The RPSS measures the relative improvement of a categorical probabilistic forecast compared with a reference forecast. The 

RPSS is calculated using the following equation (Weigel, et al., 2007): 175 

 

𝑅𝑃𝑆𝑆 = 1 −  
〈𝑅𝑃𝑆𝑀𝐿 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡〉

〈𝑅𝑃𝑆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙〉
 

                                              (7) 

where 𝑅𝑃𝑆𝑀𝐿 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡   is the ranked probability score for the ML forecast and can be calculated using the following equation 

(Weigel et al., 2007): 180 

𝑅𝑃𝑆𝑀𝐿 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  ∑(𝑀𝐿 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑘 −  𝐶𝑃𝐶 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑘)2

𝑘

𝑘 =1

 

                    (8) 

𝑅𝑃𝑆𝐸𝐶𝑀𝑊𝐹 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘   is the ranked probability score for the reference ECWMF forecasts and is represented by the following 

equation (Weigel et al., 2007): 

𝑅𝑃𝑆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  ∑(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘 − 𝐶𝑃𝐶 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑘)2

𝑘

𝑘 =1

 185 

 (9) 

where k is the number of probabilistic forecast categories and the angle brackets 〈. 〉 means that the RPS is averaged over the 

time dimension period. 

A positive RPSS value means that the ML model has better forecasting skills than the reference model. 

Another indication of predictability is to compare the ML model tercile probabilities to a climatological value of one-third 190 

(Tippett et al., 2007). 
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3 Results and discussion 

3.1 Spatial and temporal correlation analysis 

The autocorrelation for the total precipitation (tp) variable was calculated, and four lag times (4 time step) were used; the 

results of the autocorrelation are shown in Fig. 6. 195 

 

Figure 6. Autocorrelation for the total precipitation (tp) variable 

From Figure (6), for lag = 0, the total precipitation at time = t (𝑡𝑝𝑡=𝑡) was compared with the total precipitation at time = t 

(𝑡𝑝𝑡=𝑡), for lag = 1, the total precipitation at time = t (𝑡𝑝𝑡=𝑡) was compared with the total precipitation at time = t – 1 

(𝑡𝑝𝑡=𝑡−1) and so on for the remaining lags. 200 

The results of the autocorrelation showed that at lag = 1 still, there was a good correlation in most of the areas that ranged 

between 0.6 and 1; after lag = 1, the correlation was very low. 

The autocorrelation results for the CPC observations were used to determine the selection of the temporal input variables for 

the machine learning models. From Figure (6), it can be seen that the correlation coefficient for lag equal to 1 was still high 

for most areas around the world; the correlation ranged between 0.6 and 1 for most of the areas. As a result, the total 205 

precipitation at lag = 1 was used as an input for the machine learning models. 

The cross-correlation analysis compared the total precipitation (tp) variable to the two-metre temperature (t2m); the results 

are illustrated in Fig. 7. 
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Figure 7. Cross-correlation between the total precipitation (tp) and the two-metre temperature (t2m). 210 

From Figure (7), for lag = 0, the total precipitation at time = t (𝑡𝑝𝑡=𝑡) was compared with the two-metre temperature at time 

= t (𝑡𝑝𝑡=𝑡), for lag = 1, the total precipitation at time = t (𝑡𝑝𝑡=𝑡) was compared with the two-metre temperature at time = t – 1 

(𝑡2𝑚𝑡=𝑡−1) and so on for the remaining lags. 

The cross-correlation results showed a very low correlation between the total precipitation and the two-metre temperature in 

most of the areas for different lag times. 215 

The precipitation data from the ECMWF model was used to calculate the semivariogram because the data were continuous 

and did not contain nan values over the nonland areas as the CPC observations did (the observation data are provided only 

over the land areas). The total precipitation (tp) was transformed to a standard normal distribution because, according to the 

Python library (geostatspy), which was used to calculate the semivariogram, this transformation was required for the 

semivariogram simulation, hence providing more interpretable semivariograms.  220 
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Figure 8. Spatial continuity (semivariogram) 

The semivariogram is shown in Fig. 8, in which the sill is the variance from the transformed precipitation data and, for the 

standard normal, the variance is equal to 1. This ensures that there will be a direct inverse relationship between the 

semivariogram (gamma (γ)) and correlogram. For instance, when the gamma value is equal to 0, the correlation coefficient is 225 

equal to 1 and at the sill, the gamma is equal to 1, and the correlation coefficient is equal to 0. 

For the input variable selection and in addition to the inputs from the temporal correlation, the inputs from the spatial 

correlation were determined using a semivariogram. The correlation coefficient for up to three lags was roughly equal to 0.8. 

As a result, the spatial precipitation data of up to three lag distances were considered valuable for the training of the machine 

learning models. 230 

The prepared spatial and temporal datasets used for the training and validation of the ML models and CMs are shown in 

Table 1. 

 

 

 235 
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Table 1. Spatial and temporal input datasets 240 

Input dataset 1  Input dataset 2 Input dataset 3 Input dataset 4 

𝑡𝑝𝑡 𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡2𝑚𝑡𝐸𝐶𝑀𝑊𝐹
 

𝑡𝑝𝑡𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡𝑝𝑡−1𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡2𝑚𝑡𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡𝑝𝑡(𝑥,   𝑦)𝐸𝐶𝑀𝑊𝐹
 

 

 
 

  

𝑡𝑝𝑡 𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡𝑝𝑡−1𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡2𝑚𝑡𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡𝑝𝑡(𝑥,   𝑦)𝐸𝐶𝑀𝑊𝐹
 

 

 

𝑡𝑝𝑡𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡𝑝𝑡−1𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡2𝑚𝑡𝐸𝐶𝑀𝑊𝐹
 

+ 

𝑡𝑝𝑡(𝑥,   𝑦)𝐸𝐶𝑀𝑊𝐹
 

 

 

Number of inputs per dataset 

2 11 27 51 

 

3.2 Selection of the assessment regions 

To select the assessment regions, the results from the cross-correlation were used to create three masks; in the first mask, the 

correlation range between 0.6 and 1 was used. For the second mask, the correlation range between 0.4 and 0.6 was used, and 

for the third mask, the correlation was <= 0.4, as shown in Figures (9), (10) and (11), respectively. 245 
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Figure 9. First mask (cross-correlation range between 0.6 and 1) 

 

Figure 10. Second mask (cross-correlation range between 0.4 and 0.6) 
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 250 

Figure 11. Third mask (cross-correlation <= 0.4) 

From the first mask figure, it can be seen in the time series plot that the correlation was high; in addition, the figure also 

shows that the first mask represented a very small area of the whole world. 

The second mask figure shows that the precipitation started to fluctuate; in addition, the second mask represented a larger 

area than the first mask. 255 

The third mask figure shows that the precipitation fluctuated even more; in addition, the third mask represented the biggest 

area of the world compared with the first and second masks. 

Hence, each of these masks represented a different precipitation pattern, so the models in a selected region (sample) from 

each of these masks (this would better show which model is performing well for different precipitation patterns) were 

evaluated. The selected regions are shown in Fig. 12. 260 
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Figure 12. Selected assessment regions 

3.3 Baseline analysis (ECMWF hindcasts) 

To evaluate the ECMWF hindcasts, categorical probabilities were calculated using the 0.67 and 0.33 quantiles, and three 

categories (above normal, near normal and below normal) were created from the CPC observation and the ECMWF 265 

hindcasts. 

For the CPC observations, an illustration for the calculation of the categorical probabilities is shown in Fig. 13. 

 

 

Figure 13. Categorical probabilities using CPC observations 270 
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Because the CPC observations used single deterministic values at each forecast time step, the calculated categorical 

probabilities were either 0 or 1.  

On the other hand, the ECMWF hindcasts had 11 ensemble members. The categorical probabilities were calculated as the 

fraction of ensemble members within each category, here resulting in a categorical probability for each category that varied 

between 0 and 1. An illustration for the calculation of the categorical probabilities is shown in Fig. 14. 275 

 

 

Figure 14. Categorical probabilities using ECMWF hindcasts 

The categories created from the ECMWF hindcast were compared with those from the CPC observations in the selected 

assessment regions using the verification metrics (ROC curve and RPSS). 280 

The ROC curve results are only shown for one cell per assessment region for all the evaluated models, either the ECMWF 

hindcast or machine learning models. For region 1, the cell with 36 latitudes and 100.5 longitudes was selected; for region 2, 

the cell with 55.5 latitudes and 100.5 longitudes was selected; and for region 3, the cell with 52.5 latitudes and 6 longitudes 

was selected. 

The ROC curves for weeks 3 and 4 and weeks 5 and 6 are shown in Figures (15) and (16), respectively. 285 

a) b) 
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                                  c) 

 

Figure 15. ECMWF evaluation using a 14-day lead time (weeks 3 and 4): a) region 1; b) region 2; c) region 3 
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a) 

 

b) 

 

                                c) 

 

Figure 16. ECMWF evaluation using a 28-day lead time (weeks 5 and 6), a) region 1; b) region 2; c) region 3 

A summary of the evaluation of the accuracy of the weeks 3 and 4 and weeks 5 and 6 ECMWF hindcasts is represented in 

Tables (2) and (3), respectively. A negative RPSS with respect to climatology was obtained in the three regions for the two 300 

lead times (weeks 3 and 4 and weeks 5 and 6). 

Table 2. Summary for the evaluation of the ECMWF hindcasts accuracy for a 14-day lead time (weeks 3 and 4) 

Region Forecasting model ROC (AUC) RPSS with 

respect to 

climatology above 

normal 

near 

normal 

below 

normal 

Region 1 ECMWF 0.562 0.501 0.563 -0.517 

Region 2 ECMWF 0.533 0.5 0.528 -0.244 

Region 3 ECMWF 0.528 0.494 0.544 -0.147 

https://doi.org/10.5194/hess-2022-348
Preprint. Discussion started: 3 November 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

 

Table 3. Summary for the evaluation of the ECMWF hindcasts accuracy for a 28-day lead time (weeks 5 and 6) 

Region Forecasting model ROC (AUC) RPSS with 

respect to 

climatology 
above 

normal 

near 

normal 

below 

normal 

Region 1 ECMWF 0.510 0.482 0.542 -0.54 

Region 2 ECMWF 0.492 0.505 0.494 -0.241 

Region 3 ECMWF 0.507 0.490 0.509 -0.165 

3.4 Training and validation of the machine learning models 305 

In general, the ECMWF hindcast data were used for training and cross-validation. Furthermore, the best model in terms of 

the performance in training and cross-validation was trained and validated using the 28-day lead time (weeks 5 and 6) and 

tested using the ECMWF real-time forecasting data for 2020 (using the two lead times). 

3.4.1 K-NN models 

For the K-NN, the CPC observation data were used to build the four models; through trial and error, a value of k equal to 3 310 

was found to be the most appropriate value for providing the best results. 

The models were tested using the ECMWF hindcast (ensemble mean) inputs for 2018–2019 (the last two years). 

3.4.2 Logistic regression models 

For the logistic regression models, the ECMWF hindcast data (ensemble mean) were used for the training and cross-

validation of the models. The first 18 years (02-01-2000 to 31-12-2017) were used for training, and the last two years were 315 

used for cross-validation (02-01-2018 to 31-12-2019). The data were normalised using the min–max transformation method. 

In addition, the L2 regularisation term was used to avoid overfitting. 

3.4.3 Multilayer perceptron models 

For the multilayer perceptron, the selection of the training and cross-validation datasets was the same as for logistic 

regression. The multilayer perceptron structure is shown in Fig. 17. 320 
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Figure 17. MLP structures for all models 

To avoid overfitting, the cross-validation data were used, and the training was set to stop when the loss of the cross-

validation data was minimal, ensuring that the MLP would not overfit the training dataset. This is illustrated in Fig. 18. 325 

 

Figure 18. Loss of training and cross-validation 

As mentioned above and from Figure (24), the training will stop at the dotted line where the loss of the cross-validation is 

minimal. To avoid stopping the training in a local minima, a patience term was added to the training. The patience term was 

set to 200 epochs so that the training would continue for 200 epochs, which would save the model (checkpoint) at each time 330 

that the cross-validation loss decreased. If the loss did not decrease, then after finishing the 200 epochs, the last saved model 

was considered the best (last checkpoint). 

3.4.4 Random forest models 

The training and cross-validation data used for the LR and MLP were used for the RF classifier. The default number of 

estimators (the number of trees) was used, which equalled 100 estimators. 335 
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3.4.5 LSTM models 

The training and cross-validation data used for the LR and MLP were used for the LSTM models. 

For the training of the LSTM models, a batch of one-year time series data was used (54 weeks back to the exact date of the 

last year). The structure of the LSTM models is shown in Fig. 19. 

 340 

Figure 19. LSTM models’ structure 

The same procedure used for the MLP models was followed for the LSTM models to avoid overfitting. 

3.4.6 Committee model 

The structure of the separate MLP models was the same as the structure of the MLP models used for models (1), (2), (3) and 

(4). In addition, the committee models were built using the data from 2000 to 2018 for training and cross-validation, and the 345 

year 2019 was used for testing the committee model using the ECMWF hindcasts data before it was tested using the 2020 

ECMWF real-time forecasts. Furthermore, the same four models were built using the committee model structure. 

The ECMWF real-time forecasting consisted of 51 ensemble members; for the training of the committee model, only 11 

ensemble members were used. Therefore, the first 11 perturbed members from the ECMWF real-time forecasting were used 

to test the model. 350 
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Figure 20. Committee model structure 

The RPSS results for the four models for the 14-day lead time (weeks 3 and 4) are shown in Table (4). 

3.4.7 ML model results 

The results for the individual ML models are shown in Table (4). 355 
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Table 4. Model results for lead time = 14 days (weeks 3 and 4) 365 

Region 
ML 

model 

Model (1) Model (2) Model (3) Model (4) 

RPSS with respect to RPSS with respect to RPSS with respect to RPSS with respect to 

climatology ECMWF climatology ECMWF climatology ECMWF climatology ECMWF 

Region 1 

K-NN -0.251 -0.3 -0.072 -0.11 -0.083 -0.127 -0.193 -0.247 

LR -0.021 -0.067 -0.014 -0.06 -0.017 -0.063 -0.017 -0.063 

MLP -0.019 -0.066 -0.001 -0.049 -0.034 -0.076 -0.016 -0.059 

RF -0.2 -0.26 -0.051 -0.098 -0.032 -0.078 -0.027 -0.073 

LSTM -0.03 -0.078 -0.049 -0.099 -0.09 -0.137 -0.05 -0.10 

Region 2 

K-NN -0.888 -0.267 -0.77 -0.192 -0.810 -0.217 -0.797 -0.21 

LR -0.018 0.308 -0.021 0.306 -0.025 0.303 -0.022 0.305 

MLP -0.013 0.313 -0.002 0.318 0.0057 0.323 -0.002 0.318 

RF -0.14 0.23 -0.029 0.302 -0.026 0.3 -0.031 0.299 

LSTM -0.089 0.26 -0.17 0.20 -0.147 0.22 -0.23 0.165 

Region 3 

K-NN -0.531 -0.369 -0.492 -0.334 -0.504 -0.346 -0.475 -0.32 

LR -0.0258 0.0815 -0.028 0.08 -0.038 0.07 -0.077 0.036 

MLP -0.028 0.08 -0.034 0.075 -0.019 0.089 -0.008 0.096 

RF -0.2 -0.07 -0.07 0.04 -0.051 0.059 -0.045 0.064 

LSTM -0.065 0.046 -0.211 -0.083 -0.11 0.007 -0.078 0.029 

The results from model 1 showed that, with respect to climatology, the RPSS was negative for all the models for the three 

regions, whereas positive RPSS results with respect to the ECMWF hindcast were obtained in region 2 for the LR, MLP, 

LSTM and RF models and for region 3 for the LR, MLP and LSTM models. For model 1 and the three regions, the MLP and 

LR were the best machine learning models in terms of the RPSS values. 

The results from model 2 showed slight to substantial improvements in most machine learning models’ results. For instance, 370 

the K-NN and RF model results showed a substantial increase in the RPSS values with respect to climatology and to the 

ECMWF for the three regions. Also, the MLP models showed a substantial increase in the RPSS values in regions 1 and 2, 

but the model did not improve in region 3. In addition, the LR model results showed a slight improvement in the RPSS 
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values in region 1, while in regions 2 and 3, the RPSS results did not improve. The LSTM model results showed a slight 

decrease in the RPSS values with respect to climatology and the ECMWF hindcast in the three regions. For model 2, the 375 

MLP model was still the best in terms of the RPSS values. 

For model 3, RF was the only model that showed an improvement in the RPSS values in all three regions. The MLP models 

showed a positive RPSS value regarding climatology in region 2 (this is the first time a positive RPSS value was obtained 

with respect to climatology). 

The results from model 4 did not show any substantial improvements in all machine learning models. 380 

3.4.8 CM results: 

The results for the committee models for the three regions are shown in Table (5). 

Table 5. Committee model results 

Region 
ML 

model 

Cross validation Testing (ECMWF hindcast 2019) 

Testing 

(ECMWF real-

time forecast of 

2020) 

Week (3&4) Week (5&6) Week (3&4) Week (5&6) 
Week 
(3&4) 

Week 
(5&6) 

RPSS with respect to RPSS with respect to RPSS with respect to RPSS with respect to 
RPSS with respect 

to climatology 
climatology ECMWF climatology ECMWF climatology ECMWF climatology ECMWF 

Region 1 

Model 1 0.21 0.18 0.22 0.2 0.154 -0.038 0.1609 0.062 0.041 0.025 

Model 2 0.28 0.25 0.30 0.295 0.128 -0.07 0.1508 0.054 0.016 0.0042 

Model 3 0.28 0.25 0.31 0.30 0.119 -0.081 0.138 0.037 -0.0027 -0.0198 

Model 4 0.25 0.22 0.33 0.32 0.129 -0.07 0.119 0.016 -0.0062 -0.0103 

Region 2 

Model 1 0.069 0.36 0.069 0.35 0.0118 0.301 0.0106 0.238 0.0018 0.014 

Model 2 0.12 0.4 0.111 0.374 0.0066 0.297 0.0014 0.232 -0.016 -0.021 

Model 3 0.12 0.4 0.143 0.398 0.01 0.3 -0.0169 0.218 0.00047 -0.0158 

Model 4 0.128 0.41 0.148 0.40 0.008 0.2985 -0.044 0.194 -0.0098 -0.0247 

Region 3 

Model 1 0.083 0.18 0.089 0.18 -0.0093 0.1292 0.00296 0.1029 0.0262 0.024 

Model 2 0.11 0.2 0.146 0.23 -0.015 0.124 0.006 0.106 0.013 -0.004 

Model 3 0.11 0.2 0.161 0.245 -0.059 0.086 -0.0313 0.0717 -0.0495 -0.049 

Model 4 0.141 0.23 0.169 0.25 -0.0433 0.0994 -0.031 0.072 -0.031 -0.043 
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The committee models showed very interesting results in general. The cross-validation results (weeks 3 and 4 and weeks 5 

and 6) showed positive RPSS values regarding climatology and ECMWF in all the models in the three assessment regions. 385 

As previously noted, model 2 showed a substantial increase in the RPSS values in all three regions. In addition, models 3 and 

4 did not show any substantial improvements in the RPSS values. 

The testing results (weeks 3 and 4 and weeks 5 and 6) using the 2019 ECMWF hindcast were very good. Positive RPSS 

values with respect to ECMWF were obtained for the four models in three regions; also, positive RPSS values with respect 

to climatology were obtained in almost all models. 390 

The testing results (weeks 3 and 4 and weeks 5 and 6) using 2020 real-time forecasts showed that model 1 had the best 

performance, where the RPSS values with respect to climatology were positive for all the assessment regions. The 

performance decreased in models 2, 3 and 4. 

4 Summary and conclusion 

Adding temporally and spatially correlated inputs substantially increased the accuracy of the machine learning models. This 395 

can be seen in results from the K-NN in model 2. Because the K-NN is a nonparametric model, its accuracy essentially 

depends on the selection of the input variables. 

In models 3 and 4, the remaining spatially correlated inputs were added; the results from models 3 and 4 showed either a 

slight increase in the accuracy or slight decrease in the accuracy; however, there were no substantial improvements in the 

models’ results. 400 

The MLP and LR models had the best performances among the other machine learning techniques. Still, the aim of getting a 

positive RPSS with respect to climatology was not fulfilled; the only positive RPSS value with respect to climatology was 

0.0057 in region 2 for model 3 using MLP. 

The committee model was used with the aim of preserving the physical relation through the training of each realisation 

separately; the results from the committee model were interesting because the cross-validation results showed positive RPSS 405 

values with respect to climatology in the three regions for all four models. 

Because the committee model showed the best results compared with other machine learning models, the committee model 

was also used for the classification correction of weeks 5 and 6 (28-day lead time).  

For the 14- and 28-day lead times, model 2 inputs have shown a substantial increase in the committee model results in the 

three assessment regions, whereas in models 3 and 4, a slight increase in the models’ performances over model 1 was 410 

obtained. 

The committee model was tested for the 2019 ECMWF hindcasts; the results were very close to the cross-validation results 

and were better than any of the machine learning models that used the ECMWF ensemble mean. 
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The committee model was also tested using the real-time forecasting of 2020 for weeks 3 and 4 and weeks 5 and 6. Because 

real-time forecasting provides 51 ensemble members, only the first 11 perturbed members were used for testing. 415 

The results for weeks 3 and 4 and weeks 5 and 6 showed that model 1 had the best RPSS results with respect to climatology. 

The performance decreased for models 2, 3 and 4. 

As a conclusion of our research, we found that the concept of committee model (CM) is a promising approach that can be 

further studied and evaluated using different combination of the state-of-the-art ML techniques to maximise its potential in 

improving the S2S ensemble precipitation forecast. 420 

5 Data and code availability 

The AI challenge data is publicly available on Renku platform which is a repository that is developed by the Swiss Data 

Science Centre (SDSC), the data accompanied with a useful information about the AI challenge can be found within a 

project template named S2S-ai-challenge-template and it can be easily accessed using the link in the reference (Spring et al, 

2022). 425 

All the main codes that are developed and used to conduct this research are available in GitHub repository, the codes can be 

accessed using the digital object identifier (DOI) in the reference (Elbasheer et al, 2022). 
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9 Appendix A 

9.1 Machine learning techniques 

9.1.1 K-nearest neighbours (K-NN) 

The K-NN algorithm is considered a nonparametric classification technique. In K-NN, an uncategorised sample is classified 470 

based on the classification of its neighbours. The uncategorized sample is assigned a class, which is the predominant class of 

the k nearest neighbours. To determine the nearest neighbours, the Euclidean distances between the data points were 

calculated (Mehdizadeh, 2020). 

 

             475 

 

9.1.2 Logistic regression 

A logistic regression is used when there is a categorical dependent variable. For instance, the model can be defined as a 

model that builds a relationship between one or more independent variables and the categorical dependent variable. In 

addition, the model relates the independent variables to the categorical variables through a logistic regression equation (Lee 480 

and Kim, 2021). 

In a logistic regression, a linear regression is first built from the input variables; then, it is used as an input for a logistic 

function to calculate the probability, and for logistic regression, the sigmoid function is used (Lee and Kim, 2021): 

𝑧 =  𝛽1 𝑥1 +  𝛽1 𝑥2 +  .  .  . + 𝛽𝑛 𝑥𝑛   

(A1) 485 

Source: (Peterson, 2009) 

Figure A1. Example representation of the K-NN; when four nearest neighbours are 

used, the predominant class is the red colour class, and the red class is assigned to the 

unknown sample. 
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    ℎ𝛩(𝑥)  = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑧) =  
1

1+ 𝑒− 𝑧     

(A2) 

ℎ𝛩(𝑥) is the probability that the output is equal to 1. 

The use of the sigmoid function ensures that, for an independent variable between -∞ and +∞, the output will always be 

between 0 and 1 (Lee and Kim, 2021; see Figure (A2)). 490 

 

 

 

For data with more than two output categories or classes, the problem is referred to as multinomial logistic regression, in 

which the SoftMax function is used instead of the sigmoid function (Goodfellow, et al., 2016; see Fig. A3); the equation of 495 

the SoftMax function is presented below. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =  
𝑒𝑧(𝑖)

∑ 𝑒𝑧(𝑗)𝑘
𝑗=0

 

(A3) 

The length of the input vector z is equal to the number of classes. 

 500 

 

 

To avoid overfitting, two regularisation terms can be used. These regularisation terms are L1 and L2. 

Source: (KDnuggets, 2021) 

Figure A2. Softmax regression for binary 

classification problem 

Source: (KDnuggets, 2021) 

Figure A3. Logistic regression for multinomial 

logistic regression 
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The L1 regularisation term is called a Lasso regression. It adds a penalty term to the loss function equal to the absolute value 

of the magnitude of the coefficients. The loss function and L1 regularisation term are shown in Equation (A4). 505 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐿𝑜𝑠𝑠 𝑡𝑒𝑟𝑚 +  𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 

(A4) 

The L2 regularisation term is called a Ridge regression, and it adds a squared magnitude of coefficients to the loss function 

as a penalty term. This is shown in Equation (A5). 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐿𝑜𝑠𝑠 𝑡𝑒𝑟𝑚 +  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 510 

(A5) 

The lambda value should not be very large because this will lead to underfitting. The default value of lambda is 1. 

In ML, the input and output data are normalised to ensure efficient learning. Here, the min–max transformation method can 

be used to transform the data into the range of 0 and 1. This is shown in Equation (A6) below. 

𝑥′ =  
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 515 

(A6) 

9.1.3 Multilayer perceptron (MLP) 

Multilayer perceptron (MLP) is considered a feed-forward neural network; it consists of inputs and outputs layers; in 

addition to hidden layers that can be one or more layers, each hidden layer contains one or more neurons, and each neuron in 

the hidden layer must have an activation function (Hagen et al., 2021). 520 

Inside the neuron, the weighted sum of the inputs is calculated and used as an input to the activation function. Usually, the 

sigmoid and rectified linear unit (ReLU) functions are used, but an arbitrary activation function can still be used. The MLP is 

called a feed-forward neural network because each layer feeds the next from the input layer through the hidden layers to the 

output layer (Bento, 2021).  

The use of ReLU as an activation function in the hidden layers arises from the fact that the function is scale-invariant, 525 

providing better optimisation when the stochastic gradient descent (SDG) is used (Bento, 2021). In addition, it is several 

times faster in training compared with the other activation functions (Krizhevsky et al., 2012). 
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The learning mechanism for the MLP is called the error backpropagation, in which an optimisation function is used. The 

typical optimisation function is the gradient descent. To be able to calculate the gradient descent, the activation and weighted 

sum functions in the neurone should be differentiable (Marius et al., 2009). 530 

In the backpropagation process, the gradient of the error function is calculated at the end of each feed-forward step, and then, 

the weights of the neural networks are adjusted with updated values from the gradient. This update of the weights is back-

propagated from the output layer to the start of the neural network; this process is iteratively done until the errors are 

minimal or a convergence threshold has been reached  (Marius et al., 2009). 

For categorical classification problems, categorical cross-entropy (CCE) is used as a loss function; the categorical cross-535 

entropy is shown in equation (A7). 

 

𝐶𝐶𝐸 =  − ∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑐 ∗  log(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐)

𝑀

𝑐=1

 

(A7) 

where M is the number of categorical classes, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑐  is the observed probability for the categorical class, and 540 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐  is the predicted probability for the categorical class. 

The Adam optimisation algorithm is used as the optimisation function. It combines the properties of the adaptive gradient 

algorithm (AdaGrad) and the root mean square propagation (RMSProp) algorithms to handle problems with sparse or very 

noisy gradients (Kingma and Ba, 2014; see Fig. A4). 

 545 

 

 

Figure A4. The performance of Adam algorithm with respect to other optimisation 

algorithms using multilayer perceptron and large dataset. Source: Kingma and Ba (2014) 
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9.1.4 Random forest 

Random forest is a technique that can be used for classification and regression problems. Random forest is an ensemble of 

decision trees, and it is immune to overfitting (Breiman, 2001, as cited in Schoppa et al., 2020). 550 

To ensure the diversity of the decision trees, bagging (bootstrap aggregation) can be used. In bagging, small changes are 

made to the training dataset in each tree to ensure that there are different decision trees. 

The splitting of the data in each tree is done through the calculation of the information gain using entropy, which measures 

the impurity of the sample (S); entropy is illustrated in equation (A8). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  ∑ − 𝑝𝑖  log2 𝑝𝑖

𝑐

𝑖=1

 555 

(A8) 

where c is the number of classes and 𝑝𝑖  is the probability of the class. 

9.1.5 Long–short-term memory network (LSTM) 

Architecturally, the difference between the LSTM and traditional recurrent neural networks (RNNs) is in the recurrent cell’s 

internal structure. For instance, the recurrent cell of the traditional RNNs consists internally of one state (ℎ𝑡) (see Figure 560 

(25)). In each time step, this internal state is recomputed using the following equation: 

ℎ𝑡 = 𝑔(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 +  𝑏) 

(A9) 

G (F(X)) is called the activation function. In the case of the traditional RNNs, the activation function is the hyperbolic 

tangent (Kratzert et al., 2018). 565 

On the other hand, in an LSTM, there is an additional cell state (𝑐𝑡) that can store the information for a long time; this cell is 

also called cell memory. In addition to the cell memory, the recurrent cell of the LSTM also contains three gates: the forget, 

input and output gates (these gates are shown in Fig. A5; Kratzert, et al., 2018). 

 

                                         570 

 

The forget gate determines the elements that will be forgotten from the cell state vector (𝑐𝑡−1) by using the following 

equation: 

Figure A5. Difference between the traditional RNN and LSTM. 

Source: Kratzert et al. (2018) 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓) 

(A10) 575 

The activation function for the forget gate is the sigmoid function, where 𝑊𝑓, 𝑈𝑓 and 𝑏𝑓 are learnable parameters. 

Then, a potential update vector (𝑐�̃�) is calculated for the cell state using the last hidden state  ℎ𝑡−1 and the current input 𝑥𝑡. 

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ ℎ𝑡−1 + 𝑏𝑐̃) 

(A11) 

To update the cell state, the input gate determines which information is used from (𝑐�̃�) 580 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖  ℎ𝑡−1 + 𝑏𝑖) 

(A12) 

𝑐𝑡 = 𝑓𝑡 ⊙  𝑐𝑡 + 𝑖𝑡  ⊙   𝑐�̃� 

(A13) 

⊙ refers to the element-wise multiplication. 585 

The output gate determines which information is used from the updated cell state (𝑐𝑡) to calculate the current hidden state 

(ℎ𝑡). 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜 ℎ𝑡−1 + 𝑏𝑜) 

(A14) 

ℎ𝑡 = 𝑡𝑎𝑛𝑛ℎ(𝑐𝑡) ⊙  𝑜𝑡 590 

(A15) 

The current hidden state was used to calculate the prediction. 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑑ℎ𝑛 + 𝑏𝑑   

(A16) 

where ℎ𝑛 is the last LSTM layer output. 595 

9.1.6 Committee model (CM) 

The CM concept uses a combination of separate neural networks or ML models designed to replicate the same phenomena. 

The output of these models (ensemble) is combined using simple averaging or weighting method (Haykin, 1999; see also 

Corzo et al, 2009; Corzo et al, 2007; Corzo, 2009). Figure (A6) illustrates how the CM works. 

 600 
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