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Abstract. Global warming and glacier retreat are affecting the morphodynamics of proglacial rivers. In response to changing 12 

hydrology, their altered hydraulics will significantly impact future glacifluvial erosion and proglacial channel development. 13 

This study analysis proglacial channel evolution processes at the foreland of Austria’s biggest glacier Pasterze by predicted 14 

runoff until 2050. A high-resolution digital elevation model was created by an unmanned aerial vehicle, channel bathymetry 15 

was sampled, a one-dimensional hydrodynamic-numerical model was generated, and bedload transport formulas were used to 16 

calculate the predicted transport capacity of the proglacial river. Due to the fine sediment composition near the glacier terminus 17 

(d50< 49.6 mm), the calculation results underline the process of headward erosion in the still unaffected, recently deglaciated 18 

river section. In contrast, an armor layer is already partly established by the coarse grain size distribution in the already incised 19 

river section (d50> 201 mm). Furthermore, already reoccurring exposed non-fluvial grain sizes combined with decreasing flow 20 

competence in the long term are indicators for erosion-resistant pavement layer formation and landform decoupling in the 21 

vertical direction. The presented study clearly shows that subsystems of ‘developed channels’ exhibiting pavement formation 22 

of non-fluvial deposits are found at the investigated glacier foreland. Thus, an extension accompanied by a refinement of the 23 

fluvial system in the sediment cascade approach was developed as a central result. 24 

1 Introduction 25 

Since the Little Ice Age (LIA) around 1850, global warming has caused temporal and spatial changes in high mountain areas 26 

by glacier retreat (e.g., Zemp et al., 2019; Fischer et al., 2018; Huss et al., 2008) and permafrost decline (Harris et al., 2009). 27 

While deglaciation of European glaciers has accelerated and repeatedly reached peak values in recent years (Sommer et al., 28 

2020), formerly glaciated areas are continuously expanding and are characterized by high geomorphological activity (e.g., 29 

Avian et al., 2018; Lane et al., 2016; Carrivick et al., 2013; Cavalli et al., 2013; Old et al., 2005; Gruber et al., 2004). 30 
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Deglaciated areas in direct proximity to the glacier terminus are termed proglacial (Slaymaker, 2009) and are confined by LIA 31 

moraines (Heckmann & Morche, 2019). Within this steadily increasing spatial boundary, the amount of loose and 32 

unconsolidated sediment exceeds the ‘geological norm’ defined by non-glaciated catchments. Proglacial areas are, therefore, 33 

transitional landscapes that adapt to this geological norm within the paraglacial period (Ballantyne, 2002; Church & Ryder, 34 

1972). This adjustment occurs by various geomorphological processes (e.g., gully erosion, avalanches, debris flows), where 35 

sediment is reworked along the gravitational gradient (Ballantyne, 2002). In contrast, continuous sediment supply is given by 36 

(sub)glacial erosion (e.g., Hallet et al., 1996; Alley et al., 2019) and moderately well-rounded (Benn & Evans, 2013) poorly 37 

sorted unconsolidated material ranging in size from sand to cobbles up to boulders (diamictic till; Harland et al., 1966) is 38 

deposited in the outwash plain by meltwater (Benn & Evans, 2013). The sediment production and reworking process chain of 39 

(temporary) sediment storages within a catchment can be described by the ‘sediment cascade approach’ (Chorley & Kennedy, 40 

1971). The sediment connectivity between these storage landforms in longitudinal (in-stream linkage), lateral (e.g., channel – 41 

hillslope relationship), and vertical (channel bed – subsurface connection) direction (Fryris et al., 2007) is highly dynamic 42 

(Lane et al., 2016) and crucial if sediment from different origins reaches the valley floor and contributes to the glacifluvial 43 

transport in the proglacial channel network (e.g., Beylich et al., 2019; Brierley et al., 2006). Fluvial sediment evacuation is 44 

considered as the last transport process of the sediment cascade (e.g., Geilhausen et al., 2012b; Etzelmüller & Frauenfelder, 45 

2009; Schrott et al., 2003; Chorley & Kennedy, 1971) and is predominant in the paraglacial period (Church & Ryder, 1972). 46 

Alpine proglacial areas are in general highly dynamic fluvial systems (e.g., Leggat et al., 2015; Micheletti et al., 2015; Mao et 47 

al., 2014; Gurnell, 1995; Warburton, 1992), triggered by daily to seasonal meltwater fluctuations and high-magnitude/low-48 

frequency events (e.g., Baewert & Morche, 2014; Marren, 2005; Beylich & Gintz, 2004). Combined with the high sediment 49 

supply by erosion of glacifluvial diamictic till, braided channels emerge in direct glacier proximity (e.g., Maizels, 2002; 50 

Gurnell et al., 1999; Ashworth & Ferguson, 1986). More downstream with increasing distance to the glacier terminus, 51 

depending on (i) sediment composition, (ii) runoff variability, (iii) channel slope, and (iv) potential confinement (e.g., 52 

moraines, glacier ice), the channel turns into a single thread river (e.g., Marren, 2005; Gurnell et al., 1999). Another dominant 53 

process supporting the formation of single channels, however, is river bed incision when the transport capacity exceeds the 54 

sediment supply (e.g., Wilkie & Clague, 2009; Marren, 2005; Gurnell et al., 1999). This kind of glacifluvial process leads to 55 

the exposure of non-fluvial sediment in formerly glaciated environments and creates an armor layer (Bunte & Abt, 2001). 56 

Fluvial sediment transport, which mainly contributes to the stabilization of proglacial areas, especially with increasing distance 57 

to the glacier terminus (e.g., Delaney et al., 2018; Lane et al., 2016), is described in the sediment cascade as a glacifluvial 58 

process (Geilhausen et al., 2012b). Whether this process is able for sediment transport or sediment remains deposited is defined 59 

by the hydraulic parameter ‘flow competence’ – defined as the largest particle a flow can move (Benn & Evans, 2013). 60 

Flow competence is mainly impacted by the runoff conditions, which are predicted to change by global warming (e.g., Förster 61 

et al., 2015; Farinotti et al., 2012; Braun et al., 2000). The glacier mass of the Austrian Alps is expected to decrease 62 

continuously (Fischer et al., 2018), which implies changes in the future glacial discharge regimes: (i) on a short time scale, 63 

glacial meltwater will increase due to deglaciation, (ii) in a long-term perspective, the runoff will decrease by ‘exceeding the 64 
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expected moment of peak water’ (Schaefli, 2015; Farinotti et al., 2012). This exceedance is predicted before 2050 for European 65 

glaciers (Huss & Hock, 2018); after that, the runoff will lose its glacial characteristic over time. Alongside these predictions, 66 

(i) the annual peak runoff will be shifted to spring (Förster et al., 2015), and (ii) reduced average peak runoff will hence the 67 

bedload transport of proglacial rivers (Pralong et al., 2015). All these predictions mainly affect the flow competence of rivers 68 

and impact channel bed stabilization by glacifluvial erosion, the last process of proglacial sediment cascade models. 69 

This study aims to predict the effect of global warming on proglacial channel evolution. For this purpose, the proglacial part 70 

of the river Möll at the foreland of Austria’s biggest glacier Pasterze was investigated. Currently, the sediment yield of the 71 

Pasterze catchment consists mainly of suspended sediment (Avian et al., 2018; Geilhausen et al., 2012b). Whether this behavior 72 

remains the same in the future by changing runoff characteristics was investigated using predicted runoff by 2050. A high-73 

resolution digital elevation model (DEM) was created for hydrodynamic numerical modeling, and bedload transport formulas 74 

were used to predict the proglacial channel's flow competence. The ongoing establishment of a pavement layer by (exposed) 75 

non-fluvial sediment in sections with greater distance to the glacier forces a landform decoupling. The results obtained allow 76 

a revision and extension of the fluvial system of the sediment cascade approach by incorporating the effects of global warming. 77 

2 Study site 78 

The investigation area is located in Carinthia in the national park Hohe Tauern at the foreland of the Pasterze Glacier 79 

(47°5’8” N; 12°42’27” E), the biggest glacier in Austria and the Eastern Alps (16.2 km² in 2012). The glacier tongue (~4 km 80 

length) is characterized by (i) a high mean annual rate of retreat of up to -50 ma-1 (Fischer et al., 2018) and (ii) a debris coverage 81 

of around 75 % (Kellerer-Pirklbauer, 2008). The total length loss of the Pasterze Glacier since LIA amounts to -2200 m until 82 

2015 (Fischer et al., 2018). The debris mantle at the southern part (orographic right) of the glacier tongue results in a lower 83 

deglaciation rate of up to 35 % by a minimum debris thickness of 15 cm (Kellerer-Pirklbauer et al., 2008). The proximal glacier 84 

foreland is characterized by a low gradient (Geilhausen et al., 2012b; Krainer & Poscher, 1992), debris-covered dead ice 85 

landforms (e.g., Avian et al., 2018; Seier et al., 2017; Geilhausen et al., 2012a) and one main proglacial river. 86 

2.1 Proglacial river 87 

The investigated reach covers around 850 m between the glacier terminus (2100 m a.s.l.) and the inflow (delta area) into the 88 

continuously increasing lake ‘Pasterzensee’ (upstream of the lake “Sandersee”, which formed in the late 1950s; Krainer & 89 

Poscher, 1992) at 2070 m a.s.l. (Fig. 1). The channel is composed of four distinct sections: (i) the flat headwater near the 90 

glacier terminus (L= 200 m; Sm= 1.3 %), (ii) a transition section (L= 100 m; Sm= 2.9 %) into (iii) the canyon (L= 482 m; Sm= 91 

6.8 %), and (iv) the flat outlet into the delta area (L= 60 m; Sm= 1.7 %) of the lake ‘Pasterzensee’. Almost the entire investigated 92 

proglacial channel (except the delta area) is confined by the debris-covered glacier tongue and debris-covered dead ice (with 93 

slower melting rates). The runoff behavior shows typical glacial characteristics with (i) high summer (up to Qmax= 25 m³s-1) 94 

and low winter runoff (down to Qmin= 0.1 m³s-1) and (ii) strong seasonal and diurnal fluctuations (Krainer & Poscher, 1992).  95 
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96 
Figure 1: Location of the study site: (a.) Carinthia, Austria; (b.) proximal foreland of the Pasterze Glacier, where the dashed rectangle 97 
indicates the proglacial river Möll including (1) glacier tongue (clean), (2) glacier tongue (debris-covered), (3) Pasterzensee, (4) Sandersee, 98 
(5) Kaiser-Franz-Josefs-Höhe; (c.) study reach, based on the own UAV survey, supplemented by the measuring sites for sediment analysis. 99 

2.2 Sediment budget 100 

The proximal foreland of the Pasterze Glacier is characterized by glacifluvial deposits, including big boulders, gravel, and 101 

sand (Fig. 2), which partly cover dead ice landforms (e.g., Avian et al., 2018; Seier et al., 2017; Geilhausen et al., 2012a). This 102 

moderately well-rounded, poorly sorted outwash (glacial diamictic till; Harland et al., 1966) is decoupled from the active 103 
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hillslopes around the proximal foreland, resulting in a transport-limited glacifluvial transport system (Geilhausen et al., 2012b). 104 

The potential for paraglacial reworking on the overall sediment output is low compared to glacifluvial processes, especially 105 

with increasing distance to the glacier terminus (Geilhausen et al., 2012a; 2012b). However, this proglacial area is still a 106 

dynamic system with a high potential for fluvial reworking processes (Avian et al., 2018). The biggest proportion of the 107 

sediment output is assumed as suspended load (Geilhausen et al., 2012b). 108 

 109 
Figure 2: River embankment of the investigated proglacial canyon already incised in the poorly sorted diamictic outwash plain (photographs 110 
taken during fieldwork). 111 

3 Methods 112 

3.1 UAV survey 113 

The mapping was carried out during low flow conditions in autumn 2018, where the 850 m long river stretch (Fig. 1) was 114 

covered by an unmanned aerial vehicle (UAV; type: hexacopter KR 615) equipped with a compact camera (type: Sony ILCE-115 

6000; focus length 16 mm) mounted on a stabilized gimbal. The survey was performed in two stages: (i) the entire study area 116 

was covered with a constant flight level of 55 m above the river bed and (ii) the canyon in a second flight with a constant flight 117 

level of 20 m above the channel bed (approx. surrounding terrain level). In total, 1371 photos (6000x4000 px) were taken, 118 

whereby a requested overlap of 80 % (forward) and 60 % (sideward) was achieved. Before the flights, ground control points 119 

(GCPs) were placed along the banklines to improve the geodetic accuracy of the digital elevation model (DEM). Due to limited 120 

accessibility and high and steep channel embankments, no GCPs were laid out in the channel. All GCPs were mapped by an 121 

RTK-enabled GNSS device (type: Emlid Reach RS2).  122 
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3.2 DEM preparation 123 

In post-processing, the software PhotoScan by Agisoft was applied to create (i) a 3D point cloud and (ii) an orthomosaic 124 

according to the principle of Structure-from-Motion (SfM). This approach uses images taken from multiple perspectives to 125 

compute a 3D surface based on image-matching algorithms combined with multi-view stereo techniques (MSV). This process 126 

allows the calculation of the camera position and orientation (Snavely et al., 2008). The mapped GCPs were used for geo-127 

referencing the model and accuracy assessment of the transformation (Fonstad et al., 2013). 128 

First, 1371 photos were used in the alignment, the camera position and the orientation of the individual photos were estimated, 129 

and a sparse point cloud with 365 080 points was calculated. The mapped coordinates of 10 GCPs were assigned for geo-130 

referencing in the next step. The sparse point cloud was purged to (i) remove high outliers and misaligned points (down to 131 

295 371 points), (ii) optimize the camera position, and (iii) minimize the error between the GCPs. This refinement, including 132 

the accuracy assessment by the remaining four GCPs, led to a root-mean-square error (RMSE) of 0.056 m (XRMSE= 0.025 m; 133 

YRMSE= 0.044 m; ZRMSE= 0.024 m). In the third step, the DEM was calculated (478 231 187 points; 3940 points m-2) with a 134 

ground sample distance (GSD) of 1.59 cm px-1, and an orthomosaic was arranged. 135 

3.3 Sediment sampling 136 

The sediment sampling was done by the commonly used method for gravel to cobble-bed mountain rivers according to Fehr 137 

(1987). For the accessible river sections, the line-by-number method (LbN) was applied, where all grains (b-axis) along the 138 

projection of a line are sampled and measured (at least 150 stones). Four LbN-analyses at characteristic points were carried 139 

out and mapped with the RTK GNSS device (circles in Fig. 1). For the inaccessible canyon, sediment analysis was 140 

photogrammetrically in post-processing on the images taken during the UAV mapping. At six characteristic points (triangles 141 

in Fig. 1), the grains were measured manually according to the on-site method by Fehr (1987). Both applied methods only take 142 

the coarse fractions into account (partially grain size distribution), which was sufficiently accurate for the objectives of this 143 

study: while Fehr (1987) suggests the cut-off at b≥ 1 cm, the truncation for adequate identification of grains in the digital 144 

method is strongly dependent on the GSD ranging between b> 10-15 px (Detert et al., 2018) and b> 4 px (Lang et al., 2021).  145 

3.4 Hydraulic Modeling 146 

A one-dimensional hydrodynamic-numerical (HN) model was set up (using the software Hec-Ras by the United States Army 147 

Corps of Engineers) for calculating the hydraulic parameters (i) bed shear stress and (ii) energy gradient, both relevant for the 148 

used bedload transport formulas. For this objective, cross-sections (CS) at a 10 m maximum distance were generated from the 149 

high-resolution DEM. The point density was reduced (down to 490 points per CS) by applying the automatic point filter 150 

algorithm with minimum area change. The modeling was performed with steady runoff conditions and the predicted maximum 151 

mean monthly runoff until 2050 (Qm.max), which was determined by the ‘Glacier Runoff Evolution Model (GERM)’ (Schöner 152 
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et al., 2013). The inaccessibility necessitated a sensitivity analysis for roughness determination by varying representative 153 

roughness values (Strickler coefficient kst), which resulted in kst= 28 m1/3s-1 (headwater and delta) and kst= 20 m1/3s-1 (canyon).  154 

3.5 Initiation of motion 155 

The calculation for the initiation of motion was done by the bedload transport formula for steep mountain channels according 156 

to Eq. (1) by Rickenmann (1990). To consider the increased flow resistance due to large roughness elements in the canyon, 157 

the energy gradient was reduced according to Eq. (2) by Rickenmann et al. (2006). 158 

𝑞𝑞𝑐𝑐 = 0.065 ∗ �𝜌𝜌𝑠𝑠
𝜌𝜌𝑤𝑤
− 1�

1.67
∗ 𝑔𝑔0.5 ∗ 𝐼𝐼𝑅𝑅−1.12 ∗ 𝑑𝑑501.5        (1) 159 

Here, the specific discharge (qc) is a function of the characteristic grain diameter (d50), the energy gradient (IR), and the ratio 160 

between sediment (ρs) and fluid density (ρw). The calculation results according to this ‘conventional approach’ in this study 161 

are termed d50.c. 162 

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐼𝐼𝑅𝑅 ∗ �
𝑛𝑛𝑟𝑟
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡

�
𝑎𝑎
           (2) 163 

Here, the reduced energy gradient (Ired) is calculated by the ratio of the grain roughness (nr) and total roughness (ntot), a= 1.5 164 

is a constant. The calculation results with the reduced energy gradient are labeled with d50.r in this study. 165 

The characteristic grain size d90, required for this calculation step, was derived from the adjusted Wolman count method for 166 

the entire canyon, as Hauer & Pulg (2018) described. According to this field-based method, the assumed b-axis of the three 167 

largest stones were manually measured in each cross-section of the canyon on the high-resolution UAV aerial images. In total, 168 

159 stones were measured (b= 546-3715 mm), which resulted in a mean d90= 1290 mm for the entire canyon. 169 

3.6 Determination of morphological changes 170 

Due to the lack of multitemporal terrain data, a comparative analysis based on an orthophoto of 2015 was performed to 171 

reconstruct the evolution of the proglacial channel (formed in the ablation season of 2015). The channel formation was verified 172 

by continuously recorded images from an automatic camera installed at the Kaiser-Franz-Josefs-Höhe (Fig. 1). Due to the 173 

recording rate of 5 minutes, the proglacial area can be observed in a high temporal resolution (compare Avian et al., 2020). 174 

4 Results 175 

4.1 Sediment analysis 176 

The results for all ten grain size distribution curves can be described as narrowly graded, reflected in a very steep gradient of 177 

each curve (Fig. 3a). The sediment composition in the direction of flow is becoming increasingly coarse (d50.m:LbN.1= 29.9 mm 178 

< d50.m:LbN.2= 49.6 mm < d50.m:LbN.3= 79.6 mm) with the same distribution in the delta area (d50.m:.LbN.4= 40.3 mm) as in the 179 

headwater. The evaluation of the UAV-based sediment measurements (six characteristic points in the canyon; triangles in Fig. 180 
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1) illustrate a much coarser composition (d50.m:CS500= 202.5 mm; d50.m:CS408= 219.1 mm; d50.m:CS327= 241.2 mm; d50.m:CS252= 181 

201.3 mm; d50.m:CS168= 211 mm; d50.m:CS52= 116.3 mm). Large particles were measured in every characteristic point (up to d90.m 182 

= 850 mm), and the largest grain size was detected in the steepest part of the entire proglacial channel (b= 3700 mm).  183 

 184 
Figure 3: Partial grain size distribution curves: (a.) four line-by-number (LbN) analyses (continuous lines) and photogrammetric evaluations 185 
(dashed lines) for six characteristic points in the inaccessible canyon. (b.) the dotted black curve refers to the potential future grain size 186 
distribution of the pavement layer. 187 

4.2 Development of flow competence 188 

The seasonal course of the flow competence (the largest particle a flow can move) runs parallel to the typical glacial discharge 189 

regime: smaller transportable grain sizes in the cold months and largest transportable grain sizes in the ablation season (summer 190 

months). According to the forecasted hydrograph, the maximum mean monthly runoff (Qm.max) will continuously increase in 191 

the ablation seasons until June 2030 (Qm.max.2030= 14.61 m³s-1), following a decrease until 2050 (Qm.max.2015= 12.74 m³s-1), which 192 

will be again around the level of 2018 (Qm.max.2018= 12.19 m³s-1). Crucial for this runoff development may be the exceedance 193 

of the expected moment of peak water after 2030, where the maximum mean monthly meltwater runoff (Qm.melt.max) is predicted 194 

to decrease by two orders of magnitude until 2050 (Qm.melt.max.2030= 7.03 m³s-1 >> Qm.melt.max.2050= 3.50 m³s-1). 195 

 A detailed consideration of the calculated flow competence (characteristic grain sizes d50.c; d50.r) according to Qm.2030 and the 196 

grain size measurements (d50.m) in the longitudinal course shows two contrary results between (i) the flat headwater and (ii) 197 

the canyon. The maximum calculated characteristic grain sizes near the glacier terminus (CS 842 m – CS 600 m; Sm= 1.3 %; 198 

no big roughness elements; Fig. 1) by the conventional approach according to Rickenmann (1990) are bigger than those 199 

determined on-site by the LbN-analysis (up to d50.c= 59.4 mm > d50.m= 49.6 mm; Fig. 4a). In the transition section (CS 650 m 200 

– CS 550 m) with a slightly increased channel gradient (Sm= 2.9 %), a much bigger characteristic grain size was calculated 201 

then measured (d50.c= 275.5 mm > d50.m= 79.6 mm). For the flow competence in the steep canyon (CS 550 m – CS 62 m; Sm= 202 

6.8 %; big roughness elements), the opposite was observed, as the calculated characteristic grain size with the reduced energy 203 

gradient (Ired) is smaller than measured in the aerial images (up to d50.r= 220 mm < d50.m= 241.2 mm; Fig. 4b). The beginning 204 

of the canyon is defined by the steepest part of the entire proglacial channel (around CS 512 m; Smax= 18.9 %), where a so-205 
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called knickpoint developed resulting in the largest calculated characteristic grain sizes (d50.r= 320 mm). The calculation results 206 

indicate for all characteristic points in the canyon that the measured characteristic grain sizes (d50.m) theoretically exceed the 207 

calculated flow competence (d50.r) by order of 1.1-1.6 at the maximum predicted discharge (Qm.max.2030) in June 2030 (Fig. 4). 208 

 209 
Figure 4: Longitudinal course of the calculated characteristic grain sizes (flow competence) according to (a.) Rickenmann (1990) (d50.c) and 210 
(b.) Rickenmann et al. (2006) with the reduced energy gradient (d50.r). The transparently displayed parts of the graphs are outside the scope 211 
of the respective approach and invalid for the respective sections. Each graph is supplemented by the measured characteristic grain sizes 212 
(d50.m) on-site (circle) and those evaluated photogrammetrically in post-processing (triangle). The results refer to the maximum predicted 213 
mean monthly runoff by 2050 in June 2030 (Qm.max.2030) compared to 2018 (Qm.max.2018). 214 

4.3 Past morphological alterations 215 

The comparison with the orthophoto of 2015 (the most recent orthophoto before the fieldwork started) shows the steepest part 216 

in 2018 (around CS 512 m, Smax= 18.9 %) at the glacier terminus in 2015. The onset of the canyon formation in the ablation 217 

season of 2015 was verified by images from the automatic camera (Fig. 5a) installed at the ‘Kaiser-Franz-Josefs-Höhe’ (Fig. 218 

1). While no fluvial channel is visible in the ablation season of 2014, a pronounced river structure can be detected one year 219 

later (August 2015; Fig. 5a). The automatically recorded images indicate a very stable canyon and a highly dynamic delta area 220 

since its development. The channel pattern in this fluvial deposition zone can change annually between braided (in 2016) and 221 

single thread (in 2017). Due to the confinement by the debris-covered dead ice landforms and their slower melting rate, the 222 

lateral changes (∆B) in the canyon remained largely constant except (i) at the beginning of the canyon (B= +20 m) and (ii) in 223 

the most downstream part (B= +15 m; Fig. 5b) as this part was still glaciated in 2015. 224 
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 225 
Figure 5: Proglacial fluvial channel: (a.) annual development stages between 2014 and 2019 recorded by the automatic camera (images 226 
provided by Großglockner Hochalpenstraße); (b.) comparison of flow paths after the channel formation in 2015 (orthophoto) and in the 227 
orthomosaic of 2018 (created from the own UAV survey). 228 
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5 Discussion 229 

5.1 Channel evolution process 230 

Channel bed incision as a stabilization process (e.g., Wilkie & Clague, 2009; Marren, 2005; Gurnell et al., 1999) was confirmed 231 

in this study, but with a remarkable longitudinal differentiation. Separated by a knickpoint (e.g., Hilgendorf et al., 2020; 232 

Schlunegger & Schneider, 2005), the headwater in direct glacier proximity is transitioning to the incised canyon (Fig. 6). This 233 

knickpoint is defined by the highest gradient (Smax=18.9 %) of the entire investigated proglacial reach established by the glacier 234 

terminus in 2015 (Fig. 5). The analysis of the river bathymetry and the results by the hydrodynamic model show potential for 235 

river bed incision in the headwater and tendencies for stabilization processes in the canyon (Fig. 6).  236 

Moreover, the shift and alteration of the runoff will cause limitations in the bedload transport (e.g., Pralong et al., 2015; 237 

Geilhauesen et al., 2012b) and channel stabilization tendencies by glacifluvial sediment reworking are given with increasing 238 

distance to the glacier terminus (e.g., Delaney et al., 2018; Lane et al., 2016; Gurnell et al., 1999). The dominant process in 239 

the headwater is headward erosion, already known from, e.g., a fluvial drainage basin in Switzerland (Schlunegger & 240 

Schneider, 2005). Starting from this point with the highest gradient (Smax), the glacifluvial erosion will shift the knickpoint 241 

more upstream (Hilgendorf et al., 2020). The first indicators of this development were detected up to 140 m upstream of the 242 

knickpoint (CS 512 m) in the transition section (CS 650 m – CS 550 m; Fig. 1), defined (i) by a much bigger flow competence 243 

(largest particle a flow can move) than in the headwater and (ii) the exposure of already very big non-fluvial sediments (b> 244 

2000 mm). Similar to the canyon, fine fractions are expected to be transported continuously out of the headwater, which will 245 

result in progressive armoring of the channel bed by sediment coarsening (Bunte & Abt, 2001; Dietrich et al., 1989). Exactly 246 

this post-glacial fluvial development is already occurring in the steep canyon. The local sorting of the diamicton by glacifluvial 247 

erosion resulted in channel bed incision (Fig. 6). The calculation results, according to the approach with Ired (Rickenmann et 248 

al., 2006), valid for torrential flow characteristics (e.g., Pralong et al., 2015; Nitsche et al., 2011), indicate armor layer 249 

formation in the entire canyon. Due to decreasing flow competence by changing hydrology in the long-term perspective (e.g., 250 

Huss & Hock, 2018; Förster et al., 2015; Schöner et al., 2013; Haeberli et al., 2011), the channel bed of the already incised 251 

canyon will stabilize at d50= 600 mm from a hydraulic point of view (Fig. 3b). Less bedload transport at the foreland of the 252 

Pasterze was already observed by Avian et al. (2018) and Geilhausen et al. (2012b).  253 

The progressive armoring by (i) glacifluvial erosion combined with (ii) decreasing flow competence in the long-term 254 

perspective (Pralong et al., 2015) will establish an erosion-resistant pavement layer. In contrast to the infrequently mobile 255 

armoring layer (Bunte & Abt, 2001), this development will prevent channel bed incision by exposing non-fluvial deposits of 256 

the diamictic glacier foreland (outwash plain). The beginning of this trend was already observed in characteristic points in the 257 

canyon (triangles in Fig. 1), where very coarse (non-fluvial) sediment composition was occasionally measurable (up to d90= 258 

850 mm; Fig. 3). These points indicate the assumption of limited channel bed incision in the future and are labeled ‘erosion 259 

breakpoints’ (Fig. 6). For rivers characterized by such post-glacial non-fluvial sediment, Hauer & Pulg (2018) implemented 260 

the term glacial-till cascade, which contributes remarkably to channel stabilization. 261 
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 262 
Figure 6: Longitudinal section of the investigated reach length with (i) the upper edge of the riverbank and (ii) predicted ‘erosion 263 
breakpoints’ according to the study results. The information about the glacierized area in 2015 originated from the orthophoto of 2015 264 
(compare Fig. 5). In addition, pictures taken during UAV mapping show the sediment composition in some characteristic points. 265 

The gradual evolution of proglacial channels in diamictic glacifluvial deposits starts as braided channels in direct glacier 266 

proximity (e.g., Marren, 2005; Gurnell et al., 1999). According to this development, glacifluvial erosion, predominant for 267 

sediment reworking (Church & Ryder, 1972), is defined in a generalized way as the last transport process of the proglacial 268 

sediment cascade model (Geilhausen et al., 2012b). However, according to the predicted study results, limited flow competence 269 

by 2050 (also compare Pralong et al., 2015) will develop a new in-stream storage type within the fluvial system of the sediment 270 

cascade model, defined by the erosion-resistant pavement layer (grey highlighted in Fig. 7). This extension by the new in-271 

stream storage type (non-fluvial deposit) is accompanied by the refinement of the fluvial system within subsystem IV of the 272 

sediment cascade approach (dotted frames in Fig. 7). Glacifluvial erosion and the exposure of non-fluvial sediment lead 273 

inventible to a needed differentiation of the transport limited braided channel in direct glacier proximity and the (partly) supply 274 

limited ‘developed channel’ with a greater distance to the glacier terminus. Furthermore, established pavement layers 275 

disconnect the linkage between the proglacial channel bed and the unconsolidated diamictic sediment in the subsurface (e.g., 276 

Fryris et al., 2007; Brierley et al., 2006).  277 

https://doi.org/10.5194/hess-2022-347
Preprint. Discussion started: 13 December 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

 278 
Figure 7: Refinement (dotted frames) and extension (grey highlighted in-stream sediment storage type) by the fluvial system within 279 
subsystem IV (proximal glacier foreland) of the conceptual model of a sediment cascade for proglacial catchments. The establishment of a 280 
pavement layer by non-fluvial deposits will disrupt the vertical connectivity between the proglacial channel bed and the subsurface. Due to 281 
the decoupled subsystems in the catchment (Geilhausen et al., 2012b), the grey-coloured connections only complete the cascade model but 282 
are irrelevant to the objectives of this study. Modified after Geilhausen et al. (2012b). 283 

Pavement layer formation by glacifluvial erosion is thus an essential stabilization as part of the well-known landform 284 

decoupling (e.g., Bakker et al., 2018; Wohl et al., 2015; Fryris et al., 2007) or (ii) vegetation cover within a river system (e.g., 285 

Eichel et al., 2018; Klaar et al., 2015; Gurnell et al., 1999). As the sediment cascade model shows decoupled subsystems in 286 

the Pasterze catchment (Geilhausen et al., 2012b), the new in-stream storage type is composed of non-fluvial glacial deposits. 287 

In order that the subsystems of a sediment cascade model are coupled with each other, coarse colluvial deposits can also be 288 

contained in this non-fluvial sediment storage type and contribute to channel stabilization (Carrivick & Rushmer, 2009). These 289 

developed channels will prevent further channel bed incision but will still allow lateral sediment supply, often triggered by 290 

high-magnitude/low-frequency events (e.g., Baewert & Morche, 2014; Marren, 2005; Old et al., 2005; Beylich & Gintz, 2004). 291 

Measurements in high mountain areas are prone to uncertainties, as (i) inaccessibility and (ii) torrential flow characteristics 292 

lead to limitations in the (i) geometry and calibration data acquisition as well as in sediment sampling. Due to low flow 293 

conditions during the in-situ measurements, representative sediment analysis of the canyon could be done in the partly wetted 294 

area. It is assumed that the same grain size composition is present in the permanently wetted area, although it will probably be 295 

already coarser due to constant exposition to glacifluvial erosive processes. However, the applied method of investigating the 296 

sediment composition (photogrammetrically in the inaccessible canyon) is satisfactory, as all grain sizes smaller than the lower 297 

threshold (b> 65 mm) are irrelevant for the pavement layer formation. Furthermore, simplifications were applied to the 298 

calculation approach (e.g., neglect of near-bed turbulence). 299 
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5.2 Drivers for future proglacial channel avulsion 300 

Glacifluvial sediment reworking of glacial deposits reduces landform connectivity and leads to a progressive stabilizing of 301 

proglacial areas (Lane et al., 2016). Connectivity in turn is crucial for sediment storage or export (Bakker et al., 2018; 302 

Geilhausen et al., 2012b). While proglacial lakes, like the ‘Sandersee’ or ‘Pasterzensee’ (Fig. 1), act as sediment traps (e.g., 303 

Bogen et al., 2014; Geilhausen et al., 2013; Krainer & Poscher 1992), the melt-out of (buried) dead ice landforms are still a 304 

hidden effect on proglacial channel evolution, especially in recently deglaciated areas (e.g., Avian et al., 2018; Delaney et al., 305 

2018; Lane et al., 2016). In contrast to flood-driven river avulsion (e.g., Slingerland & Smith, 2004; Jones & Schumm, 1999; 306 

Brizga & Finlayson, 1990), proglacial channel avulsion may be caused by the downwasting of dead ice landforms (e.g., Benn 307 

& Evans, 2013; Lukas, 2011; Bennett and Glasser, 2009; Lukas et al., 2005; Richardson & Reynolds, 2000). Furthermore, the 308 

melt-out of buried dead ice beyond the channel in the subsurface can result in channel bed settlement. However, this process 309 

will not change the sediment composition of the erosion-resistant pavement layer of non-fluvial sediment. One prerequisite 310 

for the development of such landforms is debris-covered glacier surface (Benn & Evans, 2013), whose progressive increase 311 

can be observed worldwide (Mayr & Haag, 2019), in Europe (Lardeux et al., 2016), and thus also at the glacier Pasterze 312 

(Fischer et al., 2018). Consequently, different dead ice landforms like hummocky moraines, ice-cored moraines, or kettles 313 

could be detected at the foreland of glacier Pasterze (e.g., Avian et al., 2018; Geilhausen et al., 2012b; Krainer & Poscher, 314 

1992). Investigating channel evolution in response to melting dead ice landforms is highly relevant to (i) describing future 315 

proglacial channel development and (ii) quantifying proglacial sediment yields and sediment dynamics. 316 

6 Summary and Conclusion 317 

The distinction and transition from armor layers to erosion-resistant pavement layers by non-fluvial sediment is an important 318 

definition and process in the proglacial channel evolution. Triggered by runoff variability due to global warming, the 319 

establishment of non-erodible pavement layers is an essential post-glacial development process and has been widely neglected 320 

up to now in defining proglacial channel evolution stages. 321 

(1) While recently deglaciated river sections are prone to glacifluvial headward erosion (against flow direction parallel to 322 

glacier retreat) due to the fine sediment composition of the outwash plain, river sections with a greater distance to the 323 

glacier terminus are characterized by sediment coarsening. This gradual process will limit further channel bed incision 324 

by establishing an erosion-resistant pavement layer by non-fluvial deposit. Triggered by global warming, the short-term 325 

increase and long-term decrease of the flow competence will develop pavement layers, which are in contrast to 326 

infrequently mobile armoring layers. This development is considered as a final process in proglacial river evolution. 327 

(2) The calculation results of non-fluvial deposits forming pavement layers allow the extension of the proglacial sediment 328 

cascade model by a new in-stream storage type within the fluvial system. This extension results in a refinement of the 329 

existing fluvial part of the cascade approach: (i) braided channels in direct glacier proximity differ from (ii) the ‘developed 330 

https://doi.org/10.5194/hess-2022-347
Preprint. Discussion started: 13 December 2022
c© Author(s) 2022. CC BY 4.0 License.



15 
 

channels’ with increasing distance to the glacier terminus. This development leads to vertical landform decoupling 331 

between the erosion-resistant proglacial channel bed and the unconsolidated diamictic sediment in the subsurface. 332 

(3) In the long-term perspective, river avulsion driven by the melt-out of (buried) dead ice landforms will mainly contribute 333 

to the stabilization in the catchment and reach scale. Investigating the channel evolution in response to melting dead ice 334 

landforms is highly relevant for quantifying future post-glacial sediment dynamics. However, due to the characteristics 335 

of glacial diamicton (poorly sorted sediment matrix ranging in size from sand up to boulders), proglacial channel 336 

evolution will always lead to the final stage of pavement layer formation, as proven and described in this study. 337 
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