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Abstract. Today, the most popular approaches in agricultural forecasting leverage process-based crop models, crop 8 

monitoring data, and/or remote sensing imagery. Individually, each of these tools has its own unique advantages but 9 

is, nonetheless, limited in prediction accuracy, precision, or both. In this study we integrate in situ and remote sensing 10 

(RS) soil moisture observations with APSIM model through sequential data assimilation to evaluate the improvement 11 

in model predictions of downstream state variables across 5 experimental sites in the U.S Midwest. Four RS data 12 

products and in-situ observations spanning 19 site-years were used through two data assimilation approaches namely 13 

Ensemble Kalman Filter (EnKF) and Generalized Ensemble Filter (GEF) to constrain model states at observed time 14 

steps and estimate joint background and observation error matrices. Then, the assimilation’s impact on estimates of 15 

soil moisture, yield, NDVI, tile drainage, and nitrate leaching was assessed across all site-years. When assimilating in 16 

situ observations, the accuracy of soil moisture forecasts in the assimilation layers was improved by reducing RMSE 17 

by an average of 17% for 10cm and ~28% for 20 cm depth soil layer across all site-years. These changes also led to 18 

improved simulation of soil moisture in deeper soil layers by an average of 12%. Although crop yield was improved 19 

by an average of 23%, the greatest improvement in yield accuracy was demonstrated in site-years with higher water 20 

stress, where assimilation served to increase available soil water for crop uptake. Alternatively, estimates of annual 21 

tile drainage and nitrate leaching were not well constrained across the study sites. Trends in drainage constraint suggest 22 

the importance of including additional data constraint such as evapotranspiration. The assimilation of RS soil moisture 23 

showed weaker constraint of downstream model state variables when compared to the assimilation of in situ soil 24 

moisture. The median reduction in soil moisture RMSE for observed soil layers was lower, on average, by a factor of 25 

5. However, crop yield estimates were still improved overall with a median RMSE reduction of 17.2%. Crop yield 26 

prediction was improved when assimilating both in-situ and remote sensing soil moisture observations and there is 27 

strong evidence that yield improvement was higher when under water-stressed conditions. Comparisons of system 28 

performance across different combinations of remote sensing data products indicated the importance of high temporal 29 

resolution and accurate observation uncertainty estimates when assimilating surface soil moisture observations. 30 

Keywords: Model-data integration, Sequential Data Assimilation, APSIM, soil moisture 31 
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1.  Introduction 32 

To effectively address pressing global food security challenges, agricultural forecasting tools must exhibit high 33 

accuracy and precision across spatial and temporal scales. As process-based crop models offer a system-level 34 

representation of many soil and crop processes, they are increasingly recognized as practical forecasting tools in 35 

agricultural research (Silva and Giller, 2021; Fer at al., 2021). However, their weakness comes from many 36 

unaccounted uncertainties, such as those related to model parameters, initial conditions, and weather (Dokoohaki et 37 

al., 2021). Prior studies have shown state data assimilation (SDA) to be a powerful tool to overcome this weakness in 38 

process-based crop models (e.g. Dokoohaki et al., 2022a). SDA enables a temporally-continuous, high-dimensional 39 

scaffold in which a variety of observations can be smoothly integrated using one of many robust, systematic 40 

algorithms, such as the Ensemble Kalman Filter (EnKF; Dietze et al., 2017; Huang et al., 2019; Liu et al., 2021; 41 

Dokoohaki et al., 2022a; Kivi et al., 2022). Through SDA, uncertainty around spatially-heterogenous and dynamic 42 

properties in agricultural systems can be constrained, thereby increasing precision and accuracy in estimates while 43 

decreasing dependence on extensive site-level model calibration (Mishra et al., 2021). 44 

Numerous past studies have used SDA to constrain crop model estimates, using observations on leaf area index (e.g., 45 

Nearing et al., 2012; Ines et al., 2013; Ma et al., 2013; Chen et al., 2018; Lu et al., 2021), soil moisture (Kivi et al., 46 

2022), biomass (e.g., Linker and Ioslovich, 2017) and evapotranspiration (e.g., Huang et al., 2015). For example, a 47 

synthetic study by Zhu et al. (2017) found that the assimilation of coarse resolution surface soil moisture data into a 48 

coupled soil water-groundwater numerical model constrained soil moisture estimates in the first 50 cm of the soil 49 

profile despite explicitly unaccounted spatial heterogeneity in soil properties. These studies showed how SDA can 50 

partially account for the spatial variability in soil hydraulic conductivity across broad regions without explicit model 51 

calibration. In addition to incorporating spatial heterogeneity in soil properties, Kivi et al. (2022) demonstrated that 52 

the assimilation of high quality and frequent in-situ soil moisture observations can substantially improve downstream 53 

model predictions of tile drainage, nitrate (NO3) leaching, and root-zone soil moisture (RZSM) for maize and 54 

soybeans in the APSIM model. However, collecting field measurements of soil moisture for different cropping 55 

systems, soils, and environments is expensive, extremely laborious, and time-consuming. 56 

Alternatively, the assimilation of high-resolution Remote Sensing (RS) data products dramatically increases SDA 57 

applications' range beyond in situ data availability by effectively capturing the spatiotemporal variability of many 58 

agricultural state variables, such as vegetation cover and soil moisture, with consistency and high temporal frequency 59 

(Peng et al., 2017). As a result, RS observations could be invaluable to constraining model predictions at the regional 60 

scale and have been increasingly applied for agricultural forecasting in the data assimilation literature, as demonstrated 61 

in literature reviews by Dorigo et al. (2007), Huang et al. (2019), and Weiss et al. (2020). The application of RS soil 62 

moisture data products has been especially popular and successful in data assimilation-focused agricultural forecasting 63 

studies. These data products, which characterize soil moisture content in the first 5 cm of the soil profile, pull 64 

information from active and/or passive sensors of microwave reflectance. Due its high sensitivity to surface soil 65 

moisture, many data products have been developed around available L-band microwave sensor information collected 66 

by NASA’s SMAP Mission (Kumar et al., 2018). The SMAP-HydroBlocks data products merges SMAP data with 67 

the HydroBlocks land surface model to increase spatial resolution in the final estimates and improve scalability 68 
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(Vergopolan et al., 2021b), while the SMAP-Sentinel1 data product pairs SMAP data with Sentinel-1 radar 69 

information to achieve similar goals (Das et al., 2019). Others, like the ESA-CCI data product (Dorigo et al., 2017), 70 

compile information from multiple sensors, including the SMAP passive sensor, to allow for greater temporal 71 

coverage. However, this approach comes at the cost of coarser spatial resolution.  72 

Nonetheless, as demonstrated in past studies, the assimilation of RS soil moisture data has its limitations. First, 73 

uncertainty and biases in RS data products are typically poorly defined (Huang et al., 2019). RS-based data products 74 

are based on empirical relationships, and, as they are predicted as a function of surface reflectance, uncertainties in 75 

the raw radiance will propagate unsupervised into final estimates (Weiss et al., 2020). Additionally, RS estimates 76 

characterize soil moisture in only the top 5 cm of the soil profile and, thus, rely on models or empirical 77 

parameterizations to describe the root zone soil profile. Among others, De Lannoy et al. (2007) and Monsivais-78 

Huertero et al. (2010) both found the assimilation of in-situ near-surface soil moisture observations to be far less 79 

effective than that of in-situ root-zone soil moisture observations in constraining estimates of the greater soil water 80 

profile. Yet, since the surface layer is typically the layer where fertilizers are added, the accurate estimation of surface 81 

layer state variables is essential for today’s agroecosystems (Verburg and CSIRO, 1996). To overcome relatively 82 

coarse spatial resolution in RS data products, past studies have explored downscaling approaches (e.g., 83 

ChakrabartiChakrabarti et al., 2014) or leveraged additional in-situ datasets (e.g., Liu et al., 2021) to overcome 84 

“mismatch” challenges and downscale RS soil moisture estimates to more accurately reflect field scale measurements 85 

(Vergopolan et al., 2021a). However, the reliance on in situ observations of these approaches can limit system 86 

transferability across broad regions (Peng et al., 2017). Moreover, as described by Crow et al. (2012), it can be difficult 87 

to properly evaluate coarse soil moisture estimates with point-scale ground measurements due to unknown and often 88 

significant sampling uncertainty. Data assimilation with process-based models has been previously applied as a robust 89 

and scalable way to leverage information in coarse resolution soil moisture estimates (e.g. Vergopolan et al., 2021b). 90 

Despite the immense theoretical potential of SDA with both in situ and RS observations, past studies have reported 91 

inconsistent SDA performance in modeling crop yields. For example, de Wit and van Diepen (2007) observed 92 

inconsistencies in yield constraint when assimilating soil wetness index (SWI) derived from 0.25° ERS1/2 microwave 93 

radiance information into the WOFOST model across agricultural regions of Spain, Germany, France, and Italy. They 94 

partially attributed poor predictions in certain regions to irrigation processes that were not captured by the model nor 95 

coarse resolution SWI observations. Lu et al. (2021) also saw year-to-year variability in assimilation performance 96 

when assimilating in situ observations of canopy cover and soil moisture for 6 site-years in Nebraska. When 97 

assimilating soil moisture independently, canopy cover estimates were better constrained in drier years. They 98 

suspected this to result from the canopy cover’s lower sensitivity to soil moisture in the model when water is in surplus 99 

(i.e., due to energy-limited conditions). We further suspect that SDA’s inconsistent performance is related to the 100 

misrepresentation of model processes linking soil moisture to crop- and soil-related variables (e.g., soil nitrogen, leaf 101 

expansion, crop water uptake). As a result, direct upstream improvement of model state variables with SDA does not 102 

always translate into improvement in downstream results. To understand the role of soil moisture data assimilation in 103 

improving crop yields and better pinpoint areas for future improvement, a comprehensive assessment that investigates 104 

performance across time and different genetic (G), environmental (E), and management (M) spaces is required. 105 
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Although a growing body of studies has attempted to quantify the impact of soil moisture assimilation in crop models, 106 

such a comprehensive evaluation of in situ and RS soil moisture SDA in crop models across GxExM spaces is still 107 

lacking (Folberth et al. 2016b).  108 

To bridge this knowledge gap, we present a comprehensive assessment of soil moisture data assimilation as a method 109 

for constraining crop model predictions across the U.S. Midwest. Building on the assimilation framework in Kivi et 110 

al. (2022), we independently assimilated both in situ and RS soil moisture observations in the APSIM crop model at 111 

five experimental sites in the U.S Midwest. With field data covering 19 site-years of corn and soybean cropping 112 

systems across the region, this study tests the data assimilation system across a broader GxExM inference space and 113 

quantifies the benefit of assimilating different RS soil moisture products in comparison to the in-situ soil moisture 114 

observations. The main objectives of this study were: 115 

1. To quantify how in situ soil moisture observations can constrain crop model forecasts of downstream estimates, 116 

including root-zone soil moisture, crop yield, crop phenology via NDVI, tile drainage flow, and NO3 leaching 117 

through SDA. 118 

2. To quantify the added benefit of RS soil moisture observations in improving crop model predictions of root-119 

zone soil moisture, crop yield, and crop phenology via NDVI through SDA. 120 

2. Methods 121 

Sections 2.1 and 2.2 describe the five experimental sites and the in-situ observations employed in this study for model 122 

set-up, SDA, and evaluation. Section 2.3 outlines the four different RS soil moisture data products that were 123 

assimilated, and Section 2.4 presents the data-assimilation system used in this study. Lastly,  Section 2.4.5 defines the 124 

different simulation experiments performed. 125 

2.1 Study sites 126 

This study focused on five experimental sites across the U.S. Midwest with in-situ observations of soil moisture, crop 127 

yield, nitrate load, and tile drainage flow for 19 years between 2011 and 2019. Site IL was the Energy Farm, a well-128 

monitored experimental site in central Illinois that was the focus of the development and initial evaluation of the 129 

employed data-assimilation system (Kivi et al., 2022). Site IN, MN, OH, and SD were available through the 130 

Transforming Drainage (TD) project (Chighladze et al., 2021). The TD project database is publicly-available and 131 

contains high-quality data from 39 tile-drained research sites with data spanning over 200+ site-years. The available 132 

observations include data on tile drainage, yield, water table, water quality, and soil characteristics, among many 133 

others. Though numerous sites were available as part of the project, the experimental design and data available for 134 

each site-year varies widely in the database. For consistency, this work required that each site-year include a plot with: 135 

(1) a free tile drainage system, (2) available NO3 load and tile flow data at the plot level, (3) available in situ soil 136 

moisture observations, (4) maize or soybean crops, and (5) a rain-fed system. We identified only 17 site-years across 137 

five sites in the database which satisfied all these criteria.  138 

To properly set up the APSIM model for each of the five sites, we included all available site information on each year, 139 

cropping system, residue type, planting and harvesting details, tillage practices, and fertilizer applications as constants 140 
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in the simulations. Following updated information available through Moore et al. (2021), the IL  siteincludes tillage 141 

practices in the model set-up and increased nitrogen (N) fertilizer from 64.6 kg N/ha, to 202 kg N/ha. Detailed 142 

information on the plot and management information for all five sites are included in the Supplementary Materials 143 

(Table A1). Study sites will be referred to by their given study IDs in Figure 1.  144 

2.2 Observation data 145 

In situ soil moisture  146 

Across the study site-years, sub-daily soil moisture (SM) observations were collected at various soil depths between 147 

10 and 105 cm using soil sensors; the measured depths and sensor type varied by site. All observations are available 148 

in units of volumetric water fraction (VFW; mm/mm). For the 4 TD sites, SM observations were only available as 149 

daily averages. For consistency, SM observations at IL (available at 15-minute intervals) were aggregated to daily 150 

averages when at least 40 15-minute observations were available. Observations from the winter months (December-151 

March) were excluded due to the influence of freezing soils. Across all site-years, in situ SM assimilation was 152 

performed with available observations for the 10- and 20-cm soil depths, which hereinafter will be referred to as SM3 153 

and SM4, respectively. All other available SM observations for deeper soil layers were used to evaluate model root-154 

zone SM estimates. SM observations were paired with an APSIM soil layer based on the recorded sensor depth and 155 

the site soil profile. In the case that more than one observation was available for a given APSIM soil layer, the average 156 

SM was computed for each day and layer with the assumption of uniform SM in the layer. 157 

 158 

Harvested maize and soybean yields 159 

Data on harvested yield for the TD sites were available for each site-year with 1-3 replicated measurements. These 160 

replicated observations were averaged and converted from grain at standard moisture content (i.e., 15.5% for maize 161 

and 13% for soybean) to dry-grain weight for best comparison with the APSIM model output. Observations for IL 162 

were already recorded as dry-grain weights and given in units of kg/ha. Across 12 maize site-years, observed yields 163 

ranged from 6.51 to 13 Mg/ha with an average yield of 9.93 Mg/ha. The 7 soybean site-years had observed yields 164 

ranging from 2.78 to 4.15 Mg/ha with an average yield of 3.50 Mg/ha. 165 

 166 

Remotely sensed Normalized Difference Vegetation Index (NDVI) 167 

The normalized difference vegetation index (NDVI) can be used to quantify vegetation greenness and reasonably track 168 

the phenological development of crops (Gao and Zhang, 2021). In this study, NDVI observations from Landsat 169 

between 2011 and 2019 were used to evaluate APSIM’s performance in predicting crop phenology for each site-year. 170 

NDVI time series were extracted at each site location from Landsat 7 and 8 remote sensing imagery courtesy of the 171 

U.S. Geological Survey via Google Earth Engine and derived from the red (RED) and near-infrared (NIR) spectral 172 

bands using the following equation: 173 

 174 

𝑁𝐷𝑉𝐼 = 	
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 

(1) 
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 175 

In situ measurements of tile drainage and nitrate load 176 

Daily observations of tile drainage flow (mm) and NO3 load (kg NO3-N ha-1) were available for all 19 site-years. 177 

Any missing daily drainage values for the TD sites had been imputed previously and used to approximate missing 178 

values of daily NO3 load, as described by Helmers et al. (2022). Methods and instrumentation used to collect and 179 

process the TD sites and IL data are presented by Helmers et al. (2022) and Kivi et al. (2022), respectively. In this 180 

study, daily values for tile drainage flow and NO3 load were summed to annual values for comparison with model 181 

output. For the purposes of this analysis, we assumed any day with NA tile drainage flow values in the data had no 182 

drainage and no NO3 loss. 183 

2.3 Remote sensing soil moisture 184 

To assess the performance of SM data assimilation with satellite-based observations, we included 4 RS data products 185 

that span different temporal and spatial resolutions (Table 1). These observations were extracted at the point level for 186 

the study sites and serve to represent the first 5 cm of the soil profile or surface SM. Observations from the winter 187 

months (i.e., December-March) were removed to avoid issues with snow cover and freezing soils. The product IDs 188 

provided in Table 1 will be used to identify each data product. 189 

 190 

ESA-CCI  191 

The RS dataset with the coarsest spatial resolution in this study was the ESA-CCI SM product. Each year, the European 192 

Space Agency Climate Change Initiative (ESA CCI) algorithmically merges information from 3 active (e.g., ASCAT 193 

A/B) and 10 passive (e.g., SSM/I, AMSR-E, SMOS, SMAP) microwave sensors to estimate daily surface SM globally 194 

for over 40 years. Dorigo et al. (2017) provide complete documentation on how these data products are produced. 195 

Here we used the combined product (version v06.1), which includes daily uncertainty estimates. Several past studies 196 

have assimilated this data product into process-based models with varying levels of success (e.g., Zhou et al., 2016; 197 

Liu et al., 2017; Liu et al., 2018; Naz et al. 2019).  198 

 199 

SMAP-HydroBlocks 200 

The SMAP-HydroBlocks surface SM dataset has the highest spatial resolution in this study. It was introduced by 201 

Vergopolan et al. (2021b) by combining the HydroBlocks land surface model, a Tau-Omega radiative transfer model, 202 

machine learning, in situ SM observations, and SMAP remotely sensed satellite observations to estimate surface SM 203 

with 30-meter resolution across the contiguous United States. In specific, the Hydroblocks model was coupled with a 204 

Tau-Omega radiative transfer model (HydroBlocks-RTM) and used to simulate SM, soil temperature, and brightness 205 

temperature at a 3-hour, 30-meter resolution. Brightness temperature estimates from NASA’s Soil Moisture Active 206 

Passive (SMAP) mission were then merged with the HydroBlocks-RTM estimates using a spatial cluster-based 207 

Bayesian merging scheme (Vergopolan et al., 2020). Using the inverse HydroBlocks-RTM, SM was estimated at 208 

SMAP overpass time at 30-m spatial resolution. Vergopolan et al. (2021b) reported an RMSE of 0.07 mm3/mm3 after 209 

comparing SMAP-Hydroblocks estimates to in situ observations from 233 independent experimental sites. This study 210 
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is the first to assimilate SMAP-HydroBlocks SM estimates into a crop model. SM morning and afternoon retrievals 211 

were aggregated to a daily resolution, and site-level estimates were computed as the mean value of any data point 212 

within 0.0005° of the given site location. The uncertainty estimate for each observation was calculated based on the 213 

spatial variability of selected data points for that time step and the reported standard error (SE = 0.07 mm3/mm3) as : 214 

 215 

𝑉𝑎𝑟-𝑌!,#/ = 𝑉𝑎𝑟(𝑦#) + 𝑆𝐸$	 (2) 

 216 

where, for site s at the tth available time step, Y represents the site-level SM estimate, and y presents SM estimates 217 

within 0.0005° of the site location.  218 

 219 

SMAP-Sentinel1 220 

The SMAP-Sentinel1 SM product was produced by merging information collected by the SMAP L-band radiometer 221 

and the Copernicus Project Sentinel-1 C-band radar. After the malfunction of the SMAP radar in 2015, Sentinel-1 222 

active microwave data were used with passive microwave sensor information from the still-operating SMAP 223 

radiometer to estimate surface SM content globally using the active-passive algorithm. Although the merged product 224 

increased the revisit interval from 3 to 12 days, it enabled retrievals at two different spatial resolutions (i.e., 1 km and 225 

3 km; Lievens et al., 2017). Upon comparing the estimates with in situ SM measurements, Das et al. (2019) reported 226 

RMSE for SMAP-Sentinel1 SM estimates as roughly 0.05 m3/m3. In this study, this value was applied as the standard 227 

error for SM estimates at both spatial resolutions and at all available time steps. Retrievals were available for all TD 228 

site-years but were unavailable for IL for unknown reasons. 229 

2.4  Data-assimilation system  230 

This study uses the data-assimilation system developed and evaluated in Kivi et al. (2022). The original system 231 

leveraged the pSIMS platform, APSIM crop model, Ensemble Kalman Filter (EnKF), and an algorithm presented by 232 

Miyoshi et al. (2013) to estimate and propagate uncertainties, perform sequential data assimilation, and generate daily 233 

agricultural forecasts at the field scale. The workflow is illustrated in Figure 2. APSIM management variables that 234 

were known include planting and harvest dates, fertilizer amount, type, and timing, tillage type, depth, and timing, 235 

crop type, row spacing, sowing density, and, if available, planting depth.  236 

2.4.1  Model parameter priors 237 

Initial soil water, cultivar, and residue weight were randomized across model ensembles for each site to incorporate 238 

uncertainty around initial conditions. If unavailable in the management data, planting depth was also randomized and 239 

drawn from different prior distributions for each crop. These distributions represented reasonable planting depth 240 

ranges for the two crops in the Midwest, as described in extension websites produced by the University of Missouri 241 

(Luce, 2016) and Michigan State University (Staton, 2012). Using a uniform prior distribution, planting depths ranged 242 

from 1.5 to 2.5 inches for maize and 1 to 2 inches for soybean. 243 
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Prior distributions were also set to incorporate uncertainty around cultivar. For maize, nine cultivar parameters were 244 

ensembled, including the six cultivar parameters (i.e., tt_flower_to_maturity, tt_flower_to _start_grain, 245 

tt_maturity_to_ripe, tt_emerg_to_endjuv, head_grain_no_max, grain_gth_rate). The other three parameters (i.e., 246 

largestLeafParams1, leaf_init_rate, leaf_app_rate1) were drawn from Dokoohaki et al. (2022b), who identified maize 247 

cultivar parameters that were influential for estimates of leaf area index (LAI) in the APSIM Maize module and 248 

optimized their value distributions using a hierarchical Bayesian optimization approach across the U.S. Midwest. 249 

Table A.2 gives more detailed information on all randomized parameters and their prior distributions. We completed 250 

a preliminary assessment of the Maize module at each of the study sites and found that, under the given parameter 251 

value ranges, APSIM was capable of appropriately simulating the phenological development and grain yield for maize 252 

at each site.  253 

The selection of soybean cultivars for each site was determined using a semi-systematic approach. First, a range of 254 

maturity groups was determined for each site based on a study by Mourtzinis and Conley (2017), which delineated 255 

soybean maturity groups across the U.S. We defined the upper and lower maturity group bounds for each site using 256 

the bounding zone contour lines for each site location in Figure 4 of Mourtzinis and Conley (2017). Then, initial 257 

APSIM simulations were performed for each site using all APSIM-defined soybean cultivars falling within the 258 

prescribed maturity group range. The model results were compared to the observed soybean yields at each site, and 259 

the best-performing maturity group (MG) for each site was determined. The final range for each site was 260 

approximately MG ± 0.5. In each ensemble, the cultivar for each crop at each site was assumed to be constant across 261 

all site-years. 262 

2.4.2  Weather and soil model drivers 263 

To incorporate uncertainty around soil and weather into our simulations, a Monte Carlo sampling approach was used 264 

to randomly assign ensembles of weather and soil drivers to model ensembles. For each study site, ten weather 265 

ensembles from the ERA5 reanalysis data product were employed to characterize solar radiation, maximum air 266 

temperature, minimum air temperature, precipitation, and wind speed at the daily resolution and at each site location. 267 

ERA5 is a global gridded reanalysis data product from the European Centre for Medium-Range Weather Forecasts 268 

(ECMWF), which characterizes the weather state variables at hourly time steps with associated uncertainties 269 

(Hersbach et al., 2020). In addition, 25 soil ensembles were generated from the SoilGrids global gridded soil database 270 

(Hengl et al., 2014) for each site location. These ensembles cover 30 soil properties (including available water lower 271 

limit, bulk density, drained upper limit, organic carbon, soil class, and pH) and were created by sampling from each 272 

soil parameter mean and uncertainty values available in the SoilGrids dataset.  273 

2.4.3  PROSAIL model 274 

Since APSIM does not currently estimate NDVI, APSIM was coupled with the PROSAIL model described in 275 

Dokoohaki et al. (2022b) to estimate daily NDVI values and enable the appropriate evaluation of the model’s 276 

simulation of crop phenology at the study sites. The PROSAIL model is a radiative transfer tool that combines 277 

PROSPECT, a leaf optical properties model, and SAIL, a canopy bidirectional reflectance model, to estimate spectral 278 

reflectance for a given vegetative area based on soil and plant/canopy properties (Jacquemoud et al., 2009). In this 279 
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study, APSIM’s daily forecasts of soil and plant variables were transformed and used as inputs into the PROSAIL 280 

model to compute the spectral reflectance for each ensemble. Then, for each day and ensemble, the estimated spectral 281 

information was used to estimate NDVI using the vegetation index function within the hsdar R library (Lehnert et al., 282 

2019). Further details on the coupling protocols can be found in Dokoohaki et al., (2022b). 283 

 284 

2.4.4  Ensemble Kalman filter with the Miyoshi algorithm 285 

The data-assimilation system(which we will call EnKF-Miyoshi hereinafter) employs the ensemble Kalman filter 286 

(EnKF) to assimilate SM observations into the APSIM model. The EnKF merges information from the model 287 

ensemble forecast distribution and observations (with associated uncertainty) at each time step to optimally estimate 288 

the state of the system (Evensen, 2003). The system also leverages the Miyoshi algorithm in series with the EnKF to 289 

improve estimates of the two system uncertainty matrices (i.e., Pf and R) and improve filter performance. Based on 290 

diagnostic innovation statistics, the Miyoshi algorithm estimates a forecast inflation scalar (D) and observation 291 

uncertainty (R) at each analysis time step. At time step t with available data, the system follows the following steps: 292 

1. The mean (Xf,t) and the variance-covariance matrix (Pf,t) of the model forecast ensemble are computed to 293 

define the forecast distribution, which is assumed to follow a Normal distribution.  294 

2. The observed distribution (Yt) is also assumed to be Normal with mean yt and variance-covariance matrix 295 

Rt, where Rt = R* from the previous analysis time step or R1 = S. S is a diagonal matrix that assumes 10% 296 

standard error for each observed state variable. 297 

3. The Kalman Gain (K) is computed as follows, where Dt = D* or D1 = I (I is the identity matrix) and H is the 298 

observation operator:  299 

𝐾# 	= 	∆#𝑃&,#𝐻'(𝑅# 	+ 	𝐻∆#𝑃&,#𝐻')() (3) 

 300 

4. The analysis distribution, which assumes a Normal distribution, is determined with mean (Xa,t) and 301 

variance-covariance matrix (Pa,t).  302 

𝑋*,# 	= 	𝑋&,# 	+	𝐾#(𝑌# −𝐻𝑋&,#) (4) 

𝑃*,# 	= 	 (𝐼	 −	𝐾#𝐻)𝑃&,# 

 303 

5. The model ensemble is updated at each time step according to the analysis distribution based on each 304 

ensemble’s likelihood within the forecast distribution.  305 

6. D* and R* are recomputed using the following series of equations, where 𝑑+(* and 𝑑+(& represent the 306 

observation-analysis and observation-forecast innovations for the current time step, respectively, E denotes 307 

the expectation operator, and r is a user-defined weight given to the new estimate. A lower bound of 1 is 308 

imposed on each entry in Dest and only the diagonal entries of Rest are maintained. 309 

Ε-𝑑+(*𝑑+(&' / = 𝑅,!#  

 

(5) ∆,!#	= 	
𝑑+(&' 	𝑑+(& 		−	𝑅,!#

𝐻∆#𝑃&,#𝐻'  
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𝑅∗ 	= 	 (𝜌)𝑅,!# 	+	(1 − 𝜌)𝑅#  

∆∗=	 (𝜌)∆,!# 	+	(1 − 𝜌)∆# 

 310 

2.4.5  Generalized ensemble filter 311 

However, the EnKF-Miyoshi workflow as established cannot robustly handle observation operators (H) that change 312 

dimensions over time. However, to reduce information loss within the system, H must be able to adapt according to 313 

the number of observations available. To increase flexibility in system configuration, an alternative sequential data 314 

assimilation approach was tested in this work to replace the EnKF-Miyoshi method. The new method, hereinafter 315 

called the Generalized Ensemble Filter (GEF), comprises a fully numerical Bayesian approach to estimating the 316 

analysis distribution and an inflation scalar. The model resembles the approach presented by Raiho et al. (2020) and 317 

Dokoohaki et al., (2022a) and has the following form at analysis time step t:  318 

𝑄	~	𝑈(0.001, 5)  

(6) 𝑋.	~	𝑁(𝑋&,# , 	𝑃&,# 	+	(𝑄 − 1)	∗ 	𝑑𝑖𝑎𝑔(𝑃&,#)) 

𝑌#	~	𝑁(𝑋., 𝑅#) 

 319 

where Q is the estimated forecast inflation scalar and XA is a drawn sample from the analysis distribution. The 320 

estimation of XA and Q was completed using a Markov Chain Monte Carlo (MCMC) approach by leveraging the 321 

nimble R library (de Valpine et al., 2017). Though not explored in this study, this approach also allows for the 322 

definition and estimation of more complex relationships between observations and model forecasts (e.g., nonlinear 323 

observation operators). 324 

In this study, the GEF was applied over the EnKF-Miyoshi workflow when (1) more than one observation was 325 

assimilated for a single state variable at a given time step or (2) the number of available observations varied throughout 326 

a simulation (i.e., changing H). Conversely, the GEF approach was ineffective for cases where only one observation 327 

was available at a given time step, as the MCMC algorithm did not converge due to limited data. The EnKF-Miyoshi 328 

was applied in these settings. 329 

 330 

2.4.6  Simulation schemes 331 

All simulations in this study were performed with 100 ensembles and with a 4-month initialization period starting on 332 

1 Jan of the first year at each site. There were nine different simulations performed for each site in this study which 333 

varied in terms of observations assimilated and assimilation method applied. First, two “baseline” runs were completed 334 

across all 19 site-years to establish system performance benchmarks. As a lower bound on performance, a free model 335 

simulation was performed with no data assimilation. SM sensor observations were also assimilated into the model to 336 

represent a reasonable benchmark data assimilation setting. Next, two groups of runs were performed to test the 337 

assimilation of RS SM data products: “individual” and “additive” runs. In the “individual” runs, all 4 RS data products 338 

were assimilated independently within the system. These runs were performed to compare the value of different RS 339 

data products directly. Then, in the “additive” runs, observations from multiple RS data products were jointly 340 

assimilated into the system following an additive approach. The first iteration included only ESA observations, and 341 
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each subsequent iteration added another data product until all 4 data products were included (i.e., ALL). Data products 342 

were added in succession based on availability, such that the first data product tested had the highest average number 343 

of observations per year. By sequentially adding new data products, the additional impact of each RS data product 344 

could be evaluated. To allow for the application of the GEF in runs with more than one data product, a minimum of 2 345 

observations per day were required for the “additive runs” to ensure the convergence of the MCMC algorithm. For all 346 

runs where RS data were assimilated, only site-years after 2014 were investigated due to the limited temporal extent 347 

of RS data products.  348 

2.5  System evaluation 349 

This study applied the year-average ensemble weighting strategy, as presented in Kivi et al. (2022), to leverage all 350 

available information from the simulations and evaluate the results more accurately. In each site-year simulation, daily 351 

weights were assigned to each ensemble as the likelihood of producing the daily estimate given the analysis 352 

distribution, and ensemble weights were normalized across the model ensemble for each day. Finally, the average 353 

annual weight for each ensemble was computed for each site-year. The application of annual weights in the analysis 354 

was the most robust for evaluating yearly estimates (e.g., yield, cumulative NO3 load, cumulative tile drainage).  355 

To evaluate the accuracy and precision of model forecasts for each site-year simulation, we utilized the root mean 356 

squared error (RMSE), spectral norm, and weighted variance. RMSE was calculated for each run to quantify changes 357 

in accuracy between runs, while the spectral norm and weighted variance were employed to quantify changes in 358 

precision. Additionally, to help standardize accuracy measures across site-years, a normalized RMSE (nRMSE) was 359 

calculated as : 360 

𝑛𝑅𝑀𝑆𝐸	(%) = 100 ∗	
𝑅𝑀𝑆𝐸
𝑌J

 (7) 

where 𝑌is the average observed value. Changes in accuracy and precision between the free model and SDA were 361 

quantified by computing the relative change in each metric for the two runs. For example, for calculating the change 362 

in RMSE, we computed : 363 

∆𝑅𝑀𝑆𝐸	 = 	
𝑅𝑀𝑆𝐸/0. −	𝑅𝑀𝑆𝐸1233

𝑅𝑀𝑆𝐸1233
 

(8) 

The coefficient of determination (R2) was used to compare model performance for each state variable more effectively 364 

across all observed time points. It was calculated as : 365 

𝑅$ = 1 −	
∑ (𝑌# −	𝑋J#)$'
#4)

∑ (𝑌# −	𝑋J#)$'
#4) +	∑ (𝑋J# − 𝑌J)$'

#4)
 

(9) 

where Yt is the observed value at the tth observed time step and is the simulated weighted mean at the tth observed 366 

time step. All observations (n = T) from all site-years were included in this calculation. Separate R2 values were 367 

computed for the Free and SDA results. Weighted mean estimates were computed using annual ensemble weights. In 368 

addition spectral norm, and weighted variance were estimated as follows: 369 

||𝑃𝑓||$ = N𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑃&5𝑃&	 
(10) 

Where 𝑃&5 represents the conjugate transpose of 𝑃&.  370 
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 371 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 	
∑ (𝑤6 −	(𝑥6 − 𝑥̅𝑤)$)7
64)

(𝑁 − 1)
𝑁

 
(11) 

Where N is the number of ensembles, 𝑤6 is the average weight of the ith ensemble, 𝑥̅𝑤 is the weighted mean across 372 

ensembles, and 𝑥6 is the forecasted value of the ith ensemble. 373 

To identify and quantify relationships between variables, one of two correlation statistics was employed depending 374 

on the sample size of the data. When comparing data with a sufficiently large sample size (n > 30), the Pearson 375 

correlation coefficient (r) was calculated to determine the direction and strength of the linear relationship between two 376 

variables.  377 

𝑟 = 	
∑ (𝑥6 −	𝑥̅8
64) )	(𝑦6 −	𝑦J)

Y∑ (𝑥6 −	𝑥̅8
64) )	$	 ∗ Y∑ (𝑦6 −	𝑦J8

64) )	$		
 

(12) 

When comparing data at the site-level (n £ 19), the Spearman rank-order correlation coefficient (rs) was applied, 378 

which is a nonparametric measure of the strength and direction of the monotonic relationship between two variables. 379 

Though the sample size in this case is still too small for proper application, the Spearman coefficient was applied as 380 

its assumptions are less strict than the Pearson coefficient. It is calculated as : 381 

𝑟! = 	1 −	
6	 ∑ 𝑑6$8

64)

𝑛	(𝑛$ − 1) 
(13) 

where the di is the distance between the two ranks of the ith complete pair (i.e., xi and yi). For both coefficients, a test 382 

for association between paired samples was used to determine significance.  383 

3.  Results 384 

 The results in section 3.1 evaluate the forecast accuracy and precision of in situ SM SDA in comparison to 385 

the free model. Section 3.2 investigates changes in forecast accuracy and precision when assimilating SM RS 386 

observations. The individual runs are assessed with regard to their data characteristics (i.e., retrieval interval and single 387 

vs. multi-sensor development), and the additive runs are evaluated in succession to determine the relative impact of 388 

added observations. Lastly, the impact of RS-based SDA on the forecast accuracy and precision of state variables is 389 

investigated and compared.    390 

 391 

3.1  Assimilation of in situ soil moisture   392 

3.1.1 Impact on soil moisture 393 

Across all assimilation time steps, the free model tended to overpredict SM within the two assimilation layers 394 

(Fig. 3). Therefore, the adjustment in the SDA analysis step typically reduced the total amount of water in the soil 395 

profile. In SM forecasts for the two assimilation layers (i.e., SM3 and SM4), SDA performed as well or better than 396 

the free model in accuracy across all site-years. The median change in RMSE due to SDA was -17% and -28% for 397 
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SM3 and SM4, respectively (Fig. 4). Average forecast precision for SM3 and SM4 was also increased with SDA in 398 

84% of cases and by 23% on average.  399 

The three site-years where precision was not increased in SDA include OH in 2013 and 2014 and MN in 400 

2013. Interestingly, these site-years were among those with the most remarkable improvement in accuracy. This 401 

relationship is intuitive considering the nature of the Miyoshi algorithm, which systematically inflates model forecast 402 

uncertainty at time steps when observed and forecasted SM distributions differ substantially. At the cost of reduced 403 

forecast precision, such inflation allows for the filter to pull the model forecast toward the observed distribution and 404 

improve accuracy in future predictions.  405 

SDA’s constraint of SM3 and SM4 also led to the indirect constraint of SM in deeper soil profile layers. Across all 406 

site-years with available data, the median change in RMSE for SDA estimates of SM5, SM6, and SM7 was -14%, -407 

8%, and -14%, respectively. In terms of precision, SDA had an overall positive impact on lower layer SM estimates. 408 

The average change in weighted variance was -16%, -6%, and -20% for estimates of SM5, SM6, and SM7, 409 

respectively. 410 

3.1.2. Impact on NDVI and crop yield 411 

Overall, in comparison to the free model, SDA improved yield estimates by explaining 17.7% more variation 412 

in observed yield values and improving yield accuracy in 63% of site-years (Table 3). SDA accuracy was most 413 

effective in site-years facing greater water stress. In those cases where yield estimates were improved, SDA often 414 

increased available soil water at critical points in crop development, reducing crop soil water deficit factors and 415 

increasing yield compared to the free model (Fig. A1). The most evident example of SDA yield improvement is IN in 416 

2012, where the free model estimated complete maize crop failure (i.e., no grain yield) due to leaf senescence in mid-417 

July, but SDA estimated a harvestable crop due to increased soil water in the early season (Fig. 5). However, SDA’s 418 

impact on yield precision was inconsistent; roughly 53% of site-years saw reduced precision in yield estimates.  419 

Overall, the free model accurately captured the phenological development of the cropping systems simulated 420 

in this study, as demonstrated by the good agreement between observed and simulated NDVI (Fig. A2). SDA’s impact 421 

on NDVI accuracy was similar to its impact on yield accuracy, such that it typically either increased accuracy due to 422 

lessened water stress or did not substantially affect the model performance. A comparison of R2 values demonstrates 423 

that SDA helped to explain 4.8% more variation in observed NDVI values compared to the free model. Intuitively, 424 

the site-years with the greatest jumps in NDVI accuracy also usually showed great improvement in yield accuracy, 425 

highlighting a well-defined physiological relationship between vegetation and grain yield in APSIM’s Maize and Plant 426 

modules. SDA’s impact on NDVI precision was inconsistent, such that 63% of site-years reduced precision in 427 

estimates.  428 

3.1.3  Impact on tile drainage and nitrate load 429 

 Across the 19 site-years, the free model and SDA showed overall poor performance in estimating annual 430 

drainage with nRMSE values ranging from 18-215% with a median value of 54.3% for SDA and from 20-250% in 431 

the free model with a median value of 52.4% . In the site-years with the lowest accuracy, APSIM often overpredicted 432 

drainage in both the free model and SDA. However, these cases of considerable overestimation in drainage were also 433 

among those site-years that were most improved by SDA. 8 of the 11 site-years where SDA improved estimates of 434 
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annual drainage were cases where the free model overestimated tile flow. In these scenarios, SDA functioned to 435 

remove available water from the soil profile and correctly lower the amount of water lost from the system. In the 436 

remaining site-years where SDA did not improve drainage accuracy, SDA increased RMSE values by 32% on average. 437 

SDA’s impact on precision for annual drainage estimates was highly variable. 63% of site-years saw improvement in 438 

precision, but four site-years saw an immense reduction in precision (i.e., between 107-146% reduction).  439 

APSIM also struggled to accurately estimate the annual NO3 load for the tested site-years in this study (Fig. A3). For 440 

the free model, nRMSE values ranged from 23-681% with a median value of 83.7% and, for SDA, nRMSE values 441 

ranged from 17-833% with a median value of 86.9%. Considering the SDA constraint, estimates of annual NO3 load 442 

were the most poorly constrained in terms of accuracy and precision. SDA’s impact on precision was split, increasing 443 

precision in 53% of site-years. Accuracy was improved for just 32% of site-years. Among those six site-years where 444 

SDA increased NO3 load accuracy, SDA typically reduced estimates compared to the free model. Improved sites were 445 

often maize years characterized by high input winter precipitation (Jan-Apr). No clear environmental nor agronomic 446 

trend was identified among those 11 site-years where SDA reduced accuracy. 447 

3.2  Assimilation of remote sensing soil moisture products 448 

3.2.1 Individual assimilation runs 449 

 As expected, the individual influence of each RS data product was heavily dependent on its multi- or single-450 

sensor design and temporal availability. ESA, the most widely available data product, had the greatest impact on both 451 

assimilation and downstream state variables. In contrast, assimilation with 1KM and 3KM imposed only slight 452 

changes in estimates when compared to the free model. However, ESA did not always lead to improvements in model 453 

performance. As demonstrated in Figure 6, ESA results were more variable across site-years in terms of the accuracy 454 

of state variable estimates, in some cases leading to great improvement and, in other cases, leading to reduced 455 

performance. ESA reduced accuracy in predicting SM3 and SM4 in most site-years (i.e., 80-90%) but was the most 456 

effective in improving accuracy in estimates of annual yield, SM6, and SM7. ESA also outperformed the other 3 RS 457 

data products in constraining forecast precision for all state variables, improving precision in 70-100% of site-years. 458 

Importantly, it showed the greatest reduction in the spectral norm of the SM covariance matrix when compared to the 459 

free model, indicating the best constraint of SM precision across the entire profile . 460 

 Alternatively, the assimilation of SMAP-HB, another temporally frequent RS data product, demonstrated 461 

more conservative performance than ESA across state variables. For almost all state variables,  462 

 it also performed similarly or better than the free model. However, any improvements (or reductions) in forecast 463 

accuracy were more moderate than observed with ESA. For example, accuracy in yield estimates was improved more 464 

consistently with SMAP-HB (90%) compared to ESA (70%), but the maximum improvement in a tested site-year was 465 

a 53% accuracy increase compared to a 95% increase with ESA. This trend in the results highlights an important trade-466 

off when assimilating more certain observations (i.e., ESA-CCI) at a coarse spatial resolution over less certain 467 

observations at high spatial resolution (i.e., SMAP-HB) when both data products have unknown biases. In terms of 468 

forecast precision, SMAP-HB was overall quite effective in constraining state variable predictions, especially when 469 

compared to 1KM and 3KM. However, SMAP-HB underperformed compared to ESA in this regard. 1KM and 3KM 470 
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both underperformed in accuracy constraint when compared to ESA and SMAP-HB, showing little to no change in 471 

RMSE compared to the free model.  472 

Considering the four individual runs, more frequent assimilation time steps also led to a more robust 473 

performance of the EnKF-Miyoshi workflow. Filter divergence (i.e., when the observed mean falls outside of the 95% 474 

credibility interval of the analysis distribution) occurred at 52% and 59% of analysis time steps for 1KM and 3KM, 475 

respectively, but occurred at only 44% and 30% of analysis time steps for SMAP-HB and ESA, respectively. For 476 

estimates of observation uncertainty, the Miyoshi algorithm predicted greater uncertainty for most RS observations 477 

than what is reported in the literature. The average standard error in ESA observations was reported to be 0.02 ± 0.004 478 

mm3/mm3 but estimated in this study as 0.05 ± 0.01 mm3/mm3. Standard errors in 1KM and 3KM estimates were 479 

reported as 0.05 m3/m3 but estimated by the system to be 0.07 ± 0.02 mm3/mm3 and 0.06 ± 0.01 mm3/mm3, 480 

respectively. Miyoshi estimated similar uncertainty values for SMAP-HB observations as reported in the literature 481 

(i.e., 0.07 ± 0.02 mm3/mm3).  482 

3.2.2  Additive runs 483 

 The baseline run for the additive RS-SDA runs was ESA, which demonstrated inconsistent constraint of 484 

forecast accuracy and strong constraint of forecast precision. The second most available data product, SMAP-HB, was 485 

the next RS data product added to the system. New SMAP-HB observations, on average, imposed a -0.012 mm/mm 486 

change in µa and a -0.0003 change in Pa for SM1 estimates. For downstream forecast accuracy, the addition of SMAP-487 

HB led to improved and/or more consistent constraints for all state variables except SM7 (Fig. 6). At times, the added 488 

information from SMAP-HB dampened the benefit of SDA, reducing accuracy improvement. For forecast precision, 489 

+SMAP-HB precision was overall better than the free model but with reduced performance compared to ESA.  490 

The subsequent additions of the sparser 1KM and 3KM RS data products were less impactful than the 491 

addition of SMAP-HB. New 1KM observations imposed an average -0.0004 mm/mm change in µa, and, later, new 492 

3KM observations imposed an average -0.0003 mm/mm change in µa. These changes were less than 4% of the change 493 

imposed by the initial addition of SMAP-HB. Neither additional data product produced a notable average change in 494 

Pa. Following these minimal changes in SM1, there was also little change in forecast accuracy and precision for 495 

downstream state variables in +1KM and ALL when compared to +SMAP-HB (Fig. 6). Adding 1KM observations to 496 

+SMAP-HB did hold some benefit for accuracy and precision in SM3 and SM4, while the effect of the 3KM 497 

observations was almost negligible or, even at times, harmful to system performance.  498 

3.2.3  Impact on APSIM model estimates 499 

 When considering the impact of surface SM data assimilation on downstream model variables, we focus on 500 

results where all available RS observations were assimilated for each site . Hereinafter, we refer to the compilation of 501 

these runs across the five sites as RS-SDA.  502 

 Overall, RS-SDA had minor impacts on the soil water profile relative to the free model. Figure 7 demonstrates 503 

differences between the free model and RS-SDA in SM1 estimates. For several site-years, RS-SDA estimated 504 

significantly higher SM1 values in the early growing season (i.e., May-Jun). In the late season and fall, RS-SDA often 505 

estimated lower SM1 values. The impact of these SM1 changes on lower layer SM values seemed to decrease with 506 

depth, such that differences between the free model and RS-SDA mean estimates were more subtle in deeper layers. 507 
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This reduced impact on lower layers is also, in part, a reflection of the increasing total soil water volume represented 508 

by soil layers down through the profile (see Table 3 for layer depths). Nonetheless, any differences in SM estimates 509 

did not lead to notable changes in accuracy for any SM layer (Table 3). Notable changes were visible in the soil water 510 

deficit factors for several growing seasons, such that RS-SDA led to reduced water stress for the growing crop. We 511 

speculate that this results from increased available soil water in the root zone during initial periods of crop water 512 

uptake (i.e., June). Forecast precision for soil water-related estimates also did not change substantially with 513 

assimilation. For SM1 estimates, assimilation substantially reduced variability across site-years (Fig. 7). In many 514 

cases, this constraint in the surface soil layer did not propagate into significant changes for precision in lower layer 515 

estimates (Fig. 7). However, on average, precision was improved rather than reduced with assimilation, with the most 516 

significant downstream constraint in the soil layers closest to the surface.  517 

RS-SDA demonstrated partial constraint of aboveground estimates. Considering the R2 values reported in 518 

Table 3, RS-SDA explained roughly 4% more variation in yield observations than the free model. All site-years except 519 

OH 2015 demonstrated increased yield accuracy, and 60% of sites demonstrated increased yield precision with RS-520 

SDA. Based on these results, there is evidence that surface SM data assimilation can constrain, to some extent, 521 

estimates of annual yield. Compared to its effect on yield estimates, RS-SDA was less impactful in its constraint of 522 

NDVI. However, since the free model could reasonably predict NDVI (R2 = 0.69), there was less potential for 523 

improvement with SM assimilation. 60% of site-years had increased accuracy, and 70% had increased precision for 524 

NDVI estimates following SDA.  525 

4. Discussion 526 

4.1  Sensitivity of APSIM model estimates to in situ soil moisture 527 

 In this study, the extent to which in situ SM data assimilation affected APSIM model predictions depended 528 

on each state variable’s sensitivity to the assimilated state variable (i.e., soil moisture). Deeper layer SM estimates—529 

the most sensitive state variables to SM3 and SM4—were the most strongly constrained. Figure A1 demonstrates the 530 

significant linear relationship between daily changes in forecasted SM3 and SM4 due to SDA and daily changes in 531 

SM estimates for all deeper soil layers. As expected with a cascading water balance model, the strength of the linear 532 

relationship weakens as the vertical distance between soil layers increases. In the model, SM in each layer can 533 

influence SM estimates of deeper soil layers, but only indirectly through its influence on the SM in the layer 534 

immediately below it. Therefore, the influence of the assimilation layers is reduced by each subsequent SM process 535 

down through the soil profile and is weakest in the final soil layer (SM7). Nevertheless, the constraint of SM7 was 536 

still quite strong in SDA. By assimilating SM for two upper soil layers, the accuracy of SM estimates improved 537 

immensely by simply leveraging the pre-existing model structure (compare to Liu et al., 2017).  538 

 Crop yield showed the next strongest constraint in SDA. However, as noted in previous studies, its sensitivity 539 

to SM SDA was conditional (Lu et al., 2021; Kivi et al., 2022). While changes in SM affected lower layer SM at all 540 

analysis time steps, crop yield was only affected when the changes impacted crop water stress. Daily crop water uptake 541 

is determined in APSIM as the minimum of crop water demand and soil water supply. Therefore, SDA could only 542 
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influence crop yield when the soil water adjustment pushed the water supply above or below the demand threshold. 543 

For this reason, greater SDA improvement was found in crop yield estimates during water-stressed site-years. Other 544 

pathways through which SM can impact crop yield in APSIM, like soil N cycling, did not play a strong role in this 545 

study.  546 

 The impact of SM SDA on APSIM drainage estimates can also be beneficial given certain conditions. As 547 

shown in the results, drainage was affected by SM3 and SM4 through 2 pathways: (1) changes in total soil water with 548 

assimilation adjustment and (2) changes in crop water uptake due to changes in crop water stress. The role of each of 549 

these pathways varied over the year, such that the presence of a growing crop and root system weakened the sensitivity 550 

of drainage estimates to changes in the assimilation layers. To quantify this change in sensitivity, we divided daily 551 

model forecasts into two categories: with crop water uptake (June-Sept) and without crop water uptake. Then, the 552 

relationship between changes in SM3 and SM4 and changes in drainage was analyzed separately for each group. There 553 

was no significant linear relationship when looking at SM3 changes in either case. However, the linear relationship 554 

between changes in SM4 and changes in daily drainage was stronger when no crop was present (r = 0.23, p = 0.00) 555 

than when a crop was present (r = 0.14, p = 0.00). This is similar to Hu et al. (2008), who identified notable changes 556 

in drainage dynamics during rapid crop growth compared to out-of-season dynamics in SPWS model simulations.  557 

 Among the state variables considered in SDA, NO3 leaching showed the weakest and most complex 558 

relationship with SM3 and SM4 in APSIM. Therefore, logically, the presented system performed most poorly in its 559 

constraint of annual NO3 leaching estimates. In APSIM, daily NO3 leaching estimates are computed as the product 560 

of two different daily values: estimated NO3 concentration in the lowest soil layer and estimated tile drainage. 561 

Therefore, in addition to its impact on drainage, SDA can affect NO3 load estimates through (1) changes in N cycle 562 

processes via SM rate factors (see Fig. 2 in Kivi et al., 2022) and (2) changes in the vertical movement of soil water 563 

(and N solutes) through the soil profile. In a validation study of APSIM N processes, Sharp et al. (2011) also observed 564 

inconsistent model behavior in annual leaching estimates for their experimental site in New Zealand when simulating 565 

three years of a potato-rye rotation. Their final calibration of the model only improved one of the annual estimates but 566 

did not constrain estimates in the other two years. In fact, many past studies have highlighted nitrate leaching estimates 567 

as a broader forecasting challenge (Stewart et al., 2006; Sharp et al., 2011; van der Laan et al., 2014; Brilli et al., 568 

2017). As highlighted already in the literature, missing processes related to snowmelt (Ojeda et al., 2018), and tillage-569 

related infiltration (Malone et al., 2007; Brilli et al., 2017; Ojeda et al., 2018), or preferential flow could help to 570 

improve APSIM performance. Though there is still potential for the presented system to improve nitrate leaching 571 

estimates, further investigation and constraint of the APSIM N and soil water cycles will be necessary to ensure 572 

consistent performance.  573 

4.2  Impact of remote sensing soil moisture data assimilation  574 

 The assimilation of RS surface SM observations imposed a far weaker constraint on APSIM state variables 575 

compared to the assimilation of the soil sensor observations. For example, the median reduction in SM RMSE ranged 576 

from 7-27% across different layers of the soil profile with soil sensor observations, but, with RS observations in RS-577 

SDA, it ranged from roughly 1-5% (Table 3). The weakened constraint with RS-SDA was likely more than an issue 578 



 

 18 

of observation inaccuracies. Instead, there is greater evidence to show that changes in SM1 simply had less influence 579 

on downstream state variables than changes in SM3 and SM4. This is due, in part, to the increased vertical distance 580 

between the surface SM layer (SM1) and other observed soil layers (i.e., SM3-7). The APSIM SoilWat module 581 

operates as a cascading water balance model to estimate the movement of water and solutes between and across soil 582 

layers (Dokoohaki et al., 2018). Thus, the assimilation adjustment of the SM1 estimate would not be as strongly tied 583 

to lower layer estimates when using a top-down approach. Yet, surface SM data assimilation notably changed SM2 584 

estimates, the SM estimates for the layer just below it. This result reflects the findings of Lu and Steele-Dunne (2019), 585 

who assimilated RS surface SM observations into a surface energy balance model. They found that SDA improved 586 

SM estimates in the second layer to a greater extent than in lower layers when comparing estimates to observations. 587 

Since observations were not available for SM2 at the study sites, this hypothesis could not be tested within this work.  588 

The two assimilation protocols (i.e., assimilation of SM1 vs. assimilation of SM3 and SM4) were also 589 

markedly different in the quantity of soil water associated with their assimilation adjustments. Where soil layers 3 and 590 

4 corresponded to almost 14% of the soil profile (20 cm depth), the near-surface soil layer only corresponded to about 591 

3.6% of the soil profile (5 cm depth). Thus, when considering the top-down effect of SM assimilation on lower layers, 592 

each adjustment with RS assimilation had just 25% of the impact of the previous system given the same adjustment 593 

in volumetric soil water content. This 5-fold reduction in potential impact closely mirrors the change in RMSE 594 

reduction for SM layers highlighted above (i.e., 7-27% to 1-5%). One way to overcome this limitation of surface SM 595 

is to leverage the strong covariance between SM1 and SM in nearby layers (i.e., SM2) to directly nudge their values 596 

within the analysis time step using, for example, an augmented state vector (e.g., Kivi et al., 2022) or exponential filter 597 

approaches (e.g., Albergel et al., 2008).  598 

 599 

RS surface SM data assimilation still demonstrated strong potential for improving APSIM forecasts within 600 

this study. First, the assimilation of surface SM improved estimates of crop yield overall when compared to the free 601 

model, with a median RMSE reduction of 17.2%. Past RS SM data assimilation studies had similar success in 602 

improving crop yield estimates, and several attributed the improvement to increased surface SM and reduced crop 603 

water stress with SM assimilation (e.g., Ines et al., 2013;  Chakrabarti et al., 2014). We speculate that the model 604 

performance indicate that water stress likely played an important role. Although direct observations are not available 605 

for crop water uptake to test this hypothesis, we suspect RS-SDA accurately increased available soil water at critical 606 

growth stages and, thus, increased crop water uptake. 607 

4.3  Comparison of remote sensing soil moisture data products 608 

The four different RS SM data products varied quite broadly in spatial resolution, varying from 30 meters to 609 

0.25°. However, their individual assimilation performance seemed to be most closely tied to the temporal availability 610 

of observations.  ESA with a multi-sensor nature had an average, 219 observations per growing season and showed 611 

the best overall constraint of forecast precision and good constraint of forecast accuracy in downstream state variables. 612 

Alternatively, the 1KM and 3KM data products, which each had an average of 7 observations per growing season, 613 

had almost no impact on forecast accuracy and only a slight impact on forecast precision. Although this study was not 614 
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designed to independently test the impact of temporal and spatial resolution on performance, it echoes the findings of 615 

Lu and Steele-Dunne . (2019), who found a high temporal resolution to be far more important to assimilation 616 

performance than high spatial resolution. They suspected that increased time between assimilation adjustments 617 

allowed errors in model structure, inputs, and/or parameters to go unchecked for more extended periods of time, 618 

thereby allowing the magnitude of simulation errors to become large and unreasonable. More frequent assimilation 619 

helps mitigate the impact of such model errors and improve overall crop model predictions by correcting errors more 620 

often (De Lannoy et al., 2007; Pauwels et al., 2007; Lu et al., 2021). Alternatively, in the case of low temporal 621 

resolution, a recalibration-based assimilation approach or the inclusion of a bias correction method might be more 622 

appropriate (De Lannoy et al., 2007; Curnel et al., 2011). 623 

 When comparing RS data products in this study, it is important to recognize that all data products considered 624 

in this work are based, in part, on SMAP radiometer data. SMAP-HB merged SMAP brightness temperature data with 625 

the HydroBlocks-RTM model, ESA includes SMAP as one of its ten passive microwave sensors, and 1KM and 3KM 626 

rely on SMAP for passive microwave information within their derivation. In the first iteration, ESA contributed most 627 

of the information provided by the SMAP radiometer to the model and, therefore, imposed large changes in SM1 628 

estimates. Then, with each additional data product, the overall impact on the analysis distribution weakened as much 629 

of the new information had already been provided to the system. It is also important to note that given that all data 630 

products directly or indirectly are based SMAP, the successive assimilation of these data prodcuts can introduce error 631 

covariances between the model runs and the observations. This may potentially result in an over or under estimation 632 

of the uncertainty, thereby affecting the performance of the filter. Therefore, further investigation into the impact of 633 

including these error covariances between the data products is deemed necessary in order to enhance the accuracy of 634 

the EnKF filter. 635 

The Miyoshi algorithm often estimated higher observation uncertainty (R) than the values reported in the 636 

literature. This is unsurprising as RS SM data products, like most RS data products, often have poorly characterized 637 

uncertainties (Peng et al., 2021). For each data product, uncertainty is typically reported as a standard error value after 638 

comparing the data product to a limited set of observations. This estimate does not capture all possible sources of 639 

uncertainty and cannot be easily generalized to different places or time points (Huang et al., 2019). Yet, in the additive 640 

runs, these uncertainty values were applied uniformly across time and space. Future applications of the GEF scheme 641 

could benefit from additional terms in the model that could capture R or the use of the Miyoshi algorithm. These 642 

approaches may better estimate observation uncertainties within the system’s context.   643 

5. Conclusions  644 

In the study, we assessed the extent to which soil moisture data assimilation can improve APSIM model forecasts. We 645 

used a generalizable and novel data-assimilation system to assimilate RS and in situ soil moisture measurements across 646 

the U.S. Midwest 19 site-years, and evaluated how direct soil moisture constraint affected downstream model 647 

estimates of root-zone soil moisture, crop yield, tile flow, and nitrate leaching. Our results highlighted the capacity of 648 

soil moisture data assimilation to improve model estimates of crop yield in water-limited conditions, increasing crop 649 

water uptake at critical points in the growing season. Soil moisture data assimilation also improved estimates of soil 650 
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moisture throughout the profile in most cases but did not well constrain nitrate leaching or tile drainage. This indicates 651 

a need for better constraint of both the soil water and soil nitrogen cycles in the APSIM model.  652 

This work also lays the groundwork for future regional applications of soil moisture data assimilation. Importantly, 653 

our findings reaffirmed soil moisture data assimilation’s ability to “localize” gridded weather estimates of precipitation 654 

to reflect observed values more accurately. Since cropping systems are highly sensitive to precipitation inputs, this is 655 

a strong advantage of soil moisture data assimilation for forecasting applications where coarse-resolution weather 656 

drivers are employed. Though RS soil moisture data assimilation could be an effective way to overcome limited 657 

availability of in situ data, our work shows that assimilation of in situ surface soil moisture is not as powerful as the 658 

assimilation of in situ root-zone soil moisture values in terms of model constraint. If the former is applied, additional 659 

constraints or an augmented state-vector approach would be necessary to achieve higher system performance. When 660 

selecting a RS soil moisture data product for data assimilation applications, high temporal resolution due to multi-661 

sensor satellite availability and accurately estimated observation uncertainty are two critical components for optimal 662 

system performance. To that same point, combining several data products at different spatial resolutions can help to 663 

reduce assimilation intervals within the system. Further investigation is needed to independently test the impact of 664 

observation sample size (i.e., number of data products), temporal resolution, spatial resolution, and uncertainty on 665 

system performance. Moreover, the data products considered in this study do not represent the full range of RS soil 666 

moisture data products that are available publicly. This work should be expanded to evaluate data products derived 667 

from other satellites/derivations both individually and in combination with other sources to exhaust all available 668 

options. 669 
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Figure 1.  (A) Site map (ESRI) and (B) scatterplot demonstrating site-year total precipitation and average daily 
temperature (°C) for each site-year between April and October. Climate information was extracted and averaged across 
the 10 ERA5 weather ensembles for each site-year. 

 

 
Figure 2.  Schematic demonstrating the workflow of the data assimilation system. System inputs represented by blue 

Normal distributions have incorporated uncertainty in this study, while green rectangles represent known values that were 

included as constants. 
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Figure 3.  One-to-one plots for soil moisture estimates (mm/mm) in the two assimilation layers for the free model and in 
situ SDA across all analysis time-steps and site-years. The least-squares regression line is shown for both schemes next 
to the black dashed 1:1 line, demonstrating a perfect fit.  

 871 

 

 
 
Figure 4.  Boxplots demonstrating the distribution of relative change in (a) accuracy (RMSE) and (b) precision (weighted 
variance) due to in situ SDA for each state variable across all site-years. The relative change is computed with respect to 
the free model run, with negative values indicating SDA improvement. 
 

 872 



 

 29 

 

 

Figure 5.  Time series of yield estimates for the free model and in situ SDA with mean daily estimates demonstrated with 
line graphs and the 95% credible intervals demonstrated by the shaded regions. Black points represent the observed 
harvest date and yield for each site-year.    
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Figure 6.  Boxplots demonstrating the distribution of relative change (%) in state variable accuracy (RMSE) and 
precision (weighted variance) for the (a) individual and (b) additive runs across all site-years. Change is computed 
relative to the free model results. Negative values indicate improvement (e.g., (RMSES – RMSEF) / RMSEF). 
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Figure 7.  Time series of SM1 estimates from the free model and RS-SDA with the mean daily estimates demonstrated 
with line graphs. The shaded regions indicate 95% credibility intervals.  
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Table 1.  Overview of remote sensing soil moisture data products.  

Product Product 
ID 

Temporal 
coverage 

Temporal 
frequency 

Spatial 
resolution 

Average 
data 
availability 

Average 
observation 
variance 

Reference 

ESA-CCI ESA 1978-
2019 1-2 days 0.25°  219 days 0.0003 Dorigo et al. 

(2017) 

SMAP-
Hydroblocks 

SMAP-
HB 

2015-
2019 1-3 days  30 m  127 days 0.0050 Vergopolan 

et al. (2021b) 

SMAP-
Sentinel1 

1KM/3K
M 2015-now 12 days 1 km/3 

km 7 days  0.0025 Das et al. 
(2019) 

aAvailability is calculated after removing observations in the winter months (i.e., Dec-Mar) and is given on a per-year basis.  
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Table 2.  Overview of system configuration for the nine runs performed in this study. SDA methods include the Ensemble 
Kalman Filter (EnKF) coupled with the Miyoshi algorithm, and the Generalized Ensemble Filter (GEF). The former 
method of these two methods provided systematic estimates of R applied within the system, but the latter method used 
literature values. The state variables included in Xf are given.  
 

Run 

group 
Name 

SDA 

method 
R 
estimates 

Temporal 
extent 

State 
variable(s) Observation(s) 

Baseline 
Free N/A N/A 2011-2019 N/A N/A 
SDA EnKF Miyoshi 2011-2019 SM3, SM4 In situ soil sensor 

Individual 
Runs 

ESA EnKF Miyoshi 2015-2019 SM1 ESA 
SMAP-HB EnKF Miyoshi 2015-2019 SM1 SMAP-HB 
1KMa EnKF Miyoshi 2015-2019 SM1 1KM 
3KMa EnKF Miyoshi 2015-2019 SM1 3KM 

Additive 
Runs 

+SMAHB GEF Literature 2015-2019 SM1 ESA, SMAP-HB 

+1KMa GEF Literature 2015-2019 SM1 ESA, SMAP-HB, 1KM 

ALLa GEF Literature 2015-2019 SM1 ESA, SMAP-HB, 
1KM, 3KM 

a Observations for 1KM and 3KM were not available for IL, and thus simulations were not performed for the site.  
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Table 3.  Summary statistics to quantify the impact of in situ SDA (IS) and RS-SDA (RS) on forecast accuracy of APSIM 
state variables. The “Ns” column indicates the number of site-years with available data for each state variable and each 
run, and the “ns” column indicates the total number of observations across site-years for each run. A subscript (F) 
denotes a value computed for the free model estimates, a subscript (IS) denotes a value for the in-situ SDA estimates, 
and a subscript (RS) denotes a value for RS-SDA runs. The median change (D) in RMSE was computed for both runs. 
Two values for R2F are given for the different data subsets demonstrated in the “N” and “n” columns.  

 

State variable Depth (cm) NIS   
(NRS) 

nIS 

(nRS) 
D 

RMSEIS D RMSERS R2F R2IS R2RS 

SM3 
mm/mm 9.1 – 16.6 19 

(10) 
12252 
(5592) -17.4% -0.9% 0.49 

(0.48) 0.57 0.48 

SM4 
mm/mm 16.6 – 28.9 19 

(10) 
12735 
(6141) -27.9% -2.8% 0.52 

(0.43) 0.73 0.43 

SM5 
mm/mm 28.9 – 49.3  17 

(8) 
11325 
(5101) -14.3% -2.6% 0.45 

(0.45) 0.38 0.45 

SM6 
mm/mm 49.3 – 82.9 19 

(10) 
12846 
(6169) -8.0% -1.0% 0.42 

(0.43) 0.34 0.42 

SM7 
mm/mm 82.9 – 138 9 

(6) 
5715 

(3265) -14.3% -5.4% 0.43 
(0.44) 0.34 0.43 

NDVI 
unitless - 19 

(10) 
244 

(134) -7.6% -1.8% 0.62 
(0.69) 0.66 0.71 

Yield 
Mg/ha - 19 

(10) 
19 

(10) -23.1% -17.2% 0.55 
(0.53) 0.73 0.59 

Annual drainage 
mm - 19 19 -8.3% - 0.47 0.46 - 

Annual NO3 load 
Kg NO3-N/ha - 19 19 +12.5% - 0.42 0.45 - 
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