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Abstract 19 

The alteration in river flow patterns, particularly those that originate in the Himalayas, has 20 

been caused by the increased temperature and rainfall variability brought on by climate 21 

change. Due to the impending intensification of extreme climate events, as predicted by the 22 

Intergovernmental Panel on Climate Change (IPCC) in its sixth assessment report, it is more 23 

essential than ever to predict changes in streamflow for future periods. Despite the fact that 24 

some research has utilised machine learning-based models to predict streamflow patterns in 25 

response to climate change, very few studies have been undertaken for a mountainous 26 

catchment, with the number of studies for the western Himalaya being so small as to be 27 

considered insignificant. This study investigates the capability of different machine learning 28 

(ML) models, including the Gaussian Linear Regression Model (GLM), Gaussian 29 

Generalized Additive Model (GAM), Multivariate Adaptive Regression Splines (MARS), 30 

Artificial Neural Network (ANN), and Random Forest (RF), in streamflow prediction over 31 

the Sutlej River Basin in western Himalaya during the periods 2041-2070 (2050s) and 2071-32 

2100 (2080s) for two greenhouse gas trajectories (SSP245 and SSP585). Coupled Model 33 

Intercomparison Project Phase 6 (CMIP6) bias corrected data downscaled at grid resolution 34 

of 0.25°× 0.25° for 6 General Circulation Models (GCMs) were used for this purpose. Four 35 

different rainfall scenarios (R0, R1, R2, and R3) were applied to the models trained with daily 36 

data (1979-2009) at Kasol (the outlet of the basin) in order to better understand how 37 

catchment size and the geo-hydro-morphological aspects of the basin affect runoff. RF model 38 

with rainfall scenario R3 which outperformed other models during the training and testing 39 

period therefore was chosen to simulate streamflow in the Sutlej River in the 2050s and 40 

2080s under the SSP245 and SSP585 scenarios. The mean ensemble of model results show 41 

that the mean annual streamflow of the Sutlej River is expected to rise between 2050s and 42 

2080s by 5.51 to 6.04% for SSP585 and by 6.65 to 6.75% for SSP245. The seasonal 43 
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streamflow also is expected to increase in the 2050s and 2080s under both emission 44 

scenarios, with the exception of the pre-monsoon, where a decline in streamflow is 45 

anticipated for SSP585 in the 2080s. However, under both the emission scenarios, there 46 

seemed to be significant variation in the streamflow simulations among the individual models 47 

for various time periods. It has been found that the pattern of this variability is highly 48 

correlated with the pattern of precipitation and temperature predicted by various GCMs for 49 

future emission scenarios. The present study will therefore assist in strategy planning for 50 

ensuring the sustainable use of water resources downstream by acquiring a knowledge of the 51 

nature and causes of unpredictable streamflow patterns. 52 

Keywords: Machine learning models; streamflow; climate change; CMIP6; western 53 

Himalaya 54 

55 
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1. Introduction 56 

Human-induced global warming has altered patterns of the rainfall worldwide (Goswami et 57 

al., 2006; Trenberth, 2011), and also increased risks of extreme events such as the droughts 58 

and floods (Easterling et al., 2000; Trenberth et al., 2015; Otto et al., 2017). It has impacted 59 

hydrology of many river basins globally, including variation in streamflow (Gerten et al., 60 

2008; Lutz et al., 2014; Nepal and Shrestha, 2015; Singh et al. 2015a; Ali et al., 2018; Singh 61 

et al., 2022). A study of long-term (1948-2004) streamflow (discharge) data of 200 largest 62 

rivers of the globe showed considerable change in their annual discharge, however, results 63 

were statistically significant only for 64 rivers. Out of which 45 were marked with decreasing 64 

trends and the remaining 19 showed increasing trends in their annual discharge (Dai et al., 65 

2009). Similar trends in discharge of the rivers were reported also at regional scale: Asia 66 

(Kundzewicz et al., 2009; Krysanova et al., 2015), Europe (Stahl et al., 2010; Stahl and 67 

Tallaksen, 2012) and America (Pasquini and Depetris, 2007). Moreover, it has been 68 

established that the effects of rainfall variation and extreme events on annual discharge are 69 

likely strong compared with other drivers (Miller et al., 2012; Van der Wiel et al., 2019). A 70 

projected rise of ~2°C to 5°C in mean annual global temperature by 2100 under higher 71 

greenhouse gas emission scenarios as predicted from the General Circulation Models 72 

(GCMs) (Gao et al., 2017) will considerably affect the rainfall pattern (intensity and amount) 73 

and may have adverse effects on hydrological cycles (Okai and Kanae 2006; Haddeland et 74 

al., 2014). This would subsequently impact availability of water resources and present 75 

challenges for their management since a rise in the demand of water is also predicted (Lutz et 76 

al., 2019). Therefore, it is indispensable to know the underlying hydrological dynamics 77 

occurring within a basin in context of climate change for effective management and 78 

sustainable use of the water resources. 79 
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The underlying hydrological processes controlling rainfall-runoff generation in a basin can be 80 

understood with the use of a hydrological model which is based on complex mathematical 81 

equations and theoretical laws governing physical processes in the basin (Kirchner, 2006; 82 

Singh et al., 2019). It simulates/or predicts response of the basin to climatological forcings 83 

such as the rainfall (Sood and Smakhtin, 2009) and generate synthetic time series of 84 

hydrological data that could be used by water managers and scientists for varied applications 85 

ranging from water budgeting and partitioning (Conan et al., 2003; Schreiner‐McGraw and 86 

Ajami, 2020; Masse-Dufresne et al., 2021) to inundation mapping and modelling (Mahto et 87 

al., 2022). A hydrological model is supposed not only to have a good predictive power but 88 

also the ability of capturing relationships among the forcing factors and catchment response 89 

so that an accurate estimate of rainfall-runoff could be made (Shortridge et al., 2016). 90 

However, until now, there is no hydrological model that can simulate basin-behaviour 91 

universally well against all the hydrological challenges inflicted from climate change and 92 

human-interventions (Yang et al., 2019). As a result, many hydrological models have been 93 

devised considering functioning and robustness of models in explaining underlying 94 

complexity in quantifying basin-scale response to small-scale spatial complexity of physical 95 

processes (Shortridge et al., 2016; Herath et al., 2021). Broadly, these can be grouped into 96 

two categories: physical or process-based models and empirical or data-driven models (Yang 97 

et al., 2019; Kabir et al., 2020). The latter category of models uses a mathematical 98 

relationship established between runoff and affecting factors in the basin for deriving the 99 

runoff (Muhammad Adnan, 2019).  100 

 101 

It is purported that the data-driven model despite of inherited limitations over physical 102 

interpretability of processes has outperformed the physical models in terms of prediction 103 

accuracy in many hydrological applications (Shortridge et al., 2016; Muhammad Adnan, 104 
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2019; Kabir et al., 2020; Herath et al., 2021). Also, they are preferred over the physical 105 

models for rainfall-runoff modelling/or streamflow prediction modelling due to limited 106 

requirements of data as inputs, where data limitation is the major challenge (Beven, 2011). 107 

These models in past were heavily criticised on the ground of being incompetent to model the 108 

non-linear behaviour of streamflow (Yang et al., 2019). But recent developments in 109 

computational intelligence, in the area of Machine Learning (ML) in particular, have greatly 110 

expanded the capabilities of empirical modelling. This resulted in the development of many 111 

non-linear models such as the Artificial Neural Network (ANN), Random Forest (RF), and 112 

Support Vector Machine (SVM), which can capture and model non-stationarity of the 113 

rainfall-runoff relationships (Shortridge et al., 2016; Muhammad Adnan, 2019; Yang et al., 114 

2019). Despite of the significance potentials of the ML models in streamflow prediction, 115 

relevant studies assessing the application of these models for streamflow prediction under 116 

future scenarios over the mountainous basins are limited due to non-availability of long-term 117 

data. Hence, it is important to test whether machine learning approaches can be effectively 118 

used over a mountainous river basin to predict streamflow using hydro-meteorological 119 

variables and CMIP6 scenarios as the input data. 120 

 121 

With a catchment area of 56874km2 (up to Bhakara Dam), the Sutlej also pronounced as 122 

‘Satluj’ is an important river in the western Himalayas and runs through diverse climatic 123 

zones. The flow in the upper and middle catchment is primarily impacted by glacier/snow 124 

melt induced by seasonal temperature shift and preceding winter precipitation, while the 125 

lower section of the catchment area is mostly regulated by rainfall both in the winter and 126 

during the monsoon season (Singh and Jain, 2002; Archer, 2003; Miller et al., 2012). Based 127 

on data from the period 1986–1996, Singh and Jain (2002) estimated the mean yearly 128 

contribution of snow/glacier melt and rainfall to the Sutlej River as being 59% and 41%, 129 
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respectively. However, the discharge in the river peaks is directly related to the peak in 130 

rainfall during the monsoon (Lutz et al., 2014). Recent studies on this basin has raised 131 

concerns about the implications of climatic changes on streamflow since a warming climate 132 

has brought changes in the amount and spatial-temporal distribution of precipitation (Singh et 133 

al., 2014; Singh et al., 2015b). Previous research has only used process-based hydrological 134 

models to date when examining the effects of climate change (past and present) on 135 

streamflow patterns in the region (Singh and Jain, 2002; Singh et al., 2015a; Ali et al., 2018; 136 

Shukla et al., 2022), which leaves a gap in the use of machine learning models. This study 137 

very first time examines the potential of various ML models namely, Gaussian Linear 138 

Regression Model (GLM), Gaussian Generalized Additive Model (GAM), Multivariate 139 

Adaptive Regression Splines (MARS), ANN and RF in streamflow prediction over the Sutlej 140 

River Basin (rainfall dominated zone) in western Himalaya during the period 2041-2070 141 

(2050s) and 2071-2100 (2080s) and its relationship to climate variability.  142 

 143 

2. Study Area  144 

Sutlej is a Trans Himalayan river with its origin in the Rakshastal Lake (elevation:4570m) 145 

near to the Mansarovar Lake in the western Himalaya. It is the largest tributary of the Indus 146 

River. The total catchment area of the Sutlej River upto Bhakara Dam is about 56874km2, of 147 

which 22305 km2 (extending between Spiti Valley and Bhakara) falls within India. It is a high 148 

relief catchment (elevation: 350-6558 m) dominated by rainfall, but also received significant 149 

contribution from glacier/snow melt. The selected study area is a sub-catchment within the 150 

basin (Figure 1), with an area of 2457 km2. It is dominated mostly by forests (56.20%), 151 

grassland (26.4%), agricultural lands (17.1%), and glaciers and snow covers (0.3%) (Singh et 152 

al., 2015a). The details of the sub-catchment are summarised in Table 1. 153 

Figure 1: The location of the sub-catchment within Sutlej River Basin 154 
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 155 

The basin bestowed with the hydropower potential of about 9226.75MW is climatologically 156 

sensitive and, at present, facing the challenges created due to climate change and human’s 157 

interventions (Singh et al., 2015b and 2015c). Change in future climate will alter patterns of 158 

flow in river and further could affect water resources and hydroelectric power production 159 

(Singh et al., 2014). Therefore, the present study will provide useful insight to devise better 160 

strategy for the management of water resources in the Sutlej basin. 161 

Table 1:  Characteristics of the study catchment over the evaluation period of 1979–2009 162 

 163 

3. Description of the Data and Methods 164 

The methodology involved in predicting streamflow for the period 2021-2100 in the Sutlej 165 

River include: 3.1) collection of hydro-meteorological data, 3.2) selection of machine 166 

learning models, and 3.3) performance evaluation of the developed models. These are 167 

described in details under following sub-headings: 168 

 169 

3.1 Hydro-meteorological data 170 

The daily rainfall, temperature (Tmax and Tmin), relative humidity, solar radiation, wind speed 171 

and discharge data used to study performance of the different machine learning models on 172 

streamflow modelling were collected for 31 years i.e. 1979-2009. Rainfall, temperature and 173 

discharge data were obtained from the Bhakara Beas Management Board (BBMB), while 174 

relative humidity, solar radiation and wind data were extracted from the Global Weather Data 175 

(http://globalweather.tamu.edu/). The outputs from the CMIP6, the latest generation of 176 

climate models, were used for streamflow prediction. Even by using downscaled GCMs, 177 

however, regional climate change projections inherit biases from the GCM boundary 178 

conditions, which were corrected in the dataset detailed in Mishra et al. (2020) for South 179 
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Asia. This dataset provides bias-corrected downscaled climate change projections for 13 180 

CMIP6 models and four GHG emission scenarios (SSP126, SSP245, SSP370, and SSP585), 181 

the latter are briefly summarised in Riahi et al. (2017). The data are available at a daily time-182 

scale and horizontal spatial resolution of 0.25°×0.25°. This study used the bias-corrected 183 

downscaled regional climate change scenarios from six CMIP6 GCMs: 1) Beijing Climate 184 

Centre Climate System Model version 2 (BCC-CSM2-MR), 2) Russian Institute for 185 

Numerical Mathematics Climate Model Version 4.8 (INM-CM4-8), 3) Russian Institute for 186 

Numerical Mathematics Climate Model Version 5.0 (INM-CM5-0), 4)Australian Community 187 

Climate and Earth System Simulator-Earth System Model version 1 (ACCESS- ESM1.5), 5) 188 

Australian Community Climate and Earth System Simulator-coupled model version 2 189 

(ACCESS-CM2), and 6) Earth Consortium-Earth 3 Veg Model (EC-Earth-veg) which were 190 

selected based on their performances in simulating precipitation and temperature over the 191 

western Himalaya to examine future patterns in streamflow for the period 2021-2100 in the 192 

Sutlej River according to two GHG emissions scenarios: SSP245 and SSP585.  193 

 194 

3.2 Selection of machine learning models for streamflow modelling 195 

In this study, five machine learning models namely GLM, GAM, MARS, ANN and RF were 196 

selected and their performances in predicting streamflow in Sutlej River were compared. 197 

These are regression based models which capture relationship between the predictors 198 

(dependent variables) and predictand (independent variables) and provide value of the output 199 

variables (Muhammad Adnan, 2019; Kabir et al., 2020). The models were trained with daily 200 

data recorded during 1979-2009 at Kasol (the gauging site), the outlet of the basin. However, 201 

prior to building the models, all of the data were normalized using standard normalization 202 

techniques to get features on a common scale. Further, the entire data set was split into 203 

training and testing datasets since a cross-validation method was adopted in this study. The 204 
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training dataset (80%) was used for fitting the models whereas testing dataset was used for 205 

checking model accuracy (20%). Under the cross-validation method, the process was 206 

repeated until every part of the allocated data was used in testing (Kabir et al., 2020). This 207 

technique enables the buildout of generalising models, that if tested correct could be applied 208 

in predicting flow for ungauged watersheds of similar geographical and climatic 209 

characteristics where past rainfall/runoff are not available. 210 

 211 

Five different program codes were written in python language for GLM, GAM, MARS, ANN 212 

and RF simulations. Out of these five selected models, GLM, GAM and MARS are linear 213 

models whereas other two i.e. ANN and RF are non-linear in nature (Shortridge et al., 2016; 214 

Yang et al., 2019; Herath et al., 2021). Additionally, excluding GLM all of the remaining ML 215 

models are based on non-parametric regression approach where functional relationship 216 

between predictor and predictand are not predetermined but can be adjusted to capture 217 

unusual or unexpected features of the data (Shortridge et al., 2016). A detailed description of 218 

these models can be found elsewhere (Shortridge et al., 2016; Muhammad Adnan, 2019; 219 

Yang et al., 2019; Kabir et al., 2020; Herath et al., 2021). Six variables namely rainfall, Tmax, 220 

Tmin, relative humidity, solar radiation and wind speed were used as the inputs for developing 221 

the models. Additionally, these models were simulated under four rainfall scenarios: rainfall 222 

on the same day (R0), rainfall lagged by one day (R1) and rainfall lagged by two days (R2) 223 

and rainfall lagged by three days (R3) to understand control of catchment size and geo-hydro-224 

morphological characteristics of the basin in generating runoff. While, remaining 225 

meteorological parameters were held constant during the processes.  226 

 227 

3.3 Model performance evaluation  228 
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It has been found that overfitting in a model may lead to large errors in out-of-sample 229 

predictions (Hastie et al., 2009). Therefore, it has been evaded by establishing model 230 

parameters for GLM, GAM, MARS, ANN and RF through automated hyperparameter tuning 231 

methods.  500 bootstrap resamples of the training data set were generated for each parameter 232 

value to be assessed. Table 2 presents the information on the specific parameters evaluated 233 

for each model. 234 

Table 2:  The information on hyper parameters used for estimating model parameters 235 

 236 

Three evaluation criteria were used to assess the daily streamflow predictions of different 237 

models. These were coefficient of determination (R2), ratio of the root mean square error to 238 

the standard deviation of measured data (RSR) and mean absolute error (MAE). The RSR 239 

and MAE are calculated as given in equation 4 and 5, respectively. 240 

                                          241 

                                   …………………………………..(1) 242 

 243 

                                       …………………………………….(2) 244 

 245 

where Pi are the predicted values and Oi are the observed values,  n accounts for the number 246 

of samples, Ō represents the mean of observed data, and Pi  is the mean of predicted data and 247 

refers to the standard deviation of observed values. R2 explains the correlation 248 

between observed and predicted values, lies between 0 and 1. R2 values between 0.6 to 0.7 249 

are considered satisfactory, 0.85 to 1 are very good and below 0.4 are unsatisfactory. The 250 

lower is the RSR value, the better is the model. Values greater than 0.7 are unsatisfactory 251 
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whereas those lying between 0 and 0.5 come in the very good range. Mean absolute error 252 

accounts for the mean of the absolute differences in the observed and predicted values. Lower 253 

MAE is favourable.  254 

 255 

4. Results and Discussion 256 

4.1 Streamflow simulation and evaluation of model performance  257 

The simulation (1979-2009) results generated under different rainfall scenarios (R0, R1, R2 258 

and R3) on daily time scale for all five models (GLM, GAM, MARS, ANN and RF) is shown 259 

in Table 3. R2 values across models ranged from 0.71 to 0.90 and from 0.73 to 0.81 during 260 

training and testing, respectively. Likewise, it was found that RSR and MAE varied from 261 

0.55 to 0.31 and from 123.25 to 71.95 during training, as well as from 0.56 to 0.46 and 262 

from123.06 to 106.64 during testing, respectively. However, within models, RF performed 263 

better at runoff prediction under all rainfall scenarios (R0, R1, R2, and R3) compared to the 264 

other models, while GLM showed the poorest results. R2, RSR and MAE values for the RF 265 

model during the training ranged from 0.88 to 0.90, 0.32 to 0.34, 71.95 to 77.49, respectively. 266 

Similar results were revealed during testing, with these falling between 0.76 and 0.78, 0.47 267 

and 0.49, and 106.64 and 111.85, respectively. On the other hand, throughout training, the R2, 268 

RSR, and MAE values for the GLM model varied from 0.69 to 0.71, 0.54 to 0.55, and 134.80 269 

to 140.56, respectively. During testing, they varied between 0.69 and 0.71, 0.54 and 0.56, and 270 

134.35 and 141.26, respectively. 271 

Table 3:  Summary of model performance in simulating streamflow at Kasol 272 

 273 

Figure 2, 3, 4 and 5 shows comparison of observed and simulated streamflow under rainfall 274 

scenarios of R0, R1, R2 and R3 for all the models at Kasol, the outlet of the basin. As observed 275 

from the Figures (2-5), RF was able to follow the curve better compared to the other models. 276 
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It is also deduced from the comparison of scatter plots wherein a relatively smaller deviation 277 

in the observed and estimated discharge of streamflow was found for the RF model. GLM 278 

performed the worst out of the five models with respect to the time variation graphs. A 279 

limitation faced by all the five models was the simulation of peak values. The models slightly 280 

underperformed at the prediction of higher values of streamflow. The model performed 281 

slightly better during training than testing periods. Furthermore, it was observed that the 282 

models with rainfall scenario R3 had revealed reasonably better results in comparison to R0, 283 

R1 and R2 scenarios, indicating delayed contribution of rainfall-runoff to the river.  284 

Figure 2: Comparison of observed and simulated streamflow for all five models (GLM, 285 

GAM, MARS, ANN and RF) under rainfall scenarios R0 286 

 287 

Figure 3: Comparison of observed and simulated streamflow for all five models (GLM, 288 

GAM, MARS, ANN and RF) under rainfall scenarios R1 289 

 290 

Figure 4: Comparison of observed and simulated streamflow for all five models (GLM, 291 

GAM, MARS, ANN and RF) under rainfall scenarios R2 292 

 293 

Figure 5: Comparison of observed and simulated streamflow for all five models (GLM, 294 

GAM, MARS, ANN and RF) under rainfall scenarios R3 295 

 296 

R2, RSR and MAE values across models under the rainfall scenario R3 were found to range 297 

from 0.71 to 0.90, 0.34 to 0.54, and 72 to 134.80 during training and from 0.71 to 0.90, 0.47 298 

to 0.54, and 106.6 to 134.80 during testing. These findings led to the ultimate decision to use 299 

the RF model with rainfall scenario R3 to predict streamflow in the Sutlej River in the future 300 

(2050s and 2080s) under the SSP245 and SSP585 scenarios. 301 
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 302 

4.2 Annual streamflow changes in 2050s and 2080s under SSP245 and SSP585  303 

Figure 6 lists the projected change in mean annual streamflow for the Sutlej River in 2050s 304 

and 2080s with respect to the base period (1979-2009) under different emission scenarios. 305 

Out of six models, four (BCC-CSM2-MR, EC-Earth-3, INM-CM4.8, and INM-CM5.0) 306 

projected an increase in annual streamflow in the 2050s and 2080s for both emission 307 

scenarios. Depending on the model, it will be in the range of 0.46 to 2.84% in the 2050s and 308 

from 1.32 to 4.37% in the 2080s under SSP245 scenario. The models with the lowest 309 

increases in mean annual streamflow are BCC-CSM2-MR (0.46%) in the 2050s and INM-310 

CM4.8 (1.32%) in the 2080s, while INM-CM5.0 and EC-Earth-3 have shown the highest 311 

increases (2.84% and 4.37%) in 2050s and 2080s, respectively.  Similar to this, GCM models 312 

predict that rise under SSP585 will vary between 0.18% (ACCESS- ESM1.5) and 3.16% 313 

(EC-Earth-3) and 0.60% (ACCESS- ESM1.5) to 3.50% (EC-Earth-3) between 2050s and 314 

2080s. However, a decrease in mean streamflow is predicted by ACCESS- ESM1.5 and 315 

ACCESS- ESM2 in 2050s and 2080s under SSP245 and by ACCESS- ESM2 under SSP585. 316 

It will range from -0.21 to -2.69% in 2050s and -0.35 to -2.21% in 2080s under SSP245 and 317 

from -2.75 to -4.08% under SPP585. These variations in streamflow prediction from GCMs 318 

may be attributed to their spatial resolution and parametrization levels (Singh et al., 2015c).  319 

Therefore, in order to reduce uncertainty in projection of streamflow related to individual 320 

GCMs, the yearly streamflow pattern of the Sutlej River was analysed also using the mean 321 

ensemble of all six GCMs. According to the mean ensemble of the models, between 2050 and 322 

2080, the Sutlej River's annual stream flow will increase by 5.51 to 6.04 percent for SSP585 323 

and by 6.65 to 6.75 percent for SSP245. In general, the rise is expected to be higher in 2080s 324 

as compared to 2050s under both the scenarios. This rise in mean annual streamflow is 325 

impacted largely by the substantial increase in precipitation predicted over the basin during 326 
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2050s and 2080s. It is also established by previous research on the Himalayan catchments 327 

which revealed that changes in the amount and direction of precipitation are significantly 328 

more powerful predictors of water availability in the catchment than the presence of glaciers 329 

(Miller et al., 2022). 330 

Figure 6: Predicted change in mean annual streamflow of the Sutlej River with respect to the 331 

reference period (1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different 332 

GCMs 333 

 334 

Further, the projected streamflow patterns for the Sutlej River under SSP245 and SSP585 for 335 

the 2050s and 2080s show similar tendencies, but with differing magnitudes, that have been 336 

found by past researchers using process-based hydrological models. For instance, Singh et al. 337 

(2015 a) used the SWAT (Soil Water Assessment Tool) model, a semi-distributed 338 

hydrological model, to simulate streamflow for future periods using two CMIP3 models 339 

(CGCM3 and HadCM3), and they discovered that the Sutlej River's mean annual streamflow 340 

would increase in the range of 0.6 to 7.8% in the 2080s under higher emission scenario of A2, 341 

which is equivalent to the SSP585 of the CMIP6. Similar to this, using the Variable 342 

Infiltration Capacity (VIC) and SWAT models, respectively, Ali et al. (2018) and Shukla et 343 

al. (2022) estimated increases in the Sutlej River's mean annual streamflow for the 2050s and 344 

2080s under RCP4.5 and RCP8.5. The study of Shukla et al. (2022) estimates that under 345 

RCP4.5 and RCP8.5, the mean streamflow of the river will increase by 14 and 21%, 346 

respectively, in the 2080s. The relatively higher increase in the projected streamflow may be 347 

attributed to the model's input variables (rainfall and temperature), which were derived from 348 

CORDEX CCSM4 experiments, a regional climate model. 349 

 350 

4.3 Seasonal streamflow changes in 2050s and 2080s under SSP245 and SSP585  351 
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The projected change in seasonal streamflow of the Sutlej River in 2050s and 2080s is shown 352 

in the Figure 7. It is observed that all models for all scenarios indicated an increase in 353 

streamflow during the post-monsoon and winter season in the 2050s and 2080s, while a 354 

decrease in streamflow is seen in 2080s under higher GHG scenarios during the pre-355 

monsoon. Four out of six models predict rise in streamflow under both the scenarios in 2050s 356 

(excluding under SSP245) and 2080s during monsoon season. Further, across the models and 357 

within scenarios, there is a considerable difference in the seasonal streamflow predictions. It 358 

will vary from +9.77% (BCC-CSM2-MR) to +15.56% (ACCESS- ESM2) in the 2050s and 359 

from +10.77% (ACCESS- ESM1.5) to 18.28% (ACCESS- ESM2) in the 2080s during winter 360 

season, from +5.17% (INM-CM5.0) to +39.86% (BCC-CSM2-MR) and from +1.85% (INM-361 

CM4.8) to +46.98% (BCC-CSM2-MR) during post-monsoon season, from -4.31% (EC-362 

Earth-3) to +7.49% (INM-CM5.0) and from -5.65% (EC-Earth-3) to +5.61% (INM-CM5.0) 363 

during pre-monsoon seasons, and from -5.20% (ACCESS- ESM2) to +1.91% (INM-CM5.0) 364 

and from -7.90% (ACCESS-ESM2) to +5.00% (INM-CM54.8) during monsoon season under 365 

SSP245 scenario. Similarly, under scenario SSP585, it will vary from +9.80% (BCC-CSM2-366 

MR) to +15.15% (INM-CM5.0) in the 2050s and from +9.34% (BCC-CSM2-MR) to 367 

+18.39% (INM-CM5.0) in the 2080s during winter season, from +1.30% (INM-CM5.0) to 368 

+41.94% (BCC-CSM2-MR) and from +0.42% (ACCESS- ESM1.5) to +48.54% (BCC-369 

CSM2-MR) during post-monsoon season, from -7.28% (INM-CM4.8) to -0.11% (ACCESS- 370 

ESM1.5) and from -10.03% (INM-CM4.8) to -2.22% (ACCESS- ESM1.5) during pre-371 

monsoon seasons, and from -7.95% (ACCESS- ESM2) to +6.78% (EC-Earth-3) and from -372 

6.29% (ACCESS- ESM2) to +8.15% (INM-CM4.8) during monsoon season. It is observed 373 

that within seasons, maximum (+48.54%) and minimum (-10.03%) changes are predicted in 374 

2080s under SSP585 during post-monsoon and pre-monsoon seasons, respectively. 375 
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Figure 7: Predicted change in seasonal streamflow pattern of the Sutlej River with respect to 376 

the reference period (1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different 377 

GCMs 378 

 379 

However, mean ensembles of models predicted a rise in streamflow of the Sutlej River in all 380 

seasons in the 2050s and 2080s under both emission scenarios, with the exception of the pre-381 

monsoon, where streamflow is estimated to decrease in the 2080s under SSP585. In the 382 

2050s, this will range from +5.60 to +5.99% the winter, +10.28 to +13.16% during the post-383 

monsoon, +2.02 to 6.66% during the pre-monsoon, and +8.75 to +10.63% during the 384 

monsoon. In the 2080s, this will range from +6.30 to +6.47% percent during the winter, 385 

+9.93 to +10.14% during the post-monsoon, -1.09 to +3.48% during the pre-monsoon, and 386 

+11.07 to +11.43% during the monsoon. 387 

 388 

4.4. Monthly Streamflow Changes in 2050s and 2080s under SSP245 and SSP585  389 

Figure 8 illustrates how mean monthly streamflow patterns will alter in 2050s and 2080s 390 

under both GHGs scenarios (SSP245 and SSP585) for different GCMs. A considerable 391 

variation in the streamflow pattern is observed within months and for the models. All six 392 

models generally in both scenarios expected an increase in monthly streamflow from January 393 

to April and a reduction in June. It will range from +0.78 to +11.89% in January, from +5.07 394 

to +18.17% in February, from +3.30 to +30.45% in March, from +13.20 to +50.52% in April, 395 

and from -21.35 to -6.97% in June. However, no clear pattern is seen for the other months of 396 

the year. For instance, three (BCC-CSM2-MR, EC-Earth-3 and INM-CM4.8) out of six 397 

GCMs projected a reduction in streamflow for the months of May (-15.97 to -0.10%), while 398 

four (ACCESS- ESM2.0, BCC-CSM2-MR, EC-Earth-3 and INM-CM4.8) predicted 399 

reduction ranging between -16.35 to -0.75% for July under all scenarios. However, all GCMs 400 
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showed an increase in streamflow during the months of November (+0.94 to +29.75%) and 401 

December (+0.10 to +7.81%), with the exception of INM-CM5.0 (in November) and 402 

ACCESS-ESM1.5 (in December) that predicted decline in the streamflow ranging from -2.42 403 

to -0.80% and to -1.08 to -0.14% for the same period. 404 

Figure 8: Predicted change in monthly streamflow pattern of the Sutlej River with respect to 405 

the reference period (1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different 406 

GCMs 407 

 408 

The pattern of projected streamflow derived from the mean ensembles of the models, on the 409 

other hand, is consistent for both the future periods under SSP245 and SSP585, and it 410 

exhibits relatively less variability across the months (Figure 8). With the exception of June, 411 

November and December, the increase in streamflow is anticipated for every month of the 412 

year under both scenarios in 2050s and 2080s. The maximum increase (+27.01%) in monthly 413 

streamflow is predicted in April in 2050s under SSP245 whereas minimum (-4.42%) in June 414 

under SSP585 for the same period. The findings of the current research work, which showed 415 

that the majority of models, including mean ensembles of the mean, reveal a decline in the 416 

pattern of the streamflow under both scenarios for all of the periods, were validated by the 417 

findings of Ali et al (2018) and Shukla et al (2022) studies' predictions of a decline in 418 

streamflow during May and June (Figure 9). This implies that the RF model can be 419 

successfully applied to streamflow simulation and modelling in the Himalayan environment 420 

where data availability is a constraint. 421 

Figure 9: Comparison of monthly observed (1979-2009) and projected discharge of the multi-422 

model ensembles for period 2050s and 2080s under SSP245 and SSP585 scenarios 423 

 424 

5. Conclusion 425 
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Five machine learning models, GLM, GAM, MARS, ANN, and RF, were tested in this study 426 

to simulate rainfall-runoff responses over the hilly Sutlej River Basin in order to determine 427 

the best model for simulating streamflow response to future climate change in the 2050s and 428 

2080s under SSP245 and SSP585 using CMIP6 data. In terms of runoff prediction, RF 429 

outperformed the other models, as per the statistical evaluation criteria (R2, RSR, and MAE), 430 

whereas GLM produced the worst results. The RF model's R2, RSR, and MAE values during 431 

training varied from 0.88 to 0.90, 0.32 to 0.34, and 71.95 to 77.49, respectively. However, 432 

during testing, it ranged between 0.76 and 0.78, 0.47 and 0.49, and 106.64 and 111.85, 433 

respectively.  The developed RF model was then used to simulate streamflow responses for 434 

six GCMs (ACCESS- ESM1.5, ACCESS- ESM2, BCC-CSM2-MR, EC-Earth-3, INM-435 

CM4.8, and INM-CM5.0) and the mean ensembles of the models to investigate the 436 

implications of future climate change on the Sutlej River pattern in the 2050s and 2080s 437 

under SSP245 and SSP585 emission scenarios.  438 

 439 

Within months, seasons, years, and for the models, a considerable fluctuation in the 440 

streamflow pattern is seen. These variations in streamflow prediction may be illustrated by 441 

the variations in spatial resolution and parametrization levels of GCMs, which led to a 442 

noticeable fluctuation in the anticipated amounts of temperature and precipitation during the 443 

study periods. Therefore, the monthly, seasonal, and annual streamflow patterns of the Sutlej 444 

River were also studied using the mean ensemble of all six GCMs in order to reduce 445 

uncertainty in streamflow projection due to individual GCMs. Both emission scenarios 446 

predict an increase in the Sutlej River's mean annual streamflow (6.65-6.75% under SSP245 447 

and 5.51-6.04% under SSP585) as well as its seasonal streamflow in the 2050s and 2080s, 448 

with the exception of the pre-monsoon season. The post-monsoon season (10.28–13.16%) in 449 

the 2050s and the monsoon season (11.07–11.43%) in the 2080s are anticipated to experience 450 
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the highest seasonal increases. Similar to this, the rise in streamflow is predicted for every 451 

month of the year under both the 2050s and 2080s scenarios, with the exception of June, 452 

November, and December. The largest increase in streamflow is observed for April in the 453 

2050s under SSP245 while the least increase is predicted for June with SSP585 over the same 454 

time period. Additionally, the projected changes in the mean annual and seasonal streamflow 455 

of the river are consistent with earlier research done using process-based physical 456 

hydrological models. Thus, the outcomes of the overall study indicate that the random forest 457 

model is efficient for simulating streamflow in the Himalayan catchment, and that water 458 

availability will rise as a result of an increase in catchment precipitation, which would 459 

eventually lead to an increase in hydropower generation. The administrators of local water 460 

resources and the government organizations in charge of maintaining reservoirs downriver 461 

may find these details on streamflow patterns to be of great use.  462 

 463 

464 
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 622 

Figure 1: The location of the sub-catchment within Sutlej River Basin 623 

624 

https://doi.org/10.5194/hess-2022-339
Preprint. Discussion started: 4 October 2022
c© Author(s) 2022. CC BY 4.0 License.



29 

 

 625 

Figure 2: Comparison of observed and simulated streamflow for all five models (GLM, 626 

GAM, MARS, ANN and RF) under rainfall scenarios R0 627 

628 
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 629 

 630 

Figure 3: Comparison of observed and simulated streamflow for all five models (GLM, 631 

GAM, MARS, ANN and RF) under rainfall scenarios R1 632 

633 
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 634 

Figure 4: Comparison of observed and simulated streamflow for all five models (GLM, 635 

GAM, MARS, ANN and RF) under rainfall scenarios R2 636 
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 638 

Figure 5: Comparison of observed and simulated streamflow for all five models (GLM, 639 

GAM, MARS, ANN and RF) under rainfall scenarios R3 640 
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 642 

Figure 6: Predicted change in mean annual streamflow of the Sutlej River with respect to the 643 

reference period (1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different 644 

GCMs 645 
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 647 

Figure 7: Predicted change in seasonal streamflow pattern of the Sutlej River with respect to 648 

the reference period (1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different 649 

GCMs 650 
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https://doi.org/10.5194/hess-2022-339
Preprint. Discussion started: 4 October 2022
c© Author(s) 2022. CC BY 4.0 License.



35 

 

 652 

Figure 8: Predicted change in monthly streamflow pattern of the Sutlej River with respect to 653 

the reference period (1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different 654 

GCMs 655 

656 
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 657 

Figure 9: Comparison of monthly observed (1979-2009) and projected discharge of the multi-658 

model ensembles for period 2050s and 2080s under SSP245 and SSP585 scenarios 659 
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 661 

Table 1:  Characteristics of the study catchment over the evaluation period of 1979–2009 662 

Parameters Details 

Details of the sub-catchment 

Drainage area of the sub-

catchment (km2) 

2457 km2 

Altitude  ~500-5000 m 

Slope 0-80° 

Geology Granite, Jutogh formation and  

Chail/Salkhala/Hemanta formation 

Soil Dystric cambisols, dystric 

regosols, and eutric fluviosols. 

Streamflow measured at the outlet (Kasol) of the sub-catchment 

Average of annual streamflow 12469.43 m3/s 

Minimum streamflow 64.30 m3/s 

Maximum streamflow 2891.00 m3/s 

Standard deviation (SD) of 

annual streamflow 

1750.70 m3/s 

Coefficient of variation (CV) of 

annual streamflow 

0.14 m3/s 

Rainfall integrated over the sub-catchment 

Average of annual rainfall 1001.32mm 

Average of monsoon rainfall 

(July-September) 

403.08mm 

Average of winter rainfall 

(December-March) 

277.35mm 

Temperature integrated over the sub-catchment 

Average annual maximum 

temperature (Tmax) 

28.35°C 

Average annual minimum 

temperature (Tmin) 

13.98°C 
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Table 2:  The information on hyper parameters used for estimating model parameters 665 

Model Name Hyperparameter Values 

Random Forest (RF) n_estimators, 

criterion, 

max_depth, 

min_samples_split, 

min_samples_leaf, 

min_weight_fraction_le

af, 

max_features, 

max_leaf_nodes, 

min_impurity_decrease, 

value=500 

value=”squared_error” 

value=None 

value = 2 

value = 5 

value = 0.0 

value = auto 

value = None 

value = 0.0 

 

Generalized Linear Model (GLM) endog, 

exog, 

family, 

 

 

offset, 

exposure, 

freq_weights, 

var_weights, 

missing, 

value = 1D 

value = 1D 

value = 

sm.families.Gaussian(sm

.families.links.log()) 

value = None 

value = None 

value = None 

value = None 

value = str 

Artificial Neural Network (ANN) build_fn, 

warm_start, 

random_state, 

optimizer, 

loss, 

metrics, 

batch_size, 

validation_batch_size, 

verbose, 

callbacks, 

validation_split, 

shuffle, 

run_eagerly, 

epochs, 

value = build_regressor 

value = False 

value = None 

value = rmsprop 

value = None 

value = None 

value = 64 

value = None 

value = 1 

value = None 

value = 0.0 

value = True 

value = False 

value = 500 

Multivariate Adaptive Regression 

Splines (MARS) 

max_terms, 

max_degree , 

allow_missing, 

penalty, 

endspan_alpha, 

endspan, 

minspan_alpha, 

minspan, 

thresh , 

zero_tol, 

min_search_points, 

check_every, 

allow_linear, 

value = 20 

value = 3 

value = False 

value = 3.0 

value = 0.005 

value = -1 

value = 0.005 

value = -1 

value = 0.001 

value = 1e-12 

value = 100 

value = -1 

value = True 
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use_fast, 

fast_K, 

fast_h, 

smooth, 

enable_pruning, 

feature_importance_typ

e, 

feature_importance_typ

e, 

value = False 

value = 5 

value = 1 

value = False 

value = True 

value = None 

value = 0 

Generalized Additive Model (GAM) formula, 

family, 

data, 

weights, 

subset , 

na.action,offset, 

method, 

optimizer, 

control, 

scale, 

select, 

knots, 

sp, 

min.sp, 

H, 

gamma, 

fit, 

paraPen, 

G, 

drop.unused.levels,     

drop.intercept, 

discrete, 

value = None 

value = gaussian() 

value = list() 

value = Null 

value = Null 

value = Null 

value = "GCV.Cp" 

value = 

c("outer","newton") 

value = list(), 

value = 0 

value = False 

value = Null 

value = Null 

value = Null 

value – Null, 

value = 1 

value = True 

value = Null 

value = Null 

value = True 

value = Null 

value = False 
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Table 3:  Summary of model performance in simulating streamflow at Kasol 668 

Model Model inputs 
Training Testing 

R2 RSR MAE R2 RSR MAE 

RF 

R0 (rainfall on the same day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.88 0.34 77.5 0.76 0.49 111.9 

R1 (rainfall lagged by one day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.89 0.33 74.4 0.77 0.48 109.2 

R2 (rainfall lagged by two day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.90 0.32 73.1 0.78 0.47 107.5 

R3 (rainfall lagged by three day), Tmax, 

Tmin, relative humidity, solar radiation and 

wind speed 

0.90 0.32 72.0 0.78 0.47 106.6 

GLM 

R0 (rainfall on the same day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.69 0.55 140.6 0.69 0.56 141.3 

R1 (rainfall lagged by one day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.70 0.54 137.3 0.70 0.55 137.5 

R2 (rainfall lagged by two day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.71 0.54 136.0 0.71 0.54 135.4 

R3 (rainfall lagged by three day), Tmax, 

Tmin, relative humidity, solar radiation and 

wind speed 

0.71 0.54 134.8 0.71 0.54 134.5 

ANN 

R0 (rainfall on the same day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.73 0.52 123.3 0.73 0.52 123.0 

R1 (rainfall lagged by one day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.74 0.51 119.3 0.74 0.51 118.9 

R2 (rainfall lagged by two day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.75 0.50 119.3 0.75 0.50 118.2 

R3 (rainfall lagged by three day), Tmax, 

Tmin, relative humidity, solar radiation and 
0.75 0.50 117.7 0.75 0.50 117.4 
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wind speed 

MARS 

R0 (rainfall on the same day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.77 0.48 118.9 0.79 0.45 112.8 

R1 (rainfall lagged by one day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.75 0.50 126.1 0.74 0.51 126.7 

R2 (rainfall lagged by two day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.75 0.50 124.8 0.75 0.50 125.0 

R3 (rainfall lagged by three day), Tmax, 

Tmin, relative humidity, solar radiation and 

wind speed 

0.75 0.50 125.1 0.75 0.50 125.5 

GAM 

R0 (rainfall on the same day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.72 0.53 139.0 0.72 0.53 139.4 

R1 (rainfall lagged by one day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.74 0.51 136.2 0.73 0.52 136.9 

R2 (rainfall lagged by two day), Tmax, Tmin, 

relative humidity, solar radiation and wind 

speed 

0.74 0.51 134.7 0.74 0.51 135.2 

R3 (rainfall lagged by three day), Tmax, 

Tmin, relative humidity, solar radiation and 

wind speed 

0.74 0.50 133.8 0.74 0.51 134.8 
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