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Abstract 16 

The alteration in river flow patterns, particularly those that originate in the Himalayas, has been caused by the 17 

increased temperature and rainfall variability brought on by climate change. Due to the impending 18 

intensification of extreme climate events, as predicted by the Intergovernmental Panel on Climate Change 19 

(IPCC) in its sixth assessment report, it is more essential than ever to predict changes in streamflow for future 20 

periods. Despite the fact that some research has utilised machine learning and deep learning based models to 21 

predict streamflow patterns in response to climate change, very few studies have been undertaken for a 22 

mountainous catchment, with the number of studies for the western Himalaya being minimal. This study 23 

investigates the capability of five different machine learning (ML) models and one deep learning (DL) model, 24 

namely the Gaussian Linear Regression Model (GLM), Gaussian Generalized Additive Model (GAM), 25 

Multivariate Adaptive Regression Splines (MARS), Artificial Neural Network (ANN), Random Forest (RF), 26 

and 1D-Convolutional Neural Network (1D-CNN), in streamflow prediction over the Sutlej River Basin in the 27 

western Himalaya during the periods 2041-2070 (2050s) and 2071-2100 (2080s). Bias corrected data 28 

downscaled at grid resolution of 0.25°× 0.25° from six General Circulation Models (GCMs) of the Coupled 29 

Model Intercomparison Project Phase 6-GCMs framework under two greenhouse gas trajectories (SSP245 and 30 

SSP585) were used for this purpose. Four different rainfall scenarios (R0, R1, R2, and R3) were applied to the 31 

models trained with daily data (1979-2009) at Kasol (the outlet of the basin) in order to better understand how 32 

catchment size and the geo-hydro-morphological aspects of the basin affect runoff. The predictive power of 33 

each model was assessed using six statistical measures: the coefficient of determination (R2), the ratio of the root 34 

mean square error to the standard deviation of the measured data (RSR), the mean absolute error (MAE), the 35 

Kling-Gupta efficiency (KGE), the Nash-Sutcliffe efficiency (NSE), and the percent bias (PBIAS). RF model 36 

with rainfall scenario R3 which outperformed other models during the training (R2=0.90; RSR=0.32; KGE=0.87; 37 

NSE=0.87; PBIAS=0.03) and testing (R2=0.78; RSR=0.47; KGE=0.82; NSE=0.71; PBIAS=-0.31) period 38 

therefore was chosen to simulate streamflow in the Sutlej River in the 2050s and 2080s under the SSP245 and 39 

SSP585 scenarios. Bias correction was further applied to the projected daily streamflow in order to generate 40 

reliable times series of the discharge. The mean ensemble of model results show that the mean annual 41 

streamflow of the Sutlej River is expected to rise between 2050s and 2080s by 0.79 to 1.43% for SSP585 and by 42 

0.87 to 1.10% for SSP245. In addition, streamflow will increase during the monsoon (9.70 to 11.41% and 11.64 43 

to 12.70%) in the 2050s and 2080s under both emission scenarios, but it will decrease during the pre-monsoon (-44 

10.36 to -6.12% and -10.0 to -9.13%) and post-monsoon (-1.23 to -0.22% and -5.59 to -2.83%), as well as 45 

during the winter (-21.87 to -21.52% and -21.87 to -21.11%).  This variability in streamflow is highly correlated 46 

with the pattern of precipitation and temperature predicted by CMIP6-GCMs for future emission scenarios, as 47 

well as with physical processes operating within the catchment. Predicted declines in Sutlej River streamflow 48 

over the pre-monsoon (April to June) and winter (December to March) seasons might have a significant impact 49 

on agriculture downstream of the river, which is already having problems due to water restrictions at this time of 50 

year. The present study will therefore assist in strategy planning for ensuring the sustainable use of water 51 

resources downstream by acquiring a knowledge of the nature and causes of unpredictable streamflow patterns. 52 

 53 

Keywords: Machine learning models; 1D-CNN; streamflow; climate change; CMIP6-GCMs; western Himalaya 54 
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1 Introduction 56 

Human-induced global warming has altered patterns of the rainfall worldwide (Goswami et al., 2006; Trenberth, 57 

2011), and also increased risks of extreme events such as the droughts and floods (Easterling et al., 2000; 58 

Trenberth et al., 2015; Otto et al., 2017). It has impacted hydrology of many river basins globally, including 59 

variation in streamflow (Gerten et al., 2008; Nepal and Shrestha, 2015; Singh et al. 2015a; Ali et al., 2018; Lutz 60 

et al., 2019; Singh et al., 2022). A study of long-term (1948-2004) streamflow (discharge) data of 200 largest 61 

rivers of the globe showed considerable change in their annual discharge, however, results were statistically 62 

significant only for 64 rivers (Dai et al., 2009). Out of which 45 were marked with decreasing trends and the 63 

remaining 19 showed increasing trends in their annual discharge. Similar decreasing and increasing trends in 64 

discharge of the rivers were reported also at regional scale: Asia (Kundzewicz et al., 2009; Krysanova et al., 65 

2015), Europe (Stahl et al., 2010; Stahl and Tallaksen, 2012) and America (Pasquini and Depetris, 2007). 66 

Moreover, it has been established that the effects of rainfall variation and extreme events on annual discharge 67 

are likely strong compared with other drivers (Kundzewicz et al., 2009; Miller et al., 2012; Van der Wiel et al., 68 

2019). Zhao et al. (2021) examined how precipitation, evapotranspiration, and timing of snowmelt impacted 69 

runoff in the Kaidu River Basin of China. They discovered that as global warming increased, the timing of 70 

snowmelt became less significant while the influence of precipitation increased comparatively. A projected rise 71 

of ~2°C to 5°C in mean annual global temperature by 2100 under higher greenhouse gas emission scenarios as 72 

predicted from the General Circulation Models (GCMs) (Gao et al., 2017) will considerably affect the rainfall 73 

pattern (intensity and amount) and may alter hydrological cycles (Okai and Kanae 2006; Haddeland et al., 74 

2014). This would subsequently impact availability of water resources and present challenges for their 75 

management since a rise in the demand of water is also predicted (Lutz et al., 2019). Therefore, it is 76 

indispensable to know the underlying hydrological dynamics occurring within a basin in context of climate 77 

change for effective management and sustainable use of the water resources. 78 

 79 

The underlying hydrological processes controlling rainfall-runoff generation in a basin can be understood with 80 

the use of a hydrological model which is based on complex mathematical equations and theoretical laws 81 

governing physical processes in the basin (Kirchner, 2006; Singh et al., 2019). It simulates/or predicts response 82 

of the basin to climatological forcings such as the rainfall (Sood and Smakhtin, 2015) and generates synthetic 83 

time series of hydrological data that can be used by water managers and scientists for varied applications 84 

ranging from water budgeting and partitioning (Conan et al., 2003; Schreiner‐McGraw and Ajami, 2020) to 85 

inundation mapping and modelling (Mahto et al., 2022). A hydrological model is supposed not only to have a 86 

good predictive power but also the ability of capturing relationships among the forcing factors and catchment 87 

response so that an accurate estimate of rainfall-runoff could be made (Shortridge et al., 2016). However, until 88 

now, there is no hydrological model that can simulate basin-behaviour universally well against all the 89 

hydrological challenges inflicted from climate change and human-interventions (Yang et al., 2019). As a result, 90 

many hydrological models have been devised considering functioning and robustness of models in explaining 91 

underlying complexity in quantifying basin-scale response to small-scale spatial complexity of physical 92 

processes (Shortridge et al., 2016; Herath et al., 2021). Broadly, these can be grouped into two categories: 93 

physical or process-based models and empirical or data-driven models (Yang et al., 2019; Kabir et al., 2020). 94 
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The latter category of models uses a mathematical relationship established between runoff and affecting factors 95 

in the basin for deriving the runoff (Adnan et al., 2019).  96 

 97 

It is purported that the data-driven model despite of inherited limitations over physical interpretability of 98 

processes has outperformed the physical models in terms of prediction accuracy in many hydrological 99 

applications (Shortridge et al., 2016; Adnan et al., 2019; Kabir et al., 2020; Herath et al., 2021). Also, they are 100 

preferred over the physical models for rainfall-runoff modelling/or streamflow prediction modelling due to 101 

limited requirements of data as inputs, where data limitation is the major challenge (Beven, 2011). These models 102 

in past were heavily criticised on the ground of being incompetent to model the non-linear behaviour of 103 

streamflow (Yang et al., 2019). But recent developments in computational intelligence, in the areas of machine 104 

learning (ML) and deep learning (DL) in particular, have greatly expanded the capabilities of empirical 105 

modelling (Adnan et al., 2020; Fu et al., 2020; Rahimzad et al., 2021; Ghobadi and Kang, 2022). This resulted 106 

in the development of many non-linear models such as the Artificial Neural Network (ANN), Random Forest 107 

(RF), Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) models, which can capture and 108 

model non-stationarity of the rainfall-runoff relationships (Yaseen et al., 2015; Shortridge et al., 2016; Adnan et 109 

al., 2019; Yang et al., 2019; Xiang et al., 2020). Yang et al. (2019) applied three machine learning models 110 

namely ANN, SVR, and RF to predict monthly streamflow over the Qingliu River basin in China under 111 

changing environmental conditions between 1989 and 2010, and compared their results with the six process-112 

based hydrological models. They concluded that the ML model performed better than the process-based model 113 

not just in terms of prediction accuracy, but also in terms of flexibility when it came to including other runoff 114 

effect factors into the model. Similar outcomes for Lake Tana and the adjacent rivers in Ethiopia were also 115 

reported by Shortridge et al. (2016), where ML models demonstrated noticeably lower streamflow prediction 116 

errors than the physical models developed for the region. However, they inferred that linear machine learning 117 

models, such as the Multivariate Adaptive Regression Splines (MARS) and Generalized Additive Model 118 

(GAM), were sensitive to extreme climate events, so the degree of uncertainty in their predictions needed to be 119 

carefully considered. 120 

 121 

The limitations of such data-driven models can be overcome by adopting more advanced ML and DL models 122 

(Xiang et al., 2020). Rasouli et al. (2012) compared the performance of the Multi-Linear Regression (MLR) 123 

model with the Bayesian Neural Network (BNN), SVR, and Gaussian process (GP) in terms of daily streamflow 124 

prediction for the Stave River, a mountainous basin, in British Columbia, and found that the BNN model 125 

performed better than others. According to Hussain and Khan (2020), supervised learning model RF 126 

outperformed Multilayer Perceptron (MLP) and SVR in terms of accuracy while predicting monthly streamflow 127 

for the Hunza river in Pakistan by 33.6% and 17.85%, respectively. Recently, Deep Neural Network (DNN), 128 

Convolutional Neural Network (CNN) and LSTM models, which are based on deep learning, have seen a surge 129 

in the number of streamflow prediction applications due to their abilities to handle complex stochastic datasets 130 

and abstracting the internal physical mechanism (Fu et al., 2020; Ghobadi and Kang, 2022). Based on statistical 131 

performance evaluation criteria, Rahimzad et al. (2021) found that the LSTM outperformed the LR, SVM, and 132 

Multilayer Perceptron (MLP) models in daily streamflow prediction over the Kentuky River basin in the USA. 133 

However, Van et al. (2020) showed that CNN outperformed LSTM in streamflow modelling in the Vietnamese 134 



5 

 

Mekong Delta by a small margin. Comparing data-driven models to a given problem yield a range of results for 135 

distinct geographical and climatic conditions (Hagen et al., 2021. Adnana et al. (2020) examined the predictive 136 

accuracy of Optimally Pruned Extreme Learning Machine (OP-ELM), Least Square Support Vector Machine 137 

(LSSVM), MARS, and Model Tree (M5Tree) models in order to estimate monthly streamflow in the Swat River 138 

Basin (Hindukush Himalaya), Pakistan. They came to the conclusion that the LSSVM and MARS are the most 139 

effective at forecasting streamflow. In contrast, Hussain et al. (2020) discovered that ELM outperformed 1-D-140 

CNN while forecasting streamflow on three time scales i.e., daily, weekly and monthly in the Gilgit River, 141 

Pakistan. This suggests that it is challenging to find a data-driven model that is effective across all application 142 

domains and scales (Yaseen et al., 2015; Fu et al., 2020). 143 

 144 

The use of machine learning and deep learning based models for streamflow simulations within catchments is 145 

generally limited to observable periods and resulting forecasts (Eng and Wolock, 2022). There are very limited 146 

studies worldwide where these models were applied in predicting long-term streamflow for future periods in 147 

context of climate change (Das and Nanduri, 2018; Thapa et al., 2021; Adib and Harun, 2022). This can be 148 

attributed to the challenges associated with data assimilation brought on by the use of coarse resolution scenario 149 

data obtained from General Circulation Models (GCMs), which limits their direct application in regional impact 150 

assessment (Hagen et al., 2021; Adib and Harun, 2022). Das and Nanduri (2018) integrated Relevance Vector 151 

Machine (RVM) and SVM models with Coupled Model Intercomparison Project Phase (CMIP5)-GCMs to 152 

project monthly monsoon streamflow across the Wainganga basin (India) for monsoon season. Adib and Harun 153 

(2022) studied variations in the monthly streamflow pattern of the Kurau River (Malaysia) from 2021 to 2080 154 

by coupling ML models (RF and SVR) with Coupled Model Intercomparison Project Phase (CMIP6)-GCMs. 155 

Despite of the significance potentials of the ML and DL models in streamflow prediction, relevant studies 156 

assessing the application of these models for streamflow prediction under future scenarios over the mountainous 157 

basins are limited due to non-availability of long-term data (Xenarios et al., 2019; Adnana et al., 2020). Thapa et 158 

al. (2021) used a combination of the LSTM model and the CMIP5-GCMs scenarios to estimate streamflow 159 

patterns in the Langtang basin of the Central Himalayas. Their analyses revealed a notable increase in 160 

streamflow as a result of the predicted increase in precipitation. The projections from Coupled Model 161 

Intercomparison Project Phase 3 (CMIP3)-GCMs and CMIP5-GCMs inherit limitations in simulating extreme 162 

precipitation (Kim et al., 2020), which are the principal drivers for the runoff generation in the catchment. This 163 

causes large uncertainty in streamflow predictions (Wang et al., 2021). Uncertainty in streamflow prediction can 164 

be minimised by using scenarios from the CMIP6-GCMs which are likely to be more realistic than previous 165 

generations, i.e., CMIP3-GCMs and CMIP5-GCMs, given their significant improvement in simulating rainfall 166 

and temperature for historical records (Chen et al., 2020; Gusain et al., 2020; Kim et al., 2020). Therefore, 167 

projected changes in streamflow patterns derived from CMIP6-GCMs scenarios would give a better 168 

understanding of the catchment's future hydrological regime than previous ones. To the authors’ knowledge, no 169 

work has been published over a mountainous basin that integrates ML/DL models with CMIP6-GCMs scenarios 170 

to predict changes in streamflow patterns for future periods. Hence, it is important to test whether machine 171 

learning approaches can be effectively used over a mountainous river basin to predict streamflow using hydro-172 

meteorological variables and CMIP6-GCMs scenarios as the input data. 173 

 174 
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With a catchment area of 56874km2 (up to Bhakara Dam), the Sutlej also pronounced as ‘Satluj’ is an important 175 

river in the western Himalayas and runs through diverse climatic zones. The flow in the upper and middle 176 

catchment is primarily impacted by glacier/snow melt induced by seasonal temperature shift and preceding 177 

winter precipitation, while the lower section of the catchment area is mostly regulated by rainfall both in the 178 

winter and during the monsoon season (Singh and Jain, 2002; Archer, 2003; Miller et al., 2012). Based on data 179 

from the period 1986–1996, Singh and Jain (2002) estimated the mean yearly contribution of snow/glacier melt 180 

and rainfall to the Sutlej River as being 59% and 41%, respectively. However, the discharge in the river peaks is 181 

directly related to the peak in rainfall during the monsoon (Lutz et al., 2014). Recent studies on this basin has 182 

raised concerns about the implications of climatic changes on streamflow since a warming climate has brought 183 

changes in the amount and spatial-temporal distribution of precipitation (Singh et al., 2014; Singh et al., 2015b). 184 

Previous research has only used process-based hydrological models and scenarios from CMIP3-GCMs and 185 

CMIP5-GCMs to date when examining the effects of climate change (past and future) on streamflow patterns in 186 

the region (Singh and Jain, 2002; Singh et al., 2015a; Ali et al., 2018; Shukla et al., 2021), which leaves a gap in 187 

the use of machine and deep learning models and scenarios from the latest CMIP6-GCMs.This study very first 188 

time examines the potential of five ML models and one deep learning model namely, Gaussian Linear 189 

Regression Model (GLM), Gaussian Generalized Additive Model (GAM), MARS, ANN, RF and 1D-CNN in 190 

streamflow prediction over the middle Sutlej River Basin (rainfall dominated zone) in western Himalaya using 191 

different Shared Socio-economic Pathways (SSPs) scenarios from CMIP6-GCMs. The pattern of variations in 192 

the Sutlej River's monthly, seasonal, and annual streamflow are assessed for the future periods 2041-2070 193 

(2050s) and 2071-2100 (2080s) with respect to the reference period of 1979-2009 under SSP245 and SSP585. . 194 

The findings of the study will help to develop a better plan for the operation of hydroelectric power projects and 195 

water resources management in the catchment. 196 

2 Study Area  197 

The selected study area is a sub-catchment within the Satluj basin (Figure 1), with an area of 2457 km2. 198 

Topographically, it is very rugged (0-80°) and is dominated mostly by forests (56.20%), grassland (26.4%), 199 

agricultural lands (17.1%), and glaciers and snow covers (0.3%) (Singh et al., 2015a). The presence of mountain 200 

barriers in the sub-basin's north, large variation in altitudes (500–5000 m) and the aspect all contribute to the 201 

region's diverse climate. It varies from hot and moist tropical climate in lower valleys to cool temperate climate 202 

at about 2000 m, and tends towards alpine as the altitude increases beyond 2000 m. The mean annual discharge 203 

(averaged over the period of 1979-2009) of the river gauged at Kasol was 12469.43 m3/s. There is large inter-204 

diurnal and monthly variation in pattern of the river discharge. The minimum and maximum daily discharge 205 

recorded at Kasol was 64.30 m3/s and 2891m3/s, respectively. The early months of year, i.e., starting from 206 

January up to March are characterised by low stream flow. After this a continuous and rapid rise in flow occurs, 207 

being the maximum in the month of July (~22-23%). Then, it again starts decreasing and flow becomes the 208 

minimum in the month of December (2-3%). The details of the sub-catchment are summarised in Table 1.  209 

Figure 1: The location of the sub-catchment within Sutlej River Basin. The three hydro-meteorological stations 210 

(Kasol, Sunni and Rampur) from which this study employed observed data for the years 1979 to 2009 are also 211 

shown. 212 
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The sub-basin is bestowed with the large hydropower potential. There are three major hydroelectric power 213 

projects: Sunni Dam Project of 1080 MW, Rampur Hydroelectric Power Project (RHEP) of 412 MW, and 214 

Nathpa Jhakari Hydro-electric Power Project (NJHEP) of 1500 MW. The sub-basin is climatologically sensitive 215 

and, at present, facing the challenges created due to climate change and human’s interventions (Singh et al., 216 

2015b and 2015c). Change in future climate will alter patterns of flow in river and further could affect water 217 

resources and hydroelectric power production (Singh et al., 2014).  218 

Table 1:  Characteristics of the study catchment over the evaluation period of 1979–2009. 219 

3 Description of the Data and Methods 220 

The methodology involved in predicting streamflow for the period 2041-2100 in the Sutlej River include: 3.1) 221 

collection of hydro-meteorological data, 3.2) selection of machine and deep learning models, 3.3) performance 222 

evaluation of the developed models, and 3.4) bias correction in streamflow projection. These are described in 223 

details under following sub-headings: 224 

3.1 Hydro-meteorological data 225 

The daily rainfall, temperature (Tmax and Tmin), relative humidity, solar radiation, wind speed and discharge data 226 

used to study performance of the different machine and deep learning models on streamflow modelling were 227 

collected for 31 years i.e. 1979-2009. Rainfall, temperature and discharge data were obtained from the Bhakara 228 

Beas Management Board (BBMB), while relative humidity, solar radiation and wind data were extracted from 229 

the Global Weather Data (http://globalweather.tamu.edu/). These data were collected for three hydro-230 

meteorological stations namely, Kasol, Sunni and Rampur (Fig.1). 231 

 232 

The downscaled outputs from the CMIP6-GCMs, the latest generation of climate models, were used for 233 

streamflow prediction in future (2050s and 2080s). This framework of CMIP6-GCMs was run to simulate future 234 

climate under four Shared Socio-economic Pathways Scenarios (SSPs), which are designed to explain potential 235 

future greenhouse gas emissions under various global socioeconomic shifts that would occur by 2100 (Riahi et 236 

al., 2017; Karan et., 2022). Even by using downscaled outputs, however, regional climate change projections 237 

inherit biases from the GCM boundary conditions (Jose and Dwarakish, 2022), which were corrected in the 238 

dataset detailed in Mishra et al. (2020) for South Asia. They used Empirical Quantile Mapping (EQM) method 239 

for removing bias in the downscaled data. This dataset provides bias-corrected downscaled climate change 240 

projections for 13 CMIP6-GCMs and four GHG emission scenarios (SSP126, SSP245, SSP370, and SSP585), 241 

the latter are briefly summarised in Riahi et al. (2017). Climate projections from CMIP6-GCMs that have been 242 

generated under the SSP245 and SSP585 scenarios were used in this study. SSP245, a medium scenario 243 

represents the average pathway of future greenhouse gas emissions with radiative forcing of 4.5 W/m2 by the 244 

year 2100, while SSP585 is the upper limit of the range of scenarios scenario with radiative forcing of 8.5 W/m2 245 

by the end of this century (O'Neill et al., 2016). The data are available at a daily time-scale and horizontal spatial 246 

resolution of 0.25°×0.25°. Seven grids of the downscaled CMIP6-GCMs data cover the study area. The 247 

temperature (Tmax and Tmin) data were adjusted for topographical bias by separating the study area into a number 248 

of homogenous elevation bands spaced by at an interval of 1000m, and applying a temperature laps rate of 249 
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6.5°C/1000m within each grid. A Digital Elevation Model (DEM) of 30 m spatial resolution derived from 250 

CartoSat-1 stereo data (www.bhuvan.nrsc.gov.in) was used for this purpose. The values of rainfall and 251 

temperature at each grid were then averaged over the catchment using the Thiessen polygon method in order to 252 

provide daily rainfall data integrated at the catchment scale for assessing changes in the future climate with 253 

respect to the observed period i.e., 1979-2009. 254 

 255 

Further, ranking of CMIP6-GCMs was done to find out the most appropriate models that can generate most 256 

likely plausible scenarios of future climate in the catchment and ultimately being employed in streamflow 257 

projection. Taylor diagram (Taylor, 2001), a robust graphical plot, is widely used to rank GCMs due to its 258 

effectiveness in determining the relative strengths of the competing models and in evaluating overall 259 

performance as a model evolves (Abbasian et al., 2019; Ghimire et al., 2021). It integrates three statistical 260 

metrics, degree of correlation (r), centered root-mean-square error (CRMSE) and ratio of spatial standard 261 

deviation (SD). Combining these metrics allows determining the degree of pattern correspondence and 262 

explaining how exactly a model represents the observed climate (Taylor, 2001). Therefore, performance of 13 263 

CMIP6-GCMs in modelling climatic variables (rainfall, Tmax and Tmin) in the Sutlej sub-basin was compared to 264 

the observed data (1979-2009) using Taylor diagram (Fig. 2a-c). The models were then ranked as a result of this 265 

comparison. High positive correlation (r=0.84 to 0.96) and low CRMSE (<3°C) error were found in all 13 266 

CMIP6-GCMs for temperature (Tmax and Tmin) (Fig. 2b-c). Additionally, it was found that models' standard 267 

deviations, which ranged from 5.60 to 6.03°C for Tmax and 6.34 to 6.63°C for Tmin, were close to the SD of the 268 

observed data (6.01°C and 6.07 °C). These results imply that all CMIP6-GCMs may be able to predict most 269 

likely future temperature over the catchment. 270 

Figure 2: Taylor diagram showing comparative skills of 13CMIP6-GCMs in simulating climatic variables 271 

(rainfall, Tmax and Tmin) over the Sutlej sub-basin during reference period (1979-2009). The degree of correlation 272 

coefficient (r) between observed and CMIP6-GCMs, centered root-mean-square error (CRMSE) and departure 273 

of the models’ standard deviation (SD) from the observed data (dashed black arc line) are shown in Fig. 2a for 274 

rainfall, Fig. 2b for Tmax and Fig. 2c for Tmin. The units of SD for rainfall and temperature is in cm and °C, 275 

respectively. 276 

However, not all CMIP6-GCMs showed the high degree of similarity in predicting rainfall; in fact, two 277 

(CanESM5 and NorESM2-LR) of the 13 models revealed a negative correlation (Fig. 2a). In the pool of 13 278 

CMIP6-GCMs, only six models showed relatively higher correlation (r≥0.56), smaller CRMSE (<12 cm) errors, 279 

and a high similarity to the standard deviation of the observed data (13.2 cm). They were: 1) Earth Consortium-280 

Earth 3 Veg Model (EC-Earth-Veg) , 2)  Russian Institute for Numerical Mathematics Climate Model Version 281 

4.8 (INM-CM4-8), 3) Russian Institute for Numerical Mathematics Climate Model Version 5.0 (INM-CM5-0), 282 

4) Max Planck Institute for Meteorology Earth System Model version 1.2 with higher resolution (MPI-ESM1-2-283 

HR) , 5) Max Planck Institute for Meteorology Earth System Model version 1.2 with lower resolution (MPI-284 

ESM1-2-LR) and 6) Norwegian Earth System Model Version 2 with Medium Resolution (NorESM2-MR). 285 

Further, within these models, the highest and lowest correlations between observed and simulated rainfall were 286 

found for the INM-CM4-8 (r=0.69) and NorESM2-MR (r=0.56), respectively. These six CMIP6-GCMs were 287 

finally selected to examine future patterns in streamflow for the periods 2050s and 2080s in the Sutlej River 288 

Basin as they had also shown high performance in simulating temperatures (r=0.90 to 0.96).  289 
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3.2 Selection of machine and deep learning models for streamflow modelling 290 

In this study, five machine and one deep learning models namely GLM, GAM, MARS, ANN, RF and one 291 

dimensional Convolution Neural Network (1D-CNN) were selected and their performances in predicting 292 

streamflow in Sutlej River were compared. These are regression based models which capture relationship 293 

between the predictors (dependent variables) and predictand (independent variables) and provide value of the 294 

output variables (Adnan et al., 2019; Kabir et al., 2020). The models were trained with daily observed data 295 

recorded during 1979-2009 at Kasol (the gauging site) as well as simulated historical projections of CMIP6-296 

GCMs. The climatic projections of the grid corresponding to Kasol station were taken into consideration as the 297 

input from the CMIP6-GCMs. However, prior to building the models, all of the data were normalized using 298 

standard normalization techniques to get features on a common scale. Further, the entire data set was split into 299 

training and testing datasets since a cross-validation method was adopted in this study. The training dataset 300 

(80%) was used for fitting the models whereas testing dataset was used for checking model accuracy (20%). 301 

Under the cross-validation method, the process was repeated until every part of the allocated data was used in 302 

testing (Kabir et al., 2020). Six different program codes were written in python language for ANN, GAM, GLM, 303 

MARS, RF and 1D-CNN simulations. Out of these six selected models, GLM, GAM and MARS are linear 304 

models whereas other three i.e. ANN, RF and 1D-CNN are non-linear in nature (Shortridge et al., 2016; Yang et 305 

al., 2019; Herath et al., 2021). Additionally, excluding GLM all of the remaining models are based on non-306 

parametric regression approach where functional relationship between predictor and predictand are not 307 

predetermined but can be adjusted to capture unusual or unexpected features of the data (Shortridge et al., 308 

2016). A detailed description of these models can be found elsewhere (Shortridge et al., 2016; Adnan, 2019; 309 

Yang et al., 2019; Kabir et al., 2020; Ghimire et al., 2021; Herath et al., 2021; Shu et al.,2021). 310 

 311 

Since the 1D-CNN model is based on weight sharing, it needs less training parameters than other models 312 

(Kiranyaz et al., 2021). It has mainly three layer, convolution layer, pooling layer and fully connected layer. The 313 

primary job of the convolution layer is to nonlinearly map input data into a set of feature maps, or series of 314 

feature vectors. When working as a visual cortical perceptron, filter kernels are convoluted with the input data of 315 

their receptive fields. The convolution results with biases are then passed on to the activation function to create 316 

feature maps. The pooling layer, which comes after each convolution layer, primarily serves to reduce the 317 

dimension of feature maps and maintain the invariance of characteristic scale. The fully connected layer uses a 318 

completely connected single layer perceptron to combine the feature maps that were acquired by the prior 319 

convolution and pooling layers in order to build a higher level feature (Kiranyaz et al., 2021). In this study, one 320 

convolution layer with 64 filters, a kernel of size 2, and a ReLU activation function was being employed. This 321 

was followed by max pooling layer with pool size =2, and the faltterm layer. After that two fully connected 322 

layer applied with ReLU activation function and linear activation function, respectively. However, for 323 

optimization, the adaptive moment estimation (Adam) algorithm was applied (Ghimire et al., 2021; Shu et 324 

al.,2021). Six variables namely rainfall, Tmax, Tmin, relative humidity, solar radiation and wind speed were used 325 

as the inputs for developing the models. Additionally, these models were simulated under four rainfall scenarios: 326 

rainfall on the same day (R0), rainfall lagged by one day (R1) and rainfall lagged by two days (R2) and rainfall 327 

lagged by three days (R3) to understand control of catchment size and geo-hydro-morphological characteristics 328 
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of the basin in generating runoff. While, remaining meteorological parameters were held constant during the 329 

processes. 330 

3.3 Model performance evaluation 331 

It has been found that overfitting in a model may lead to large errors in out-of-sample predictions (Hastie et al., 332 

2009). Therefore, it has been evaded by establishing model parameters for GLM, GAM, MARS, ANN and RF 333 

through automated hyperparameter tuning methods. 500 bootstrap resamples of the training data set were 334 

generated for each parameter value to be assessed. Table 2 presents the information on the specific parameters 335 

evaluated for each model. 336 

Table 2:  The information on hyper parameters used for estimating model parameters. 337 

The accuracy with which the simulated flow matches the observed flow during the training (calibration) and 338 

testing (validation) phases determines whether a hydrological model is appropriate for a given application 339 

(Refsgaard, 1997). Several methods, including quantitative statistics and graphical methods, has been developed 340 

in the past for assessing the accuracy of model predictions (Legates and McCabe, 1999). Moriasi et al. (2007) 341 

grouped these methods into three categories namely, standard regression, dimensionless, and error index, 342 

depending on how well each method explains the relationship between observed and simulated values, compares 343 

the relative performance of models, and quantifies the deviation in the units of the data of interest. Moreover, it 344 

has been established from previous studies that a single metric is inadequate to evaluate a model's performance, 345 

hence multiple metrics should be used (Adnan et al., 2020). Therefore, in this study, prediction accuracy of 346 

different models was compared using six statistical measures out of which one was standard regression 347 

(coefficient of determination (R2)), two of which were dimensionless (Kling-Gupta efficiency (KGE) and Nash-348 

Sutcliffe efficiency (NSE)), and the remaining three were being error index (ratio of the root mean square error 349 

to the standard deviation of the measured data (RSR)), the mean absolute error (MAE) and the percent bias 350 

(PBIAS)). These metrics are defined below by the equations (2–7): 351 

 352 

 353 

 354 

  355 

 356 

 357 

(6)                   358 
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where Pi are the predicted values and Qi are the observed values, n accounts for the number of samples, Q¯ 359 

represents the mean of observed data, and P¯ is the mean of predicted data. However, r is the Pearson’s 360 

correlation coefficient whereas σob and σp refers to the standard deviation of observed and predicted values, 361 

respectively. 362 

 363 

R2 evaluates the percentage of the variation in the measured data that can be explained by the model, whereas 364 

NSE estimates the relative size of the residual variance in relation to the variance in the measured data (Nash 365 

and Sutcliffe, 1970; Van Liew et al.,2003). According to Mazrooei et al. (2021), NSE is sensitive to extreme 366 

flows; as a result, KGE is also used to evaluate a model's performance while considering extreme flows into 367 

account (Adib and Harun, 2022). Other metrics, like RSR, MAE, and PBIAS, shed light on the overall 368 

inaccuracies in the projected flow relative to the observed. The value of R2, KGE and NSE should all be 1 in an 369 

ideal model, whereas RSR and MAE and PBIAS values should be 0 (Nash and Sutcliffe,1970; Van Liew et 370 

al.,2003; Gupta et al.,2009; Adnan et al., 2020). Moriasi et al. (2007) developed a guideline for interpreting the 371 

results of these metrics and ranking for the hydrological models based on a thorough review of the available 372 

literature. They found that a model can be classified as very good, good, satisfactory, or unsatisfactory if its 373 

NSE value is between 0.75 and 1, 0.65 to 0.75, 0.50 to 0.65, or less than 0.50, respectively. Similarly, R2 values 374 

between 0.6 to 0.7 are considered satisfactory, 0.85 to 1 are very good and below 0.5 are unsatisfactory (Van 375 

Liew et al., 2003). However, for RSR, numbers above 0.7 are considered to be poor, whereas values between 0 376 

and 0.5 are considered to be in the very good range. Thus, the lower is the RSR value, the better is the model. 377 

This is also true for PBIAS and MAE where lower values are favourable. According to Moriasi et al. (2007), 378 

PBIAS values of less than ±10% are considered to be highly acceptable, whilst values of more than ±25% are 379 

considered to be unsatisfactory. The negative number indicates that the model has overestimated its bias, 380 

whereas the positive value indicates that the model has underestimated its bias (Gupta et al., 1999).  381 

3.4 Bias correction  382 

Uncertainty in streamflow prediction may be caused by the GCMs' shortcomings (e.g., coarse spatial resolution, 383 

simplified physics and thermodynamic processes, numerical methods, or poor knowledge of climate system 384 

dynamics) in accurately replicating natural climate variability (Sperna Weiland et al., 2010). As a result, its 385 

quantification and correction are critical for generating a future time series of streamflow that is reliable and 386 

recommended to devising water resource management plans in the catchment. This study used the bias 387 

correction method proposed in Hawkins et al. (2013) to correct uncertainty (bias) between observed and 388 

CMIP6-GCMs predicted streamflow. The mathematical expression for this formulae is given below: 389 

  (                                                                                                                 (7) 390 

where,  and is the bias corrected and raw daily discharge for future simulation, respectively.  391 

and  is the mean discharge of observed and historical simulation for reference period (1979-2009), 392 

respectively. σo and σp is the standard deviation in observed and historical simulation for reference period, 393 

respectively. This method captures variability in both observation and GCMs simulations Hawkins et al. (2013), 394 

which is the interest of this study.  395 
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4 Results  396 

4.1 Streamflow simulation and evaluation of model performance  397 

The simulation (1979-2009) results generated under different rainfall scenarios (R0, R1, R2 and R3) on daily time 398 

scale for all six models (GLM, GAM, MARS, ANN, RF and 1D-CNN) during training and testing is shown in 399 

Fig. 3 and Fig. 4, respectively. The model performed slightly better during training than testing periods. R2, NSE 400 

and KGE values across models ranged from 0.69 to 0.90, 0.52 to 0.87, 0.69 to 0.91 and from 0.69 to 0.81, 0.49 401 

to 0.74 and 0.68 to 0.82 during training and testing, respectively. Likewise, it was found that RSR, MAE and 402 

PBIAS varied from 0.31 to 0.55, from 71.95 to 123.25 m3/s and -2.11 to +4.31% during training, as well as from 403 

0.56 to 0.46, from 123.06 to 106.64 m3/s and -3.74 to +2.21% during testing, respectively. Non-linear models 404 

(ANN,1D-CNN and RF) outperformed linear models (GAM and GLM) in runoff prediction under all rainfall 405 

scenarios (R0, R1, R2, and R3),with the exception of MARS, which produced results that were more or less 406 

comparable to those of the ANN model. Figures 3–4 show that both models (RF and 1D-CNN) satisfy the 407 

performance requirements outlined by Moriasi et al. (2007) as the best models, but RF slightly outperformed 408 

CNN in terms of error index. R2, NSE, KGE, RSR, and MAE and PBIAS values for the RF model during the 409 

training ranged from 0.88 to 0.90, 0.85 to 0.87, 0.86 to 0.87, 0.32 to 0.34, 71.95 to 77.49 m3/s and +0.03 to 410 

+0.13%, respectively. For the 1D-CNN, however, it varied from 0.87 to 0.89, 0.85 to 0.87, 0.90 to 0.91, 0.34 to 411 

0.35, 80.29 to 83.14 m3/s, and -1.25 to +0.13%. Similar pattern with slightly lower values were revealed during 412 

testing for the both models. This implies that RF can effectively capture non-linear interactions and can provide 413 

insights about actual watershed functions (Shortridge et al., 2016). On the other hand, GLM showed the poorest 414 

results. R2, NSE, KGE, RSR, MAE, and PBIAS values for the GLM model during the training varied from 0.69 415 

to 0.71, 0.52 to 0.56, 0.71 to 0.72, 0.54 to 0.55, 134.80 to 140.56 m3/s, and +2.63 to +2.73%, respectively. 416 

During testing, they varied between 0.69 and 0.71, 0.49 and 0.54, 0.68 and 0.70, 0.54 and 0.56, 134.35 and 417 

141.26 m3/s, +1 and +1.31%, respectively. Furthermore, it was observed that the models with rainfall scenario 418 

R3 had revealed reasonably better results in comparison to R0, R1 and R2 scenarios, indicating delayed 419 

contribution of rainfall-runoff to the river.  420 

Figure 3: Evaluation of the model (ANN, 1D-CNN, GAM, GLM, MARS and RF) performance in simulating 421 

streamflow under rainfall scenarios R0 (Fig.3a), R1 (Fig. 3b), R2 (Fig.3c) and (Fig. 3d) R3 at Kasol during 422 

training phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 423 

Figure 4:  Evaluation of the model (ANN, 1D-CNN, GAM, GLM, MARS and RF) performance in simulating 424 

streamflow under rainfall scenarios R0 (Fig.4a), R1 (Fig.4b), R2 (Fig.4c) and (Fig.4d) R3 at Kasol during testing 425 

phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 426 

Figure 5, 6, 7 and 8 shows comparison of observed and simulated streamflow under rainfall scenarios of R0, R1, 427 

R2 and R3 for all the models at Kasol, the outlet of the basin. As observed from the Figures (5-8), RF was able to 428 

follow the curve better compared to the other models. It is also deduced from the comparison of scatter plots 429 

wherein a relatively smaller deviation in the observed and estimated discharge of streamflow was found for the 430 

RF model. GLM performed the worst out of the six models with respect to the time variation graphs. A 431 

limitation faced by all the six models was the simulation of peak values. The models slightly underperformed at 432 

the prediction of higher values of streamflow. These findings led to the ultimate decision to use the RF model 433 
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with rainfall scenario R3 to predict streamflow in the Sutlej River in the future (2050s and 2080s) under the 434 

SSP245 and SSP585 scenarios.  435 

Figure 5: Comparison of observed and simulated streamflow for all six models (ANN, 1D-CNN, GAM, GLM, 436 

MARS and RF) under rainfall scenarios R0 437 

Figure 6: Comparison of observed and simulated streamflow for all five models (ANN, 1D-CNN, GAM, GLM, 438 

MARS and RF) under rainfall scenarios R1 439 

Figure 7: Comparison of observed and simulated streamflow for all five models (ANN, 1D-CNN, GAM, GLM, 440 

MARS and RF) under rainfall scenarios R2 441 

Figure 8: Comparison of observed and simulated streamflow for all five models (ANN, 1D-CNN, GAM, GLM, 442 

MARS and RF) under rainfall scenarios R3. 443 

4.2 Comparison of streamflow simulated with observed and CMIP6-GCMs data  444 

The uncertainty between observed and CMIP6-GCMs predicted streamflow during the reference period (1979-445 

2009) was investigated by comparing the streamflow simulated by RF model with observed and CMIP6-GCMs 446 

data. A large difference in streamflow patterns was seen in the box-plot of observed and CMIP6-GCMs 447 

simulated discharge (Fig. 9) derived for various months of the year, particularly from June through September 448 

(monsoon season), when a pattern of intense daily rainfall was observed over the catchment. Additionally, it was 449 

discovered through the analysis of probability exceedance curves generated using 10% of the time series' highest 450 

flows that, despite the streamflow’s in the two data sets being comparable throughout the pre-monsoon season 451 

(Fig. 10c), they differ noticeably for high flows during the annual (Fig.10a) and monsoon season (Fig.10c). 452 

Similar trends were seen in the comparison of the probability exceedance curves for low flows during the 453 

monsoon season, although there was strong agreement for annual (Fig.10b) and pre-monsoon measurements 454 

(Fig.10d). This may be due to the fact that orography has a considerable impact on regional Indian Summer 455 

Monsoon (ISM) climate, making it challenging for climate models to predict daily monsoonal rainfall 456 

accurately across the Himalaya (Turner and Annamalai, 2012; Niu et al., 2015; Choudhary et al., 2017). The 457 

Regional Climate Model (RCM) based on CMIP5-GCMs was used by Sanjay et al. (2017) to study pattern of 458 

change in precipitation and temperature over the HKH region. As a condition of the model's inability to 459 

accurately represent complicated feedback mechanisms, the results revealed large uncertainty in the summer and 460 

winter precipitation over the northwest Himalaya. This is also supported by the study of Kadel et al. (2018). 461 

They evaluated the performance of 38 CMIP5-GCMs in simulating rainfall over the central Himalaya and came 462 

to the conclusion that the majority of the models’ studied performed poorly when it comes to reproducing the 463 

spatial distribution of monsoonal rainfall. Although the most recent study by Gusain et al. (2020) in India 464 

reported that ISM simulation using CMIP6-GCMs over CMIP5-GCMS had significantly improved, there are 465 

discrepancies between the models and indicated uncertainty in predictions. Lalande et al. (2021) examined the 466 

abilities of 26 CMIP6-GCMs to simulate the rate of precipitation across the Himalayan region and concluded 467 

that the models consistently overestimated the rate of precipitation by 31% to 281%. Additionally, cold-bias in 468 

temperature estimation was also reported. Therefore, bias correction as described in Section 3.4 was applied to 469 

the projected streamflow for the future periods (2050s and 2080s) under all scenarios and for all six models in 470 

order to provide accurate times series of the discharge. 471 
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Figure 9: Box-plot comparing observed and CMIP6-GCMs (mean ensemble of models) simulated streamflow 472 

for various months of the year, derived over the period of 1979–2009. The line inside the box denotes the 473 

median values of streamflow, while the upper and lower whiskers indicate the highest and minimum values, 474 

respectively. 475 

Figure 10: Probability exceedance curves developed using 10% of the highest and lowest flows from the 476 

observed and CMIP6-GCMs (mean ensemble of models) over the time span of 1979–2009 for annual and 477 

seasonal (pre-monsoon and monsoon) flows.  478 

4.3 Projected change in rainfall and temperatures in 2050s and 2080s under SSP245 and SSP585  479 

Figure 11 shows how the catchment's mean monthly rainfall is expected to change under SSP245 and SSP585 in 480 

the 2050s and 2080s compared to the reference period (1979-2009).  Within months and for the CMIP6-GCMs, 481 

a sizable shift in the rainfall pattern is seen. With the exception of March, June, and September, the mean 482 

ensemble of the models generally predicts a rise in rainfall throughout the year in the 2050s and 2080s under all 483 

scenarios. The models also show significant variation in the seasonal and yearly rainfall patterns expected for 484 

the catchment in the 2050s and 2080s under various emission scenarios. However, based on the mean ensemble 485 

of the models, it is predicted that seasonal (Fig. 12) and annual (Fig. 13a) rainfall will increase generally in the 486 

2050s and 2080s under SSP245 and SSP585. Pre-monsoon, monsoon, post-monsoon, and winter rainfall in 487 

2050s will increase by 8.75 to 8.85%, 10 to 20.80%, 85 to 91.91%, and 12.48 to 14.16%, respectively, under 488 

SSP245 and SSP585. However, under SSP245 and SSP585 in the 2080s, it will rise by 7.69 to 17.50%, 21.52 to 489 

41.43%, 56.16 to 89.66%, and 22.48 to 12.43%, respectively. Under both scenarios in the 2050s and 2080s, pre-490 

monsoon and post-monsoon will have the lowest and highest percentage increases in rainfall, respectively. The 491 

monsoon season, however, is anticipated to have the greatest rise in terms of quantity (~40-167mm). The 492 

predicted range for the increase in mean annual rainfall is 13.85 to 18.61% in the 2050s and 17.91% to 34.31% 493 

in the 2080s. It is observed that the predicted pattern of change in rainfall across the sub-basin under various 494 

SSPs is consistent in terms of the direction of change with other studies conducted over the Sutlej and Himalaya 495 

region. Lalande et al. (2021) reported an overall increase in mean annual precipitation over the Himalayan 496 

region based on 10 CMIP6-GCMs. According to their analysis, the mean ensemble of model precipitation is 497 

predicted to increase by 8.6% to 25.4% in 2081-2100 under SSP245 and SSP585. The same study also showed 498 

an increase in the region's winter (November to April) and ISM (June to September) rainfall. This contradicts 499 

past studies that showed a trend toward declining ISM rainfall after the 1950s (Sabin et al., 2020). They 500 

postulated that the region's higher winter rainfall would have been caused by the strengthening of the western 501 

disturbances; however, the intensification of the ISM is responsible for the region's enhanced summer rainfall. 502 

Figure 11: Projected change in mean monthly rainfall in the sub-basin using different CMIP6-GCMs under 503 

SSP245 and SSP585 scenarios in the 2050s (Fig.11a and Fig.12b) and 2080s (Fig.12c and Fig.12d). 504 

Figure 12: Projected change in mean seasonal rainfall in the sub-basin using different CMIP6-GCMs under 505 

SSP245 and SSP585 scenarios in the 2050s (Fig.12a and Fig.12c) and 2080s (Fig.12b and Fig.12d). 506 

Figure 13: Projected change in mean annual rainfall (Fig.13a), Tmax (Fig.13b) and Tmin (Fig.13c) in the sub-basin 507 

using different CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s and 2080s.  508 
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The analysis of the CMIP6-GCM projections leads to the conclusion that for all months and seasons in the 509 

2050s and 2080s, maximum (excluding April and pre-monsoon in 2050s under SSP245) and minimum 510 

temperatures will rise under both scenarios (Fig. 14 (a-d) and Fig.15 (a-d)). Similarly, increase in mean annual 511 

Tmin and Tmax are also predicted in 2050s and 2080s under all scenarios (Fig.13b and 13c). The increase will be 512 

relatively higher for the Tmin as compared to the Tmax. This is also reported by Singh et al. (2015c). The increase 513 

in rainfall and temperature is typically higher under SSP585 than SSP245 in both eras (2050s and 2080s), as 514 

expected, due to a larger increase in radiative forcing brought on by increased greenhouse gas emissions.  515 

Figure 14: Projected change in mean seasonal maximum temperature (Tmax) in the sub-basin using different 516 

CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.14a and Fig.14 c) and 2080s (Fig.14b and 517 

Fig.14d). 518 

Figure 15: Projected change in mean seasonal minimum temperature (Tmin) in the sub-basin using different 519 

CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.15a and Fig.15c) and 2080s (Fig.15b and 520 

Fig.15d). 521 

4.34.4 Assessment of change in streamflow in 2050s and 2080s under SSP245 and SSP585  522 

The Sutlej River's mean monthly streamflow change as compared to the reference period's observed flow (1979-523 

2009) is shown in Fig. 16 under scenarios SSP245 and SSP585 for the future periods (2050s and 2080s). 524 

According to both scenarios and all six models, the Sutlej River's streamflow will decrease between January (-525 

33.80 to -14.38%), February (-32.40 to -14.15%), March (-23.55 to -0.84%), November (-21.06 to -5.14%) and 526 

December (-29.88 to -18.38%) in the 2050s and 2080s. Moreover, except for MPI-ESM-2HR and MPI-ESM1-527 

2-LR, which show an increase in streamflow in the 2080s under the higher emission scenario, all of the CMIP6-528 

GCMs indicate a decrease in the river's discharge in June (-20.24 to -0.57%) under SSP245 and SSP585 for both 529 

the periods. Similarly, excluding EC-Earth-Veg (under SSP245 in 2050s) and INM-CM5-0 (under SSP245 in 530 

250s and 2080s and under SSP585 in 2050s), all of the CMIP6-GCMs indicate a decrease in the river's 531 

discharge in May (-25 to -2.85%) during the study period. In contrast, under SSP245 and SSP585 in the 2050s 532 

and 2080s, all of the CMIP6-GCMs predict a rise in the river's discharge in April (20.24 to -0.57%; excluding 533 

SSP585 in 2080s), August (16.84 to 5.28%), and September (55.27 to 4.35%). But no clear pattern of 534 

streamflow change is seen for the remaining months (July and October) of the year, making results difficult to 535 

generalise because projected decrease/or increase in streamflow over the months is inconsistent among models 536 

under various emission scenarios in the 2050s and 2080s. The variations in climate variable projections caused 537 

by differing spatial resolutions and parametrization levels in the climate models may be the cause of these 538 

discrepancies in streamflow estimates (Sperna Weiland et al., 2010; Singh et al., 2015a). According to Murphy 539 

et al. (2004), the average of an ensemble of GCMs cancels out the errors of each individual model, and as more 540 

models are used, the ensemble uncertainty decreases. Therefore, in order to reduce uncertainty in projection of 541 

streamflow related to individual CMIP6-GCMs, streamflow pattern of the Sutlej River was analysed also using 542 

the mean ensemble of all six GCMs. 543 

Figure 16: Predicted change in monthly streamflow pattern of the Sutlej River with respect to the reference 544 

period (1979-2009) in 2050s (Fig.16a and Fig. 16b) and 2080s (Fig.16c and Fig. 16d) under SSP245 and 545 

SSP585 for different CMIP6-GCMs. 546 
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The mean ensemble of the models predicts that the Sutlej River's mean monthly streamflow (excluding April) 547 

will decrease under both scenarios from November (-18.45 to -17.17%) to June (-10.90 to -8.06%) between 548 

2050s and 2080s (Fig. 17). The river flow, which would have been expected to increase in April under both 549 

scenarios in 2050s, will also decline in 2080s for the higher emission scenarios (SPP585). The maximum and 550 

minimum streamflow declines are predicted to occur in the 2050s under SSP245 for the months of December (-551 

24.25%) and May (-7.77%), respectively. In comparison to SPP245, the decline generally will be slightly higher 552 

under SSP585 in 2050s and, for the 2080s, the projected decrease in streamflow will not show much difference 553 

under both the scenarios. Opposite to this, the mean ensemble of the models predicts that the Sutlej River's flow 554 

will increase from July (5.50 to 5.91%) to October (3.01 to 11.42%) in the 2050s and 2080s under both the 555 

scenarios. The maximum and minimum streamflow increases are predicted to occur in the 2080s under SSP245 556 

for the months of September (25.82%) and July (5.50%), respectively. In all scenarios, the increase will be 557 

slightly greater in the 2080s than it will be in the 2050s. When compared to SPP245, it will be higher for 558 

SSP585 in scenarios. 559 

Figure17: Comparison of monthly observed (1979-2009) and projected discharge of the multi-model ensembles 560 

for period 2050s and 2080s under SSP245 and SSP585 scenarios. 561 

The projected change in seasonal streamflow of the Sutlej River in 2050s and 2080s is shown in the Fig. 18. The 562 

2050s and 2080s would see an increase in streamflow during the monsoon (4.46 to 16.14%) and a decrease 563 

during the pre-monsoon (-17.40 to -0.51%) and winter (-28.81 to -12.42%) for all six CMIP6-GCMs, with the 564 

exception of INM-CM5-0 in the 2050s under SSP245 and MPI-ESM-2HR and MPI-ESM1-2-LR in the 2080s 565 

under SPP585, which indicate an increase in streamflow during the pre-monsoon rather than a decrease. The 566 

predicted streamflow for the post-monsoon season, however, does not show a consistent pattern of change 567 

across time within the models under SSP245 and SSP585 scenarios.  But there is high probability, based on the 568 

mean ensembles of models projections, that streamflow will also decline during the post-monsoon in 2050s (-569 

1.23 to -0.22%) and 2080s (-5.59 to -2.83%) under all scenarios. Similarly, the predicted decline for pre-570 

monsoon and winter will be between -10.36 and -6.12% and -21.87 and -21.52% under SSP245, and between -571 

10.0 and -9.13% and -21.87 and -21.11% under SSP585, respectively. With the exception of winter, when there 572 

are no significant differences in the projected streamflow, the decline will be slightly larger in the 2080s than it 573 

would be in the 2050s in all scenarios. In addition, the results of the mean ensemble of the models indicate that 574 

the Sutlej River's flow will increase during the monsoon under both scenarios, from 9.70 to 11.41% in the 2050s 575 

and11.64 to 12.70% in the 2080s.  576 

Figure 18: Predicted change in seasonal streamflow pattern of the Sutlej River with respect to the reference 577 

period (1979-2009) in 2050s (Fig. 18a and Fig. 18c) and 2080s (Fig. 18a and Fig. 18c) under SSP245 and 578 

SSP585 for different GCMs. 579 

Similarly, Fig. 19 lists the projected change in mean annual streamflow for the Sutlej River in 2050s and 2080s 580 

with respect to the reference period (1979-2009) under different emission scenarios. Although the nature of the 581 

direction of change within models vary, the mean ensemble of the models reveals a persistent increasing pattern 582 

in streamflow for all scenarios in 2050s and 2080s. The Sutlej River's annual stream flow will rise between 2050 583 

and 2080 by 0.79 to 1.43% for SSP585 and 0.87 to 1.10% for SSP245, according to the mean ensemble of the 584 

models. The rise is expected to be higher in 2080s as compared to 2050s under SSP585.  585 



17 

 

Figure 19: Predicted change in mean annual streamflow of the Sutlej River with respect to the reference period 586 

(1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different GCMs. 587 

5 Discussion 588 

This study reveals an increase in the Sutlej River's mean annual and monsoonal streamflow in the 2050s and 589 

2080s in contrast to earlier studies (Singh et al., 2014; Ali et al., 2018) that reported a reduction based on long-590 

term investigation of station data over historical era. The pattern of rainfall and temperature predicted by 591 

CMIP6-GCMs for future periods under the SSP245 and SSP585 emission scenarios, as well as physical 592 

processes occurring within the basin, have contributed to this increase in the Sutlej River's streamflow. For 593 

instance, it is speculated that the projected increase in mean streamflow during the monsoon season under both 594 

scenarios in the 2050s and 2080 for all models is related to the projected percentage increase in rainfall amount 595 

over the catchment and the melting of glaciers brought on by the increased maximum and minimum 596 

temperatures. This increase in river streamflow and its propensity to raise silt load may have an impact on both 597 

the capacity of reservoirs and the hydropower potential of hydroelectric facilities situated in the sub-basin and 598 

downstream of it. On the other hand, despite the predicted increase in rainfall throughout the pre-monsoon, post-599 

monsoon, and winter seasons, the anticipated decrease in streamflow of the Sutlej River during pre-monsoon, 600 

post-monsoon, and winter may be explained by the projected rise in temperatures, which may have led to 601 

increased evaporation from the surface. Similar conclusions were reached by Adib and Harun (2022) who 602 

studied the Kurau River in Malaysia and predicted a drop in streamflow during the months of January, April, 603 

and October despite receiving more rainfall. Moreover, during winter and post-monsoon, most of precipitation 604 

in upper part of the catchment occurs in form of snowfall which have minimal effect over runoff generation in 605 

the catchment. Additionally, the large increase in monsoonal streamflow predicted during study periods is what 606 

led to the projected increase in the Sutlej River's mean annual flow. Predicted decreases in Sutlej River 607 

streamflow over the pre-monsoon (April to June) and winter (December to March) seasons may have a 608 

significant impact on agriculture and hydropower generation downstream of the river, which is already 609 

struggling due to water shortages at this time of year. Ali et al. (2018) predicted that the hydroelectric 610 

production from the Nathpa Jhakri and Bhakra Nangal hydropower projects will decline during May to June in 611 

the future due to projected decline in the streamflow of the Sutlej River. 612 

 613 

The projected streamflow patterns for the Sutlej River under SSP245 and SSP585 in 2050s and 2080s show 614 

similar tendencies, but with differing magnitudes, that have been found by past researchers using process-based 615 

hydrological models. For instance, Singh et al. (2015a) used the SWAT (Soil Water Assessment Tool) model, a 616 

semi-distributed hydrological model, to simulate streamflow for future periods using two CMIP3-GCMs models 617 

(CGCM3 and HadCM3), and they discovered that the Sutlej River's mean annual streamflow would increase in 618 

the range of 0.6 to 7.8% for the future periods (2050s and 2080s). Similar to this, using the Variable Infiltration 619 

Capacity (VIC) and SWAT models, respectively, Ali et al. (2018) and Shukla et al. (2021) estimated increases 620 

in the Sutlej River's mean annual streamflow for the 2050s and 2080s under RCP4.5 and RCP8.5. The study of 621 

Shukla et al. (2021) estimated that under RCP4.5 and RCP8.5, the mean streamflow of the river would increase 622 

by 14 and 21% (at Rampur), respectively, in the 2080s. The previous studies' observed substantially higher 623 

increase in projected streamflow may be attributable to the CMIP3-GCMs' and CMIP5-GCMs' overestimation 624 
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of monsoonal precipitation over the Himalayan region (Choudhary et al., 2017; Sanjay et al., 2017; Gusain et 625 

al., 2020; Lalande et al., 2021). Similar to this, the results of Singh et al. (2015a), Ali et al. (2018), and Shukla et 626 

al. (2021) corroborated the expected decrease in streamflow during pre-monsoon and winter as well as rise 627 

during monsoon. This suggests that the RF model can accurately predict runoff and analyse the effects of 628 

climate change while capturing the nonlinearity of a hilly catchment. 629 

56 Conclusion 630 

This study compared the performance of the five machine learning models (GLM, GAM, MARS, ANN, and 631 

RF) and one deep learning model (1D-CNN) which were further divided into linear (MARS, ANN, and RF) and 632 

non-linear (ANN, 1D-CNN, and RF) models, in simulating rainfall-runoff responses over the hilly Sutlej River 633 

Basin in order to determine the best model for predicting streamflow response to future climate change in the 634 

2050s and 2080s under SSP245 and SSP585 using CMIP6-GCMs data. The important findings of the study are 635 

summarised below: 636 

In general, non-linear models (ANN,1D-CNN and RF) outperformed linear models (GAM, GLM and 637 

MARS) in runoff prediction under all rainfall scenarios (R0, R1, R2, and R3). Among all the models, RF 638 

and 1D-CNN were identified as the best models as per the model evaluation criteria. However, RF 639 

outperformed CNN in terms of error index (MAE and PBIAS), and as a result, it was used to 640 

investigate impact of future climate change on the Sutlej River pattern in the 2050s and 2080s under 641 

SSP245 and SSP585 emission scenarios.  642 

 The developed RF model slightly underperformed at the prediction of higher values of streamflow 643 

during training and testing. This implies that it is less effective in predicting flash floods that are caused 644 

by intense rainfall in the catchment. However, it was determined that the results produced by RF were 645 

comparable to process-based hydrological models for long-term change study in streamflow pattern. 646 

 647 

 Significant variations in the streamflow pattern were observed throughout the periods of months, 648 

seasons, years, and for the CMIP6-GCMs. The differences in spatial resolution and parametrisation 649 

levels of CMIP6-GCMs, which caused a noticeable change in the projected amounts of temperature 650 

and precipitation during the study periods, may serve as an illustration of these variances in streamflow 651 

prediction. The Sutlej River's mean annual streamflow based on the mean ensemble of models is 652 

predicted to rise between the years 2050 and 2080 by 0.79 to 1.43% for SSP585 and by 0.87 to 1.10% 653 

for SSP245. Additionally, under both emission scenarios, streamflow will decrease during the pre- and 654 

post-monsoon (-1.23 to -0.22% and -5.59 to -2.83%), as well as during the winter (-21.87 to -21.52% 655 

and -21.87 to -21.11%), but increase during the monsoon (9.70 to 11.41% and 11.64 to 12.70%) in the 656 

2050s and 2080s. 657 

 658 

 The increase in the Sutlej River's streamflow (annual and monsoon) is due to both physical processes 659 

that occur within the basin and rainfall and temperature patterns that are predicted by CMIP6-GCMs 660 

for future time periods under the SSP245 and SSP585 emission scenarios. The projected rise in mean 661 

streamflow during the monsoon season is associated to both the projected percentage increase in 662 
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rainfall over the catchment and the melting of glaciers brought on by the increasing maximum and 663 

minimum temperatures. On the other hand, the predicted increase in temperatures, which may have led 664 

to increased evaporation from the surface, may be used to explain the anticipated reduction in 665 

streamflow of the Sutlej River during pre-monsoon, post-monsoon, and winter.  666 

 667 

 Additionally, the projected changes in the mean annual and seasonal streamflow of the river are 668 

consistent with earlier research done using process-based physical hydrological models. Thus, the 669 

outcomes of the overall study indicate that the RF model is efficient for simulating streamflow in the 670 

Himalayan catchment, and that water availability during monsoon will rise as a result of an increase in 671 

catchment precipitation, which would eventually lead to an increased sediment load and affect 672 

hydropower generation. However, predicted reduction in streamflow during pre-monsoon, post-673 

monsoon and winter will put stress on agriculture and hydropower generation downstream of the river, 674 

which is already struggling due to water shortages at this time of year. The administrators of local 675 

water resources and the government organizations in charge of maintaining reservoirs down river may 676 

find these details on streamflow patterns to be of great use.  677 

678 
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 963 

 964 

Figure 1: The location of the sub-catchment within Sutlej River Basin. The three hydro-meteorological stations 965 
(Kasol, Sunni and Rampur) from which this study employed observed data for the years 1979 to 2009 are also shown. 966 

967 
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 968 

 969 

Figure 2: Taylor diagram showing comparative skills of 13CMIP6-GCMs in simulating climatic variables (rainfall, 970 

Tmax and Tmin) over the Sutlej sub-basin during reference period (1979-2009). The degree of correlation coefficient (r) 971 

between observed and CMIP6-GCMs, centered root-mean-square error (CRMSE) and departure of the models’ 972 

standard deviation (SD) from the observed data (dashed black arc line) are shown in Fig. 2a for rainfall, Fig. 2b for 973 

Tmax and Fig. 2c for Tmin. The units of SD for rainfall and temperature is in cm and °C, respectively.974 
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 975 
Figure 3: Evaluation of the models (ANN, GAM, GLM, MARS, RF and 1D-CNN) performance in simulating 976 

streamflow under rainfall scenarios R0 (Fig.3a) , R1 (Fig. 3b), R2 (Fig.3c) and (Fig. 3d) R3 at Kasol during training 977 

phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 978 
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 979 

 980 
Figure 4: Evaluation of the models (ANN, GAM, GLM, MARS, RF and 1D-CNN) performance in simulating 981 

streamflow under rainfall scenarios R0 (Fig.4a), R1 (Fig. 4b), R2 (Fig.4c) and (Fig. 4d) R3 at Kasol during testing 982 

phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 983 
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 984 

 985 

Figure 5: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 986 

1D-CNN) under rainfall scenarios R0. 987 

988 
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 989 

Figure 6: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 990 

1D-CNN) under rainfall scenarios R1. 991 
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 993 
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 995 

Figure 7: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 996 

1D-CNN) under rainfall scenarios R2. 997 
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 1003 

Figure 8: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 1004 

1D-CNN) under rainfall scenarios R3. 1005 
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 1007 

Figure 9: Box-plot comparing observed and CMIP6-GCMs (mean ensemble of models) simulated streamflow for 1008 

various months of the year, derived over the period of 1979–2009. The line inside the box denotes the median values 1009 

of streamflow, while the upper and lower whiskers indicate the highest and minimum values, respectively. 1010 
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  1016 

Figure 10: Probability exceedance curves developed using 10% of the highest and lowest flows from the observed and 1017 

CMIP6-GCMs (mean ensemble of models) over the time span of 1979–2009 for annual and seasonal (pre-monsoon 1018 

and monsoon) flows.  1019 
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 1022 

 1023 

Figure 11: Projected change in mean monthly rainfall in the sub-basin using different CMIP6-GCMs under SSP245 1024 

and SSP585 scenarios in the 2050s (Fig.11a and Fig.11b) and 2080s (Fig.11c and Fig.11d). 1025 

1026 
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 1027 

 1028 

Figure 12: Projected change in mean seasonal rainfall in the sub-basin using different CMIP6-GCMs under SSP245 1029 

and SSP585 scenarios in the 2050s (Fig.12a and Fig.12c) and 2080s (Fig.12b and Fig.12d). 1030 

1031 
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 1033 

Figure 13: Projected changes in mean annual rainfall (Fig.13a), Tmax (Fig.13b) and Tmin (Fig.13c) in the sub-basin 1034 

using different CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s and 2080s.  1035 

1036 



41 

 

 1037 

Figure 14: Projected change in mean seasonal maximum temperature (Tmax) in the sub-basin using different CMIP6-1038 

GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.14a and Fig.14c) and 2080s (Fig.14b and Fig.14d). 1039 
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 1040 

Figure 15: Projected changes in mean seasonal minimum temperature (Tmin) in the sub-basin using different CMIP6-1041 

GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.15a and Fig.15c) and 2080s (Fig.15b and Fig.15d). 1042 
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 1043 

Figure 16: Predicted change in monthly streamflow pattern of the Sutlej River with respect to the reference period 1044 

(1979-2009) in 2050s (Fig. 16a and Fig. 16b) and 2080s (Fig. 16c and Fig.16d) under SSP245 and SSP585 for different 1045 

CMIP6-GCMs. 1046 

 1047 
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 1048 

Figure17: Comparison of monthly observed (1979-2009) and projected discharge of the multi-model ensembles for 1049 

period 2050s and 2080s under SSP245 and SSP585 scenarios. 1050 

 1051 
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 1052 

Figure 18: Predicted change in seasonal streamflow pattern of the Sutlej River with respect to the reference period 1053 

(1979-2009) in 2050s (Fig.18a and Fig.18c) and 2080s (Fig.18c and Fig.18d) under SSP245 and SSP585 for different 1054 

GCMs. 1055 

1056 
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 1057 

Figure 19: Predicted change in mean annual streamflow of the Sutlej River with respect to the reference period 1058 

(1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different GCMs. 1059 

1060 
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Table 1:  Characteristics of the study catchment over the evaluation period of 1979–2009 1061 

Parameters Details 

Details of the sub-catchment 

Drainage area of the sub-catchment 

(km2) 

2457 km2 

Altitude  ~500-5000 m 

Slope 0-80° 

Geology Granite, Jutogh formation and  

Chail/Salkhala/Hemanta formation 

Soil Dystric cambisols, dystric 

regosols, and eutric fluviosols. 

Streamflow measured at the outlet (Kasol) of the sub-catchment 

Average of annual streamflow 12469.43 m3/s 

Minimum streamflow (daily) 64.30 m3/s 

Maximum streamflow (daily) 2891.00 m3/s 

Standard deviation (SD) of annual 

streamflow 

1750.70 m3/s 

Coefficient of variation (CV) of annual 

streamflow 

0.14 m3/s 

Rainfall integrated over the sub-catchment 

Average of annual rainfall 1001.32mm 

Average of monsoon rainfall (July-

September) 

403.08mm 

Average of winter rainfall (December-

March) 

277.35mm 

Temperature integrated over the sub-catchment 

Average annual maximum temperature 

(Tmax) 

28.35°C 

Average annual minimum temperature 

(Tmin) 

13.98°C 

 1062 

1063 
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Table 2:  The information on hyper parameters used for estimating model parameters 1064 

Model Name Hyperparameter Values 

Artificial Neural Network (ANN) build_fn, 

warm_start, 

random_state, 

optimizer, 

loss, 

metrics, 

batch_size, 

validation_batch_size, 

verbose, 

callbacks, 

validation_split, 

shuffle, 

run_eagerly, 

epochs, 

value = build_regressor 

value = False 

value = None 

value = rmsprop 

value = None 

value = None 

value = 64 

value = None 

value = 1 

value = None 

value = 0.0 

value = True 

value = False 

value = 500 

Generalized Additive Model (GAM) formula, 

family, 

data, 

weights, 

subset , 

na.action,offset, 

method, 

optimizer, 

control, 

scale, 

select, 

knots, 

sp, 

min.sp, 

H, 

gamma, 

fit, 

paraPen, 

G, 

drop.unused.levels,     

drop.intercept, 

discrete, 

value = None 

value = gaussian() 

value = list() 

value = Null 

value = Null 

value = Null 

value = "GCV.Cp" 

value = c("outer","newton") 

value = list(), 

value = 0 

value = False 

value = Null 

value = Null 

value = Null 

value – Null, 

value = 1 

value = True 

value = Null 

value = Null 

value = True 

value = Null 

value = False 

Generalized Linear Model (GLM) endog, 

exog, 

value = 1D 

value = 1D 
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family, 

 

 

offset, 

exposure, 

freq_weights, 

var_weights, 

missing, 

value = 

sm.families.Gaussian(sm.fam

ilies.links.log()) 

value = None 

value = None 

value = None 

value = None 

value = str 

Multivariate Adaptive Regression Splines 

(MARS) 

max_terms, 

max_degree , 

allow_missing, 

penalty, 

endspan_alpha, 

endspan, 

minspan_alpha, 

minspan, 

thresh , 

zero_tol, 

min_search_points, 

check_every, 

allow_linear, 

use_fast, 

fast_K, 

fast_h, 

smooth, 

enable_pruning, 

feature_importance_type, 

feature_importance_type, 

value = 20 

value = 3 

value = False 

value = 3.0 

value = 0.005 

value = -1 

value = 0.005 

value = -1 

value = 0.001 

value = 1e-12 

value = 100 

value = -1 

value = True 

value = False 

value = 5 

value = 1 

value = False 

value = True 

value = None 

value = 0 

Random Forest (RF) n_estimators, 

criterion, 

max_depth, 

min_samples_split, 

min_samples_leaf, 

min_weight_fraction_leaf, 

max_features, 

max_leaf_nodes, 

min_impurity_decrease, 

value=500 

value=”squared_error” 

value=None 

value = 2 

value = 5 

value = 0.0 

value = auto 

value = None 

value = 0.0 

 

1-Dimensional Convolution neural network Conv1D_filter,  Value = 64 
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(1D-CNN)  Conv1D_kernel_size,  

Conv1D_pool_size,  

Learning rate,  

Epoc,  

Batch size,  

loss  

Value = 2  

Value = 0.0001  

Value = 30  

Value = 280  

Value = MSE  
 

Value = 2  

Value =2 

Value = 0.0001  

Value = 30  

Value = 280  

Value = MSE  
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