
Response to the Editor and Reviewer’s Comments 

Editor’s comments: “Thanks for submitting your interesting manuscript. By now, two reviewers have returned 

their comments. One of the reviewers raised the serious issue of novelty. I suggest the authors consider the two 

comments in the following when revising your manuscript: 1) Adding more literatures about machine-learning 

based studies on climate change in mountainous areas; 2) Besides quite traditional ML models like GLM, GAM, 

RF, ANN, MARS, the authors should include at least one up-to-date deep learning algorithm for comparison”. 

Response: We are grateful for the feedback from the Editor and the two anonymous reviewers, whose 

suggestions helped us greatly to improve the manuscript's overall structure and content. We have added more 

literature about machine-learning-based studies on climate change in mountainous areas (Lines: 110-171) as 

well as one deep learning algorithm (1D-CNN) for the comparison (see Method Section 3.2; Lines; 312-325, 

and Table 2) in the revised paper to incorporate both of the editor's suggestions. These insertions are marked 

with track-change in the annotated manuscript. 

Reviewer#1 

General Comments: “Thanks to the authors for the efforts in the work and the manuscript. This paper 

investigated the performance of five machine learning models in streamflow prediction in a sub-catchment in 

the Sutlej River Basin and assessed the future streamflow change by driving one of the machine learning models 

with CMIP6 data. The results of this study can give information of future streamflow patterns for this specific 

region. The presentation is overall satisfactory but some arguments are not scientifically solid enough and 

requires detailed information. There are some major issues regarding the significance and novelty of the study 

that I would like the authors to clarify, which are required by the journal of Hydrology and Earth System 

Sciences. Meanwhile, the structure of the paper needs revision to avoid redundant information. The comments 

are below:” 

Reply: We are thankful to the reviewer for his detailed comprehensive assessment and positive feedback on our 

manuscript and its potential to generate impact. The manuscript has been revised in accordance with the 

reviewer's suggestions, and a response to each comment is provided below. 

 

Comment#1: “Regarding the novelty of the paper, the paper argues that very few research has been 

undertaken for a mountainous catchment, which I do not agree. There are plenty of studies investigating all 

kinds of machine learning models on streamflow simulation across the world, which covers many mountainous 

areas, except, they are not marked as mountainous areas specifically. In my opinion, investigating a 

mountainous area is not a solid argument for the novelty of this paper”. 

Reply: Yes, we concur with the reviewer that number of studies have used machine learning models to simulate 

streamflow across the world but these studies are generally limited to observable periods and resulting forecasts. 

The Himalayan region, one of the most vulnerable region to global climate change, has only received a small 

number of such research. Process-based hydrological models cannot be used effectively in the area due to the 

lack of long-term station records; consequently, efficient and successful ML/DL model testing could provide 

insight into how changing climatic conditions affect the Himalayan river systems. Additionally, none of these 

investigations across the Sutlej River Basin (SRB) have been conducted thus far using these techniques. Further, 

an original contribution to knowledge does not only require the use of a new method or technique, but it can also 



derive from the integration of new datasets different in nature and origin. Accordingly, in this work, different 

datasets were used from observations and models, the latter including the sixth and latest phase of the Coupled 

Model Intercomparison Project (CMIP6) to investigate the potential impact of climate change on the pattern of 

streamflow in the future. The scenarios from the CMIP6 models are likely to be more realistic than previous 

generations, i.e., CMIP3 and CMIP5, given their significant improvement in simulating rainfall and temperature 

for historical records, which are the principal drivers for the runoff generation in the catchment. Therefore, 

projected changes in seasonal and annual streamflow pattern derived from this study would provide a better 

insight over the future hydrological regime of the catchment than the previous ones and may assist in devising a 

better strategy for the operation of hydroelectric power projects and water resources management in the 

catchment. This sub-basin is bestowed with the large hydropower potential. There are three major hydroelectric 

power projects: Sunni Dam Project of 1080 MW, Rampur Hydroelectric Power Project (RHEP) of 412 MW, 

and Nathpa Jhakari Hydro-electric Power Project (NJHEP) of 1500 MW. Besides, Bhakara-Nangal dam (water 

storage capacity: 9.34 billion cubic meters; Power generation:1500MW) is also located downstream of the river. 

The projected (mean ensemble) increase in discharge of the river during monsoon season (July-September) may 

also result in an increased sediment load, which will affect the storage capacity of reservoirs and hydropower 

potential. However, predicted declines in Sutlej River streamflow over the pre-monsoon (April to June) and 

winter (December to March) seasons might have a significant impact on agriculture downstream of the river, 

which is already having problems due to water shortage at this time of year. These sentences were added to the 

revised manuscript's Introduction (Lines: 145-171) and Discussion (Lines; 589-630) sections to emphasise the 

work's original contribution to knowledge. 

 

Comment#2: “Regarding the interpretation of the future streamflow patterns, as I understand, the relative 

change in the paper is to compare the predicted streamflow from CMIP6 data with the observed streamflow in 

the reference period. Since there are meteorological data in CMIP6 in the reference period, which can be used 

as inputs for the machine learning models and generates “reference” streamflow data series. With this 

reference streamflow, the bias of the CMIP6 models to the observations can be excluded. In other words, the 

relative change in the paper cannot distinguish itself from the bias of CMIP6 models. This will make the results 

less reliable when the authors argue the results can assist in strategy planning”. 

Reply: We welcome the reviewer bringing forward this important aspect for discussion. The developed RF 

(random forest) model have also been trained using historical CMIP6 model projections for simulating 

streamflow for the reference period (1979-2009). As recommended by the reviewer, we assessed the bias 

between observed and CMIP6 simulated streamflow (Section 3.4; Lines: 382-395) using following bias 

correction method (Hawkins et al., 2013): 

 

  (  

 

where,  and is the bias corrected and raw daily discharge for future simulation, respectively.  

and  is the mean discharge of observed and historical simulation for reference period, respectively. σobs and 

σsim is the standard deviation in observed and historical simulation for reference period, respectively. This 



method captures variability in both observation and GCMs simulations, which is the interest of this study. 

Furthermore, the results are also revised accordingly for future streamflow projections (Section 4.2; Lines; 448-

478 and Section 4.4; lines:522-585). This has allowed us both to generalise our findings and to make our 

conclusions comparable to scientific theories, which was previously very challenging to do.    

 Hawkins, E., Osborne, T. M., Ho, C. K., & Challinor, A. J. (2013). Calibration and bias correction of 

climate projections for crop modelling: an idealised case study over Europe. Agricultural and forest 

meteorology, 170, 19-31. 

 

Comment#3: “The paper investigated only a small subbasin in the Sutlej River Basin (less than 10% in terms of 

the area), but a lot of description focuses on the whole river basin, which makes it confusing sometimes”. 

Reply: We incorporated suggestion of the reviewer and removed information that had no direct bearing on the 

sub-basin (Lines: 198-218). 

 

Comment#4: “Line 35, what is the criteria for selecting these six models?” 

Reply: The ranking of GCMs was done to find out the most appropriate models to be used in streamflow 

projection. Taylor diagram (Taylor, 2001), a robust graphical plot that integrates three statistical metrics, degree 

of correlation (R), centered root-mean-square error (CRMSE) and ratio of spatial standard deviation (SD) was 

used to visually analyse the performance of each GCM. Combining these metrics allows determining the degree 

of pattern correspondence and explaining how exactly a model represents the observed climate. Based on the 

results of the Taylor diagram, the first six GCMs which showed a good agreement with the observed data 

(rainfall, Tmax and Tmin) for a reference period 1979-2009 were selected to examine future patterns in streamflow 

for the period 2021-2100 in the Sutlej River according to two GHG emissions scenarios: SSP245 and SSP585. 

This has also been added to the revised manuscript (Lines: 256-289). 

 

Comment#5: “Line 64, are these results from Dai’s research also? Please add the reference in a proper way”. 

Reply: Yes. It has been added in the revised manuscript (Line 63). 

 

Comment#6: “Line 66, what exactly is the word “similar” here referred to? As you mentioned both 

decreasing/increasing trends in the previous sentence”. 

Reply: The word “similar” refers that other researchers have also observed both increasing as well decreasing 

trend in river discharge as Dai et al (2004) reported in their research.  

 

Comment#7: “Line 70, please list some examples of other drivers here”. 

Reply: Precipitation (snowfall + rainfall), temperature, evapotranspiration, snowmelt timing and, snowmelt are 

the main drivers of runoff generation in a catchment. These are added in the revised manuscript (Lines: 69-71). 

 

Comment#8: Line 74, what do you mean by adverse effect here? 

Reply: The sentence in Line 74 discuss how variability in rainfall pattern may alter hydrological cycle. Thus, 

the meaning of adverse effect is synonymous to ‘alternation’ here.  To avoid further confusion, we replaced the 

term ‘have an adverse effect on’ with ‘alter’ in the revised manuscript (Line 74) 



 

Comment#9: Line 84, “generate” should be “generates”. 

Reply: The suggestion of the reviewer has been incorporated in the revised manuscript (Line 83). 

 

Comment#10: Line 85, “could” maybe better change to “can”. 

Reply: In Line 85, “could” has been changed to “can” (Line 84) 

 

Comment#11: Line 137, the application of ML model should not be the novelty, as ML models are only tools. 

Consider address this by specifying the scientific questions. 

Reply: The suggestion of the reviewer has been well taken and novelty of the present work is explained 

explicitly in the reply of the comment 1.   

 

Comment#12: Line 145-150, This is redundant information with Line 122-127. 

Reply: As suggested by the reviewer, Line 145-150 has been removed in the revised manuscript to avoid 

redundancy in the paper. 

 

Comment#13: Line 151, so the study area is a sub basin of the Sutlej river. Then the description of the whole 

basin is way too much. Please instead focus on the description of the actual study area. 

Reply: The suggestion of the reviewer has been well taken and we shortened the study area description by 

focusing on the description of the actual study area (Lines; 198-218). 

 

Comment#14: Line 154, the stations in the figure, are they meteorological stations or hydrological stations? 

Reply: These are hydro-meteorological stations, so information on temperature, rainfall, and discharge are all 

collected at the same location just a few metres apart. 

 

Comment#15: Line 162. Please check the numbers in the Table, or explain why the mean streamflow is much 

larger than the maximum flow. And there is no need to give two digits for these variables. 

Reply: The number shown in the Table 1 is correct. The streamflow is shown in three categories: mean annual 

streamflow averaged over the period of 31 years, the highest value of daily maximum streamflow and the lowest 

value of the daily minimum streamflow during this period. This has now been updated in the Table 1. 

 

Comment#16: Line 173, the investigation is conducted for the three stations or only the outlet station? And 

please explain how you connect the CMIP6 data grid to the station point. Have you considered any areal 

weights? 

Reply: The investigation is conducted at the outlet station. We used downscaled and bias-corrected datasets 

from six GCMs which are available at grid resolution of 0.25 degree×0.25 degree (Mishra et al., 2020). 

Empirical Quantile Mapping (EQM) approach was used for removing bias in the data. Seven grids of the 

downscaled CMIP6-GCMs data cover the study area. The temperature (Tmax and Tmin) data were adjusted for 

topographical bias by separating the study area into a number of homogenous elevation bands spaced by at an 

interval of 1000m, and applying a temperature laps rate of 6.5°C/1000m within each grid. A Digital Elevation 



Model (DEM) of 30 m spatial resolution derived from CartoSat-1 stereo data (www.bhuvan.nrsc.gov.in) was 

used for this purpose. The values of rainfall and temperature at each grid were then averaged over the catchment 

using the Thiessen polygon method in order to provide daily rainfall data integrated at the catchment scale for 

assessing changes in the future climate with respect to the observed period i.e., 1979-2009). These lines are also 

added in the revised manuscript (Lines: 233-254). 

 

Comment#17: Line 192, reference is absolutely needed here. It is not convincing how you select the models. 

Reply: The criteria for selecting GCMs are explained and added in the revised manuscript with proper citation 

(Lines: 256-289). 

 

Comment#18: Line 208, I do not think this argument is valid here. To be applied to basins with similar 

geographical characteristics, the models need to be validated across multiple stations. According to the 

description in the method, I think there is only one station included in this study. 

Reply: Yes, we do agree with the reviewer. Therefore, we have expressed only possibility of exploring potential 

of the developed model in streamflow simulation under similar geographical and climatological environment. 

For this, it needs to be validated across the different station. Therefore, to avoid confusion, we have remove this 

sentence in the revised manuscript. 

 

Comment#19: Line 247, there is no in the equation. 

Reply: Thanks for pointing out this typo error. Now, it has been corrected. 

 

Comment#20: Line 241, consider to add the formula of R2 also. As in Line 248 you are explaining R2 together 

with the other two metrics. 

Reply: The suggestion of the reviewer has been well taken and it has been incorporated in the revised 

manuscript (Line 353). 

 

Comment#21: Line 249 to Line 254, references are needed here. Are these standard categories?  Also please 

rewrite in a more organized way. 

Reply: Yes, these are the standard categories for evaluating performances of the models. Moreover, as 

suggested by the reviewer, sentences are redrafted and we added three more metrics namely NSE, KGE and 

PBIAS to justify the selection of a data driven model. All related references are added in the revised manuscript 

(Line 338-381). 

 

Comment#22: Line 300, it is also important to consider ensembles, we need to be careful with the “best” 

model. So maybe be conservative with the conclusions here. 

Reply: This conclusion is only based on comparison of five ML models (GLM, GAM, MARS, ANN, and RF) 

and their performances in simulating streamflow under four rainfall scenarios for reference period using 

observed data. Here, RF has outperformed other models in terms of statistical efficiency therefore referred as the 

best model. We believe that there is some misinterpretation from the reviewer as these models are firstly trained 



with observed data of reference period and then applied for predicting streamflow in future using GCMs outputs 

(individual or ensembles of models). 

 

Comment#23: Line 305, about the reference period, are you comparing to the observed streamflow? Since 

there is reference period in CMIP6 also where you can run your model with these data and generated a 

reference streamflow series. Which method you are using here? And I think this is important to specify in the 

method. 

Reply: We revised the manuscript as per the suggestion of the reviewer. Please refer to the reply of second 

comment. 

 

Comment#24: Line 321/642, the results here is very confusing as mean ensemble has a much larger relative 

change than any of the model individually. Could you explain the reason or show annual data series here? 

Reply: The reason for higher relative change in mean ensemble streamflow may be attributed to the higher 

projected change in precipitation in comparison of temperatures of the ensemble time series. However, for 

individual GCM model, the higher projected relative change in precipitation is followed by relatively higher 

change in temperature, causing relative lower changes in projected streamflow than the ensemble. However, this 

issue is resolved in the revised manuscript by applying bias correction over the projected streamflow data.  

 

Comment#25: Line 336, since the magnitude in the change is very different, actually it’s not precise to say they 

are similar tendencies. 

Reply: The sentence is revised as per the suggestion of the reviewer. 

 

Comment#26: Line 352 to 375, a huge paragraph here is describing only the numbers, it will be better to put 

them in a more organized way and add refined information. 

Reply: Thanks for the suggestion. We revised the paragraph and discussed results in terms of important 

outcomes and explained it. In doing so, we also compared these results with previous studies (Section 5; 

Discussion; Lines: 711-752). 

 

Comment#27: Line 376, please add explanation of pre-monsoon/monsoon/post-monsoon months. 

Reply: The suggestion of the reviewer has been well taken and we added explanation for the change in 

projected streamflow during pre-monsoon/monsoon/post-monsoon months in the revised manuscript (Section 5; 

Discussion; Lines: 588-629). 

 

Comment#28: Line 419, here the conclusion is different with the information in Figure 8. There, the change in 

May is sometimes increase. 

Reply: Yes, for the month of May, we did not get a clear picture as some models have shown increase in 

streamflow and others decrease. However, we observed a clear trend of declining streamflow for the mean 

ensemble of the models that has been validated with the previous published work (Lines: 607-612).  

 

Comment#29: Line 422/658, considering using different line types. 



Reply: We revised Figure 9 which now has been renamed as the Figure 17 and used different line types (e.g. 

continuous and dashed) and colour to highlight distinctions among the lines.  

 



 

Reviewer#2 

General Comments: “The Himalayan river system is most susceptible to the climate change and as for as India 

is concerned, it vast population depends on the waters of the Himalayan rivers for irrigation, hydropower 

generation, domestic and other uses. Any change in the water availability (increase or decrease) will definitely 

impact the downstream population and the ecosystem as a whole. Looking into the fragility of the Himalayan 

ecosystem, an assessing of the impacts of the climate change on the streamflow using the latest ML techniques 

such as  the Gaussian Linear Regression Model (GLM), Gaussian 30 Generalized Additive Model (GAM), 

Multivariate Adaptive Regression Splines (MARS), 31 Artificial Neural Network (ANN), and Random Forest 

(RF) is the techno-socio need of the hour, particularly in the Himalayas. Six CMIP6 models, two SSP scenarios 

and four rainfall scenarios (this is really interesting-the lagging concept) for future stream flow predictions at 

different temporal scale is really interesting and will be immensely helpful to the stakeholders of the region. 

This assessment made in this study will be useful in developing water resources development and management 

plans in the downstream of the basin. The techniques, calibration, validation and length of the records is beyond 

the question and suffice for such a study. The techniques are perfect and the results are well discussed. I was 

just flowing through the text and the different sections of the paper. The paper is well written, smooth and the 

readers will find it amicably understandable. The language is perfect. Therefore, looking into the applicability 

and technical enrichments of the manuscript, I will recommend for publication of this manuscript in this journal 

with minor corrections as given here”. 

Reply: We are thankful to the reviewer for his detailed comprehensive assessment and positive feedback on our 

manuscript and its potential to generate impact. 

 

Specific Comments 

Comment#1: “The criteria for selection of the GCMs may please be explained at the suitable place in the 

manuscript”. 

Reply: The ranking of GCMs was done to find out the most appropriate models to be used in streamflow 

projection. Taylor diagram (Taylor, 2001), a robust graphical plot that integrates three statistical metrics, degree 

of correlation (R), centered root-mean-square error (CRMSE) and ratio of spatial standard deviation (SD) was 

used to visually analyse the performance of each GCM. Combining these metrics allows determining the degree 

of pattern correspondence and explaining how exactly a model represents the observed climate. Based on the 

results of the Taylor diagram, the first six GCMs which showed a good agreement with the observed data 

(rainfall, Tmax and Tmin) for a reference period 1979-2009 were selected to examine future patterns in 

streamflow for the period 2021-2100 in the Sutlej River according to two GHG emissions scenarios: SSP245 

and SSP585. This has also been added to the revised manuscript (Lines: 256-289). 

 

Comment#2: “The conclusion part may be written in bullet form for enhanced understanding”. 

Reply: The suggestion of the reviewer has been incorporated in the revised manuscript (Lines: 630-677). 

 

Comment#3:  A separate section of the future scope of the research will further enrich the need and 

advancement of such studies. 



Reply: We incorporated the suggestion of the reviewer and added the scope of the research in the revised 

manuscript (Lines: 668-677).  

 

Some Typos and minor:  

238 : These were coefficient of determination (R2). The eqn for R2 is missing in the text. ?  

Reply: We added equation for the R2 in the revised manuscript (Line 353). 

 

248: …………….refers to the standard deviation of observed values. Please correct the STDEVobs?  

Reply: This has been corrected in the revised manuscript (Line 361) 

 

261: please write the unit of MAE? 

Reply: This has been added in the revised manuscript (Line 403) 

 

457: Thus, the outcomes of the overall study indicate that the RF 

Reply: The suggestion of the reviewer has been incorporated in the revised manuscript. 
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Abstract 

The alteration in river flow patterns, particularly those that originate in the Himalayas, has been caused by the 

increased temperature and rainfall variability brought on by climate change. Due to the impending 

intensification of extreme climate events, as predicted by the Intergovernmental Panel on Climate Change 

(IPCC) in its sixth assessment report, it is more essential than ever to predict changes in streamflow for future 

periods. Despite the fact that some research has utilised machine learning and deep learning based models to 

predict streamflow patterns in response to climate change, very few studies have been undertaken for a 

mountainous catchment, with the number of studies for the western Himalaya being minimal. This study 

investigates the capability of five different machine learning (ML) models and one deep learning (DL) model, 

namely the Gaussian Linear Regression Model (GLM), Gaussian Generalized Additive Model (GAM), 

Multivariate Adaptive Regression Splines (MARS), Artificial Neural Network (ANN), Random Forest (RF), 

and 1D-Convolutional Neural Network (1D-CNN), in streamflow prediction over the Sutlej River Basin in the 

western Himalaya during the periods 2041-2070 (2050s) and 2071-2100 (2080s). Bias corrected data 

downscaled at grid resolution of 0.25°× 0.25° from six General Circulation Models (GCMs) of the Coupled 

Model Intercomparison Project Phase 6-GCMs framework under two greenhouse gas trajectories (SSP245 and 

SSP585) were used for this purpose. Four different rainfall scenarios (R0, R1, R2, and R3) were applied to the 

models trained with daily data (1979-2009) at Kasol (the outlet of the basin) in order to better understand how 

catchment size and the geo-hydro-morphological aspects of the basin affect runoff. The predictive power of 

each model was assessed using six statistical measures: the coefficient of determination (R2), the ratio of the 

root mean square error to the standard deviation of the measured data (RSR), the mean absolute error (MAE), 

the Kling-Gupta efficiency (KGE), the Nash-Sutcliffe efficiency (NSE), and the percent bias (PBIAS). RF 

model with rainfall scenario R3 which outperformed other models during the training (R2=0.90; RSR=0.32; 

KGE=0.87; NSE=0.87; PBIAS=0.03) and testing (R2=0.78; RSR=0.47; KGE=0.82; NSE=0.71; PBIAS=-0.31) 

period therefore was chosen to simulate streamflow in the Sutlej River in the 2050s and 2080s under the SSP245 

and SSP585 scenarios. Bias correction was further applied to the projected daily streamflow in order to generate 

reliable times series of the discharge. The mean ensemble of model results show that the mean annual 

streamflow of the Sutlej River is expected to rise between 2050s and 2080s by 0.79 to 1.43% for SSP585 and by 

0.87 to 1.10% for SSP245. In addition, streamflow will increase during the monsoon (9.70 to 11.41% and 11.64 

to 12.70%) in the 2050s and 2080s under both emission scenarios, but it will decrease during the pre-monsoon (-

10.36 to -6.12% and -10.0 to -9.13%) and post-monsoon (-1.23 to -0.22% and -5.59 to -2.83%), as well as 

during the winter (-21.87 to -21.52% and -21.87 to -21.11%).  This variability in streamflow is highly correlated 

with the pattern of precipitation and temperature predicted by CMIP6-GCMs for future emission scenarios, as 

well as with physical processes operating within the catchment. Predicted declines in Sutlej River streamflow 

over the pre-monsoon (April to June) and winter (December to March) seasons might have a significant impact 

on agriculture downstream of the river, which is already having problems due to water restrictions at this time of 

year. The present study will therefore assist in strategy planning for ensuring the sustainable use of water 

resources downstream by acquiring a knowledge of the nature and causes of unpredictable streamflow patterns. 

 

Keywords: Machine learning models; 1D-CNN; streamflow; climate change; CMIP6-GCMs; western Himalaya 



1 Introduction 

Human-induced global warming has altered patterns of the rainfall worldwide (Goswami et al., 2006; Trenberth, 

2011), and also increased risks of extreme events such as the droughts and floods (Easterling et al., 2000; 

Trenberth et al., 2015; Otto et al., 2017). It has impacted hydrology of many river basins globally, including 

variation in streamflow (Gerten et al., 2008; Nepal and Shrestha, 2015; Singh et al. 2015a; Ali et al., 2018; Lutz 

et al., 2019; Singh et al., 2022). A study of long-term (1948-2004) streamflow (discharge) data of 200 largest 

rivers of the globe showed considerable change in their annual discharge, however, results were statistically 

significant only for 64 rivers (Dai et al., 2009). Out of which 45 were marked with decreasing trends and the 

remaining 19 showed increasing trends in their annual discharge. Similar decreasing and increasing trends in 

discharge of the rivers were reported also at regional scale: Asia (Kundzewicz et al., 2009; Krysanova et al., 

2015), Europe (Stahl et al., 2010; Stahl and Tallaksen, 2012) and America (Pasquini and Depetris, 2007). 

Moreover, it has been established that the effects of rainfall variation and extreme events on annual discharge 

are likely strong compared with other drivers (Kundzewicz et al., 2009; Miller et al., 2012; Van der Wiel et al., 

2019). Zhao et al. (2021) examined how precipitation, evapotranspiration, and timing of snowmelt impacted 

runoff in the Kaidu River Basin of China. They discovered that as global warming increased, the timing of 

snowmelt became less significant while the influence of precipitation increased comparatively. A projected rise 

of ~2°C to 5°C in mean annual global temperature by 2100 under higher greenhouse gas emission scenarios as 

predicted from the General Circulation Models (GCMs) (Gao et al., 2017) will considerably affect the rainfall 

pattern (intensity and amount) and may alter hydrological cycles (Okai and Kanae 2006; Haddeland et al., 

2014). This would subsequently impact availability of water resources and present challenges for their 

management since a rise in the demand of water is also predicted (Lutz et al., 2019). Therefore, it is 

indispensable to know the underlying hydrological dynamics occurring within a basin in context of climate 

change for effective management and sustainable use of the water resources. 

 

The underlying hydrological processes controlling rainfall-runoff generation in a basin can be understood with 

the use of a hydrological model which is based on complex mathematical equations and theoretical laws 

governing physical processes in the basin (Kirchner, 2006; Singh et al., 2019). It simulates/or predicts response 

of the basin to climatological forcings such as the rainfall (Sood and Smakhtin, 2015) and generates synthetic 

time series of hydrological data that can be used by water managers and scientists for varied applications 

ranging from water budgeting and partitioning (Conan et al., 2003; Schreiner‐McGraw and Ajami, 2020) to 

inundation mapping and modelling (Mahto et al., 2022). A hydrological model is supposed not only to have a 

good predictive power but also the ability of capturing relationships among the forcing factors and catchment 

response so that an accurate estimate of rainfall-runoff could be made (Shortridge et al., 2016). However, until 

now, there is no hydrological model that can simulate basin-behaviour universally well against all the 

hydrological challenges inflicted from climate change and human-interventions (Yang et al., 2019). As a result, 

many hydrological models have been devised considering functioning and robustness of models in explaining 

underlying complexity in quantifying basin-scale response to small-scale spatial complexity of physical 

processes (Shortridge et al., 2016; Herath et al., 2021). Broadly, these can be grouped into two categories: 

physical or process-based models and empirical or data-driven models (Yang et al., 2019; Kabir et al., 2020). 



The latter category of models uses a mathematical relationship established between runoff and affecting factors 

in the basin for deriving the runoff (Adnan et al., 2019).  

 

It is purported that the data-driven model despite of inherited limitations over physical interpretability of 

processes has outperformed the physical models in terms of prediction accuracy in many hydrological 

applications (Shortridge et al., 2016; Adnan et al., 2019; Kabir et al., 2020; Herath et al., 2021). Also, they are 

preferred over the physical models for rainfall-runoff modelling/or streamflow prediction modelling due to 

limited requirements of data as inputs, where data limitation is the major challenge (Beven, 2011). These models 

in past were heavily criticised on the ground of being incompetent to model the non-linear behaviour of 

streamflow (Yang et al., 2019). But recent developments in computational intelligence, in the areas of machine 

learning (ML) and deep learning (DL) in particular, have greatly expanded the capabilities of empirical 

modelling (Adnan et al., 2020; Fu et al., 2020; Rahimzad et al., 2021; Ghobadi and Kang, 2022). This resulted 

in the development of many non-linear models such as the Artificial Neural Network (ANN), Random Forest 

(RF), Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) models, which can capture and 

model non-stationarity of the rainfall-runoff relationships (Yaseen et al., 2015; Shortridge et al., 2016; Adnan et 

al., 2019; Yang et al., 2019; Xiang et al., 2020). Yang et al. (2019) applied three machine learning models 

namely ANN, SVR, and RF to predict monthly streamflow over the Qingliu River basin in China under 

changing environmental conditions between 1989 and 2010, and compared their results with the six process-

based hydrological models. They concluded that the ML model performed better than the process-based model 

not just in terms of prediction accuracy, but also in terms of flexibility when it came to including other runoff 

effect factors into the model. Similar outcomes for Lake Tana and the adjacent rivers in Ethiopia were also 

reported by Shortridge et al. (2016), where ML models demonstrated noticeably lower streamflow prediction 

errors than the physical models developed for the region. However, they inferred that linear machine learning 

models, such as the Multivariate Adaptive Regression Splines (MARS) and Generalized Additive Model 

(GAM), were sensitive to extreme climate events, so the degree of uncertainty in their predictions needed to be 

carefully considered. 

 

The limitations of such data-driven models can be overcome by adopting more advanced ML and DL models 

(Xiang et al., 2020). Rasouli et al. (2012) compared the performance of the Multi-Linear Regression (MLR) 

model with the Bayesian Neural Network (BNN), SVR, and Gaussian process (GP) in terms of daily streamflow 

prediction for the Stave River, a mountainous basin, in British Columbia, and found that the BNN model 

performed better than others. According to Hussain and Khan (2020), supervised learning model RF 

outperformed Multilayer Perceptron (MLP) and SVR in terms of accuracy while predicting monthly streamflow 

for the Hunza river in Pakistan by 33.6% and 17.85%, respectively. Recently, Deep Neural Network (DNN), 

Convolutional Neural Network (CNN) and LSTM models, which are based on deep learning, have seen a surge 

in the number of streamflow prediction applications due to their abilities to handle complex stochastic datasets 

and abstracting the internal physical mechanism (Fu et al., 2020; Ghobadi and Kang, 2022). Based on statistical 

performance evaluation criteria, Rahimzad et al. (2021) found that the LSTM outperformed the LR, SVM, and 

Multilayer Perceptron (MLP) models in daily streamflow prediction over the Kentuky River basin in the USA. 

However, Van et al. (2020) showed that CNN outperformed LSTM in streamflow modelling in the Vietnamese 



Mekong Delta by a small margin. Comparing data-driven models to a given problem yield a range of results for 

distinct geographical and climatic conditions (Hagen et al., 2021. Adnana et al. (2020) examined the predictive 

accuracy of Optimally Pruned Extreme Learning Machine (OP-ELM), Least Square Support Vector Machine 

(LSSVM), MARS, and Model Tree (M5Tree) models in order to estimate monthly streamflow in the Swat River 

Basin (Hindukush Himalaya), Pakistan. They came to the conclusion that the LSSVM and MARS are the most 

effective at forecasting streamflow. In contrast, Hussain et al. (2020) discovered that ELM outperformed 1-D-

CNN while forecasting streamflow on three time scales i.e., daily, weekly and monthly in the Gilgit River, 

Pakistan. This suggests that it is challenging to find a data-driven model that is effective across all application 

domains and scales (Yaseen et al., 2015; Fu et al., 2020). 

 

The use of machine learning and deep learning based models for streamflow simulations within catchments is 

generally limited to observable periods and resulting forecasts (Eng and Wolock, 2022). There are very limited 

studies worldwide where these models were applied in predicting long-term streamflow for future periods in 

context of climate change (Das and Nanduri, 2018; Thapa et al., 2021; Adib and Harun, 2022). This can be 

attributed to the challenges associated with data assimilation brought on by the use of coarse resolution scenario 

data obtained from General Circulation Models (GCMs), which limits their direct application in regional impact 

assessment (Hagen et al., 2021; Adib and Harun, 2022). Das and Nanduri (2018) integrated Relevance Vector 

Machine (RVM) and SVM models with Coupled Model Intercomparison Project Phase (CMIP5)-GCMs to 

project monthly monsoon streamflow across the Wainganga basin (India) for monsoon season. Adib and Harun 

(2022) studied variations in the monthly streamflow pattern of the Kurau River (Malaysia) from 2021 to 2080 

by coupling ML models (RF and SVR) with Coupled Model Intercomparison Project Phase (CMIP6)-GCMs. 

Despite of the significance potentials of the ML and DL models in streamflow prediction, relevant studies 

assessing the application of these models for streamflow prediction under future scenarios over the mountainous 

basins are limited due to non-availability of long-term data (Xenarios et al., 2019; Adnana et al., 2020). Thapa et 

al. (2021) used a combination of the LSTM model and the CMIP5-GCMs scenarios to estimate streamflow 

patterns in the Langtang basin of the Central Himalayas. Their analyses revealed a notable increase in 

streamflow as a result of the predicted increase in precipitation. The projections from Coupled Model 

Intercomparison Project Phase 3 (CMIP3)-GCMs and CMIP5-GCMs inherit limitations in simulating extreme 

precipitation (Kim et al., 2020), which are the principal drivers for the runoff generation in the catchment. This 

causes large uncertainty in streamflow predictions (Wang et al., 2021). Uncertainty in streamflow prediction can 

be minimised by using scenarios from the CMIP6-GCMs which are likely to be more realistic than previous 

generations, i.e., CMIP3-GCMs and CMIP5-GCMs, given their significant improvement in simulating rainfall 

and temperature for historical records (Chen et al., 2020; Gusain et al., 2020; Kim et al., 2020). Therefore, 

projected changes in streamflow patterns derived from CMIP6-GCMs scenarios would give a better 

understanding of the catchment's future hydrological regime than previous ones. To the authors’ knowledge, no 

work has been published over a mountainous basin that integrates ML/DL models with CMIP6-GCMs scenarios 

to predict changes in streamflow patterns for future periods. Hence, it is important to test whether machine 

learning approaches can be effectively used over a mountainous river basin to predict streamflow using hydro-

meteorological variables and CMIP6-GCMs scenarios as the input data. 

 



With a catchment area of 56874km2 (up to Bhakara Dam), the Sutlej also pronounced as ‘Satluj’ is an important 

river in the western Himalayas and runs through diverse climatic zones. The flow in the upper and middle 

catchment is primarily impacted by glacier/snow melt induced by seasonal temperature shift and preceding 

winter precipitation, while the lower section of the catchment area is mostly regulated by rainfall both in the 

winter and during the monsoon season (Singh and Jain, 2002; Archer, 2003; Miller et al., 2012). Based on data 

from the period 1986–1996, Singh and Jain (2002) estimated the mean yearly contribution of snow/glacier melt 

and rainfall to the Sutlej River as being 59% and 41%, respectively. However, the discharge in the river peaks is 

directly related to the peak in rainfall during the monsoon (Lutz et al., 2014). Recent studies on this basin has 

raised concerns about the implications of climatic changes on streamflow since a warming climate has brought 

changes in the amount and spatial-temporal distribution of precipitation (Singh et al., 2014; Singh et al., 2015b). 

Previous research has only used process-based hydrological models and scenarios from CMIP3-GCMs and 

CMIP5-GCMs to date when examining the effects of climate change (past and future) on streamflow patterns in 

the region (Singh and Jain, 2002; Singh et al., 2015a; Ali et al., 2018; Shukla et al., 2021), which leaves a gap in 

the use of machine and deep learning models and scenarios from the latest CMIP6-GCMs.This study very first 

time examines the potential of five ML models and one deep learning model namely, Gaussian Linear 

Regression Model (GLM), Gaussian Generalized Additive Model (GAM), MARS, ANN, RF and 1D-CNN in 

streamflow prediction over the middle Sutlej River Basin (rainfall dominated zone) in western Himalaya using 

different Shared Socio-economic Pathways (SSPs) scenarios from CMIP6-GCMs. The pattern of variations in 

the Sutlej River's monthly, seasonal, and annual streamflow are assessed for the future periods 2041-2070 

(2050s) and 2071-2100 (2080s) with respect to the reference period of 1979-2009 under SSP245 and SSP585. . 

The findings of the study will help to develop a better plan for the operation of hydroelectric power projects and 

water resources management in the catchment. 

2 Study Area  

The selected study area is a sub-catchment within the Satluj basin (Figure 1), with an area of 2457 km2. 

Topographically, it is very rugged (0-80°) and is dominated mostly by forests (56.20%), grassland (26.4%), 

agricultural lands (17.1%), and glaciers and snow covers (0.3%) (Singh et al., 2015a). The presence of mountain 

barriers in the sub-basin's north, large variation in altitudes (500–5000 m) and the aspect all contribute to the 

region's diverse climate. It varies from hot and moist tropical climate in lower valleys to cool temperate climate 

at about 2000 m, and tends towards alpine as the altitude increases beyond 2000 m. The mean annual discharge 

(averaged over the period of 1979-2009) of the river gauged at Kasol was 12469.43 m3/s. There is large inter-

diurnal and monthly variation in pattern of the river discharge. The minimum and maximum daily discharge 

recorded at Kasol was 64.30 m3/s and 2891m3/s, respectively. The early months of year, i.e., starting from 

January up to March are characterised by low stream flow. After this a continuous and rapid rise in flow occurs, 

being the maximum in the month of July (~22-23%). Then, it again starts decreasing and flow becomes the 

minimum in the month of December (2-3%). The details of the sub-catchment are summarised in Table 1.  

Figure 1: The location of the sub-catchment within Sutlej River Basin. The three hydro-meteorological stations 

(Kasol, Sunni and Rampur) from which this study employed observed data for the years 1979 to 2009 are also 

shown. 



The sub-basin is bestowed with the large hydropower potential. There are three major hydroelectric power 

projects: Sunni Dam Project of 1080 MW, Rampur Hydroelectric Power Project (RHEP) of 412 MW, and 

Nathpa Jhakari Hydro-electric Power Project (NJHEP) of 1500 MW. The sub-basin is climatologically sensitive 

and, at present, facing the challenges created due to climate change and human’s interventions (Singh et al., 

2015b and 2015c). Change in future climate will alter patterns of flow in river and further could affect water 

resources and hydroelectric power production (Singh et al., 2014).  

Table 1:  Characteristics of the study catchment over the evaluation period of 1979–2009. 

3 Description of the Data and Methods 

The methodology involved in predicting streamflow for the period 2041-2100 in the Sutlej River include: 3.1) 

collection of hydro-meteorological data, 3.2) selection of machine and deep learning models, 3.3) performance 

evaluation of the developed models, and 3.4) bias correction in streamflow projection. These are described in 

details under following sub-headings: 

3.1 Hydro-meteorological data 

The daily rainfall, temperature (Tmax and Tmin), relative humidity, solar radiation, wind speed and discharge data 

used to study performance of the different machine and deep learning models on streamflow modelling were 

collected for 31 years i.e. 1979-2009. Rainfall, temperature and discharge data were obtained from the Bhakara 

Beas Management Board (BBMB), while relative humidity, solar radiation and wind data were extracted from 

the Global Weather Data (http://globalweather.tamu.edu/). These data were collected for three hydro-

meteorological stations namely, Kasol, Sunni and Rampur (Fig.1). 

 

The downscaled outputs from the CMIP6-GCMs, the latest generation of climate models, were used for 

streamflow prediction in future (2050s and 2080s). This framework of CMIP6-GCMs was run to simulate future 

climate under four Shared Socio-economic Pathways Scenarios (SSPs), which are designed to explain potential 

future greenhouse gas emissions under various global socioeconomic shifts that would occur by 2100 (Riahi et 

al., 2017; Karan et., 2022). Even by using downscaled outputs, however, regional climate change projections 

inherit biases from the GCM boundary conditions (Jose and Dwarakish, 2022), which were corrected in the 

dataset detailed in Mishra et al. (2020) for South Asia. They used Empirical Quantile Mapping (EQM) method 

for removing bias in the downscaled data. This dataset provides bias-corrected downscaled climate change 

projections for 13 CMIP6-GCMs and four GHG emission scenarios (SSP126, SSP245, SSP370, and SSP585), 

the latter are briefly summarised in Riahi et al. (2017). Climate projections from CMIP6-GCMs that have been 

generated under the SSP245 and SSP585 scenarios were used in this study. SSP245, a medium scenario 

represents the average pathway of future greenhouse gas emissions with radiative forcing of 4.5 W/m2 by the 

year 2100, while SSP585 is the upper limit of the range of scenarios scenario with radiative forcing of 8.5 W/m2 

by the end of this century (O'Neill et al., 2016). The data are available at a daily time-scale and horizontal 

spatial resolution of 0.25°×0.25°. Seven grids of the downscaled CMIP6-GCMs data cover the study area. The 

temperature (Tmax and Tmin) data were adjusted for topographical bias by separating the study area into a number 

of homogenous elevation bands spaced by at an interval of 1000m, and applying a temperature laps rate of 



6.5°C/1000m within each grid. A Digital Elevation Model (DEM) of 30 m spatial resolution derived from 

CartoSat-1 stereo data (www.bhuvan.nrsc.gov.in) was used for this purpose. The values of rainfall and 

temperature at each grid were then averaged over the catchment using the Thiessen polygon method in order to 

provide daily rainfall data integrated at the catchment scale for assessing changes in the future climate with 

respect to the observed period i.e., 1979-2009. 

 

Further, ranking of CMIP6-GCMs was done to find out the most appropriate models that can generate most 

likely plausible scenarios of future climate in the catchment and ultimately being employed in streamflow 

projection. Taylor diagram (Taylor, 2001), a robust graphical plot, is widely used to rank GCMs due to its 

effectiveness in determining the relative strengths of the competing models and in evaluating overall 

performance as a model evolves (Abbasian et al., 2019; Ghimire et al., 2021). It integrates three statistical 

metrics, degree of correlation (r), centered root-mean-square error (CRMSE) and ratio of spatial standard 

deviation (SD). Combining these metrics allows determining the degree of pattern correspondence and 

explaining how exactly a model represents the observed climate (Taylor, 2001). Therefore, performance of 13 

CMIP6-GCMs in modelling climatic variables (rainfall, Tmax and Tmin) in the Sutlej sub-basin was compared to 

the observed data (1979-2009) using Taylor diagram (Fig. 2a-c). The models were then ranked as a result of this 

comparison. High positive correlation (r=0.84 to 0.96) and low CRMSE (<3°C) error were found in all 13 

CMIP6-GCMs for temperature (Tmax and Tmin) (Fig. 2b-c). Additionally, it was found that models' standard 

deviations, which ranged from 5.60 to 6.03°C for Tmax and 6.34 to 6.63°C for Tmin, were close to the SD of the 

observed data (6.01°C and 6.07 °C). These results imply that all CMIP6-GCMs may be able to predict most 

likely future temperature over the catchment. 

Figure 2: Taylor diagram showing comparative skills of 13CMIP6-GCMs in simulating climatic variables 

(rainfall, Tmax and Tmin) over the Sutlej sub-basin during reference period (1979-2009). The degree of correlation 

coefficient (r) between observed and CMIP6-GCMs, centered root-mean-square error (CRMSE) and departure 

of the models’ standard deviation (SD) from the observed data (dashed black arc line) are shown in Fig. 2a for 

rainfall, Fig. 2b for Tmax and Fig. 2c for Tmin. The units of SD for rainfall and temperature is in cm and °C, 

respectively. 

However, not all CMIP6-GCMs showed the high degree of similarity in predicting rainfall; in fact, two 

(CanESM5 and NorESM2-LR) of the 13 models revealed a negative correlation (Fig. 2a). In the pool of 13 

CMIP6-GCMs, only six models showed relatively higher correlation (r≥0.56), smaller CRMSE (<12 cm) errors, 

and a high similarity to the standard deviation of the observed data (13.2 cm). They were: 1) Earth Consortium-

Earth 3 Veg Model (EC-Earth-Veg) , 2)  Russian Institute for Numerical Mathematics Climate Model Version 

4.8 (INM-CM4-8), 3) Russian Institute for Numerical Mathematics Climate Model Version 5.0 (INM-CM5-0), 

4) Max Planck Institute for Meteorology Earth System Model version 1.2 with higher resolution (MPI-ESM1-2-

HR) , 5) Max Planck Institute for Meteorology Earth System Model version 1.2 with lower resolution (MPI-

ESM1-2-LR) and 6) Norwegian Earth System Model Version 2 with Medium Resolution (NorESM2-MR). 

Further, within these models, the highest and lowest correlations between observed and simulated rainfall were 

found for the INM-CM4-8 (r=0.69) and NorESM2-MR (r=0.56), respectively. These six CMIP6-GCMs were 

finally selected to examine future patterns in streamflow for the periods 2050s and 2080s in the Sutlej River 

Basin as they had also shown high performance in simulating temperatures (r=0.90 to 0.96).  



3.2 Selection of machine and deep learning models for streamflow modelling 

In this study, five machine and one deep learning models namely GLM, GAM, MARS, ANN, RF and one 

dimensional Convolution Neural Network (1D-CNN) were selected and their performances in predicting 

streamflow in Sutlej River were compared. These are regression based models which capture relationship 

between the predictors (dependent variables) and predictand (independent variables) and provide value of the 

output variables (Adnan et al., 2019; Kabir et al., 2020). The models were trained with daily observed data 

recorded during 1979-2009 at Kasol (the gauging site) as well as simulated historical projections of CMIP6-

GCMs. The climatic projections of the grid corresponding to Kasol station were taken into consideration as the 

input from the CMIP6-GCMs. However, prior to building the models, all of the data were normalized using 

standard normalization techniques to get features on a common scale. Further, the entire data set was split into 

training and testing datasets since a cross-validation method was adopted in this study. The training dataset 

(80%) was used for fitting the models whereas testing dataset was used for checking model accuracy (20%). 

Under the cross-validation method, the process was repeated until every part of the allocated data was used in 

testing (Kabir et al., 2020). Six different program codes were written in python language for ANN, GAM, GLM, 

MARS, RF and 1D-CNN simulations. Out of these six selected models, GLM, GAM and MARS are linear 

models whereas other three i.e. ANN, RF and 1D-CNN are non-linear in nature (Shortridge et al., 2016; Yang et 

al., 2019; Herath et al., 2021). Additionally, excluding GLM all of the remaining models are based on non-

parametric regression approach where functional relationship between predictor and predictand are not 

predetermined but can be adjusted to capture unusual or unexpected features of the data (Shortridge et al., 

2016). A detailed description of these models can be found elsewhere (Shortridge et al., 2016; Adnan, 2019; 

Yang et al., 2019; Kabir et al., 2020; Ghimire et al., 2021; Herath et al., 2021; Shu et al.,2021). 

 

Since the 1D-CNN model is based on weight sharing, it needs less training parameters than other models 

(Kiranyaz et al., 2021). It has mainly three layer, convolution layer, pooling layer and fully connected layer. The 

primary job of the convolution layer is to nonlinearly map input data into a set of feature maps, or series of 

feature vectors. When working as a visual cortical perceptron, filter kernels are convoluted with the input data of 

their receptive fields. The convolution results with biases are then passed on to the activation function to create 

feature maps. The pooling layer, which comes after each convolution layer, primarily serves to reduce the 

dimension of feature maps and maintain the invariance of characteristic scale. The fully connected layer uses a 

completely connected single layer perceptron to combine the feature maps that were acquired by the prior 

convolution and pooling layers in order to build a higher level feature (Kiranyaz et al., 2021). In this study, one 

convolution layer with 64 filters, a kernel of size 2, and a ReLU activation function was being employed. This 

was followed by max pooling layer with pool size =2, and the faltterm layer. After that two fully connected 

layer applied with ReLU activation function and linear activation function, respectively. However, for 

optimization, the adaptive moment estimation (Adam) algorithm was applied (Ghimire et al., 2021; Shu et 

al.,2021). Six variables namely rainfall, Tmax, Tmin, relative humidity, solar radiation and wind speed were used 

as the inputs for developing the models. Additionally, these models were simulated under four rainfall scenarios: 

rainfall on the same day (R0), rainfall lagged by one day (R1) and rainfall lagged by two days (R2) and rainfall 

lagged by three days (R3) to understand control of catchment size and geo-hydro-morphological characteristics 



of the basin in generating runoff. While, remaining meteorological parameters were held constant during the 

processes. 

3.3 Model performance evaluation 

It has been found that overfitting in a model may lead to large errors in out-of-sample predictions (Hastie et al., 

2009). Therefore, it has been evaded by establishing model parameters for GLM, GAM, MARS, ANN and RF 

through automated hyperparameter tuning methods. 500 bootstrap resamples of the training data set were 

generated for each parameter value to be assessed. Table 2 presents the information on the specific parameters 

evaluated for each model. 

Table 2:  The information on hyper parameters used for estimating model parameters. 

The accuracy with which the simulated flow matches the observed flow during the training (calibration) and 

testing (validation) phases determines whether a hydrological model is appropriate for a given application 

(Refsgaard, 1997). Several methods, including quantitative statistics and graphical methods, has been developed 

in the past for assessing the accuracy of model predictions (Legates and McCabe, 1999). Moriasi et al. (2007) 

grouped these methods into three categories namely, standard regression, dimensionless, and error index, 

depending on how well each method explains the relationship between observed and simulated values, compares 

the relative performance of models, and quantifies the deviation in the units of the data of interest. Moreover, it 

has been established from previous studies that a single metric is inadequate to evaluate a model's performance, 

hence multiple metrics should be used (Adnan et al., 2020). Therefore, in this study, prediction accuracy of 

different models was compared using six statistical measures out of which one was standard regression 

(coefficient of determination (R2)), two of which were dimensionless (Kling-Gupta efficiency (KGE) and Nash-

Sutcliffe efficiency (NSE)), and the remaining three were being error index (ratio of the root mean square error 

to the standard deviation of the measured data (RSR)), the mean absolute error (MAE) and the percent bias 

(PBIAS)). These metrics are defined below by the equations (2–7): 

 

 

 

  

 

 

(6)                   



where Pi are the predicted values and Qi are the observed values, n accounts for the number of samples, Q¯ 

represents the mean of observed data, and P¯ is the mean of predicted data. However, r is the Pearson’s 

correlation coefficient whereas σob and σp refers to the standard deviation of observed and predicted values, 

respectively. 

 

R2 evaluates the percentage of the variation in the measured data that can be explained by the model, whereas 

NSE estimates the relative size of the residual variance in relation to the variance in the measured data (Nash 

and Sutcliffe, 1970; Van Liew et al.,2003). According to Mazrooei et al. (2021), NSE is sensitive to extreme 

flows; as a result, KGE is also used to evaluate a model's performance while considering extreme flows into 

account (Adib and Harun, 2022). Other metrics, like RSR, MAE, and PBIAS, shed light on the overall 

inaccuracies in the projected flow relative to the observed. The value of R2, KGE and NSE should all be 1 in an 

ideal model, whereas RSR and MAE and PBIAS values should be 0 (Nash and Sutcliffe,1970; Van Liew et 

al.,2003; Gupta et al.,2009; Adnan et al., 2020). Moriasi et al. (2007) developed a guideline for interpreting the 

results of these metrics and ranking for the hydrological models based on a thorough review of the available 

literature. They found that a model can be classified as very good, good, satisfactory, or unsatisfactory if its 

NSE value is between 0.75 and 1, 0.65 to 0.75, 0.50 to 0.65, or less than 0.50, respectively. Similarly, R2 values 

between 0.6 to 0.7 are considered satisfactory, 0.85 to 1 are very good and below 0.5 are unsatisfactory (Van 

Liew et al., 2003). However, for RSR, numbers above 0.7 are considered to be poor, whereas values between 0 

and 0.5 are considered to be in the very good range. Thus, the lower is the RSR value, the better is the model. 

This is also true for PBIAS and MAE where lower values are favourable. According to Moriasi et al. (2007), 

PBIAS values of less than ±10% are considered to be highly acceptable, whilst values of more than ±25% are 

considered to be unsatisfactory. The negative number indicates that the model has overestimated its bias, 

whereas the positive value indicates that the model has underestimated its bias (Gupta et al., 1999).  

3.4 Bias correction  

Uncertainty in streamflow prediction may be caused by the GCMs' shortcomings (e.g., coarse spatial resolution, 

simplified physics and thermodynamic processes, numerical methods, or poor knowledge of climate system 

dynamics) in accurately replicating natural climate variability (Sperna Weiland et al., 2010). As a result, its 

quantification and correction are critical for generating a future time series of streamflow that is reliable and 

recommended to devising water resource management plans in the catchment. This study used the bias 

correction method proposed in Hawkins et al. (2013) to correct uncertainty (bias) between observed and 

CMIP6-GCMs predicted streamflow. The mathematical expression for this formulae is given below: 

  (                                                                                                                 (7) 

where,  and is the bias corrected and raw daily discharge for future simulation, respectively.  

and  is the mean discharge of observed and historical simulation for reference period (1979-2009), 

respectively. σo and σp is the standard deviation in observed and historical simulation for reference period, 

respectively. This method captures variability in both observation and GCMs simulations Hawkins et al. (2013), 

which is the interest of this study.  



4 Results  

4.1 Streamflow simulation and evaluation of model performance  

The simulation (1979-2009) results generated under different rainfall scenarios (R0, R1, R2 and R3) on daily time 

scale for all six models (GLM, GAM, MARS, ANN, RF and 1D-CNN) during training and testing is shown in 

Fig. 3 and Fig. 4, respectively. The model performed slightly better during training than testing periods. R2, NSE 

and KGE values across models ranged from 0.69 to 0.90, 0.52 to 0.87, 0.69 to 0.91 and from 0.69 to 0.81, 0.49 

to 0.74 and 0.68 to 0.82 during training and testing, respectively. Likewise, it was found that RSR, MAE and 

PBIAS varied from 0.31 to 0.55, from 71.95 to 123.25 m3/s and -2.11 to +4.31% during training, as well as from 

0.56 to 0.46, from 123.06 to 106.64 m3/s and -3.74 to +2.21% during testing, respectively. Non-linear models 

(ANN,1D-CNN and RF) outperformed linear models (GAM and GLM) in runoff prediction under all rainfall 

scenarios (R0, R1, R2, and R3),with the exception of MARS, which produced results that were more or less 

comparable to those of the ANN model. Figures 3–4 show that both models (RF and 1D-CNN) satisfy the 

performance requirements outlined by Moriasi et al. (2007) as the best models, but RF slightly outperformed 

CNN in terms of error index. R2, NSE, KGE, RSR, and MAE and PBIAS values for the RF model during the 

training ranged from 0.88 to 0.90, 0.85 to 0.87, 0.86 to 0.87, 0.32 to 0.34, 71.95 to 77.49 m3/s and +0.03 to 

+0.13%, respectively. For the 1D-CNN, however, it varied from 0.87 to 0.89, 0.85 to 0.87, 0.90 to 0.91, 0.34 to 

0.35, 80.29 to 83.14 m3/s, and -1.25 to +0.13%. Similar pattern with slightly lower values were revealed during 

testing for the both models. This implies that RF can effectively capture non-linear interactions and can provide 

insights about actual watershed functions (Shortridge et al., 2016). On the other hand, GLM showed the poorest 

results. R2, NSE, KGE, RSR, MAE, and PBIAS values for the GLM model during the training varied from 0.69 

to 0.71, 0.52 to 0.56, 0.71 to 0.72, 0.54 to 0.55, 134.80 to 140.56 m3/s, and +2.63 to +2.73%, respectively. 

During testing, they varied between 0.69 and 0.71, 0.49 and 0.54, 0.68 and 0.70, 0.54 and 0.56, 134.35 and 

141.26 m3/s, +1 and +1.31%, respectively. Furthermore, it was observed that the models with rainfall scenario 

R3 had revealed reasonably better results in comparison to R0, R1 and R2 scenarios, indicating delayed 

contribution of rainfall-runoff to the river.  

Figure 3: Evaluation of the model (ANN, 1D-CNN, GAM, GLM, MARS and RF) performance in simulating 

streamflow under rainfall scenarios R0 (Fig.3a), R1 (Fig. 3b), R2 (Fig.3c) and (Fig. 3d) R3 at Kasol during 

training phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 

Figure 4:  Evaluation of the model (ANN, 1D-CNN, GAM, GLM, MARS and RF) performance in simulating 

streamflow under rainfall scenarios R0 (Fig.4a), R1 (Fig.4b), R2 (Fig.4c) and (Fig.4d) R3 at Kasol during testing 

phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 

Figure 5, 6, 7 and 8 shows comparison of observed and simulated streamflow under rainfall scenarios of R0, R1, 

R2 and R3 for all the models at Kasol, the outlet of the basin. As observed from the Figures (5-8), RF was able to 

follow the curve better compared to the other models. It is also deduced from the comparison of scatter plots 

wherein a relatively smaller deviation in the observed and estimated discharge of streamflow was found for the 

RF model. GLM performed the worst out of the six models with respect to the time variation graphs. A 

limitation faced by all the six models was the simulation of peak values. The models slightly underperformed at 

the prediction of higher values of streamflow. These findings led to the ultimate decision to use the RF model 



with rainfall scenario R3 to predict streamflow in the Sutlej River in the future (2050s and 2080s) under the 

SSP245 and SSP585 scenarios.  

Figure 5: Comparison of observed and simulated streamflow for all six models (ANN, 1D-CNN, GAM, GLM, 

MARS and RF) under rainfall scenarios R0 

Figure 6: Comparison of observed and simulated streamflow for all five models (ANN, 1D-CNN, GAM, GLM, 

MARS and RF) under rainfall scenarios R1 

Figure 7: Comparison of observed and simulated streamflow for all five models (ANN, 1D-CNN, GAM, GLM, 

MARS and RF) under rainfall scenarios R2 

Figure 8: Comparison of observed and simulated streamflow for all five models (ANN, 1D-CNN, GAM, GLM, 

MARS and RF) under rainfall scenarios R3. 

4.2 Comparison of streamflow simulated with observed and CMIP6-GCMs data  

The uncertainty between observed and CMIP6-GCMs predicted streamflow during the reference period (1979-

2009) was investigated by comparing the streamflow simulated by RF model with observed and CMIP6-GCMs 

data. A large difference in streamflow patterns was seen in the box-plot of observed and CMIP6-GCMs 

simulated discharge (Fig. 9) derived for various months of the year, particularly from June through September 

(monsoon season), when a pattern of intense daily rainfall was observed over the catchment. Additionally, it was 

discovered through the analysis of probability exceedance curves generated using 10% of the time series' 

highest flows that, despite the streamflow’s in the two data sets being comparable throughout the pre-monsoon 

season (Fig. 10c), they differ noticeably for high flows during the annual (Fig.10a) and monsoon season 

(Fig.10c). Similar trends were seen in the comparison of the probability exceedance curves for low flows during 

the monsoon season, although there was strong agreement for annual (Fig.10b) and pre-monsoon measurements 

(Fig.10d). This may be due to the fact that orography has a considerable impact on regional Indian Summer 

Monsoon (ISM) climate, making it challenging for climate models to predict daily monsoonal rainfall 

accurately across the Himalaya (Turner and Annamalai, 2012; Niu et al., 2015; Choudhary et al., 2017). The 

Regional Climate Model (RCM) based on CMIP5-GCMs was used by Sanjay et al. (2017) to study pattern of 

change in precipitation and temperature over the HKH region. As a condition of the model's inability to 

accurately represent complicated feedback mechanisms, the results revealed large uncertainty in the summer and 

winter precipitation over the northwest Himalaya. This is also supported by the study of Kadel et al. (2018). 

They evaluated the performance of 38 CMIP5-GCMs in simulating rainfall over the central Himalaya and came 

to the conclusion that the majority of the models’ studied performed poorly when it comes to reproducing the 

spatial distribution of monsoonal rainfall. Although the most recent study by Gusain et al. (2020) in India 

reported that ISM simulation using CMIP6-GCMs over CMIP5-GCMS had significantly improved, there are 

discrepancies between the models and indicated uncertainty in predictions. Lalande et al. (2021) examined the 

abilities of 26 CMIP6-GCMs to simulate the rate of precipitation across the Himalayan region and concluded 

that the models consistently overestimated the rate of precipitation by 31% to 281%. Additionally, cold-bias in 

temperature estimation was also reported. Therefore, bias correction as described in Section 3.4 was applied to 

the projected streamflow for the future periods (2050s and 2080s) under all scenarios and for all six models in 

order to provide accurate times series of the discharge. 



Figure 9: Box-plot comparing observed and CMIP6-GCMs (mean ensemble of models) simulated streamflow 

for various months of the year, derived over the period of 1979–2009. The line inside the box denotes the 

median values of streamflow, while the upper and lower whiskers indicate the highest and minimum values, 

respectively. 

Figure 10: Probability exceedance curves developed using 10% of the highest and lowest flows from the 

observed and CMIP6-GCMs (mean ensemble of models) over the time span of 1979–2009 for annual and 

seasonal (pre-monsoon and monsoon) flows.  

4.3 Projected change in rainfall and temperatures in 2050s and 2080s under SSP245 and SSP585  

Figure 11 shows how the catchment's mean monthly rainfall is expected to change under SSP245 and SSP585 in 

the 2050s and 2080s compared to the reference period (1979-2009).  Within months and for the CMIP6-GCMs, 

a sizable shift in the rainfall pattern is seen. With the exception of March, June, and September, the mean 

ensemble of the models generally predicts a rise in rainfall throughout the year in the 2050s and 2080s under all 

scenarios. The models also show significant variation in the seasonal and yearly rainfall patterns expected for 

the catchment in the 2050s and 2080s under various emission scenarios. However, based on the mean ensemble 

of the models, it is predicted that seasonal (Fig. 12) and annual (Fig. 13a) rainfall will increase generally in the 

2050s and 2080s under SSP245 and SSP585. Pre-monsoon, monsoon, post-monsoon, and winter rainfall in 

2050s will increase by 8.75 to 8.85%, 10 to 20.80%, 85 to 91.91%, and 12.48 to 14.16%, respectively, under 

SSP245 and SSP585. However, under SSP245 and SSP585 in the 2080s, it will rise by 7.69 to 17.50%, 21.52 to 

41.43%, 56.16 to 89.66%, and 22.48 to 12.43%, respectively. Under both scenarios in the 2050s and 2080s, pre-

monsoon and post-monsoon will have the lowest and highest percentage increases in rainfall, respectively. The 

monsoon season, however, is anticipated to have the greatest rise in terms of quantity (~40-167mm). The 

predicted range for the increase in mean annual rainfall is 13.85 to 18.61% in the 2050s and 17.91% to 34.31% 

in the 2080s. It is observed that the predicted pattern of change in rainfall across the sub-basin under various 

SSPs is consistent in terms of the direction of change with other studies conducted over the Sutlej and Himalaya 

region. Lalande et al. (2021) reported an overall increase in mean annual precipitation over the Himalayan 

region based on 10 CMIP6-GCMs. According to their analysis, the mean ensemble of model precipitation is 

predicted to increase by 8.6% to 25.4% in 2081-2100 under SSP245 and SSP585. The same study also showed 

an increase in the region's winter (November to April) and ISM (June to September) rainfall. This contradicts 

past studies that showed a trend toward declining ISM rainfall after the 1950s (Sabin et al., 2020). They 

postulated that the region's higher winter rainfall would have been caused by the strengthening of the western 

disturbances; however, the intensification of the ISM is responsible for the region's enhanced summer rainfall. 

Figure 11: Projected change in mean monthly rainfall in the sub-basin using different CMIP6-GCMs under 

SSP245 and SSP585 scenarios in the 2050s (Fig.11a and Fig.12b) and 2080s (Fig.12c and Fig.12d). 

Figure 12: Projected change in mean seasonal rainfall in the sub-basin using different CMIP6-GCMs under 

SSP245 and SSP585 scenarios in the 2050s (Fig.12a and Fig.12c) and 2080s (Fig.12b and Fig.12d). 

Figure 13: Projected change in mean annual rainfall (Fig.13a), Tmax (Fig.13b) and Tmin (Fig.13c) in the sub-basin 

using different CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s and 2080s.  



The analysis of the CMIP6-GCM projections leads to the conclusion that for all months and seasons in the 

2050s and 2080s, maximum (excluding April and pre-monsoon in 2050s under SSP245) and minimum 

temperatures will rise under both scenarios (Fig. 14 (a-d) and Fig.15 (a-d)). Similarly, increase in mean annual 

Tmin and Tmax are also predicted in 2050s and 2080s under all scenarios (Fig.13b and 13c). The increase will be 

relatively higher for the Tmin as compared to the Tmax. This is also reported by Singh et al. (2015c). The increase 

in rainfall and temperature is typically higher under SSP585 than SSP245 in both eras (2050s and 2080s), as 

expected, due to a larger increase in radiative forcing brought on by increased greenhouse gas emissions.  

Figure 14: Projected change in mean seasonal maximum temperature (Tmax) in the sub-basin using different 

CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.14a and Fig.14 c) and 2080s (Fig.14b and 

Fig.14d). 

Figure 15: Projected change in mean seasonal minimum temperature (Tmin) in the sub-basin using different 

CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.15a and Fig.15c) and 2080s (Fig.15b and 

Fig.15d). 

4.34.4 Assessment of change in streamflow in 2050s and 2080s under SSP245 and SSP585  

The Sutlej River's mean monthly streamflow change as compared to the reference period's observed flow (1979-

2009) is shown in Fig. 16 under scenarios SSP245 and SSP585 for the future periods (2050s and 2080s). 

According to both scenarios and all six models, the Sutlej River's streamflow will decrease between January (-

33.80 to -14.38%), February (-32.40 to -14.15%), March (-23.55 to -0.84%), November (-21.06 to -5.14%) and 

December (-29.88 to -18.38%) in the 2050s and 2080s. Moreover, except for MPI-ESM-2HR and MPI-ESM1-

2-LR, which show an increase in streamflow in the 2080s under the higher emission scenario, all of the CMIP6-

GCMs indicate a decrease in the river's discharge in June (-20.24 to -0.57%) under SSP245 and SSP585 for both 

the periods. Similarly, excluding EC-Earth-Veg (under SSP245 in 2050s) and INM-CM5-0 (under SSP245 in 

250s and 2080s and under SSP585 in 2050s), all of the CMIP6-GCMs indicate a decrease in the river's 

discharge in May (-25 to -2.85%) during the study period. In contrast, under SSP245 and SSP585 in the 2050s 

and 2080s, all of the CMIP6-GCMs predict a rise in the river's discharge in April (20.24 to -0.57%; excluding 

SSP585 in 2080s), August (16.84 to 5.28%), and September (55.27 to 4.35%). But no clear pattern of 

streamflow change is seen for the remaining months (July and October) of the year, making results difficult to 

generalise because projected decrease/or increase in streamflow over the months is inconsistent among models 

under various emission scenarios in the 2050s and 2080s. The variations in climate variable projections caused 

by differing spatial resolutions and parametrization levels in the climate models may be the cause of these 

discrepancies in streamflow estimates (Sperna Weiland et al., 2010; Singh et al., 2015a). According to Murphy 

et al. (2004), the average of an ensemble of GCMs cancels out the errors of each individual model, and as more 

models are used, the ensemble uncertainty decreases. Therefore, in order to reduce uncertainty in projection of 

streamflow related to individual CMIP6-GCMs, streamflow pattern of the Sutlej River was analysed also using 

the mean ensemble of all six GCMs. 

Figure 16: Predicted change in monthly streamflow pattern of the Sutlej River with respect to the reference 

period (1979-2009) in 2050s (Fig.16a and Fig. 16b) and 2080s (Fig.16c and Fig. 16d) under SSP245 and 

SSP585 for different CMIP6-GCMs. 



The mean ensemble of the models predicts that the Sutlej River's mean monthly streamflow (excluding April) 

will decrease under both scenarios from November (-18.45 to -17.17%) to June (-10.90 to -8.06%) between 

2050s and 2080s (Fig. 17). The river flow, which would have been expected to increase in April under both 

scenarios in 2050s, will also decline in 2080s for the higher emission scenarios (SPP585). The maximum and 

minimum streamflow declines are predicted to occur in the 2050s under SSP245 for the months of December (-

24.25%) and May (-7.77%), respectively. In comparison to SPP245, the decline generally will be slightly higher 

under SSP585 in 2050s and, for the 2080s, the projected decrease in streamflow will not show much difference 

under both the scenarios. Opposite to this, the mean ensemble of the models predicts that the Sutlej River's flow 

will increase from July (5.50 to 5.91%) to October (3.01 to 11.42%) in the 2050s and 2080s under both the 

scenarios. The maximum and minimum streamflow increases are predicted to occur in the 2080s under SSP245 

for the months of September (25.82%) and July (5.50%), respectively. In all scenarios, the increase will be 

slightly greater in the 2080s than it will be in the 2050s. When compared to SPP245, it will be higher for 

SSP585 in scenarios. 

Figure17: Comparison of monthly observed (1979-2009) and projected discharge of the multi-model ensembles 

for period 2050s and 2080s under SSP245 and SSP585 scenarios. 

The projected change in seasonal streamflow of the Sutlej River in 2050s and 2080s is shown in the Fig. 18. The 

2050s and 2080s would see an increase in streamflow during the monsoon (4.46 to 16.14%) and a decrease 

during the pre-monsoon (-17.40 to -0.51%) and winter (-28.81 to -12.42%) for all six CMIP6-GCMs, with the 

exception of INM-CM5-0 in the 2050s under SSP245 and MPI-ESM-2HR and MPI-ESM1-2-LR in the 2080s 

under SPP585, which indicate an increase in streamflow during the pre-monsoon rather than a decrease. The 

predicted streamflow for the post-monsoon season, however, does not show a consistent pattern of change 

across time within the models under SSP245 and SSP585 scenarios.  But there is high probability, based on the 

mean ensembles of models projections, that streamflow will also decline during the post-monsoon in 2050s (-

1.23 to -0.22%) and 2080s (-5.59 to -2.83%) under all scenarios. Similarly, the predicted decline for pre-

monsoon and winter will be between -10.36 and -6.12% and -21.87 and -21.52% under SSP245, and between -

10.0 and -9.13% and -21.87 and -21.11% under SSP585, respectively. With the exception of winter, when there 

are no significant differences in the projected streamflow, the decline will be slightly larger in the 2080s than it 

would be in the 2050s in all scenarios. In addition, the results of the mean ensemble of the models indicate that 

the Sutlej River's flow will increase during the monsoon under both scenarios, from 9.70 to 11.41% in the 2050s 

and11.64 to 12.70% in the 2080s.  

Figure 18: Predicted change in seasonal streamflow pattern of the Sutlej River with respect to the reference 

period (1979-2009) in 2050s (Fig. 18a and Fig. 18c) and 2080s (Fig. 18a and Fig. 18c) under SSP245 and 

SSP585 for different GCMs. 

Similarly, Fig. 19 lists the projected change in mean annual streamflow for the Sutlej River in 2050s and 2080s 

with respect to the reference period (1979-2009) under different emission scenarios. Although the nature of the 

direction of change within models vary, the mean ensemble of the models reveals a persistent increasing pattern 

in streamflow for all scenarios in 2050s and 2080s. The Sutlej River's annual stream flow will rise between 2050 

and 2080 by 0.79 to 1.43% for SSP585 and 0.87 to 1.10% for SSP245, according to the mean ensemble of the 

models. The rise is expected to be higher in 2080s as compared to 2050s under SSP585.  



Figure 19: Predicted change in mean annual streamflow of the Sutlej River with respect to the reference period 

(1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different GCMs. 

5 Discussion 

This study reveals an increase in the Sutlej River's mean annual and monsoonal streamflow in the 2050s and 

2080s in contrast to earlier studies (Singh et al., 2014; Ali et al., 2018) that reported a reduction based on long-

term investigation of station data over historical era. The pattern of rainfall and temperature predicted by 

CMIP6-GCMs for future periods under the SSP245 and SSP585 emission scenarios, as well as physical 

processes occurring within the basin, have contributed to this increase in the Sutlej River's streamflow. For 

instance, it is speculated that the projected increase in mean streamflow during the monsoon season under both 

scenarios in the 2050s and 2080 for all models is related to the projected percentage increase in rainfall amount 

over the catchment and the melting of glaciers brought on by the increased maximum and minimum 

temperatures. This increase in river streamflow and its propensity to raise silt load may have an impact on both 

the capacity of reservoirs and the hydropower potential of hydroelectric facilities situated in the sub-basin and 

downstream of it. On the other hand, despite the predicted increase in rainfall throughout the pre-monsoon, post-

monsoon, and winter seasons, the anticipated decrease in streamflow of the Sutlej River during pre-monsoon, 

post-monsoon, and winter may be explained by the projected rise in temperatures, which may have led to 

increased evaporation from the surface. Similar conclusions were reached by Adib and Harun (2022) who 

studied the Kurau River in Malaysia and predicted a drop in streamflow during the months of January, April, 

and October despite receiving more rainfall. Moreover, during winter and post-monsoon, most of precipitation 

in upper part of the catchment occurs in form of snowfall which have minimal effect over runoff generation in 

the catchment. Additionally, the large increase in monsoonal streamflow predicted during study periods is what 

led to the projected increase in the Sutlej River's mean annual flow. Predicted decreases in Sutlej River 

streamflow over the pre-monsoon (April to June) and winter (December to March) seasons may have a 

significant impact on agriculture and hydropower generation downstream of the river, which is already 

struggling due to water shortages at this time of year. Ali et al. (2018) predicted that the hydroelectric 

production from the Nathpa Jhakri and Bhakra Nangal hydropower projects will decline during May to June in 

the future due to projected decline in the streamflow of the Sutlej River. 

 

The projected streamflow patterns for the Sutlej River under SSP245 and SSP585 in 2050s and 2080s show 

similar tendencies, but with differing magnitudes, that have been found by past researchers using process-based 

hydrological models. For instance, Singh et al. (2015a) used the SWAT (Soil Water Assessment Tool) model, a 

semi-distributed hydrological model, to simulate streamflow for future periods using two CMIP3-GCMs models 

(CGCM3 and HadCM3), and they discovered that the Sutlej River's mean annual streamflow would increase in 

the range of 0.6 to 7.8% for the future periods (2050s and 2080s). Similar to this, using the Variable Infiltration 

Capacity (VIC) and SWAT models, respectively, Ali et al. (2018) and Shukla et al. (2021) estimated increases 

in the Sutlej River's mean annual streamflow for the 2050s and 2080s under RCP4.5 and RCP8.5. The study of 

Shukla et al. (2021) estimated that under RCP4.5 and RCP8.5, the mean streamflow of the river would increase 

by 14 and 21% (at Rampur), respectively, in the 2080s. The previous studies' observed substantially higher 

increase in projected streamflow may be attributable to the CMIP3-GCMs' and CMIP5-GCMs' overestimation 



of monsoonal precipitation over the Himalayan region (Choudhary et al., 2017; Sanjay et al., 2017; Gusain et 

al., 2020; Lalande et al., 2021). Similar to this, the results of Singh et al. (2015a), Ali et al. (2018), and Shukla et 

al. (2021) corroborated the expected decrease in streamflow during pre-monsoon and winter as well as rise 

during monsoon. This suggests that the RF model can accurately predict runoff and analyse the effects of 

climate change while capturing the nonlinearity of a hilly catchment. 

56 Conclusion 

This study compared the performance of the five machine learning models (GLM, GAM, MARS, ANN, and 

RF) and one deep learning model (1D-CNN) which were further divided into linear (MARS, ANN, and RF) and 

non-linear (ANN, 1D-CNN, and RF) models, in simulating rainfall-runoff responses over the hilly Sutlej River 

Basin in order to determine the best model for predicting streamflow response to future climate change in the 

2050s and 2080s under SSP245 and SSP585 using CMIP6-GCMs data. The important findings of the study are 

summarised below: 

In general, non-linear models (ANN,1D-CNN and RF) outperformed linear models (GAM, GLM and 

MARS) in runoff prediction under all rainfall scenarios (R0, R1, R2, and R3). Among all the models, RF 

and 1D-CNN were identified as the best models as per the model evaluation criteria. However, RF 

outperformed CNN in terms of error index (MAE and PBIAS), and as a result, it was used to 

investigate impact of future climate change on the Sutlej River pattern in the 2050s and 2080s under 

SSP245 and SSP585 emission scenarios.  

 The developed RF model slightly underperformed at the prediction of higher values of streamflow 

during training and testing. This implies that it is less effective in predicting flash floods that are caused 

by intense rainfall in the catchment. However, it was determined that the results produced by RF were 

comparable to process-based hydrological models for long-term change study in streamflow pattern. 

 

 Significant variations in the streamflow pattern were observed throughout the periods of months, 

seasons, years, and for the CMIP6-GCMs. The differences in spatial resolution and parametrisation 

levels of CMIP6-GCMs, which caused a noticeable change in the projected amounts of temperature 

and precipitation during the study periods, may serve as an illustration of these variances in streamflow 

prediction. The Sutlej River's mean annual streamflow based on the mean ensemble of models is 

predicted to rise between the years 2050 and 2080 by 0.79 to 1.43% for SSP585 and by 0.87 to 1.10% 

for SSP245. Additionally, under both emission scenarios, streamflow will decrease during the pre- and 

post-monsoon (-1.23 to -0.22% and -5.59 to -2.83%), as well as during the winter (-21.87 to -21.52% 

and -21.87 to -21.11%), but increase during the monsoon (9.70 to 11.41% and 11.64 to 12.70%) in the 

2050s and 2080s. 

 

 The increase in the Sutlej River's streamflow (annual and monsoon) is due to both physical processes 

that occur within the basin and rainfall and temperature patterns that are predicted by CMIP6-GCMs 

for future time periods under the SSP245 and SSP585 emission scenarios. The projected rise in mean 

streamflow during the monsoon season is associated to both the projected percentage increase in 



rainfall over the catchment and the melting of glaciers brought on by the increasing maximum and 

minimum temperatures. On the other hand, the predicted increase in temperatures, which may have led 

to increased evaporation from the surface, may be used to explain the anticipated reduction in 

streamflow of the Sutlej River during pre-monsoon, post-monsoon, and winter.  

 

 Additionally, the projected changes in the mean annual and seasonal streamflow of the river are 

consistent with earlier research done using process-based physical hydrological models. Thus, the 

outcomes of the overall study indicate that the RF model is efficient for simulating streamflow in the 

Himalayan catchment, and that water availability during monsoon will rise as a result of an increase in 

catchment precipitation, which would eventually lead to an increased sediment load and affect 

hydropower generation. However, predicted reduction in streamflow during pre-monsoon, post-

monsoon and winter will put stress on agriculture and hydropower generation downstream of the river, 

which is already struggling due to water shortages at this time of year. The administrators of local 

water resources and the government organizations in charge of maintaining reservoirs down river may 

find these details on streamflow patterns to be of great use.  
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Figure 1: The location of the sub-catchment within Sutlej River Basin. The three hydro-meteorological stations 

(Kasol, Sunni and Rampur) from which this study employed observed data for the years 1979 to 2009 are also shown. 



 

 

Figure 2: Taylor diagram showing comparative skills of 13CMIP6-GCMs in simulating climatic variables (rainfall, 

Tmax and Tmin) over the Sutlej sub-basin during reference period (1979-2009). The degree of correlation coefficient (r) 

between observed and CMIP6-GCMs, centered root-mean-square error (CRMSE) and departure of the models’ 

standard deviation (SD) from the observed data (dashed black arc line) are shown in Fig. 2a for rainfall, Fig. 2b for 

Tmax and Fig. 2c for Tmin. The units of SD for rainfall and temperature is in cm and °C, respectively.



 

Figure 3: Evaluation of the models (ANN, GAM, GLM, MARS, RF and 1D-CNN) performance in simulating 

streamflow under rainfall scenarios R0 (Fig.3a) , R1 (Fig. 3b), R2 (Fig.3c) and (Fig. 3d) R3 at Kasol during training 

phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 



 

 

Figure 4: Evaluation of the models (ANN, GAM, GLM, MARS, RF and 1D-CNN) performance in simulating 

streamflow under rainfall scenarios R0 (Fig.4a), R1 (Fig. 4b), R2 (Fig.4c) and (Fig. 4d) R3 at Kasol during testing 

phase using six statistical metrics (R2, KGE, NSE, RSR, MAE and PBIAS). 



 

 

Figure 5: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 

1D-CNN) under rainfall scenarios R0. 



 

Figure 6: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 

1D-CNN) under rainfall scenarios R1. 

 

 

 



 

Figure 7: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 

1D-CNN) under rainfall scenarios R2. 

 

 

 

 

  



 

Figure 8: Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARS, RF and 

1D-CNN) under rainfall scenarios R3. 



 

Figure 9: Box-plot comparing observed and CMIP6-GCMs (mean ensemble of models) simulated streamflow for 

various months of the year, derived over the period of 1979–2009. The line inside the box denotes the median values 

of streamflow, while the upper and lower whiskers indicate the highest and minimum values, respectively. 

 

 

 

  



  

Figure 10: Probability exceedance curves developed using 10% of the highest and lowest flows from the observed and 

CMIP6-GCMs (mean ensemble of models) over the time span of 1979–2009 for annual and seasonal (pre-monsoon 

and monsoon) flows.  

 



 

 

Figure 11: Projected change in mean monthly rainfall in the sub-basin using different CMIP6-GCMs under SSP245 

and SSP585 scenarios in the 2050s (Fig.11a and Fig.11b) and 2080s (Fig.11c and Fig.11d). 



 

 

Figure 12: Projected change in mean seasonal rainfall in the sub-basin using different CMIP6-GCMs under SSP245 

and SSP585 scenarios in the 2050s (Fig.12a and Fig.12c) and 2080s (Fig.12b and Fig.12d). 



  

 

Figure 13: Projected changes in mean annual rainfall (Fig.13a), Tmax (Fig.13b) and Tmin (Fig.13c) in the sub-basin 

using different CMIP6-GCMs under SSP245 and SSP585 scenarios in the 2050s and 2080s.  



 

Figure 14: Projected change in mean seasonal maximum temperature (Tmax) in the sub-basin using different CMIP6-

GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.14a and Fig.14c) and 2080s (Fig.14b and Fig.14d). 



 

Figure 15: Projected changes in mean seasonal minimum temperature (Tmin) in the sub-basin using different CMIP6-

GCMs under SSP245 and SSP585 scenarios in the 2050s (Fig.15a and Fig.15c) and 2080s (Fig.15b and Fig.15d). 



 

Figure 16: Predicted change in monthly streamflow pattern of the Sutlej River with respect to the reference period 

(1979-2009) in 2050s (Fig. 16a and Fig. 16b) and 2080s (Fig. 16c and Fig.16d) under SSP245 and SSP585 for different 

CMIP6-GCMs. 

 



 

Figure17: Comparison of monthly observed (1979-2009) and projected discharge of the multi-model ensembles for 

period 2050s and 2080s under SSP245 and SSP585 scenarios. 

 



 

Figure 18: Predicted change in seasonal streamflow pattern of the Sutlej River with respect to the reference period 

(1979-2009) in 2050s (Fig.18a and Fig.18c) and 2080s (Fig.18c and Fig.18d) under SSP245 and SSP585 for different 

GCMs. 



 

Figure 19: Predicted change in mean annual streamflow of the Sutlej River with respect to the reference period 

(1979-2009) in 2050s and 2080s under SSP245 and SSP585 for different GCMs. 



Table 1:  Characteristics of the study catchment over the evaluation period of 1979–2009 

Parameters Details 

Details of the sub-catchment 

Drainage area of the sub-catchment 

(km2) 

2457 km2 

Altitude  ~500-5000 m 

Slope 0-80° 

Geology Granite, Jutogh formation and  

Chail/Salkhala/Hemanta formation 

Soil Dystric cambisols, dystric 

regosols, and eutric fluviosols. 

Streamflow measured at the outlet (Kasol) of the sub-catchment 

Average of annual streamflow 12469.43 m3/s 

Minimum streamflow (daily) 64.30 m3/s 

Maximum streamflow (daily) 2891.00 m3/s 

Standard deviation (SD) of annual 

streamflow 

1750.70 m3/s 

Coefficient of variation (CV) of annual 

streamflow 

0.14 m3/s 

Rainfall integrated over the sub-catchment 

Average of annual rainfall 1001.32mm 

Average of monsoon rainfall (July-

September) 

403.08mm 

Average of winter rainfall (December-

March) 

277.35mm 

Temperature integrated over the sub-catchment 

Average annual maximum temperature 

(Tmax) 

28.35°C 

Average annual minimum temperature 

(Tmin) 

13.98°C 

 



Table 2:  The information on hyper parameters used for estimating model parameters 

Model Name Hyperparameter Values 

Artificial Neural Network (ANN) build_fn, 

warm_start, 

random_state, 

optimizer, 

loss, 

metrics, 

batch_size, 

validation_batch_size, 

verbose, 

callbacks, 

validation_split, 

shuffle, 

run_eagerly, 

epochs, 

value = build_regressor 

value = False 

value = None 

value = rmsprop 

value = None 

value = None 

value = 64 

value = None 

value = 1 

value = None 

value = 0.0 

value = True 

value = False 

value = 500 

Generalized Additive Model (GAM) formula, 

family, 

data, 

weights, 

subset , 

na.action,offset, 

method, 

optimizer, 

control, 

scale, 

select, 

knots, 

sp, 

min.sp, 

H, 

gamma, 

fit, 

paraPen, 

G, 

drop.unused.levels,     

drop.intercept, 

discrete, 

value = None 

value = gaussian() 

value = list() 

value = Null 

value = Null 

value = Null 

value = "GCV.Cp" 

value = c("outer","newton") 

value = list(), 

value = 0 

value = False 

value = Null 

value = Null 

value = Null 

value – Null, 

value = 1 

value = True 

value = Null 

value = Null 

value = True 

value = Null 

value = False 

Generalized Linear Model (GLM) endog, 

exog, 

value = 1D 

value = 1D 



family, 

 

 

offset, 

exposure, 

freq_weights, 

var_weights, 

missing, 

value = 

sm.families.Gaussian(sm.fam

ilies.links.log()) 

value = None 

value = None 

value = None 

value = None 

value = str 

Multivariate Adaptive Regression Splines 

(MARS) 

max_terms, 

max_degree , 

allow_missing, 

penalty, 

endspan_alpha, 

endspan, 

minspan_alpha, 

minspan, 

thresh , 

zero_tol, 

min_search_points, 

check_every, 

allow_linear, 

use_fast, 

fast_K, 

fast_h, 

smooth, 

enable_pruning, 

feature_importance_type, 

feature_importance_type, 

value = 20 

value = 3 

value = False 

value = 3.0 

value = 0.005 

value = -1 

value = 0.005 

value = -1 

value = 0.001 

value = 1e-12 

value = 100 

value = -1 

value = True 

value = False 

value = 5 

value = 1 

value = False 

value = True 

value = None 

value = 0 

Random Forest (RF) n_estimators, 

criterion, 

max_depth, 

min_samples_split, 

min_samples_leaf, 

min_weight_fraction_leaf, 

max_features, 

max_leaf_nodes, 

min_impurity_decrease, 

value=500 

value=”squared_error” 

value=None 

value = 2 

value = 5 

value = 0.0 

value = auto 

value = None 

value = 0.0 

 

1-Dimensional Convolution neural network Conv1D_filter,  Value = 64 



(1D-CNN)  Conv1D_kernel_size,  

Conv1D_pool_size,  

Learning rate,  

Epoc,  

Batch size,  

loss 

 

Value = 2  

Value =2 

Value = 0.0001  

Value = 30  

Value = 280  

Value = MSE  

 

  

 

 

 

 

 

 

 

 

 

 

 


