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Abstract.  

Spatially distributed hydrology and land surface models are typically applied in combination with river routing schemes that 10 

convert instantaneous runoff into streamflow. Nevertheless, the development of such schemes has been somehow disconnected 

from hydrologic model calibration research, although both seek to achieve more realistic streamflow simulations. In this paper, 

we seek to bridge this gap to understand the extent to which the configuration of routing schemes affects hydrologic model 

parameter search in water resources applications. To this end, we configure the Variable Infiltration Capacity (VIC) model, 

coupled with the mizuRoute routing model in the Cautín River basin (2770 km2), Chile. We use the Latin Hypercube Sampling 15 

(LHS) method to generate 3500 different model parameters sets, for which basin-averaged runoff estimates are obtained 

directly (no routing or instantaneous runoff case), and subsequently compared against outputs from four routing schemes (Unit 

Hydrograph, Lagrangian Kinematic Wave, Muskingum-Cunge and Diffusive Wave) applied with five different routing time 

steps (1, 2, 3, 4 and 6 hours). The results show that incorporating routing schemes may alter streamflow simulations at sub-

daily, daily and even monthly time scales. The maximum Kling-Gupta Efficiency (KGE) obtained for daily streamflow 20 

increases from 0.64 (instantaneous runoff) to 0.81 (for the best routing scheme), and such improvements do not depend on the 

routing time step. Moreover, the optimal parameter sets may differ depending on the routing scheme configuration, affecting 

the baseflow contribution to total runoff. Including routing models decreases streamflow values in flood frequency curves and 

may alter the probabilistic distribution of the medium and low flow segments of the flow duration curve considerably 

(compared to the case without routing). More generally, the results presented here highlight the potential impacts of river 25 

routing implementations on water resources applications that involve hydrologic models and, in particular, parameter 

calibration. 

1. Introduction 

Hydrology and land surface models are powerful tools to characterize the terrestrial water cycle and provide valuable 

information for water resources planning under future climate scenarios (Vano et al., 2012; Mendoza et al., 2016; Melsen et 30 
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al., 2018; Chegwidden et al., 2019). In applications at the catchment scale or beyond, these models are typically used in 

combination with river routing models that convert instantaneous runoff into realistic streamflow estimates at any locations in 

river networks (Oki and Sud, 1998; Olivera et al., 2000; Lucas-Picher et al., 2003). Hence, streamflow estimated by the river 45 

routing model is used for several water resources applications including flood risk assessments (Wobus et al., 2017), ecosystem 

health evaluations (Qiu et al., 2021), short-term streamflow forecasting (e.g., Tang et al., 2007; Emerton et al., 2016), and 

reservoir operations (Salas et al., 2018; Shaad, 2018). 

Over the past three decades, many river routing models have been developed and coupled with hydrology and land surface 

models (Shaad, 2018). The river routing models vary in terms of modeling reservoir, irrigation and other human interventions 50 

on river water (e.g., Hanasaki et al., 2006), the spatial resolution and type of discretization of the river network – grid-based 

vs. vector-based (Lehner and Grill, 2013; Mizukami et al., 2016, 2021) – and, finally, the representation of flow physical 

processes in equations (hereafter, called routing scheme). The last category spans from a simple unit hydrograph method 

(Lohmann et al., 1996, 1998) to storage-based routing schemes such as Muskingum (David et al., 2011), simplifications of the 

Saint-Venant equations like kinematic wave  (Arora and Boer, 1999; Decharme et al., 2010; Ye et al., 2013; Thober et al., 55 

2019) or diffusive wave (Gong et al., 2009; Yamazaki et al., 2011), local inertia equations (Bates et al., 2010; Yamazaki et al., 

2013) and full dynamic wave approaches (Paiva et al., 2011). 

Given the wide range of routing methods available, it is crucial to understand the benefits and limitations of each method for 

the specific model application (Shaad, 2018). Many studies have conducted intercomparison experiments with focus on routing 

schemes to evaluate their impacts on streamflow simulations. For example, Arora et al. (2001) compared a time-evolving (or 60 

variable velocity) algorithm that uses Manning’s equation, against a simple storage-based routing scheme (without using 

momentum equation), operating at a very different horizontal resolution. Specifically, they concluded that the variable velocity 

scheme can produce higher values of peak discharge. Gong et al. (2009) demonstrated the benefits of diffusive wave routing 

over a linear reservoir routing method to get more realistic time delays in hydrograph waves in a basin located in southern 

China. David et al. (2011) introduced the Routing Application for Parallel Computation of Discharge (RAPID), based on the 65 

traditional Muskingum method (McCarthy, 1938), obtaining improvements in terms of Root Mean Squared Error (RMSE) and 

the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) when compared to a lumped runoff scheme, which accumulate 

upstream instantaneous runoff without any delay. Ye et al. (2013) implemented a kinematic wave routing scheme in the 

Community Land Model (CLM) version 3.5, and obtained better results compared to the original grid-based River Transport 

Model (RTM), which uses the storage-based routing, in two basins in China. 70 

More recently, Zhao et al. (2017) compared daily and monthly streamflow simulations produced with the CaMa-Flood 

(Yamazaki et al., 2011) model – fed with daily runoff from nine Global Hydrological Models (GHMs) – against those obtained 

with the same hydrological models and their native routing schemes (which have simpler physics). They concluded that the 

choice of routing scheme may have large effects on simulated streamflow and peak values. ElSaadani et al. (2018) compared 

streamflow simulations obtained from VIC runoff outputs using RAPID and the Hillslope Link Model (HLM; Mantilla, 2007), 75 

which is based on power laws that relate flow velocity, channel discharge and upstream area, at many stream gauges located 
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in the Cedar River basin, Iowa. They noted that the choice of routing scheme has large effects on simulated hydrographs, 

obtaining more realistic peak times and magnitudes with the HLM model and decreasing differences in performance for larger 

catchments. Siqueira et al. (2018) compared a local inertia scheme against a non-hydrodynamic scheme or storage-based 

routing, showing that the former provided slight improvements in NSE and the Kling-Gupta efficiency (KGE; Gupta et al., 100 

2009) over the Amazon and La Plata river basins, especially in flow timing. They highlighted that the calibration of 

hydrological parameters and including hydrodynamic routing are critical elements to achieve realistic streamflow simulations 

in South America. 

Besides the complexity of the routing scheme used, the choice of routing time step may also impact streamflow calculations 

(Shaad, 2018). Qiu et al. (2021) characterized the effects of such decision on hydrological variables simulated with the Soil 105 

and Water Assessment Tool (Arnold et al., 1998), which uses the variable storage coefficient routing scheme, computing flow 

velocity with the Manning equation. The authors used six time steps ranging from 1 minute to 1 day, and assessed their impacts 

on performance skills including NSE and bias, finding variations in streamflow simulations that were small compared to water 

storages and depth.  

Although many past studies have shown that the choice of routing scheme affects streamflow simulations, efforts for improving 110 

their accuracy have been made by configuring hydrologic model and routing model independently. Hydrologists still focus on 

parameter calibration to improve discharge simulations, excluding river routing model or neglecting the potential impacts of 

river routing configurations (routing scheme and time step) and parameters if included (e.g., Beck et al., 2020; Newman et al., 

2021). On the other hand, routing model development and evaluation uses hydrologic model output that contains varying 

degree of errors, becoming especially difficult in large river basins or greater spatial domains (e.g., Mizukami et al., 2016; F. 115 

Zhao et al., 2017). Further, the key role of river routing parameters to reproduce observed streamflow characteristics has been 

previously recognized (Boyle et al., 2001; Butts et al., 2004; Sheikholeslami et al., 2021), highlighting the need for joint (i.e., 

hydrological and routing) parameter search strategies to characterize the benefits of routing configurations and potential 

compensatory effects in reproducing application-specific metrics. 

In this paper, we seek to better understand the implications that the configuration of routing schemes may have when 120 

conducting hydrologic model calibration for water resources applications. To this end, we perform numerical experiments in 

the Cautín at Cajón River basin (Araucanía, Chile) using the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) 

and the vector-based routing model mizuRoute (Mizukami et al., 2016). Specifically, we disentangle the impacts of model 

parameters and different routing schemes (all implemented for five time steps) by combining a large sample of VIC simulations 

obtained from 3500 parameter sets, and routing simulations with four different routing methods implemented in mizuRoute. 125 

Our end goal is to unravel how the choice of routing method and routing time step affect (i) streamflow simulated at different 

temporal resolutions, (ii) performance metrics, (iii) the selection of model parameters given a target calibration metric, (iv) 

simulated water balance and runoff partitioning (i.e., baseflow ratio), and (v) hydrological signatures used for decision-making, 

including flood frequency curves and flow duration curves (FDCs). The results and conclusions drawn here reflect the impact 

that innocuous modeling decisions may have for water resources management. 130 
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2. Study domain and data 

2.1 The Cautín River Basin 160 

The study domain is the Cautín at Cajón (CatC) River basin (Figure 1), a sub-catchment of the Imperial River basin, located 

in the Araucanía Region, Chile. The basin elevation ranges between 125 and 3104 m a.s.l., the catchment area is 2770 km2, 

and the dominant land cover types are crop-pasture rotation (44%) and native forest (40%). Additionally, the basin is prone to 

rainfall-driven flood events during winter and, therefore, has been subject of studies aimed to enhance predictive capabilities 

(e.g., Mendoza et al., 2012). 165 

2.2 Hydrometeorological data 

Daily precipitation, maximum and minimum temperature are obtained from the CR2MET v2.0 dataset (Boisier et al., 2018, 

available at https://www.cr2.cl/datos-productos-grillados/), which covers continental Chile with a horizontal resolution of 

0.05° x 0.05° during the 1979-2020 period. In CR2MET, precipitation data was obtained with a statistical modeling framework 

that uses topographic descriptors and large-scale climatic variables (water vapor and moisture fluxes) from ERA5 (Hersbach, 170 

2016) as predictors, and observed daily precipitation from gauge stations as predictand. For maximum and minimum daily 

temperature, additional variables from MODIS land surface products were added as predictors. Daily precipitation and 

temperature time series are disaggregated into hourly time steps using the sub-daily distribution provided by ERA5-Land 

(Muñoz-Sabater et al., 2021). Relative humidity, wind speed and shortwave radiation are derived for the same horizontal 

resolution grid by spatially interpolating ERA5-Land outputs. Longwave radiation was computed with the parameterization 175 

proposed by Iziomon et al. (2003), using CR2MET air temperatures disaggregated to hourly time steps using the ERA5-Land 

hourly distribution. 

Daily streamflow data is obtained from five stations (Figure 1) maintained by the Chilean Water Directorate (DGA, available 

at the CR2 Climate Explorer https://www.cr2.cl/datos-de-caudales/). Similarly, hourly streamflow records for the CatC basin 

were obtained from the official DGA website (https://dga.mop.gob.cl/servicioshidrometeorologicos). 180 

3. Models 

3.1 Hydrological model 

We use the VIC model (Liang et al., 1994) to simulate state variables and fluxes at a 0.05°x 0.05° horizontal resolution. VIC 

is a semi-distributed physically based hydrological model that solves energy and mass balance equations. Precipitation can be 

partitioned into snowfall or rainfall, and both can be stored in the canopy. The maximum amount of water intercepted by the 185 

canopy is estimated using the Leaf Area Index (LAI; Dickinson, 1984). The soil is represented by three layers controlling the 

infiltration (first soil layer) and baseflow (third soil layer). For infiltration fluxes, VIC uses the Xinanjiang formulation (Zhao, 

1980), assuming that the infiltration capacity varies within an area (Wood et al., 1992). Excess runoff is generated in those 
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areas where precipitation exceeds the amount of available soil moisture storage of the first soil layer. VIC assumes that drainage 

is driven by gravity, using the formulation proposed by Brooks & Corey (1964). In this regard, water enters the cell only from 

the atmosphere, i.e., VIC does not consider lateral fluxes among grid cells. Baseflow is generated in the third (deepest) soil 

layer using a formulation proposed by Franchini & Pacciani (1991). The snowpack is represented by two layers, where the top 200 

layer is used for energy balance computations (Andreadis and Lettenmaier, 2009). The reader is referred to Liang et al. (1994) 

for more details. 

Horizontal heterogeneity is considered in each grid cell by incorporating different land cover types. Here, we use the IGBP 

classification for the year 2010 from the MCD12Q1 v006 land cover product (Sulla-Menashe and Friedl, 2018) to represent 

all land cover types spanning at least 2% of each grid cell area. Mean monthly LAI values for these land cover types are derived 205 

from the MOD15A2 product. Soil Bulk density is estimated using the mean value from the first 2 m depth of soil from the 

SoilGrids product (Poggio et al., 2021). 

3.2 River routing schemes 

The mizuRoute model first performs a hillslope routing using a gamma-distribution-based unit-hydrograph to delay 

instantaneous total runoff from the VIC model to a catchment outlet, and then route the delayed runoff for each river reach in 210 

the order defined by the river network topology. Full descriptions of hillslope routing and general routing procedures are 

provided in Mizukami et al. (2016). mizuRoute originally included two channel routing schemes: (1) kinematic wave tracking 

(KWT) routing, and (2) impulse response function (IRF) routing, which is similar to the Lohmann et al. (1996) model except 

that mizuRoute uses a reach-to-reach routing approach instead of the source-to-sink approach. Details of both routing schemes 

are also provided in Mizukami et al. (2016). Here, we implement in mizuRoute two additional routing schemes commonly 215 

used for many water resources applications: Diffusive Wave routing (DW, Appendix A) and Muskingum Cunge (MC, 

Appendix B). All the channel routing schemes except IRF (which uses prescribed wave celerity and diffusivity) share two 

parameters: Manning’s n roughness coefficient and channel width (assuming rectangular channel). 

4. Experimental setup 

Figure 2 summarizes the approach used in this paper, which consists of the following steps: 220 

a. Sample model (VIC and mizuRoute) parameter sets and obtain, for each one, streamflow times series with five routing 

schemes (including instantaneous runoff or no routing as the baseline) and five temporal resolutions (Figure 2a, see 

details in Section 4.1) at each river gage (Figure 1c). We save the parameter sets that maximize each performance 

metric – computed with a daily time step – at each stream gauge station for each combination of routing scheme and 

routing time step (Figure 1, Table 1). For the KWT scheme, we select n values of 0.01 (default option), 0.03 (i.e., the 225 

spatially constant value used by Yamazaki et al., 2011) and 0.033 (which maximizes the KGE computed with daily 

streamflow). 
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b. Examine the effect of routing model configurations (i.e., routing schemes and time steps) on simulated daily 

hydrographs at Cautín at Cajón (Figure 2b.1), and analyze the impact of excluding the river routing process on 

simulated streamflow at annual, monthly, daily and sub-daily time steps (Figure 2b.2). 

c. Explore the overall impacts of routing modeling decisions on performance metrics (section 4.2) computed with 235 

different temporal resolutions (Figure 2c.1). Then, we examine the sensitivity of the best metric value (achievable 

from the simulations with all the sampled parameter sets) to the river routing configuration across sub-basins (Figure 

2c.2). 

d. Characterize the effects of routing configuration on simulated annual water balance (specifically, the mean annual 

runoff ratio) and baseflow contribution (computed from VIC output) to total runoff (Figure 2d.1); and the selected 240 

parameter values (Figure 2d.2). 

e. Analyze the effects of routing configurations on flood frequency (see details in Section 4.3, Figure 2e.1) and daily 

FDCs (Figure 2e.2). 

The steps (a)-(d) are performed using observed and simulated data for the period April/2008-March/2012, whereas step (e) is 

conducted simulations for the period April/1985-March/2020. All the steps but c.1 (Figure 2) use VIC and mizuRoute 245 

parameter sets that maximize performance metrics (listed in Section 4.1) computed with simulated and observed daily flows. 

The following sub-sections provide complete descriptions on the parameter sampling strategy, streamflow simulations, 

performance metrics and the computation of flood frequency and flow duration curves. 

4.1 Parameter sampling and streamflow simulations 

Since we aim to examine the impacts of different routing schemes on streamflow performance metrics across the parameter 250 

space, rather than seeking an optimal parameter set, we use the Latin Hypercube Sampling (LHS) method, which is a common 

strategy to sample the parameter space and identify behavioral sets for specific target metrics  (e.g., Andréassian et al., 2014; 

Broderick et al., 2016; Melsen et al., 2016, 2019; Guse et al., 2017; Khatami et al., 2019). Here, we sample 3500 model 

parameter sets (Figure 2a) considering the 13 VIC parameters identified by Sepúlveda et al. (2022) as the most sensitive, and 

routing model parameters: one (the Manning roughness coefficient) for the KWT, MC and DW methods, and two for the IRF 255 

method (Table 2). For each parameter set, we run VIC and mizuRoute at hourly time steps for the period April/2006 - 

March/2012. To generate streamflow simulations at 2-hour, 3-hour, 4-hour, and 6-hour time steps, we aggregate hourly VIC 

runoff and run the mizuRoute model with all routing schemes. For example, streamflow time series at a 3-hour resolution are 

obtained from mizuRoute simulations using 3-hour VIC runoff time series, which are computed by temporally aggregating 1-

h VIC outputs at each grid cell. It should be noted that this step requires assuming the absence of non-linear processes in time 260 

within the hydrological model. The resulting VIC runoff time series are also used to compute streamflow by spatially averaging 

total runoff within each (sub-)basin without using a routing scheme (hereafter referred to as instantaneous runoff, Inst, or no 

routing), which is a common approach used in hydrological modeling applications (e.g., Mendoza et al., 2016; Beck et al., 
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2020). As a result, we obtain streamflow times series at each river reach (Figure 1c) for five routing methods (four routing 

schemes and Inst as the baseline) and five temporal resolutions (1 h, 2 h, 3 h, 4 h and 6 h, Figure 2a). 265 

4.2 Streamflow performance metrics 

For each model run, we evaluate the performance of streamflow simulations from VIC-mizuRoute using four metrics. The 

first one is the Kling Gupta efficiency (KGE; Gupta et al., 2009; Kling et al., 2012), which quantifies performance in terms of 

variability, volume and timing: 

𝐾𝐺𝐸(𝑄) = 1 −	+(1 − 𝛼)- + (1 − 𝛽)- + (1 − 𝑟)-   𝛼 = 12
13
																𝛽 = 42

43
    (1) 270 

where 𝜎 is the standard deviation for simulated and observed values, 𝜇 is the mean streamflow over the 𝑛 times steps, and 𝑟 is 

the Pearson correlation coefficient between simulated and observed streamflow. The second metric is the Nash-Sutcliffe 

efficiency (NSE; Nash & Sutcliffe, 1970), which is computed using observed (o) and simulated (s) streamflow (𝑄): 

𝑁𝑆𝐸(𝑄) = 1 −	∑ ;<3=><2=?
@A

=BC

∑ ;<3=><D3?
@A

=BC
          (2) 

where 𝑄EF  is the observed streamflow for time step 𝑡, 𝑄HF  is the simulated streamflow for time step 𝑡 and 𝑄DE  is the mean 275 

observed streamflow over the 𝑛 time steps considered. The third metric is the NSE computed for the logarithms of the 

streamflow (NSE-log) to test the model’s capability to simulate low flows (Krause et al., 2005). Although all these metrics 

range between −∞ and 1, where 1 represents a perfect simulation, their values are not comparable because they differ in terms 

of target streamflow characteristics, and the incorporation or lack of a benchmark. For example, NSE is formulated based on 

a reference model simulation (i.e., mean climatology), while KGE does not have one, and NSE = 0 is equivalent to KGE = -280 

0.41 (see discussions in Knoben et al., 2019). Importantly, the above metrics are relevant not only for the hydrologic modeling 

community – especially for parameter calibration and evaluation (Fowler et al., 2018; Knoben et al., 2019; Clark et al., 2021) 

–, but also for the river routing community. In fact, several examples of river routing scheme assessments can be found using 

the KGE (Pereira et al., 2017; Hoch et al., 2019; Qiao et al., 2019; Thober et al., 2019; Munier and Decharme, 2022), NSE 

(Yamazaki et al., 2011; Ye et al., 2013; Zhao et al., 2017; ElSaadani et al., 2018; Nguyen-Quang et al., 2018; Fleischmann et 285 

al., 2019, 2020) and even the NSE-log (Paiva et al., 2013b). 

Finally, we use the percent bias in the high-segment volume of the FDC (Yilmaz et al., 2008): 

%𝐵𝑖𝑎𝑠𝐹𝐻𝑉 = ∑ (<2R><3R)S
TBC
∑ <3RS
TBC

× 100	          (3) 

where h =1,2,...,H are the flow indices in the flow array with probability of exceedance less than 0.02. FHV is a measure of 

the basin response to high precipitation events. 290 

The four performance metrics are calculated for the period April/2008 – March/2012 (after a two-year warm up), using all the 

combinations of parameter sets (3500), routing schemes (including the case without routing) and routing time steps (1 h, 2 h, 

3 h, 4 h and 6 h). Additionally, for each routing time step, the performance metrics are computed for different aggregated 

temporal resolutions when possible for step (c.1). For example, to estimate metrics at an hourly time step, routing can only be 
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run at a 1-hour time step. Metrics computed at 3-hourly time steps use temporally averaged streamflow from a 1-hour and 3-

hour mizuRoute simulations. Metrics computed at 6-hourly time steps can be computed from temporally averaged 1-hour, 3-

hour and 6-hours mizuRoute simulations, and so on. The observed streamflow for a given time step is estimated from hourly 

streamflow records. 395 

4.3 Flood frequency and flow duration curves 

Because high flows are relevant for engineering applications, in particular, infrastructure design, we analyze the implications 

of routing configurations for the calculation of flood frequency curves (Figure 2e.1). To this end, we run VIC at hourly time 

steps from April/1981 to March/2020 using the parameters associated to the highest KGE, NSE and %BiasFHV values (all 

computed with daily flows) for each routing configuration. Then, hourly VIC total runoff is aggregated and routed at different 400 

time steps (i.e., 2 h, 3 h, 4 h and 6 h), and annual maximum daily flows are obtained for the period April/1985 – March/2020 

(i.e., the period April/1981 – March/1985 is dropped). Hence, for each routing time step we obtain five annual time series with 

n = 35 values (obtained from the baseline and the four routing schemes) that are used to compute maximum daily flows at 

return periods of 20, 50, 100 and 200 years. We use the Log-Normal parametric distribution – which provides the best results 

for the Kolmogorov–Smirnov test – for the observed time series of maximum daily flows. 405 

Finally, we characterize the impacts of routing configurations on daily FDCs (Figure 2e.2), which are widely used in water 

resources applications. Empirical FDCs are constructed from daily time series of streamflow for the period April/1985 – 

March/2020, computing exceedance probabilities with the Weibull plotting position formula.  

5. Results 

5.1 Illustration of routing effects 410 

Figure 3 illustrates the sensitivity of daily streamflow simulations to different routing modeling decisions, including the routing 

time step on IRF scheme (Figure 3a), the choice of routing scheme (Figure 3b), and the Manning’s roughness coefficient on 

KWT results (Figure 3c). In each panel, simulations are displayed for the period May 10 – June 16 2008 using the parameter 

set (obtained from LHS) associated with the maximum daily KGE for each combination of routing scheme, routing time step 

and Manning’s coefficient distribution. In all cases, sub-daily routing simulations are aggregated to a 24-hour time step. It can 415 

be noted that the choice of routing scheme and Manning’s coefficient values have a larger effect on the shape of the flood 

wave. Additionally, increasing routing time steps for IRF accelerates the timing of peak discharge in one day, though 

decreasing its value to 776 m3/s for Dt = 6 h (compared to 785 m3/s obtained with Dt = 1 h). The choice of routing scheme 

affects the shape of storm hydrographs, especially high flows. Finally, a delay in peak flow simulations is obtained for larger 

Manning’s roughness coefficients. 420 

Figure 4 compares streamflow obtained from mizuRoute (y-axis) against instantaneous runoff (x-axis) for several temporal 

resolutions and different routing schemes. In this case, the parameter set used to run the models is the one that maximizes the 
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KGE among the 3500 parameter sets from the LHS. The results for hourly time steps show that the lack of routing yields much 

larger values (> 1300 m3/s in some cases) compared to routed streamflow. These differences are gradually reduced when the 

routing time step increases to Dt = 3 h and 6 h, although differences can be larger than 1200 m3/s. The impact of excluding 510 

routing lessens as the time step increases, yet it can be important even for streamflow simulations at a Dt = 24 h time step. At 

monthly time steps, the differences between routed and instantaneous runoff reduce considerably, though these still can be as 

large as 27 m3/s (i.e., a 10% difference using routed runoff as the reference). Further, the differences become negligible at the 

annual resolution. Finally, given a specific time step, the magnitudes of differences are very similar across routing schemes, 

although slight differences in r2 suggest that IRF and KWT affect VIC outputs more. 515 

5.2 Effects on performance metrics 

The KGE, NSE, NSE-log and %BiasFHV values obtained with the 1% best (i.e., 35) parameter sets for each combination of 

routing scheme, routing time step and metric time step are displayed in Figure 5. To compare performance measures from 

different configurations, simulations were aggregated to the metric time resolution (columns). Overall, the results show a clear 

difference between including routing and Inst, which becomes more evident for performance metrics computed at smaller 520 

temporal resolutions. Moreover, none of the 1% best parameter sets for KGE and NSE with instantaneous runoff could produce 

better performance than including routing. On the other hand, the choice of routing time step is comparatively less influential 

for a given metric time step. The maximum KGE spans 0.69-0.73 for instantaneous runoff, increasing to 0.8 or more when 

routing is included. Similar improvements are observed for NSE, with increments that can be larger than 0.3 NSE values (e.g., 

1 h). Compared to the former metric, routing yields smaller benefits for NSE-log and less noticeable differences among routing 525 

configurations, mainly due to the minor influence of high flow values on the metric. In all cases, a larger spread in high-flow 

biases is obtained with instantaneous runoff (compared to routing schemes), indicating that many VIC parameter sets do not 

compensate for the lack of river routing to obtain accurate high flow simulation. Finally, the results show that the impact of 

representing river routing on %BiasFHV is more relevant when this metric is computed at hourly resolution, approaching to 

zero as the metric time step increases. 530 

Figure 6 compares the best KGE, NSE, NSE-log and %BiasFHV values (computed from daily flows) achievable from the 

large sample of model parameter sets in each basin (represented by the basin area in the x-axis), given a specific combination 

of routing scheme and routing time step. For completeness, the KGE components (𝛼, 𝛽 and 𝑟) are also displayed. For KGE, 

NSE and NSE-log, the maximum values increase at all streamflow gages when the routing process is included, regardless of 

the routing configuration. Very similar maximum KGE values are obtained with the four schemes implemented in mizuRoute, 535 

and the differences among these schemes are generally lower than 0.05 for all time steps and basins. The improvements in 

KGE through the inclusion of routing are explained by the enhancement of temporal correlation (𝑟) and variability error (α). 

In particular, routing (especially Muskingum-Cunge and Diffusive Wave schemes) helps to improve 𝑟 values of simulated 

instantaneous runoff by changing the timing of high peak flows. Even more, Figure 6 shows that, in our study domain, the 

correlation between streamflow simulations and observations increases with basin area when routing is incorporated. 540 
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Figure 6 also shows considerable improvements in NSE across all catchments when routing is applied, especially in CatRR 

and CatC (i.e., the two largest river basins). Notably, differences between routing and Inst options are also obtained for NSE-

log in all stream gages, demonstrating the benefits of routing beyond the simulation of high flows. %BiasFHV is very close to 

zero for the smallest catchment, increasing with catchment size when no routing is performed; nevertheless, in every basin, at 650 

least one routing scheme can reduce high flow biases to nearly zero. 

5.3 Impact on simulated fluxes and model parameters 

Figure 7 illustrates the impacts of the choice of routing scheme on the mean annual runoff ratio (partitioning of precipitation 

into runoff and evapotranspiration: x-axis) and the ratio between mean annual baseflow and mean annual total runoff (y-axis) 

for each routing time step (columns) and performance metrics (all computed with daily discharge and displayed in different 655 

rows). The red symbols represent the results based on the best value for the corresponding performance metrics. To account 

for equifinality effects, we also include the results with the parameter sets that produce the 0.1% best simulations for respective 

performance metrics (i.e., four parameter sets). Precipitation partitioning (Q/P) is relatively unchanged whether routing is used 

or not, regardless of the routing schemes for any performance metric except %BiasFHV, for which less clear patterns in runoff 

ratio and flow components are obtained. Conversely, the greater impacts are seen in the baseflow ratio (bf/Q). For KGE and 660 

NSE, a clear separation in runoff components is obtained between instantaneous runoff and routing schemes (for any routing 

time step), with a much higher baseflow contribution to total runoff for Inst. When the VIC model parameters are selected 

based on the NSE-log metric, the differences among the routing configuration options are generally smaller compared to KGE 

and NSE, though the best performing parameter set produces less baseflow. 

To examine the effect of river routing on the selection of the model parameters, we show, for three routing time steps and all 665 

routing schemes, the best values for KGE, NSE, NSE-log and %BiasFHV (with the four metrics computed with daily flows) 

among the 3500 parameter sets from LHS (Figure 8). The parameters values are normalized by the difference between the 

maximum and minimum values obtained from LHS to facilitate comparisons. Hence, a normalized value of zero indicates the 

lower boundary of the parameter, while a value of 1 indicates the upper limit. The results indicate that the same best parameter 

set is obtained for NSE-log regardless of the selected routing scheme (when included) or the routing time step, which explains 670 

why all the routing schemes with the best performing parameter set (red) produce the same bf/Q and Q/P (Figure 7). 

Additionally, the absence of routing when maximizing NSE-log not only affects soil parameter values (compared to results 

with river routing), but also reduces the snow albedo decay parameter (𝛼FWXY). 

For KGE, the KWT, MC and DW schemes yield the same VIC parameter sets, which are different from that obtained with 

instantaneous runoff. Conversely, all the routing schemes yield different VIC parameter sets for NSE, except for MC and DW. 675 

For KGE and NSE, the choice of routing time step does not affect the best parameter set given a routing scheme, excepting 

the combination KGE-IRF. It should be noted that, for both NSE and KGE, excluding routing produces higher Ws (fraction of 

maximum soil moisture where non-linear baseflow occurs), higher dmax (maximum total soil thickness) and lower b (infiltration 

parameter), regardless of the routing time step, which may contribute to the larger baseflow fraction seen in Figure 7. Finally, 

Deleted: Finally, the results in Figure 6 suggest that implementing 680 
routing schemes yields benefits in the timing of simulated streamflow 
(compared to the baseline case) as contributing area increases. 
Nevertheless, there is not a clear relationship between the latter 
variable and performance metrics. ¶
¶685 

Formatted: Bullets and Numbering

Deleted: VIC

Deleted: , for each routing time step (columns) and calibration 
objective function (all computed with daily discharge and displayed 
in different rows),

Deleted: partitioning of the 690 
Deleted: the period April/2008-March/2012.

Deleted: VIC 

Deleted: with calibration metric values within

Deleted: . For KGE and NSE, excluding routing (Inst, represented 
by squares) forces VIC to compensate the absence of this process by 695 
delaying the runoff response with a larger contribution of baseflow to 
total runoff, compared to any routing scheme.

Deleted: provided by

Deleted: Figure 7 also shows that NSE is the only metric for which 
slight differences in Q/P arise between Inst and routing schemes. In 700 
such case, higher annual runoff ratios (and hence a lower evaporative 
ratio) are obtained when routing processes are ignored, regardless of 
the routing time step selected. Additionally, we do not find any clear 
relationship between baseflow contribution (bf/Q) or precipitation 
partitioning (Q/P) with the choice of routing scheme.¶705 
Deleted: VIC

Deleted: choose

Deleted: each combination of

Deleted: step

Deleted: scheme710 
Deleted: (highest) value

Deleted: NSE, 

Deleted:  and

Deleted: -log (

Deleted: . For NSE, including routing yields a different VIC 715 
parameter set

Deleted: is the same for

Deleted: implemented in mizuRoute. Conversely, for KGE

Deleted: choice

Deleted: scheme may affect the selected VIC 720 
Deleted: set. Indeed, selecting IRF

Deleted: in a different

Deleted: set for routing time steps larger than 3-hours. It should be ... [15]
Deleted: The results displayed in Figure 8 also show that different ... [16]



11 
 

different routing configurations (routing methods and routing time step) result in unique best parameter sets if %BiasFHV is 

used as the performance metric, in contrast to KGE, NSE and NSE-log.  

5.4 Implications for flood frequency and flow duration curves 740 

Figure 9 shows the flood frequency curves from the annual time series of maximum daily flows, using model parameters 

obtained with KGE, NSE and %BiasFHV as target metrics. Note that the curve for daily instantaneous runoff is the same for 

each metric, regardless of the time step. As expected, differences in flood estimates between instantaneous runoff and any 

other routing scheme are considerable, surpassing 400 m3/s in some cases (see results for T = 200 with KGE and %Bias FHV). 

Additionally, the dispersion among routing schemes increases with larger Dt for KGE and, in particular, for %BiasFHV, which 745 

can be explained by differences obtained for model parameter values (Figure 8). Even if the same parameter sets are obtained 

for a target metric and a suite of routing schemes, regardless of the choice of Dt (e.g., KWT, MC, and DW for KGE, see Figure 

8), variations in routing time step affect the time series of daily flows and, therefore, flood quantiles obtained with a specific 

routing scheme, as well as inter-method differences for a given return period. For example, when the target metric is KGE, 

Q(T=100 years) values obtained with KWT and DW for Dt = 1 h are 1202 m3/s and 1189 m3/s, respectively, while Dt = 6 h 750 

yields 1196 m3/s and 1171 m3/s using the same schemes. Interestingly, differences in frequency curves arising from the choice 

of routing scheme with NSE decrease with larger Dt, although the best parameter set does not depend on the routing scheme 

(see Figure 8). 

Figure 10 shows daily FDCs obtained with different routing schemes, routing time steps (columns) and model parameters that 

maximize KGE, NSE, or %BiasFHV (rows). It can be noted that, for KGE, the disagreement arising from the choice of routing 755 

scheme is generally small for medium and low flows, as opposed to the disagreement obtained with NSE and %BiasFHV. For 

KGE and NSE, no appreciable differences in FDCs are observed among routing time steps, whereas the opposite is observed 

for %BiasFHV. For example, FDCs with very different mid-segment slopes (which is a signature for flashiness of runoff) and 

low flow volumes (i.e., segment for Pexc > 70%) are obtained for MC with Dt = 3 and Dt = 4 h. This can be explained by the 

fact that the choice of routing time step does not impact the parameter sets obtained with NSE and KGE (as it happens with 760 

%BiasFHV). 

6. Discussion 

6.1 Implications for hydrological modeling 

In this paper, we use the LHS approach to evaluate the impact of routing on streamflow performance metrics across the 

parameter space. Our results suggest that, regardless of the routing scheme, including the river routing process improves the 765 

overall streamflow performance (Figures 5 and 6). In other words, the lack of river routing in the modeling chain may not be 

fully compensated through the calibration of hydrologic model parameters. Nevertheless, such conclusion may depend on the 

Formatted: Bullets and Numbering

Deleted: obtained 

Deleted:  (see details in Section 3.5),

Deleted: NSE at daily time steps770 
Deleted: objective functions.

Deleted:  (i.e., the same across rows). The panels in 

Deleted: two bottom rows zoom into maximum annual daily flows 
for a return period T = 100 years. The results show that the choice of 
routing 775 
Deleted:  impacts frequency analyses. For example, for a routing 
time step of 1-hour, the spread provided by different routing schemes 
is small across return periods. However

Deleted: . For T = 100 years, the differences among routing 
schemes for routing time step Dt = 1 h are smaller than 100 m3/s, 780 
while for Dt = 12 h or Dt = 24 h the 

Deleted: can be as large as 200 m3/s.

Deleted: different 

Deleted: VIC

Deleted: KGE785 
Deleted: The bottom panels zoom into discharge values with low 
exceedance probabilities (0-1%). When the objective function is

Deleted: differences

Deleted: are

Deleted: though such differences increase for low exceedance 790 
probabilities (0-0.01). In such cases, the impacts of including river 
routing are noticeable, and for Dt ≥ 6 h IRF results depart from the 
remaining routing methods. For NSE, including the routing process 
impacts the medium and low flow segments of the FDC (

Deleted: KGE). Further, inter-method differences for high flow 795 
values can be larger compared to

Deleted: differences between instantaneous vs. routed runoff (see 
results for 

Deleted: ≥ 6 h

Formatted: Default Paragraph Font

Formatted: Bullets and Numbering
Deleted: this800 



12 
 

hydrological regime of the catchment and the distributed spatial configuration of the river routing implementation. The Cautín 

River basin has a rainfall-dominated runoff regime, with high flow peaks associated with heavy rainfall events during the 

winter season, and a slight influence of snowmelt during the spring season. The catchment response time and peak discharge 

depend on the runoff routing process in the river network; hence, its explicit inclusion in hydrological modeling may yield 

better results, especially for performance metrics influenced by high flows (Clark et al., 2021). 805 

The results presented here show that the implementation of river routing is also relevant for medium and low flows. For 

example, including river routing provided higher values for NSE-log (Figures 5 and 6) – improving the simulation of low 

discharges – and modified the shape of the mid and low flow segments in the FDC (Figure 10), which are characteristic 

signatures of ‘flashiness’ in runoff response and long term baseflow, respectively (Yilmaz et al., 2008). The effects of river 

routing are also reflected in the partitioning of total runoff between baseflow and surface runoff. In fact, the results presented 810 

here show that the parameter search process compensates for the lack of routing by modifying other fluxes and state variables 

(Khatami et al., 2019) to increase streamflow-oriented performance metrics. For example, when the target metrics are KGE, 

NSE or NSE-log, excluding routing (represented by squares) forces VIC to compensate the absence of this process by delaying 

the runoff response with a larger contribution of baseflow to total runoff, compared to any routing schemes. In such cases, the 

contribution of baseflow to total runoff increases >30% when river routing is excluded, which is achieved by modifying soil 815 

parameters –including Ws, one of the most sensitive for baseflow in this type of hydroclimate (Sepúlveda et al., 2022) – to 

delay the streamflow response. This result suggests that including routing processes may impact the outcomes from drought-

oriented studies, since baseflow is the primary flux sustaining streamflow during water scarcity periods (Karki et al., 2021). 

Conversely, we found smaller variations in the partitioning of precipitation between evapotranspiration and runoff in the 

absence of river routing (Figure 7), especially for KGE, NSE and NSE-log. Hence, when models are configured to maximize 820 

these metrics to conduct hydroclimatic or water balance analyses at the annual time scale, the incorporation of routing processes 

is relatively less important. 

The impacts of routing scheme choice exhibit less clear patterns if the model chain is calibrated with integrated time series 

metrics such as KGE, though differences remain in the performance metrics (Figure 5), high flow analyses (Figure 9) and 

FDCs (Figure 10). Here, we obtained very similar results with MC and DW, including runoff partitioning, best parameter sets 825 

(including Manning’s roughness coefficient n) and flood frequency curves if the target metrics are KGE and NSE. Both 

schemes use the same routing parameters and essentially simulate wave diffusion. MC mimics physical diffusive phenomena 

via numerical diffusion in the explicit numerical solution, while the DW routing explicitly incorporates the diffusion process 

in the diffusion equation.  Despite very good results were achieved with DW, limited impacts are expected for the Cautín River 

basin, because the slopes of river reaches therein range from 0.0004 to 0.274 m/m. In fact, the largest benefits of DW are 830 

expected for flatter river systems (slope < 0.001 m/m; e.g., Kazezyılmaz-Alhan et al., 2007), where flood wave diffusion 

processes can dominate. It can be argued that a more physically realistic routing scheme will better simulate the hydrograph. 

However, IRF routing, which uses the simplest algorithm among the schemes used in this study, may reproduce the results 

from the other routing schemes after the calibration. 
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Although the routing time step does not yield important effects on performance metrics in our experimental setup, it can affect 

the choice of VIC parameters (e.g., see results for KGE and %BiasFHV, Figure 8), which is in line with previous hydrologic 

modeling research. For example, Kavetski et al. (2011) found that temporal data resolution may alter parameter values in 870 

conceptual hydrological models. More recently, Melsen et al. (2016) found that the parameter values may greatly vary if 

calibration metrics are computed at hourly, daily or monthly time steps. Accordingly, variations in the VIC model time step – 

which is fixed to Dt = 1 h here – may also alter the selection of parameters and performance measures (see section 6.2).  

6.2 Limitations and future work 

Here, we only focused on the choice of routing scheme and routing time step, though there are many other decisions that could 875 

be explored in the implementation of river routing models. For example, we did not examine the effects of surface storage 

elements like reservoirs, wetlands, and flood plains on river flow dynamics. Additionally, we did not estimate the spatial 

variability of the Manning’s roughness coefficient (n) across the Cautín River basin. Due to data restrictions, many past studies 

used spatially constant values of n (Arora and Boer, 1999; Lucas-Picher et al., 2003; Yamazaki et al., 2011; Siqueira et al., 

2018), or have adopted indirect approaches. For instance, Decharme et al. (2010) estimated n as a linear function of the river 880 

width W; Miguez-Macho & Fan (2012) used satellite land cover to assign the Manning’s roughness coefficient and Verzano 

et al. (2012) estimated n variability in space based on topography, the location of urban population, and river sinuosity. These 

or other techniques could be applied in combination with field data to estimate spatial n fields, that can be subsequently 

calibrated through spatial regularization strategies (e.g., Mendoza et al., 2012). 

An important assumption of our experiment is the lack of non-linear processes in time within the hydrological model, in order 885 

to aggregate hourly runoff to coarser time steps. Such decision was required to isolate the impact of hydrologic model 

configuration from river routing decisions, and achieve a clean experimental design, though we recognize that the choice of 

hydrological model time step may also alter performance metrics (e.g., Bruneau et al., 1995; Wang et al., 2009).   

In this study, we did not include the full dynamic wave scheme, which might yield improvements compared to the routing 

schemes tested here, especially very large flood events at downstream of the bases or flatter part of basins. Paiva et al. (2013b) 890 

validated a full hydrodynamic model in stream gauges within the Amazon River basin, obtaining that discharge and water 

levels were simulated accurately, outperforming the Muskingum-Cunge approach. The same model was evaluated against 

satellite observations, showing good performance in terms of water levels and inundation extents (Paiva et al., 2013a). Hence, 

future assessments of routing schemes may include more detailed comparisons against remotely sensed data, including such 

additional hydraulic variables over ungauged catchments with different hydrological regimes (e.g., snowmelt-driven, mixed 895 

regimes) and physiographic characteristics (e.g., contributing area, average slope, land cover types). Further, it would be 

interesting to examine the interplay between structural uncertainty (e.g., channel geometries, rive network or drainage density, 

and floodplain) and parametric uncertainty in river routing models, a topic that has been widely explored in the hydrologic 

modeling literature (e.g., Ajami et al., 2007; Günther et al., 2019; Newman et al., 2021). 
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In this work, we contrast the performance of different model configurations using metrics that describe specific aspects of the 

system’s response. However, the interpretation of differences in metric values is not straightforward (Clark et al., 2021). For 960 

example, an improvement of 0.2 in KGE may be explained by a better simulation of streamflow timing and variability, at the 

cost of larger volume bias (e.g., see results for Cautín at Rariruca, 1305 km2, Figure 6), which stresses the need to understand 

the information content in the metrics used for model diagnostics. Finally, we only considered a single-objective (e.g., NSE, 

KGE) parameter search based on a Monte Carlo sampling scheme. Future studies could characterize the impacts of river 

routing schemes exploiting single-objective optimization algorithms (e.g., Duan et al., 1992; Tolson and Shoemaker, 2007), 965 

or address multi-objective problems using Pareto principles (Yapo et al., 1998; Pokhrel et al., 2012; Shafii and Tolson, 2015). 

Although different behavioral parameter sets and, therefore, different internal fluxes could be obtained, we hypothesize that 

similar conclusions could be drawn regarding the benefits of river routing representation to achieve realistic streamflow 

simulations. Nevertheless, further research is needed to understand implications for catchments with different hydroclimatic 

regimes and physiographic characteristics. 970 

7. Conclusions 

Despite the general consensus in the hydrology and Earth system modeling communities about the relevance of river routing 

schemes for realistic streamflow simulations, there is little knowledge of the extent to which this process is relevant. 

Additionally, hydrologic model calibration research has been done neglecting the impacts of river routing model 

configurations, and routing model development has been conducted ignoring the effects of hydrologic model parameters. In 975 

this paper, we try to reduce these gaps by performing modeling experiments at the Cautín River basin (Chile), coupling the 

VIC model with four different routing schemes implemented in the mizuRoute model to produce streamflow simulations at 

various time steps with an ensemble of 3500 parameter sets. 

Our main conclusions are as follows: 

1. Runoff routing alters streamflow simulations considerably at sub-daily and daily time steps, with slight (negligible) 980 

impacts at the monthly (annual) time step. 

2. Including a river routing model may provide better hydrologic model calibration results compared to the case without 

routing. 

3. The timing of streamflow simulations may improve for larger contributing areas if runoff routing is performed. 

4. For popular performance metrics (i.e., KGE, NSE and NSE-log), including routing processes may yield different 985 

parameter sets compared to the case without routing, with notable impacts on the baseflow contribution to total runoff. 

Additionally, different routing schemes may yield different hydrologic parameter sets. 

5. Including routing models decreases annual maximum daily flows values in frequency curves and, depending on the 

target streamflow metric, the disagreement in flood quantile estimates among schemes may increase for larger routing 

time steps. 990 
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6. When the calibration metric is NSE(Q24h) or %BiasFHV, including routing models may affect the probabilistic 1005 

distribution of medium and low daily flows considerably. 

Appendix A. Diffusive wave routing 

The flood wave propagation through a river channel is described with the 1-dimensional Saint-Venant equations: 
Z<
Z[
+ Z\

ZF
= 0           (Eq. A1) 

Z<
ZF
+ Z

Z[ ]
<@

\ ^ + 𝑔𝐴
Za
Z[
− 𝑔𝐴(𝑆E − 𝑆b) = 0        (Eq. A2) 1010 

where Q is discharge [L3T-1] at time step t [T] and location x [L] in a river reach, A is cross-sectional flow area [L2], Z is flow 

depth [L], S0 is channel slope [-], Sf is friction slope [-], and g is gravitational constant [LT-2]. The continuity equation (Eq .A1) 

assumes that no lateral flow is added to a channel segment. A friction slope is expressed using channel conveyance Kc: 

𝑆b =
<|<|
de

           (Eq. A3) 

In large domain river routing, one-dimensional full Saint-Venant equations, or fully dynamic wave equations, are typically 1015 

simplified by neglecting some force terms in the momentum equation (Eq. A2). The kinematic wave approximation is obtained 

by neglecting acceleration and pressure gradient terms, assuming that river bed slope and energy slope are equal. This 

assumption is the basis of the kinematic wave tracking algorithm (Mizukami et al., 2016). If a rectangular channel with a 

channel width w is used, the diffusive wave equation can be obtained by neglecting acceleration terms (1st and 2nd terms in Eq. 

A2) and combining Eqs. A1 and A2 (Sturm, 2021): 1020 
Z<
ZF
= 𝐷 Z@<

Z[@
− 𝐶 Z<

Z[
          (Eq. A4) 

Where: 

𝐶 =
1
𝐾h
𝑑𝐾h
𝑑𝐴 =

𝑑𝑄
𝑑𝐴 

𝐷 =
𝐾h-

2𝑞𝑤 =
𝑄

2𝑤𝑆E
 

where Kc is conveyance, and parameters C and D are wave celerity [LT-1] and diffusivity [L2T-1], respectively.  1025 

 

To solve the diffusive wave equation for discharge Q, Eq. A4 is discretized using weighted averaged finite difference 

approximations across two time steps in space (i.e., 2nd-order central difference in the 1st term in A4, and 1st order central 

difference for 2nd term in A4). The resulting discretized diffusive wave equation is: 

(𝛼𝐶X − 2𝛽𝐶m) ∙ 𝑄opqFpq + (2 + 4𝛽𝐶m) ∙ 𝑄oFpq − (𝛼𝐶X + 2𝛽𝐶m) ∙ 𝑄o>qFpq 	1030 

= −[(1 − 𝛼)𝐶m − 2(1 − 𝛽)𝐶m] ∙ 𝑄opqF + [2 − 4(1 − 𝛽)𝐶m] ∙ 𝑄oF + [(1 − 𝛼)𝐶X + 2(1 − 𝛽)𝐶m] ∙ 𝑄o>qF  

𝐶X =
u∙vF
v[
											𝐶m =

w∙∆F
(∆[)@

        (Eq. A5) 
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Where α is weight factor for the 1st order space difference approximation of the second term in Eq. A4, and β is a weight factor 1035 

for the 2nd order space difference approximation of the first term in Eq. A4. If both weights are set to 1, the finite difference 

becomes a fully implicit scheme, while setting both weights to zero results in a fully explicit scheme. 

If internal nodes are defined within each reach (here we used 5), Eq. A5 becomes a system of linear equations that can be 

expressed in tridiagonal matrix form and solved with the Thomas’ algorithm. In this paper, we use a fully implicit finite 

difference approximation (i.e., α = β =1). The solution of the implicit method requires downstream and upstream boundary 1040 

conditions, being the latter inflow from upstream reaches. We use the Neumann boundary condition, which specifies the 

gradient of discharge between the current and downstream reaches.  Note that in diffusive wave routing, celerity (C) and 

diffusivity (D) are updated at every time step based on the discharges (Q) and flow area (A), as opposed to IRF routing in 

which celerity and diffusivity are provided as model parameters. 

Appendix B. Muskingum-Cunge 1045 

In the Muskingum-Cunge (MC) routing approach, the desired streamflow value is computed as the weighted (C1, C2, and C3) 

average of known discharge values at upstream and downstream positions, at current and previous time steps: 

𝑄opqFpq = 𝐶q ∙ 𝑄oF + 𝐶- ∙ 𝑄opqF + 𝐶y ∙ 𝑄oFpq       (Eq. A6) 

𝐶q =
2𝐾𝑋 + ∆𝑡

2𝐾(1 − 𝑋) + ∆𝑥
								𝐶- =

2𝐾(1 − 𝑋) − ∆𝑡
2𝐾(1 − 𝑋) + ∆𝑥

								𝐶y =
−2𝐾𝑋 + ∆𝑡

2𝐾(1 − 𝑋) + ∆𝑥
 

The parameters K and X are defined as; 1050 

𝐾 =
∆𝑥
𝐶 									𝑋 = 0.5 −

𝑄
2𝑆E𝐶∆𝑥

 

Here, both parameters are computed with discharge Q updated at every time step based on the average of inflow at the current 

time step and inflow and outflow at the previous time step. Note that celerity is also a function of discharge. Since Muskingum-

Cunge is an explicit method, the routing time step can affect the numerical stability of the solution. To stabilize the solution, 

sub-routing time step is determined at every simulation step so that Courant condition (C*dT/dx where C is wave celerity 1055 

[L/T], dT is routing time step [T] and dx is channel length [L]) is less than unity. 
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Table 1. Stream Gauge Stations in the Cautín at Cajón River basin. Annual streamflow at each station was obtained 

from daily records for the period April 1985-March 2020. 

  Station Name Abbreviation Latitude 
(°S) 

Longitude 
(°W) 

Area 
(km2) 

Elevation 
(m a.s.l.)  Mean Annual Flow (m3/s) 

1 Collín at Codahue CatCd 38.58 72.19 259 250 12 

2 Muco at Muco 
Bridge MatPM 38.61 72.39 651 250 24 

3 Cautín at Rariruca CatRR 38.43 72.01 1305 425 86 
4 Cautín at Cajón CatC 38.69 72.50 2770 130 130 

 

Table 2. Model parameters sampled in this study.  

Parameter Units 
Lower 

value 

Upper 

value 
Description 

Infilt - 0.01 0.99 Variable infiltration curve parameter 

𝐷H - 0.1 0.9 Fraction of 𝐷H�X[ where non-linear baseflow occurs 

𝐷H�X[ mm/d 0.1 300 Maximum velocity of baseflow 

𝑊H - 0.1 0.9 Fraction of maximum soil moisture where non-linear baseflow 
occurs 

expt - 3.1 10 Exponent of Campbell’s equation for hydraulic conductivity 

𝑑�X[ 
𝑑q 
𝑑- 
𝑑y 

m 

0.5 

0.05	𝑑�X[ 

0.21	𝑑�X[ 

0.74	𝑑�X[ 

5 

0.2	𝑑�X[ 

0.7	𝑑�X[ 

0.1	𝑑�X[ 

Depth of soil layers 1, 2 and 3 

𝐾HXF mm/d 1 1000 Saturated hydraulic conductivity 

𝑇�X[,H�EY (°C) -10 10 Maximum temperature for snowfall 

𝛼FWXY  - 0.75 0.90 Decay of albedo 
𝛼��Y - 0.85 0.95 Maximum albedo for fresh snow 

𝑛 𝑠/𝑚q/y 0.024 0.075 Roughness coefficient of Manning (Barnes, 1967) 

𝐶 𝑚/𝑠 0.25 10 Advection coefficient (Allen et al., 2018) 

𝐷 𝑚-/𝑠 200 4000 Diffusion coefficient (Melsen et al., 2016) 
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Figure 1. (a) Location of the Cautín at Cajón River basin in Chile (CatC, 2770 km2). (b) Location of outlet and inner 1670 

stream gauge stations (white circles) and contributing drainage areas (white lines). The inner stations are Muco at 

Muco bridge (MatPM, 651 km2), Collín at Codahue (CatCD, 259 km2) and Cautín at Rariruca (CatRR, 1305 km2). (c) 

Digital river network and sub-basin boundaries used in mizuRoute. 
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Figure 2. Overview of the analysis framework used here. (a.1) VIC model simulations are conducted at hourly time 

steps for 3500 parameter sets, and (a.2) each runoff time series at each grid cell is aggregated to four additional time 

steps (2, 3, 4 and 6 h), and these new time series are routed with four schemes to produce 3500 (VIC parameters) x 5 

(time steps) x 5 (Inst + four routing schemes) modeling configurations. (b) We illustrate routing effects on (b.1) 1680 

simulated hydrographs during Fall 2008 and (b.2) simulated streamflow at various temporal resolutions. (c) For each 

configuration, we compute performance metrics and examine (c.1) the impacts of routing configuration on streamflow 

performance computed at various time steps, using the 1% best model runs, and (c.2) improvements in performance 

metrics across other gauge points in the Cautín River basin. (d.1) We analyze simulated mean annual water balance 

and baseflow contribution to total runoff, and (d.2) compare the best parameters sets for each configuration in terms 1685 

of their normalized values. (e) Finally, we analyze the implications of routing configurations on (e.1) flood frequency 

and (e.2) flow durations curves. 

 

 

 1690 
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modeling configurations. (b) We illustrate routing effects on (b.1) 
simulated hydrographs during Fall 2008 and (b.2) simulated 
streamflow at various temporal resolutions. (c) For each 
configuration, we compute performance metrics (KGE, NSE, 
NSE-log; see section 3.4).…nd examine (c.1) the impacts of 1710 
routing configuration on streamflow performance computed at 
various time steps, using the 1% best model runs, and (c.2) 
improvements in performance metrics across other gauge points 
in the Cautín River basin. (d.1) We analyse…nalyze simulated 
mean annual water balance and baseflow contribution to total 1715 
runoff, and (d.2) compare the best parameters sets for each 
configuration in terms of their normalized values. (e) Finally, we 
analyse ... [40]
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 1720 

Figure 3. Time series with daily streamflow at Cautín at Cajón, obtained from hourly VIC runoff outputs routed with 

different mizuRoute configurations. (a) Application of the Impulse Response Function (IRF) with five different routing 

time steps, (b) effects of different routing schemes using Dt = 6 h, and (c) effects of the Manning’s roughness coefficient 

(𝒏) when applying the kinematic wave routing scheme with Dt = 6 h (see text for details). In panel (c), the orange line 

(n = 0.033) is associated with the parameter set that maximizes the KGE computed with daily streamflow. 1725 
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Figure 4. Simulated streamflow (VIC+mizuRoute) vs. instantaneous VIC runoff at Cautín at Cajón for the period 

April/2008-March/2012, using different time steps (rows) and routing schemes (columns): instantaneous runoff (Inst), 

Impulse Response Function (IRF), Kinematic Wave Tracking (KWT), Muskingum-Cunge (MC) and Diffusive Wave 1750 

(DW). Mean yearly, monthly, daily and 12 h streamflows are computed from temporally averaged 6 h values, while 1 

h, 3 h, and 6 h streamflows are obtained from mizuRoute simulations with 1 h, 3 h, and 6 h time steps, respectively. 

The 1:1 line is displayed in red with the coefficient of determination (𝑹𝟐)
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Figure 5. Impact of routing scheme and routing time step on performance metrics (rows) for the period April/2008-

March/2012 at Cautín at Cajón, computed with different discharge temporal resolutions (columns) and the 1% best 

parameter sets among those obtained through Latin Hypercube Sampling (see text for details). The results are 

presented for instantaneous runoff (Inst), Impulse Response Function (IRF), Kinematic Wave Tracking (KWT), 1765 

Muskingum-Cunge (MC) and Diffusive Wave (DW). 
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 1770 

Figure 6. Best metric value obtained with daily flows at each stream gage station for a given performance metric (rows), 

routing time step (columns), and routing scheme for the period April/2008-March/2012. For completeness, the Kling-

Gupta Efficiency (KGE) components associated to the best KGE value are included. The results are presented for 

instantaneous runoff (Inst, red symbols), Impulse Response Function (IRF), Kinematic Wave Tracking (KWT), 

Muskingum-Cunge (MC) and Diffusive Wave (DW). 1775 
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 1780 

 

Figure 7. Effects of performance metric (rows), routing time step (columns) and routing scheme on simulated mean 

annual water balance (characterized with the annual runoff ratio, x-axis) and the baseflow ratio (y-axis) obtained for 

the 0.1% best parameter sets at Cautín at Cajón (period April/2008-March/2012). The results are presented for 

instantaneous runoff (Inst), Impulse Response Function (IRF), Kinematic Wave Tracking (KWT), Muskingum-Cunge 1785 

(MC) and Diffusive Wave (DW). In each panel, the results obtained with the parameter set (among the 3500 samples) 

that maximizes each metric are displayed in red, the results from a small ensemble (n = 4) with the best 0.1% VIC 

parameter sets are displayed in grey.  
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 1795 

Figure 8. Normalized parameter values for Cautín at Cajón associated to the best performance metric (period 

April/2008 – March/2012) obtained from the 3500 parameter sets produced with the Latin Hypercube Sampling, given 

a combination of routing scheme and routing time step. The symbols representing VIC parameters are linked with 

straight lines. The results are presented for daily instantaneous runoff (Inst), Impulse Response Function (IRF), 

Kinematic Wave Tracking (KWT), Muskingum-Cunge (MC) and Diffusive Wave (DW). 1800 
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Figure 9. Frequency curves for annual maximum daily flows (y-axis) in Cautín at Cajón, derived from numerical 

simulations conducted with different routing schemes, routing time steps (columns) and performance metrics (rows). 1820 

All frequency curves are computed from annual time series of n = 35 annual maximum daily flows (April/1985 – 

March/2020) using a Log-Normal density function. The results are presented for instantaneous runoff (Inst), Impulse 

Response Function (IRF), Kinematic Wave Tracking (KWT), Muskingum-Cunge (MC) and Diffusive Wave (DW). 
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Figure 10. Mean daily flow duration curves for the period April/1985 – March/2020 in Cautín at Cajón derived from 

different routing schemes, routing time steps (columns) and performance metrics (rows). The results are presented for 

daily instantaneous runoff (Inst), Impulse Response Function (IRF), Kinematic Wave Tracking (KWT), Muskingum-1830 

Cunge (MC) and Diffusive Wave (DW) routing schemes. 
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