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We provide responses to each individual point below. For clarity, comments are given in italics, and 
our responses are given in plain blue text. 
 
Anonymous Referee #2 
 
I have finished my review of the paper “To what extent does river routing matter in hydrological 
modeling”, by Cortés-Salazar et al., submitted to HESS. This generally well-written paper attempts 
to examine the influence of routing algorithm and time step on model performance using subsets of 
3500 different runoff regimes generated using the VIC hydrological model. Very mild differences 
were found between algorithm and time step choices, with one exception: where routing was not 
simulated, the performance was consistently poor relative to models which simulate routing. 
Unfortunately, this is not a very compelling result. 
 
While the approach was rigorous in the sense that it compiled data from thousands of model 
simulations, it suffers from a number of critical methodological issues. 
 
We thank the referee for his/her time on reviewing our manuscript and providing several constructive 
suggestions. In this document, we provide our detailed responses and also mention how we plan to 
address the reviewer’s comments in a future version of this manuscript.  
 
I discuss a few of these major issues below: 
 
Routing is most influential on peak magnitude and timing of large events; both of these are poorly 
captured by integrated hydrograph metrics such as KGE and NSE. Peak flow differences after 
calibrating the routing models would be a much more useful metric for evaluating routing model 
performance. By using integrated measures such as KGE, the critical differences between routing 
algorithms are not discernable (as seen in nearly all of the reported results).   
 
We agree with this reviewer that including additional high-flow related metrics would increase the 
impact of this work. Therefore, we will add the annual peak flow bias (Mizukami et al., 2019) and 
the percent bias in the high flow segment of the flow duration curve (Yilmaz et al., 2008) as 
calibration metrics. The justification for including these metrics and related equations will be included 
in section 4.2 (“Objective functions”) of the revised manuscript.  
 
In this work, we decide to include KGE, NSE and log-NSE in the analysis, since these integrated 
metrics are not only of interest for the hydrologic modeling community – especially for parameter 
calibration and evaluation (e.g., Fowler et al., 2018; Knoben et al., 2019; Clark et al., 2021) –, but 
also for the river routing community. Indeed, several examples of river routing scheme assessments 
can be found using the KGE (e.g., Pereira et al., 2017; Hoch et al., 2019; Qiao et al., 2019; Thober et 
al., 2019; Munier & Decharme, 2022), NSE (e.g., Yamazaki et al., 2011; Ye et al., 2013; Zhao et al., 
2017; ElSaadani et al., 2018; Nguyen-Quang et al., 2018; Fleischmann et al., 2019, 2020) and even 
the NSE using flows in logarithmic space (Paiva et al., 2013). We believe that the joint analysis of 
traditional streamflow performance metrics and high flow metrics will expand the target audience of 
this work. We will provide a proper justification for selecting these metrics in the new section 4 
(“Experimental setup”) of the revised manuscript. 
 
Each of the figures in the report are reporting ALL of the output from the simulations, regardless of 
whether it is important or interpretable or worthy of interpretation. 



 
Figure 5 is the only one that contains results from all the parameter samples, though we will modify 
this to address the following reviewer’s comment (see next response). 
 
For instance, figure 5 reports KGE, NSE, and NSE of log transformed flows for all 3500 simulations 
with multiple timesteps, multiple routing schemes. In addition to the only interpretable result from 
this figure is that no routing is outperformed by routing, there is little utility in comparing NSE values 
of 0.2-0.3 (the approximate median of these simulations) -differences in NSE below about 0.5 are 
nearly arbitrary in that a hydrograph with an NSE of 0.2 may not be visibly preferable to an NSE of 
0.05. The only feature of this plot referred to in the text was the maximum metric value. Why not 
simply report that? 
 
The original motivation of Figure 5 was to illustrate the impact that incorporating river routing 
modelling may have on streamflow performance metrics across the VIC parameter space. 
Nevertheless, we fully agree that it would make more sense to simply illustrate the results for a subset 
of behavioural parameter sets (as we did in Figure 7). Hence, in the revised manuscript we select and 
report only the best 1% of runs, following the approach of Melsen et al. (2016). 
 
Critically, because the parameters of the VIC model are arbitrary, the comparisons of even the best 
models are in effect the results of Monte Carlo calibration, the least efficient optimization approach. 
 
We decide to use a Monte Carlo parameter sampling approach because, rather than seeking for an 
optimal parameter set, our primary goal is to assess the impacts of different river routing 
configurations on streamflow metrics across the model parameter space. In particular, Latin 
Hypercube Sampling is a common strategy to sample the parameter space and identify behavioural 
parameter sets for a specific target metric (e.g., Andréassian et al., 2014; Broderick et al., 2016; 
Melsen et al., 2016, 2019; Guse et al., 2017; Khatami et al., 2019). We will clarify this in section 4.1 
(“Parameter sampling and streamflow simulations”) of the revised manuscript, adding the following 
text: 
“Since we aim to examine the impacts of different routing schemes on streamflow performance 
metrics across the parameter space, rather than seeking for an optimal parameter set, we use the Latin 
Hypercube Sampling (LHS) method, which is a common strategy to sample the parameter space and 
identify behavioral sets for specific target metrics (e.g., Andréassian et al., 2014; Broderick et al., 
2016; Melsen et al., 2016, 2019; Guse et al., 2017; Khatami et al., 2019).” 
 
Comparing the ‘best’ models when these are not rigorously determined to be the actual best for each 
algorithm (rather than a sampling error) is problematic. For this comparison to be rigorous, I don’t 
see how to do this without simultaneous calibration of routing and land surface parameters, an issue 
the authors acknowledge in section 5.2. 
 
River routing parameters were excluded from the original setup in order to make a clean numerical 
experiment (recall that the baseline model has no routing module). However, we appreciate the 
reviewer’s concern, and in response to this comment we are conducting new LHS experiments that 
include river routing parameters (see response to the following comment). 
 
In practice, the routing parameters (such as Manning’s n) would be calibrated in conjunction with 
VIC model parameters, likely further diminishing any incremental performance differences between 
the routing models. 
 
In order to address this point, we have repeated the parameter sampling experiment, including 13 VIC 
parameters and the routing parameters: one (the Manning roughness coefficient) for the Kinematic 
Wave, Diffusive Wave and Muskingum-Cunge algorithms, and two for the Impulse Response 
Function method (see Table S1). The new results are displayed in Figure S1. 
 



Table S1. Model parameters sampled in this study.  

Parameter Units Lower 
value 

Upper 
value 

Description 

Infilt - 0.01 0.99 Variable infiltration curve parameter 

!" - 0.1 0.9 
Fraction of !"#$% where non-linear baseflow 
occurs 

!"#$% mm/d 0.1 300 Maximum velocity of baseflow 

&"  - 0.1 0.9 
Fraction of maximum soil moisture where non-
linear baseflow occurs 

expt - 3.1 10 
Exponent of Campbell’s equation for hydraulic 
conductivity 

'#$% 
'( 
') 
'* 

m 

0.5 
0.05	'#$% 
0.21	'#$% 
0.74	'#$% 

5 
0.2	'#$% 
0.7	'#$% 
0.1	'#$% 

Depth of soil layers 1, 2 and 3 

3"$4 mm/d 1 1000 Saturated hydraulic conductivity 
5#$%,"789 (°C) -10 10 Maximum temperature for snowfall 
:4;$9  - 0.75 0.90 Decay of albedo 
:7<9 - 0.85 0.95 Maximum albedo for fresh snow 

= >/@(/* 0.024 0.075 Roughness coefficient of Manning (Barnes, 
1967) 

A @/> 0.25 10 Advection coefficient (Allen et al., 2018) 
! @2/> 200 4000 Diffusion coefficient (Melsen et al., 2016) 

 



 
Figure S1. New parameter sampling results for the Cautín at Cajón River basin. Impact of routing scheme and routing time step on performance metrics (rows) 
computed for the period April/2008-March/2012, using different discharge temporal resolutions for metric calculation (columns) across a large sample of VIC 
and routing parameter sets obtained through Latin Hypercube Sampling. The results are presented for instantaneous runoff (Inst), Impulse Response Function 
(IRF), Kinematic Wave Tracking (KWT), Muskingum-Cunge (MC) and Diffusive Wave (DW), and the metrics are the Kling-Gupta Efficiency (KGE), the 
Nash-Sutcliffe efficiency in both raw (NSE) and logarithmic (NSElog) space, the annual peak flow bias (APFB) and the percent bias in the high flow segment 
of the flow duration curve (bias FHV). Each boxplot shows, for each configuration, the best 1% from 3500 parameter sets. 
 



As seen in Figure S1, the benefits of representing river routing processes are not only limited to 
popular performance measures like KGE or NSE, but also to metrics that emphasize low flow 
simulations (NSE-log), and metrics for high flow applications. We plan to update all the figures of 
the revised manuscript based on the new experimental setup. 
 
The fundamental results discussed here are obvious without the testing herein. 
 
We provide individual responses to all the reviewer’s comments on this matter below: 
 
Routing is better than no routing.  
 
Of course, the incorporation of as many hydrological processes as observed for the natural system of 
interest – including river routing – is desirable to achieve “fidelius” (Gharari et al., 2021) simulations 
in hydrology and land surface models. Nevertheless, the degree of improvement for application-
specific metric is not obvious, considering that the interplay between model structural uncertainty 
(here, provided by different routing schemes) and parametric uncertainty is not fully understood and, 
therefore, it is a topic of active research (e.g., Günther et al., 2020; e.g., Pilz et al., 2020; Spieler et 
al., 2020; Chlumsky et al., 2021; Zhou et al., 2023). In particular, it is not clear to which degree the 
perturbation of hydrological model parameters can compensate for the lack of river routing 
representation – a gap that this work intends to fill and is now highlighted in the introduction.  
 
Low flows are not as impacted by routing differences. 
 
In principle, the effects of a specific model configuration (i.e., routing scheme or routing time step) 
on certain processes (e.g., high or low flows) are not comparable, since these are assessed with 
different performance metrics (e.g., Mizukami et al., 2019; Zhou et al., 2023). Additionally, the 
results presented here show that the implementation and configuration of river routing schemes are 
also relevant for medium and low flows. For example, including river routing provided higher NSE-
log values (Figures 5 and 6 in the original submission) – improving the simulation of low flows – and 
modified the shape of the mid and low flow segments in the FDC (Figure 10 in the original 
submission), which are characteristic signatures of ‘flashiness’ in runoff response and long term 
baseflow, respectively (Yilmaz et al., 2008). The effects of river routing are also reflected in the 
partitioning of total runoff between baseflow and surface runoff. In fact, the results presented here 
show that the parameter search process compensates for the lack of routing by modifying other fluxes 
and state variables (Khatami et al., 2019) to increase streamflow-oriented performance metrics. In 
our case, the contribution of baseflow to total runoff increases by >20% when river routing is 
excluded, which is achieved by modifying soil parameters –especially Ws, one of the most sensitive 
for baseflow processes (Sepúlveda et al., 2022) – to delay the streamflow response. This result 
suggests that including routing processes may impact the outcomes from drought-oriented studies, 
since baseflow is the primary flux sustaining streamflow during water scarcity periods (Karki et al., 
2021). All these points are now highlighted in the discussion (Section 6.1). 
 
Parameter compensation occurs in hydrological models. 
 
We agree that this is a well-known issue in the hydrologic modelling community, including 
compensation of hydrologic model parameters on forcing errors (e.g., Baez-Villanueva et al., 2021; 
Wang et al., 2023) and hydrologic model structure deficiencies (e.g., Saavedra et al., 2022). To the 
best of our knowledge, however, this is the first study that characterizes how hydrologic model 
parameter estimation can compensate for the absence of river routing representation, with focus on 
performance metrics, parameter values, flux partitioning and signatures used for water resources 
applications (in our case, flood frequency and flow duration curves). Our results show that, in this 
case, parameter compensation is not trivial, and depends on the calibration metric and fluxes analysed 
(Figure 7). 
 



Routing impacts are not visible when averaged over a monthly time step. 
 
The results presented here demonstrate exactly the opposite. Indeed, the second row in Figure 4 
(original submission) shows that the difference in monthly flows between routed vs. non-routed flows 
can be as large as 63.2 m3/s. We thank the reviewer for this comment, and we will modify the text in 
order to clarify this point: 
 
“At monthly time steps, the differences between routed and instantaneous runoff reduce considerably, 
although these still can be as large as 63.2 m3/s (i.e., a 29.3% difference using routed runoff as the 
reference).” 
 
Models with instantaneous routing (i.e., no routing) have higher flows. 
 
 
We agree (and also shown in Figures 9 and 10) that excluding routing yields higher flows. Obvious 
errors observed in the simulations from a model without routing are actually timing errors (due to the 
absence of travel time in the channel) and variability error (due to no attenuation accounted for). 
These types of errors are often assumed to become negligible when temporally aggregating non-
routed flows. Nevertheless, this study unveils that the impacts of river routing go beyond the 
simulation of high flows at sub-daily or daily time steps, affecting streamflow simulations even at the 
monthly time scale (see previous response). The extent to which these effects propagate across 
modelling decisions is not trivial and has not been previously documented.  
 
As is, I do not see an additional contribution from this work beyond that which exists in the literature. 
It is for the above reasons that I must recommend rejection. 
 
We regret that the reviewer failed to agree with us regarding the contribution of the manuscript. We 
will address all the critiques raised in this review, and we will convey more clearly the relevance of 
our work in the revised version. 
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