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Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness
and integrate a broad variety of predictions from dynamical, physics-based models — such as numerical weather prediction,
climate, land, hydrology and Earth System models — into a final prediction product. They are recognised as a promising
way of enhancing prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature,
streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing
attention due to advances in weather and climate prediction systems at sub-seasonal to decadal scales, a better appreciation of
the strengths of Al, as well as expanding access to computational resources and methods. Such systems are attractive because
they may avoid the need to run a computationally-expensive offline land model, can minimize the effect of biases that exist
within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining
different sources of predictability with varying time-horizons. Here we review recent developments in hybrid hydroclimatic
forecasting and outline key challenges and opportunities for further research. These include obtaining physically-explainable
results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive
skill, creating seamless prediction schemes that merge short to long lead times, incorporating modelled initial land surface and
ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational

uptake of hybrid prediction schemes.
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1 Introduction: Defining hybrid forecasting and prediction

This review addresses the growing popularity of hybrid forecasting, an approach that seeks to enhance the predictability of
hydroclimatic variables by merging predictions from ‘dynamical’ physics-based weather or climate simulation models with
data-driven models. Dynamical models represent temporal changes in system properties by using numerical modelling to solve
dynamical physical processes. Data-driven models include empirical, statistical and machine learning (ML) methods (i.e. can
be described as artificial intelligence or ‘AI’), and can range from simple linear regression to deep neural networks. Recognising
that dynamical and AI models have different strengths, hybrid prediction reflects the deliberate fusing of the two.

While challenging to identify distinct categories, given the flexibility and diversity of hybrid methods, three principal types
of hybrid model structure may be discerned (Figure 1; Table 1). (i) Statistical-dynamical models typically drive a statistical or
ML model (data-driven) with dynamical weather or climate model outputs from numerical weather prediction (NWP) models
or Earth System Models (ESMs). The statistical-dynamical structure is the most common type of hybrid model in the literature
(Table 2). (ii) Serial models combine data-driven and dynamical models sequentially, and may include additional types of
models such as a hydrological model. (iii) Coupled or parallel approaches combine data-driven and dynamical models in
parallel. The coupled approach is more commonly employed in operational settings, where ML is increasingly being used to
upgrade components within existing modelling schemes. We do not provide a prescriptive definition of hybrid forecasting as
it exists along a continuum from loosely to ‘fully’ hybrid (e.g. AghaKouchak et al., 2022), and may include a wide range of

models and ‘big data’, such as Earth Observations (EO).

Table 1. Examples of different hybrid model structures.

Name Description

(i) Statistical-dynamical Statistical-dynamical hybrid models consist of driving or conditioning a data-driven model with dynamical weather, climate, or Earth
System Model (ESM) predictions (e.g. Vecchi et al., 2011; Slater and Villarini, 2018). Both expressions ‘statistical-dynamical’ and
‘dynamical-statistical” are used depending on the focus of the research or the field of study. This approach is also referred to as ‘pa-
rameter informed’ (e.g. Schlef et al., 2021) or ‘physical—statistical’ (e.g. AghaKouchak et al., 2022) prediction.

(ii) Serial A serial structure combines the dynamical and data-driven models sequentially, and may include additional models such as a hydrological
model. For instance, one could pre-/post-process the output of a dynamical model using a data-driven approach (e.g. Glahn and Lowry,
1972) and use those predictions as input to a conceptual or physics-based model. In Bennett et al. (2016), post-processed General Circula-
tion Model (GCM) forecasts are used to force a monthly rainfall-runoff model. In Richardson et al. (2020), weather patterns are identified
in an ensemble prediction system and subsequently used to forecast threshold exceedance probabilities of extreme precipitation and flood-
ing.

(iii) Coupled or Parallel In a coupled hybrid structure, the data-driven and dynamical model are combined in parallel. This may involve, for instance, replacing
a component of a dynamical model with a data-driven model, e.g. to create a machine-learning corrected GCM (e.g. Watt-Meyer et al.,
2021). Alternatively, it is possible to combine outputs from an ensemble of dynamical and statistical predictions run in parallel (e.g.
Madadgar et al., 2016). A data-driven model may also be employed to combine dynamical predictions from both meteorological and

hydrological models (e.g. Bogner et al., 2019).

Traditional workflows in which a physics-based or conceptual land/hydrology model generates the final forecast product
are still the most commonly used operational forecasting systems worldwide. These may include ‘physics-based’ models,

based on a spatially-distributed representation of known physical laws through mathematical equations and numerical solution
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Figure 1. Defining hybrid hydroclimate forecasting and prediction. ‘Hydroclimate’ refers to a range of variables defined in the text, including
streamflow. The top row indicates traditional dynamical hydroclimate predictions (blue); middle row is data-driven (DD) predictions (yellow)
and bottom row represents hybrid predictions (red), which combine dynamical and data-driven approaches. In the last row, three examples
of hybrid structure are shown from top to bottom: (i) Statistical-dynamical (Stat-dyn), (ii) Serial, and (iii) Coupled, as described in Table 1.
The figure provides simple examples, but other schemes are possible, including for example a mix of observations and predictions in the left

column.

(e.g. Freeze and Harlan, 1969), or ‘conceptual’ models, which simplify the representation of physical processes, often using
empirical relationships (e.g. Nash and Sutcliffe, 1970). There is a long history of development and application of standalone
dynamical land surface and catchment hydrology models of varying complexity (from conceptual to physically-explicit) for
operational forecasting. Process-based hydrological modelling approaches may be either spatially distributed (gridded) or
lumped (catchment-averaged). Examples include the hourly conceptual rainfall-runoff GR4H model used by the Bureau of
Meteorology in Australia (Hapuarachchi et al., 2022); the conceptual reservoir-based HSAMI model implemented by Hydro-
Québec (Bisson and Roberge, 1983); or the conceptual Sacramento Soil Moisture Accounting (SAC-SMA) model of the
Community Hydrologic Prediction System of the U.S. National Weather Service (Burnash et al., 1973). In operational systems,
the hydrological model is typically forced with NWP-based forecast meteorology, as in the case of the US National Water
Model (NOAA, 2016) (see Zappa et al. (2008) for a report on science-driven operational application of several end-to-end
ensemble hydrometeorological forecasting systems.) Outputs from coupled atmosphere-ocean-land GCMs may be used over
longer time horizons, as is the case with the European and Global Flood Awareness Systems, EFAS and GloFAS (Alfieri et al.,
2013; Thielen et al., 2009; Smith et al., 2016; Arnal et al., 2018; Emerton et al., 2018; Harrigan et al., 2020). These approaches

are considered as more physically interpretable than ‘black box’ statistical methods. However, the large computational demand
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and variable skill of many traditional forecasting approaches still persists (Arnal et al., 2018), and their calibration still requires
substantial effort (Arheimer et al., 2020; Hirpa et al., 2018) relative to most data-driven models (see Section 3.4).

In contrast with traditional forecast workflows, data-driven prediction has historically relied more on observed data than
dynamical climate model predictions, building empirical relationships between e.g. streamflow and precipitation (Garen,
1992), using time-lag relationships between upstream and downstream flow, or stochastic autoregression approaches like auto-
regressive moving average models (Jain et al., 2018). In such data-driven models, the hydroclimatological predictands can be
regressed on a range of covariates, such as observed precipitation/temperature records, static variables (e.g. elevation, slope, ge-
ology), initial hydrologic conditions, or large-scale predictors such as sea surface temperatures (SST), surface air temperature,
geopotential height, meridional wind, sea ice extent, or modes of climate variability such as the El Nifio-Southern Oscillation
(ENSO) (e.g. Wilby et al., 2004; Dixon and Wilby, 2019; Mendoza et al., 2017; MeiBner et al., 2017). Broadly speaking,
the strength of statistical models lies in their simplicity, speed, ease-of-use, and comparable skill to dynamical methods when
there are sufficient observations for model training. However, data-driven models are sometimes thought to be less able to
extrapolate to extreme outlier values that have not been seen in the historical record (Milly et al., 2008; Frame et al., 2022a;
Reichstein et al., 2019) or unable to reflect shifts in the relationship between the predictand and predictors. Others have raised
the risk of artificial skill in cases where predictors are selected preferentially based on correlation with the predictand and not
fully cross-validated (e.g. DelSole and Shukla, 2009). Data-driven models may also be difficult to optimize for multi-variate,
high-dimensional output fields, which are simulated intrinsically by dynamical models. Recent studies focusing on more com-
plex data-driven techniques such as deep learning have suggested that some of these limitations can be overcome, such as the
extrapolation to extreme or unforeseen conditions (Frame et al., 2022a), to new (untrained) catchments (Kratzert et al., 2019a),
and to poorly gauged large regions (Feng et al., 2021; Ma et al., 2021). Nevertheless, the inclusion of physical constraints
could further elevate prediction robustness in data-sparse situations (Feng et al., 2022a). Research is required to understand
the hydroclimatological conditions to which new ML and DL models are able to extrapolate from the training set, and their
performance as they are extrapolated in space.

Hybrid forecasts benefit from combining the ability of physical models to predict and explain large-scale phenomena (i.e.
through NWPs or climate model predictions) with the ability of data-driven models to efficiently estimate the characteristics
of events from observed data and account for bias or anomalies in the data. Many current examples of hybrid prediction build
on traditional forecast workflows by using an ML algorithm in sequence with or alongside a conceptual or physics-based
hydrological model (World Meteorological Organization, 2021) (Figure 1). Some notable examples of operational hybrid
prediction include the ‘objective consensus’ climate forecast (i.e. derived objectively from multiple models) at the US Climate
Prediction Center, which uses ensemble regression (e.g. Unger et al., 2009) to combine multiple dynamical and statistical
forecasts into one. The International Research Institute for Climate and Society (IRI) has a multi-model calibrated prediction
based on three Subseasonal Experiment (SubX) models (Pegion et al., 2019). The UK Met Office uses a tool called ‘Decider’
which assigns medium-range precipitation forecast ensemble members to a set of 30 probabilistic weather patterns (Neal et al.,
2016) and then feeds several downstream forecasting applications, such as for coastal flooding (Neal et al., 2018) and fluvial

flooding (Richardson et al., 2020). Lastly, the Google flood forecasting model (https://sites.research.google/floods/) produces
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operational, public-facing forecasts of water levels up to six days ahead (Nevo et al., 2022) using ML models forced with
operational, real-time weather forecasts from the ECMWF Atmospheric Model high resolution 10-day forecast (ECMWF
HRES) as inputs. Broadly speaking, many hydroclimate projection systems are now hybrid, as per the ‘serial’ definition in
Table 1, because some kind of statistical processing is applied to generate a final information product from an ensemble of
climate model outputs. Dynamical modelling centres often lack the resources or scope to tailor outputs to particular stakeholder
needs (adding value with data-driven methods), leading to implementation of such processing by the end users themselves.
These predictions are not always visible as ‘hybrid’ activity but are operational nonetheless. These examples show the general
evolution of the field from traditional forecasting (Cohen et al., 2019) toward hybrid prediction.

The diversity of approaches for hybrid forecasting and prediction is evident from the sample of studies listed in Table 2. The
scope of hybrid models can vary widely, encompassing different forecast units (e.g. hourly or seasonal mean forecasts), lead
times (from the next hour to next decade, e.g. Ravuri et al., 2021; Neri et al., 2019), and geographical domains (from point
to street-level, single river catchment through to global approaches). Hybrid models have been applied to predict a variety
of hydrometeorological variables, including extreme heat and precipitation (Najafi et al., 2021; Miao et al., 2019; Ma et al.,
2022), seasonal climate variables (Golian et al., 2022; Baker et al., 2020), tropical cyclones/hurricanes (Vecchi et al., 2011;
Murakami et al., 2016; Kang and Elsner, 2020; Klotzbach et al., 2020), streamflow (Wood and Schaake, 2008; Mendoza
et al., 2017; Rasouli et al., 2012; Duan et al., 2020), flooding (Slater and Villarini, 2018), drought (Madadgar et al., 2016;
Wau et al., 2022), sea level (Khouakhi et al., 2019), and reservoir levels (Tian et al., 2021), over a range of timescales (Table
2). Certain other examples discussed in this review are not fully hybrid (e.g. ML models that are not driven by NWM/ESM
predictions) but serve to illustrate the possibilities of future hybrid systems. Many types of data-driven models have been
used (Tables 2-3), including simple regression methods, principal components, distributional regression frameworks such as
the Generalized Additive Models for Location, Scale and Shape (GAMLSS), and various types of deep learning approaches,
including artificial neural networks (ANNs) and long short-term memory (LSTM) models. The atmospheric and climate models
employed for hybrid forecasting can range from single models to large multi-model ensembles. For example, there are the North
American Multi-Model Ensemble (NMME, Kirtman et al., 2014) and the Copernicus Climate Change Service (C3S) seasonal
forecasting systems over sub-seasonal to seasonal timescales, or the Coupled Model Intercomparison Project (e.g. CMIP5-
6) over decadal timescales. The dynamical predictors may include various model outputs such as meteorological forecasts
with lead times of up to 14 days; initialized climate predictions with sub-seasonal to decadal lead times; sub-seasonal runoff
predictions; and/or land surface or ocean state fields from the reanalyses used to initialize the climate system. Predictors are
selected based on their ability to enhance hybrid forecast skill, such as traditional hydroclimate variables (e.g. precipitation,
temperature, evapotranspiration) but also large-scale climate indices and teleconnections (e.g. DelSole and Shukla, 2009).
Hybrid hydroclimatic forecasts and predictions have numerous operational and strategic applications, including water resources
planning, reservoir inflow management (Tian et al., 2021; Essenfelder et al., 2020), surface water flooding (Rozer et al., 2021),
flood risk mitigation, navigation (Mei3ner et al., 2017), and agricultural crop forecasting (Cao et al., 2022; Slater et al., 2022).

This paper provides an overview of recent developments and ongoing challenges in hybrid hydroclimatic forecasting. We

seek to highlight the benefits of employing hybrid methods alongside or within traditional forecasting systems. Accordingly,



120

Table 2. Examples of hybrid forecasts of different hydroclimate variables and model types. Each example includes both a data-driven model

and a dynamical weather or climate model. Examples are sorted by increasing time horizon. Hybrid model types are defined in Table 1 and

acronyms are defined in Table 3.

Predictand Data-driven model Dynamical model Hybrid type Time horizon Citation
River stage and LSTM ECMWF HRES Stat-dyn 1-6 days Nevo et al. (2022)
inundation
Daily streamflow BNN, SVR, GP, MLR NOAA GFS Stat-dyn 1-7 days Rasouli et al. (2012)
Precipitation RF FV3GFS Coupled 1-10 days Watt-Meyer et al. (2021)
Precipitation extremes Probability of exceeding UKMO GloSea5, Serial 15 days Richardson et al. (2020)
and flooding thresholds ECMWF
Biweekly temperature PLSR CFSv2 Serial 2-3 & 34 weeks Baker et al. (2020)
and precipitation
Seasonal streamflow PCR & CCA CFSv2 & ECHAM4.5 Stat-dyn 1 month Sahu et al. (2017)
Monthly reservoir inflow RF, GBM, ELM, M5-cubist, FLOR Stat-dyn 1 month Tian et al. (2021)
elastic net
Drought: seasonal SPI Dynamic-LSTM ECMWF SEAS5S Stat-dyn 3 months Wu et al. (2022)
Seasonal tropical storm MLR UKMO Glosea5 Stat-dyn 3 months Kang and Elsner (2020)
frequency
Seasonal rainfall ANN, MLR UKMO GloSea5, Stat-dyn 1-4 months Golian et al. (2022)
ECMWF SEASS
Drought Bayesian model based on NMME (8 models) Coupled 3-5 months Madadgar et al. (2016)
copula functions
Accumulated seasonal SVR, GP, LSTM, NLANN, CMCC Serial + stat-dyn 1-6 months Essenfelder et al. (2020)
reservoir inflow DL
River discharge and MLR, LR, DT, RF, LSTM ECMWF SEASS; EFAS Stat-dyn 1-7 months Hauswirth et al. (2022)
surface water levels hydrological forecasts
Hurricane frequency and GAMLSS NMME (6 models) Stat-dyn 1-9 months Villarini et al. (2019)
intensity
Seasonal runoff PCR NMME (7 models); Stat-dyn 4-9 months Lehner et al. (2017)
ECWMF SEAS4
Hurricane frequency Statistical emulator of GFDL-CM2.1; Stat-dyn 1-10 months Vecchi et al. (2011)
dynamical atmospheric model NCEP-CFS
Seasonal streamflow GAMLSS NMME (8 models) Stat-dyn 1-10 months Slater and Villarini (2018)
Monthly streamflow FoGSS, CBaM POAMA-M2.4 Serial 1-11 months Bennett et al. (2016)
Seasonal flood GAMLSS 5/8 CMIP5/6 GCMs Stat-dyn. 2-5 years Moulds et al. (2023)
magnitude
Seasonal flood counts Poisson regression 9/14 CMIP5 GCMs Stat-dyn 1-10 years Neri et al. (2019)
Daily streamflow TCNN (& others) 4 GCMs from LOCA Serial + stat-dyn Decades Duan et al. (2020)
(CMIP5)
Flood magnitude LSTM (+5 GHMs) 5 GCMs from Serial Decades Liu et al. (2021)
ISIMIP-FT (CMIP5-6)
Daily streamflow DNN-PCE 10 GCMs (CMIP5) Serial Decades Zhang et al. (2022)

in Section 2, we provide several in-depth examples of different approaches to hybrid hydroclimatic forecasting. In Section 3,



Table 3. Modelling acronyms referred to in the manuscript. Top box includes data-driven models & approaches; bottom box includes other

acronyms used.

Acronym Full name

ANN Artificial neural network

BAMLSS Bayesian additive models for location, scale and shape
BMA Bayesian model averaging

BNN Bayesian neural network

CBaM Calibration, bridging and merging

CCA Canonical correlation analysis

DL Deep learning

DLNN Deep-learning neural network

DNN-PCE Deep neural network-based polynomial chaos expansion
DT Decision tree

ELM Extreme learning machine

FoGSS Forecast guided stochastic scenarios

GAMLSS Generalised additive models for location, scale and shape
GAN Generative Adversarial Network

GBM Gradient boosting machine

GP Gaussian process

LR Lasso regression

LSTM Long short-term memory

ML Machine learning

MLR Multiple linear regression

NLANN Non-linear autoregressive neural network

PCR Principal component regression

PLSR Partial least squares regression

RF Random forest

SVM Support vector machine

SVR Support vector regression

TCNN Temporal convolutional neural network

CMIP5&6 Coupled model intercomparison project phases 5 and 6
FV3GFS Finite-Volume Cubed-Sphere Global Forecast System (global atmospheric model)
GCM Global climate model

GHM Global hydrological model

ISIMIP Inter-sectoral impact model intercomparison project
PREVAH PREcipitation-Runoff-EVApo-transpiration HRU Model)
RCP8.5 Representative Concentration Pathway 8.5 (high-emissions warming scenario)

we discuss the key strengths of hybrid models, followed by ongoing challenges and future research opportunities in Section 4.

We close with some concluding remarks in Section 5.

2 Hybrid forecasting examples

Here we provide examples of the statistical-dynamical, serial, and coupled approaches outlined in Figure 1 and Table 1.
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2.1 Statistical-dynamical hybrid forecasts

In the case of short-term hybrid forecasts, which focus on outlook horizons of hours to weeks driven by dynamical meteoro-
logical models, hybrid approaches offer potential for addressing the challenge of forecasting extreme events, such as floods
from convective rainfall (Speight et al., 2021). In these situations, the time taken to transfer data between meteorological and
hydrological organisations and the run time of physics-based models can be restrictive. In contrast, the strengths of ML are the
small number of input parameters making the models easy to develop, quick to run, and accurate for short lead-time events
(Piadeh et al., 2022). In regions where access to hydrological and inundation forecasts is limited, data-driven models offer
promising alternatives for flood forecasting (e.g. Nevo et al., 2022) and show potential to overcome limitations of data scarcity
(Kratzert et al., 2019a; Feng et al., 2021). At 1-7 day lead times, Rasouli et al. (2012) found that ML models outperform MLR
(Tables 2-3). At the shortest lead times, their hybrid approach worked best when it was driven by observations and the NOAA
Global Forecasting System (GFS) model output, and at longer lead times when driven by a combination of local observations
and climate indices. The potential of ML as a means to post-process dynamical forecasts and produce warning scenarios for
convective weather is also emerging (e.g. Moon et al., 2019; Flora et al., 2021) but has not yet been widely utilised as input
to hydrological models. For hydrologic forecasts, ML is highly successful in assimilating recent observations of streamflow
to improve near-term daily forecasts of streamflow (Feng et al., 2020) and soil moisture (Fang and Shen, 2020b). In some
cases, machine learning can ingest near-real-time data without the need for backwards methods like data assimilation, since
any data stream can be fed directly into the model as inputs, as long as at least some samples from each input data stream are
available during training. It is also possible to perform more traditional types of data assimilation on or with ML models —
for example variational assimilation can be done by leveraging the same partial gradients in the models that are required for
backpropagation (Nearing et al., 2022).

At the sub-seasonal to decadal timescale, climate model predictions are often used to drive statistical or ML models. A
simple example of a hybrid statistical-dynamical model is one that employs the predictions of precipitation or temperature
from a climate model as predictors within a regression model, where the predictand can be a hydroclimatic variable such as
streamflow magnitude (e.g. Slater et al., 2019) or flood duration (Neri et al., 2020). Schlef et al. (2021) describe this approach
as an ‘informed-parameter approach’ in which the parameters of the flood distribution can be conditioned on time-varying
covariates such as time, climate indices, infrastructure development indices, or land use indices. For example, distributional
regression models can be used to predict seasonal discharge. To illustrate the approach, we consider a 9000 km? catchment
that has experienced rapid expansion of the agricultural land area over the 20" century (Figure 2). Two lumped covariates are
employed to predict the seasonal maximum of mean daily streamflow in each year: the basin-averaged total seasonal precipita-
tion and the harvested corn and soybean acreage in the same season. The model employs a two-parameter gamma distribution,
and the entire streamflow distribution is computed for each timestep. The model is trained over the historical period using
climate observations or forecasts, model parameters are extracted, and the streamflow forecast is based on those parameters
and the dynamical predictions of the covariates obtained from an ensemble of climate models. Once new observations become

available, the model can be retrained, updating the model parameters. A different model can be developed for each season,
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initialization time (e.g. 0.5, 5.5 and 9.5 months ahead of a given season), and quantile of the predicted discharge distribution.
This example shows how a simple statistical model can be used to produce sub-seasonal to seasonal streamflow forecasts. The

skill of such a scheme might be improved by post-processing the ensemble of climate predictions used to drive the model.

Initialization in June Initialization in January Initialization in September
(0.5-2.5 months ahead) (5.5-7.5 months ahead) (of previous year; 9.5-11.5 months ahead)

|
|
|
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Figure 2. Example of seasonal hybrid forecasting system for maximum summer discharge at one stream gauge, using seasonal climate
forecasts from 8 climate models (94 members) of the NMME to drive a distributional regression model of streamflow. The maximum
summer discharge is the largest of the 92 daily values in the summer (JJA) period. The time series shows the model fit (1980-2000) and
forecast (2001-2015) against the observations of maximum summer daily streamflow (grey circles). Initialization times are 0.5, 5.5 and 9.5
months ahead of the summer season. For example, ‘initialization in June’ uses climate forecasts with 0.5-month lead for June, 1.5-month lead
for July, and 2.5-month lead for August to compute the summer streamflow, while ‘initialization in September’ includes forecasts initialized

9.5, 10.5 and 11.5 months ahead in the previous year. Modified from Slater et al. (2019).

Seasonal forecasts of diverse hydroclimatic variables such as precipitation, evaporation, sea water level, sea level pressure
or large-scale climate indices have also been used to drive hybrid models to predict variables such as precipitation (Madadgar
et al., 2016) and tropical cyclone activity (Sabeerali et al., 2022; Murakami et al., 2016). For instance, atmosphere-ocean
teleconnections obtained from the NMME — including the Pacific Decadal Oscillation (PDO), Multivariate ENSO Index (MEI),
and Atlantic Multidecadal Oscillation (AMO) — were used to successfully predict seasonal precipitation anomalies in the
southwestern USA using a statistical Bayesian-based model (Madadgar et al., 2016). Hybrid methods can also be trained
on large model ensembles to capture non-linear interactions between predictor variables. For instance, Gibson et al. (2021)
trained ML models for seasonal precipitation forecasts in the western USA on a large historical climate model ensemble of
atmospheric and oceanic conditions (i.e. on thousands of seasons of simulations from the Community Earth System Model
Large Ensemble, CESM-LENS). The same trained models were then tested by using observational data over 1980-2020. The
resulting ML-based approach performed as well as, if not better than, seasonal NMME forecasts, and the physical processes
could be interpreted using ML interpretability plots, highlighting the most important variables influencing a given forecast. For
Ireland, Golian et al. (2022) found that MLR and ANN models applied to hindcasts of mean sea level pressure from GloSea5
and SEASS produced skillful forecasts of winter [DJF] and summer [JJA] precipitation for lead times of up to four months, with
the ANN outperforming MLR for both seasons and all lead times. A study over the Netherlands using streamflow, precipitation,

and evaporation found that the hybrid ML approach outperformed climatological reference forecasts by approximately 60%
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and 80% for streamflow and surface water level, respectively, using various machine learning models (Hauswirth et al., 2022).
Another study showed that predictions of large-scale indices by the CFSv2 model could be used to successfully predict the
frequency of tropical cyclones in the Bay of Bengal using principal component regression (Sabeerali et al., 2022).

Statistical-dynamical approaches can also be deployed for longer horizons such as decadal streamflow predictions (e.g. Neri
et al., 2019), and data-driven techniques are proving successful for enhancing the skill of the decadal climate predictions,
with consequent benefits for climate-linked variables such as streamflow. Decadal forecast skill can be increased by ‘mode-
matching’, which consists of sub-selecting the individual members from a large climate model ensemble of decadal predictions
that best represent the multiyear temporal variability of a relevant large-scale mode of climate variability (Smith et al., 2020;
Moulds et al., 2023). Large climate ensembles can be pre-processed to select members which are skilful at a given time, and
the improved predictions can then be supplied to a statistical modelling framework to predict seasonal streamflow quantiles
(Moulds et al., 2023).

2.2 Serial hybrid forecasts
2.2.1 Serial pre- and post-processing of hydroclimate predictions using data-driven approaches

Hybrid approaches often include pre-/post-processing of inputs and outputs at different stages of the predictive model. Pre-
processing refers to techniques for enhancing the signal and removing systematic biases of the data inputs, such as the dy-
namical climate simulations, while post-processing refers to techniques for refining and correcting model outputs. Depending
on the point of reference, the same technique can be considered as either pre-/post-processing. It is important to point out
that pre-/post-processing is also used as a routine add-on to traditional forecasting systems (e.g. driving a hydrological model
with pre-processed climate predictions) and here we focus on approaches that go beyond the traditional setup. The strength of
hybrid approaches lies in their ability to incorporate such corrections directly within hybrid modelling frameworks.

Hybrid models often include a data-driven component which downscales low-resolution climate model simulations to reduce
bias and make the outputs more skillful at the local scale. For instance, Generative Adversarial Networks (GANs) have been
used to spatially downscale precipitation forecasts (Harris et al., 2022; Pan et al., 2022) to capture complex joint distributions
between precipitation and initial climate conditions from climate simulations. At the decadal timescale, linear and kernel
regression can be used to enhance climate predictions (Salvi et al., 2017a, b). Random Forest (RF) models can be trained
to map low-resolution climate model predictions to high resolution values (Anderson and Lucas, 2018). Regardless of the
algorithm used, once the mapping from low-resolution to high-resolution values has been learned, data-driven models can be
applied to a much larger number of model simulations to produce an ensemble of high-resolution outputs at a much lower
computational cost than running a dynamical model at an equivalent resolution. Another example is the use of data-driven
methods to reduce the degrees of freedom in data, for instance through discrete or empirical wavelet transforms (Mosavi et al.,
2018).

Data-driven approaches can also be applied directly to post-process the hydrological forecasts. Bennett et al. (2021a) de-

ployed an ERRIS (error reduction and representation in stages) error model to directly correct errors in streamflow prediction
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up to 168 hours ahead (i.e. maximum lead time of 7 days). Such approaches can be especially beneficial for longer forecast
horizons. For instance, a Gaussian Process (GP) model was trained to post-process weekly tercile forecasts of runoff and soil
moisture from a Swiss conceptual hydrological model PREVAH, and showed improvements in the forecast skill up to 4 weeks
ahead (Bogner et al., 2022). Mclnerney et al. (2022) developed a daily Multi-Temporal Hydrological Residual Error (MuTHRE)
statistical model to seamlessly transform daily streamflow forecasts to time scales ranging from daily, weekly, fortnightly to
monthly. This one-model-for-all-scales approach is a novel take on the potential of the hybrid forecasting system. LSTMs can
also be used to post-process outputs from physics-based models, such as long-term streamflow projections (Liu et al., 2021) and
streamflow simulations (Frame et al., 2021) to make them more realistic. Liu et al. (2021) implemented a physics-informed
approach to post-process the streamflow projections from GCMs, GHMs and the Catchment-based Macro-scale Floodplain
model (CaMa-Flood). The LSTMs were trained to learn a relationship between simulated streamflow (from the physics-based
model GHMs-CaMa-Flood), basin averaged daily precipitation, temperature, windspeed and observed streamflow. The LSTM
model can thus be perceived as a post-processor which aims to constrain (i.e. reduce the uncertainty of) the streamflow simula-
tions from the physics-based model. This post-processing approach improved the simulations for the reference period, and was
then successfully applied to project streamflow over the future period. However, the authors concede that this LSTM-based
post-processor is still subject to the same limitations as other post-processing methods, such as the assumption of stationarity
in the parameters of the post-processing method. Frame et al. (2021) similarly employed an LSTM to post-process the outputs
from the physics-based US National Water Model (NWM). They implemented two variants of the post-processing method,
alongside an LSTM forced with atmospheric inputs only (i.e. without any NWM inputs). The authors showed that the routing
scheme and the land surface component of the NWM introduced timing and mass balance errors in the simulations. Thus, in
some cases, it would be preferable to simply use an LSTM model that can simulate streamflow from atmospheric forcings only
(without any NWM inputs), to avoid propagating errors from the NWM to the streamflow prediction.

Data-driven models can enhance the signal of predictors by generating an ensemble (by pooling) of different climate model
predictions (Troin et al., 2021). A common approach to incorporate an ensemble of climate model predictions (within a sta-
tistical, ML, or hydrological model) is to assume that predictions from each ensemble member are equally likely. However,
owing to varying model skill, as well as a lack of independence amongst some models, the assumption of equal likelihood can
be compromised. Hence, hybrid forecasting can be used to combine ensembles in more intelligent ways by accounting for the
varying information content of ensemble members. Statistical ensembling/post-processing of climate model ensemble outputs
can improve forecast skill at relatively low computational cost. For instance, Gronquist et al. (2021) applied a deep neural
network to ensemble predictions to improve forecast skill and reduce the computational requirements of the forecast system.
Massoud et al. (2020) applied Bayesian Model Averaging (BMA) to weight models according to their skill at reproducing
observations. They show the weighted ensemble average skill for the contiguous Unites States exceeds that of the conventional
ensemble average, with better constrained uncertainty estimates. Bayesian updating can also be applied to enhance the skill of
a multi-model ensemble of GCMs such as the NMME for different seasons or lead times (e.g. Slater et al., 2017). Bayesian
updating provides the best results when the raw GCM predictions have high skill to begin with, such as SST-based ENSO fore-

casts (Zhang et al., 2017). Post-processing hydrological forecasts (instead of climate forecasts) is another application of BMA.
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Hemri et al. (2013) demonstrated how such an approach can be deployed to improve the skill of a conceptual runoff forecast
by pooling four separate runoff forecasts forced with different lead times (24-hr, 72-hr, 120-hr, and 240-hr) and ensemble

members (1, 1, 16, and 51, respectively) in a Swiss catchment.
2.2.2 Serial hybrid forecasts that include a hydrological model

Hybrid forecasting systems that include a conceptual hydrological model try to combine the strengths of data-driven and con-
ceptual models, driven with dynamical predictions. For instance, Humphrey et al. (2016) used a combination of historical
observations and downscaled dynamical forecasts of rainfall and PET in southern Australia from POAMA to drive the con-
ceptual rainfall-runoff model GR4J (Perrin et al., 2003). The simulated soil moisture from GR4J was separately used to drive
a Bayesian ANN model to predict streamflow (hybrid approach). They showed that the hybrid model performed better than
either the GR4J model or the Bayesian neural network alone. A number of studies have coupled conceptual models and data-
driven models, but without necessarily integrating dynamical weather or climate predictions (this would be the next step in
developing a hybrid forecasting system). Both Anctil et al. (2004) and Kumanlioglu and Fistikoglu (2019) replaced the routing
component of the GR4J model with an ANN to predict streamflow in catchments in France, the USA and Turkey. These studies
concluded that the hybrid model was superior to a purely ML model. Other conceptual hydrological models have also been
used in hybrid frameworks. For example, Mohammadi et al. (2021) used two conceptual models, HBV (Bergstrom, 1976) and
NRECA (Crawford and Thurin, 1981) to provide inputs to support vector machines (SVM) and adaptive neuro-fuzzy inference
system (ANFIS), to build seven variants of hybrid models. They tested and compared the hybrids as well as the individual
models (HBV, NRECA, SVM and ANFIS) on four sub-basins of the Pemali Comal River Basin, Indonesia, and again found
the hybrid models performed best in terms of RMSE, R? and MAE. Other studies on hybrid modeling using the HBV model
include Nilsson et al. (2006) and Ren et al. (2018). They both used different variables computed by HBV (e.g. soil moisture,
snowmelt) as inputs to ANNs. Okkan et al. (2021) outline that in most hybrid modeling frameworks, variables computed by the
conceptual model are used as inputs to a data-driven model, which necessarily increases computation time. They also note that
although there could potentially be interactions between the parameters of the conceptual models and those of the data-driven
model, those interactions often go unaccounted for because the two models are calibrated separately. In the context of monthly
rainfall-runoff modelling, they proposed to address these two common shortcomings of hybrid models by coupling the two

models and performing their calibration jointly.
2.3 Coupled or parallel hybrid models

In the case of coupled hybrid models, a data-driven model and a physics-based model can be run in parallel, sometimes
replacing a component of the dynamical model with a data-driven model or combining different types of model predictions.
Madadgar et al. (2016) combined the seasonal precipitation predictions from an ensemble of dynamical models (99 members
from the NMME) with the precipitation predictions from a statistical model (using copulas to describe the relationship between
three large-scale climate indices and precipitation). They used an Expert Advice algorithm to link the dynamical and statistical

predictions to obtain improved precipitation predictions over the southwestern USA, as illustrated in Figure 3.
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Figure 3. Example of a coupled hybrid system for predicting seasonal precipitation several months ahead. (a) Ensemble of precipitation
predictions from a dynamical multi-model ensemble such as the NMME. Ribbon indicates the full distribution of model members; dark line
indicates the mean prediction. (b) Ensemble of statistical precipitation predictions. (c) Both ensembles are overlaid. (d) The two ensembles are
blended using a data-driven approach, such as an Expert Advice algorithm, which assigns weights to the different ensemble members based
on their performance during training and computes the weighted average prediction. The resulting ensemble mean (orange line) outperforms

that of the separate dynamical and statistical predictions. Adapted from Madadgar et al. (2016).

Coupled hybrid models can also employ a data-driven model to combine other types of dynamical predictions in parallel,
such as dynamical meteorological and hydrological predictions. In southern Switzerland, five ML models were trained to
predict monthly total hydropower production by combining precipitation, temperature, radiation, and windspeed forecasts
from a dynamical meteorological model with runoff from a conceptual hydrological model (Bogner et al., 2019). Day of the
week and holiday information were provided to the ML models as additional information to further enhance the prediction.

A third example of a coupled hybrid approach is when data-driven models are employed during the dynamical climate model
simulations to correct model biases (e.g. Watt-Meyer et al., 2021). A RF model coupled to an atmospheric model (FV3GFS)
can correct temperature, specific humidity and horizontal winds at each timestep, bringing the coupled model in line with
observations. This was shown to reduce annual-mean precipitation biases by around 20%, with particular improvements in the
simulation of rainfall over high mountains (Watt-Meyer et al., 2021). A similar approach was used by Bretherton et al. (2022)

to nudge the output of a low-resolution climate model towards the coarsened output of a high-resolution climate model.

3 Strengths of hybrid forecasting

Hybrid methods offer various strengths, as summarized in Figure 4. These include benefits related to the higher performance
of ML models (in terms of bias and error minimisation), the ability to easily blend outputs from climate multi-model ensem-
bles, integrating large datasets, combining multiple sources of predictability to enhance predictive skill, improved speed and

operational convenience. These strengths are discussed in more detail below.
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3.1 ML model performance and bias minimization

Recent work has demonstrated the ability of ML models to outperform traditional hydrological models (e.g. Fang et al., 2017,
Kratzert et al., 2019b; Feng et al., 2020; Fang and Shen, 2020a; Lees et al., 2021). In one of the most comprehensive studies
to date, Mai et al. (2022) compared 13 locally- and globally-calibrated models (including ML, lumped and gridded models)
in terms of their ability to simulate streamflow, actual evapotranspiration, surface soil moisture and snow water equivalent in
the Great Lakes region. They found that the ML model outperformed the traditional hydrological models in all experiments.
This finding extends to ungauged catchments: Kratzert et al. (2019a) found an out-of-sample LSTM performed better than
the calibrated SAC-SMA (the conceptual model used by the US River Forecast Centers) and the U.S. National Water Model,
which is less calibrated. Golian et al. (2021) found that random forests worked best at regionalizing the parameters of the GR6J
conceptual model for low flow prediction in ungauged Irish catchments. Such work has shown the potential of hybrid methods
to address the longstanding hydrological challenge of prediction in ungauged basins (e.g. Sivapalan, 2003). The next step is to
move from simulation to prediction.

Hybrid models combining ML and climate predictions also tend to outperform the raw dynamical forecasts from climate
models. Wu et al. (2022), for instance, developed a hybrid drought-forecasting model of the 3-month Standardised Precipitation
Index (SPI). They used random forest models to post-process ECMWF SEASS predictions of geopotential height, sea level
pressure and air temperature, and supplied the output to an LSTM model to predict the 3-month SPI. They found that the SPI
predictions from these hybrid models outperformed the predictions of SPI obtained from the raw model outputs. For prediction
purposes, hybrid models have the advantage of being able to minimize biases that exist within GCM outputs or that might
be otherwise introduced within a hydrological modelling chain. By training a hybrid model directly on the climate model
forecasts/predictions, rather than on observations, the biases are automatically accounted for within the model (e.g. Slater
and Villarini, 2018). This approach is similar to that of model output statistics (MOS) long used by the weather forecasting
community (Glahn and Lowry, 1972) and in seasonal hydrological predictions (Schick et al., 2018). For instance, if a climate
model tends to overpredict winter rainfall, this bias is accounted for directly in the streamflow predictions, given that the model
is trained using the same winter rainfall forecasts (assuming a constant bias).

Hybrid models may benefit from a wide range of statistical advances for enhancing the skill of hydroclimate predictions.
Since a hybrid system is based on a data-driven model, it is straightforward to incorporate statistical ‘upgrades’, such as
ensembling the outputs of multiple climate or Earth System Models (Duan et al., 2019). One such example is the addition
of an error model onto Ensemble Streamflow Prediction (ESP) forecasts to enable prediction in ephemeral rivers (Bennett
et al., 2021b). In a hybrid system, one may easily integrate the predictions from multi-model ensembles with over 50 or 100
model members as covariates (Gibson et al., 2021; Slater and Villarini, 2018). Increasing the number and diversity of climate
models included within a hydrological predictive model enhances confidence in the hydrological model spread. By blending
multi-model ensembles intelligently one can further reduce uncertainty. In a hybrid system, for instance, one can incorporate
time-varying weights for the dynamical predictions, such as Bayesian updating - varying model weight per month and lead

time (Slater et al., 2017). ML models especially can learn space-time variable input weighting directly (Kratzert et al., 2021).
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Similarly, many post-processing methods can be applied to weather and climate inputs or the hydrological outputs to enhance

skill (Monhart et al., 2019; Bogner et al., 2022).
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Figure 4. Strengths, challenges and opportunities of hybrid hydroclimate prediction systems, as discussed in Sections 3 and 4.

3.2 Combining local and remote sources of predictability with varying time-horizons

One under-researched but promising aspect of hybrid models is their ability to combine different sources of predictability over
a continuum of time horizons. Hybrid models can easily make use of different predictors chosen on a sound physical basis
(such as climate indices, precipitation, air pressure, snowfall) without explicitly describing the processes and equations. This
makes it much easier to explore information from new sources and improve models, and has the potential to widen information
access to climate-affected populations. Including additional inputs can also produce marked improvements in model quality.
Chang et al. (2022, under review) used seven weather regime indices (based on the 500 hPa geopotential height) with a
Gaussian Process ML model to post-process sub-seasonal hydrological forecasts, alongside runoff, soil moisture, baseflow,
and snowmelt in Switzerland. The results showed that the additional input of weather regime indices improved the forecast
skill especially in the mountainous catchments and over longer lead times, where skill was difficult to improve without any
additional information. The conceptual hydrological model would not have been able to take weather regime indices as input,
but by including them in the post-processing ML model as part of the hybrid setup, it was possible to explore the connection
between large scale weather regimes and local hydrological conditions to improve the forecast skill.

As multiple predictor variables can be included within a statistical or ML model, it is feasible to combine predictors that
have very different time-varying impacts, such as reservoir management decisions or initial hydrological conditions impacting
the short term, versus annual-to-multidecadal climate oscillations for longer-term predictability. For instance, Tian et al. (2021)

present a reservoir inflow forecasting framework combining a suite of different ML models (including gradient boosting ma-
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chine, random forests, and elastic net) with climate model outputs from the FLOR model, for reservoirs in the Upper Colorado
River Basin. They also included soil moisture and evaporation to represent antecedent conditions, which significantly improved
the forecasts of reservoir inflow. Ouyang et al. (2021) used a dataset of >3000 basins across the USA and found that basins
with small and medium reservoirs behaved differently from the reference basins but could be well simulated by a LSTM model
with input attributes describing basin-lumped reservoir statistics.

Large-scale climate indices or modes can also be combined with other predictors. For instance, Madadgar et al. (2016) pre-
dicted seasonal precipitation using large-scale climate indices: the PDO, the MEI, and the AMO, computed from outputs of the
99 ensemble members of the NMME. The approach enhanced the skill of the seasonal forecasts by 5-60% in comparison with
the raw NMME precipitation forecasts, especially for negative rainfall anomalies. Similarly, Rasouli et al. (2012) forecasted
daily streamflow in a river catchment 1-7 days ahead by employing weather forecasts from the NOAA GFS model within a
variety of machine learning models. They combined observations with the model outputs and a range of large-scale climate
indices representing ENSO, the Pacific-North American teleconnection (PNA), the Arctic Oscillation (AO) and the North At-
lantic Oscillation (NAO). Lastly, Li et al. (2022) used forecasts of the intraseasonal oscillation (ISO), an important mode of
sub-seasonal predictability for seasonal rainfall, to force a Bayesian hierarchical model predicting sub-seasonal precipitation
during the boreal summer monsoon season in different regions of China.

Given the diversity of potential inputs to hybrid forecasting systems, exploratory data analysis to identify correlations be-
tween hydrologic variables and climate patterns over different time horizons is an important step during model development.
Hagen et al. (2021) employed ML to identify the most relevant large-scale climate indices for daily streamflow forecasting.
They provided an overview of studies that have employed large-scale climate indices and climate variables (such as sea level
pressure, sea surface temperature, specific and relative humidity) within ML models for daily, monthly and seasonal streamflow
modelling. Beyond the use of pre-defined climate indices, it is possible to identify tailored, site-specific climate indices from
big data and incorporate them in the modelling chain. For instance, Renard and Thyer (2019) described a method that avoids
relying on standard climate indices and instead suggests that the most relevant climate indices in a given location are effec-
tively unknown (they are ‘hidden’) and can be estimated directly from observations. The authors used a Bayesian hierarchical
model for flood occurrence, with hidden climate indices treated as latent variables. They identified the hidden climate indices
and then showed their correlation with atmospheric climate variables (geopotential height, zonal westerly wind, but also more
distant teleconnections using convective available potential energy and meridional wind). These indices explain the occurrence
of flood-rich and flood-poor periods in the historical record. Such an approach could be employed using climate model outputs
to develop skillful hybrid forecasts.

Related to the different time-horizons of the predictors is also the ability to design hybrid forecasting systems which dynam-
ically update when new information (e.g. observations or climate hindcasts) become available. For instance, a statistical model
can be updated iteratively over time to track the evolution of nonstationary predictor-predictand relationships. Such approaches
incorporate new observations as they become available and update the model parameters (e.g. Slater et al., 2019). Nearing
et al. (2022) developed a data assimilation approach for LSTM models that leverages tensor network gradients to assimilate

real-time observation data. To date, very little has been published using such methods.
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3.3 Integrating large datasets

One perceived challenge of hybrid approaches is the requirement for large amounts of training data to constrain models com-
pared with physics-based or conceptual models. Previously, it was felt that the information requirement of data-driven ap-
proaches might hinder their applicability in catchments with limited data (e.g. ungauged basins). Although this might have
been true in the past, the increasing availability of large-scale hydroclimatic datasets such as remote sensing data is turning
this potential challenge into a new opportunity. A data-driven model can be trained on the same data as a conceptual model,
and will tend to out-perform physics-based models, on average (and even more so with large datasets; see Fang et al., 2022).
This advantage is partly due to the fact that data-driven models are unconstrained by mass and energy balance rules that force
process-models to compensate for erroneous inputs, which data-driven models can instead optimize against. Data-driven mod-
els ‘learn’ process relationships and model structures rather than enforce prescribed ones, which may make them more flexible
and generalizable. Large training datasets tend to be useful for ML but less so for physics-based models, for these reasons. The
ability to leverage large datasets effectively is a strength of ML, and in particular for ungauged basins, where several studies
have shown that ML models tend to have higher accuracy, on average, than physics-based models calibrated in gauged basins
(e.g. Kratzert et al., 2019a). There is, in fact, a ‘data synergy’ effect, where data of greater diversity lead to better models,
according to a systematic study of LSTM models for either streamflow or soil moisture (Fang et al., 2022). With conceptual
and process-based models, accuracy can be lost when performing regional (as opposed to basin-specific) calibration, and the
lack of calibration data typically results in poor-quality predictions (training on longer periods leads to superior results — see
Bogner et al. (2022)). In contrast, with hybrid models, strong performance can be achieved when training the models on global
datasets, and accuracy is gained when performing regional calibration.

Since long (50-year +) hydroclimatic time series data are not available everywhere (Krabbenhoft, 2022), methods are re-
quired that draw on pooled multi-site approaches with similar catchment and climate characteristics (Kratzert et al., 2019a).
For instance, Nearing et al. (2021) show a comparison using pooled vs unpooled data for streamflow estimation and found the
former was better, even for gauged catchments, and allowed for prediction in ungauged catchments. There are, however, few
studies combining LSTM methods with climate model forecasts for long-term (sub-seasonal to decadal) prediction, especially
in ungauged catchments. Such models may start to emerge with the growing availability of observational training datasets,
such as the national ‘CAMELS’ datasets (available for the USA, United Kingdom, Chile, Brazil, Australia, France, and soon
Switzerland, e.g. Newman et al., 2015; Addor et al., 2017; Coxon et al., 2020) and international ‘Caravan’ streamflow dataset
(Kratzert et al., 2023). However, real-time data are currently still difficult to access for developing predictive models.

One way to circumvent the lack of observational training data and the low predictability of GCMs is by integrating a
range of other types of predictors in hybrid models. This may include sources of remotely sensed measurements such as
snow, soil moisture, land cover, surface water extent, water storage or evapotranspiration to provide better information about
initial states (e.g. Jorg-Hess et al., 2015). There are many different global datasets now available that can be drawn on using
cloud-based geospatial analysis platforms such as Google Earth Engine, as was the case for the creation of an open-source

community streamflow dataset (Kratzert et al., 2023). Overall, the forecasting landscape is becoming increasingly complex,
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with a growing number of forecasting systems and datasets potentially overwhelming users. Hybrid forecasting could help to
address this challenge, with hybrid workflows providing a set of tools and data that forecasters could mix and match to address

their own forecasting needs.
3.4 Speed and operational convenience

A key advantage of statistical or hybrid methods is their speed and computational efficiency. For instance, the calibration of the
GloFAS system with an Evolutionary Algorithm (EA) in 2018 required approximately 6 hours to calibrate each one of 1000s
of streamflow stations on a 12-core PC, depending on the number of generations needed before the improvement criterion was
met (Hirpa et al., 2018). Training deep learning (DL) models is now orders of magnitude cheaper. For example, it took about
10 hours in 2021 to train an ensemble of Long Short-Term Memory (LSTM) networks on a single NVIDIA V100 GPU using
two decades of daily data from 518 basins in the CAMELS-GB dataset (Lees et al., 2021), i.e. about 70 seconds per basin.
This means that training a high-quality DL model for hundreds of basins is feasible using a standard workstation (or even a
GPU-enabled laptop with sufficient memory), while calibrating a conceptual or process-based model over hundreds of basins
requires either months of runtime or an HPC facility. The training time depends on the computing power, number of locations
and amount of data involved, compiler, and optimization. While deep learning methods such as LSTMs can take several hours
to train (e.g. Lees et al., 2021), they have the significant advantage that one model is trained on multiple sites (although the
fitted model can then be fine-tuned to a specific site). A differentiable ML-based parameter learning scheme can be trained on
satellite-based soil moisture observations for the entire continental USA with one GPU in under one hour, but the conventional
approach would take a cluster machine of 100 CPUs 2-to-3 days to calibrate the model (Tsai et al., 2021).

This efficiency has advantages for water managers. In a traditional setting with limited computational resources, water
managers need to quickly run different scenarios (Scher et al., 2021). For instance, the UK Flood Forecasting Centre will
produce a ‘reasonable worst case’ and a ‘best estimate’ based on the most likely scenario (see Met Office, Environment
Agency and Flood Forecasting Centre (2013)) ahead of a flood event (Arnal et al., 2020). Using all available deterministic and
ensemble forecast products alongside expert assessment from the chief forecaster they will decide what the reasonable worst
case is likely to be. These outputs are used to inform the flood guidance statement and the Environment Agency then uses
these scenarios to run their catchment models (Pilling et al., 2016). The speed of data-driven approaches in comparison with
these more traditional physics-based modelling approaches could prove beneficial for users wishing to run multiple scenarios
quickly. Hybrid methods may shorten the traditional forecasting approach by going ‘end-to-end’, potentially skipping out some
of the intermediary steps in a conventional modelling chain, such as downscaling, bias correction and hydrological modelling.
This offers significant potential for applications where the run time of physically based models limits the ability to provide
forecasts with a useful lead time for action — such as forecasts of pluvial floods Rozer et al. (2021) or flash floods.

The efficiency of hybrid models may also be helpful in generating faster research cycles for model improvements (i.e. setting
up an upgraded system and releasing hindcasts for testing) relative to traditional approaches. Model upgrades for dynamical
systems usually take a very long time because the model has to be re-calibrated and a set of X (e.g. 30) years of hindcast data

must be produced to quantify the impact of the changes to the system.
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Lastly, hybrid systems can be used to develop customized climate services. For instance, Essenfelder et al. (2020) use data-
driven methods to predict seasonal reservoir inflows for hydropower plants. The information is made easily accessible online
to support decision-makers in hydropower production. Such approaches can be designed to be replicated globally as a climate
service, provided there are suitable data for training, and by developing transferable rule sets. Bennett et al. (2016, p.8239)
also highlight the importance of operational convenience and the advantages of combining ‘the convenience of stochastic sce-
narios with the skill of a modern forecasting system’. Their method enhances precipitation forecasts necessary for streamflow

forecasting through post-processing - by reducing the biases, correcting the reliability, and maximising the forecast signal.

4 Key challenges and opportunities of hybrid forecasting

Beside the strengths of hybrid methods, there are challenges and research priorities to be tackled. As hybrid forecasts and
predictions rely on data-driven models, they inevitably inherit some of the limitations of these techniques. Frequently-cited
limitations of ML models include the requirement for large datasets and issues associated with the ‘curse of dimensionality’,
namely data sparsity (i.e. when there are too few data points relative to the number of dimensions), multicollinearity of the
variables, multiple testing (leading to an increased number of false positives), and overfitting (Altman and Krzywinski, 2018).
There is also the difficulty of obtaining physically plausible results for previously ‘unseen’ extremes that are larger than those
seen in the observational record; however, new research suggests that ML models may provide results that are more physi-
cally plausible than physics-based and conceptual models when data are biased (Frame et al., 2022b). Further challenges for
improving the skill of hybrid models include data assimilation, physics-guided ML designs, assimilation of human influences,
model optimisation, ensembling, and hybridization, where models are merged with other methods (including simulations and
physical models, e.g. Mosavi et al., 2018). While some of the difficulties associated with large sample sizes apply less for
seasonal to decadal hybrid forecasting, where the sample sizes can be much smaller (often near 100 values) than the sample
sizes for shorter ranges (thousands or more), the small sample sizes present a challenge for model training. Thus, a range of

different challenges may apply depending on the forecasting horizon and data required.
4.1 Obtaining physically realistic results

One important challenge of hybrid models is the need to produce physically-plausible or explainable forecasts in unseen
extreme conditions such as severe floods, droughts, intense heatwaves and tropical storms. This is particularly important as
new weather records are being set in different parts of the world, and models must produce credible predictions under extreme
forcing conditions. Although it has sometimes been suggested that data-driven models might be less suited to extrapolation to
out-of-sample conditions than physics-based models due to the lack of physical understanding (e.g. Reichstein et al., 2019),
recent work tackled the question of whether modern LSTMs could predict events larger than those seen in the training data
for a particular catchment. The authors found that the LSTM could predict *unseen’ streamflow extremes, and did this better
than the physics-based models that were used in the study (Frame et al., 2022a). It is now increasingly recognised that one of

the advantages of data-driven models is their flexibility, allowing them to find unexpected patterns in the data. Thus, there are
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emerging synergies between data-driven and physics-based approaches, since the former can enhance the performance of the
latter, e.g. by learning the parameterizations required for the physical models from large datasets or analysing the patterns of
error from the physical models (Reichstein et al., 2019).

One emerging route for hybrid models is to employ physics-guided or theory-guided ML designs that explicitly observe
the law of conservation of mass. Such approaches seek to integrate physical knowledge within the data-driven models to take
advantage of the strengths of both. For instance, Hoedt et al. (2021) created an LSTM architecture that obeys conservation laws,
and these laws can also be used to guide physical interpretation of model outcomes. Although there have been considerable
methodological advances in interpreting neural networks (e.g. Wilby et al., 2003; Toms et al., 2020; Lees et al., 2022), physics-
guided ML approaches (also referred to as physics-informed, physics-aware, or theory-guided approaches) still require further
development. As alluded to earlier, the presence of data errors in observed hydroclimate records means that an unconstrained
ML performs better than a physics-guided ML model because of the ability to learn and account for data errors (Beven, 2020;
Frame et al., 2022b), including heteroscedastic and nonstationary data errors (Kratzert et al., 2021).

Another new development is differentiable, learnable physics-based models that can approach the performance of ML mod-
els but also output internal physical variables such as evapotranspiration and soil moisture (Feng et al., 2022b; Shen et al.,
2023). Tsai et al. (2021) first demonstrated the ability of connected neural networks to provide physical parameter sets to
process-based models. They showed the efficiency and generalizability of this paradigm for untrained variables, spatial extrap-
olation and interpretability. In data-sparse regions, this approach can even produce better daily metrics and future trends than
LSTM (Feng et al., 2022a) and can be used to improve flood routing (Bindas et al., 2022). These models seek to combine the
power of both ML and physics and have the potential to alleviate data demand, extrapolate better in space and for more extreme
conditions, and be constrained by multivariate observations to enable better forecasts. Furthermore, they provide a systematic
pathway for asking scientific questions and getting answers from big data.

Explainability is sometimes useful to help develop trust in model predictions. Forecasting agencies frequently engage in
a form of story-telling, both for internal and external communications. One reason for providing explainable predictions is
that when the forecasts evolve for a given variable, such as spring runoff, users often wish to understand why (i.e. what has
changed in the predictors or other factors to explain the change in the predictions). One way to achieve explainability is
by providing storylines or narratives around the hybrid forecasts which demonstrate the geophysical credibility of the results.
Differentiable modelling can also provide diverse physical variable outputs, trained or untrained, which help develop a narrative
(Feng et al., 2022b). Fleming et al. (2021) showed how hydroclimatic storylines can be produced for clients to make the forecast
interpretable in terms of understandable geophysical processes. They used pragmatic methods such as ‘popular votes’ for the
candidate predictors cast by a genetic algorithm. The approach revealed how the values of predictors such as antecedent flow
and snow water equivalent could help explain the ensemble mean predicted volume. However, there are also limitations to such
approaches. Although narratives may help with stakeholder acceptance of hybrid forecasting systems, they can also form a

constraint on the forecasting approach, by enforcing consistency of a given prediction method.
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4.2 Assimilating human influences

Another emerging challenge is assimilating human influences on the water cycle to obtain better predictions of hydroclimate
variables, especially droughts (Brunner et al., 2021; Van Loon et al., 2022). Limited data exist on human impacts such as
water storage, groundwater depletion, irrigation, land cover changes, and water transfers. Therefore, how can human decisions,
such as the management of reservoir levels or flow abstraction, be integrated within hydrological forecasts? This question
is especially relevant over longer timescales, as well as for hydrological forecasting in general, as access to such data is
limited (e.g. only very limited information on reservoir operations is included in GIoFAS). One option is to develop proxies to
detect and model human influence. For instance, census information on the number of households has be used to extend UK
urbanisation records (Han et al., 2022). Population density data has also been used as a proxy for urbanisation, to assess the
extent to which seasonal streamflow predictability might benefit from ‘anthropogenic’ predictors such as land cover change
alongside seasonal climate forecasts (Slater and Villarini, 2018). (Lépez and Francés, 2013) supplied a dynamic reservoir index
alongside climate indices to predict historical annual maximum peak discharge in Spanish rivers. In a large-scale study it was
found that reservoir operations could be implicitly simulated by ML approaches that learn from past operations (Ouyang et al.,
2021). Lastly, information on the day of the week and on local festivities has been used successfully as a proxy for difference in
energy demand (Bogner et al., 2019). Such proxies might also inform a hybrid system on hydro-peaking in rivers downstream
from dams.

The lack of accurate predictions of future human activities at the catchment scale is also a major limitation for hydrological
forecasting over longer timescales. Here, the increasing coverage and resolution of satellite data may help to provide relevant
inputs to hybrid forecasting models such as future predictions of land use change (e.g. Moulds et al., 2015). Emerging satellite
altimetry products (e.g. SWOT) may enable a better understanding of reservoir operations, which can be used to constrain
hydrological forecasts. Similarly, ML could potentially be used to translate major socio-economic drivers into land cover
change. Overall, we suggest that the main bottleneck to integrating human activities in hybrid forecasting systems is not the
model algorithms, which can be adapted to any potential predictors, but rather the lack of consistent historical and future time
series data on these activities. Unfortunately, this is likely to be a vexing challenge for automated representation. In many
reservoir systems, for instance, operations are determined through unpredictable human interactions and negotiations, and may
depend on time-varying legal, institutional, ecological and economic factors, such as agricultural markets influencing irrigation

practice, or fisheries health directing environmental releases.
4.3 Developing predictive skill

Dynamical forecasts and predictions tend to have low skill over long lead times. The skill of short-term hydroclimatological
forecasts is constrained by the skill of meteorological forecasts, which is currently in the range of 3 to 10 days ahead but has
been advancing by about one day per decade, such that ‘today’s 6-day forecast is as accurate as the 5-day forecast ten years
ago’ (Bauer et al., 2015, p.47). Low flows may have skill up to 20 days in the case of Fundel et al. (2013) and even longer

in other cases, especially with good information on initial conditions and/or the memory effect of catchment storage. Seasonal
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climate forecasts also have low predictive skill beyond a couple of months, while both seasonal and decadal predictions suffer
from the underestimation of atmospheric circulation in climate models, a phenomenon known as the ‘signal-to-noise paradox’
(e.g. Smith et al., 2020).

One of the advantages of hybrid predictions is that the data-driven methods can be used to enhance predictive skill of the
dynamical meteorological or climate forecasts. For instance, decadal predictions are skillful over multiyear forecast periods but
have too much uncertainty to provide useful information on interannual variability. Although the CMIP5-6 models can skillfully
reproduce certain large-scale circulation patterns, the magnitude of teleconnections tends to be underestimated. Statistical
approaches such as ‘NAO-matching’ attempt to resolve this by selecting members based on their ability to reproduce climate
indices and their teleconnections (Smith et al., 2020). Such methods have been employed to enhance decadal streamflow
prediction (Moulds et al., 2023) and condition seasonal hydrological forecasts (Donegan et al., 2021). However, further work
is still needed to interpret multiyear forecasts to provide actionable information. Given a skillful multiyear forecast, it should be
possible to estimate the increased flood or drought risk (for instance) in each year of the forecast period. Data-driven techniques
may aid in future developments by trying to draw out the climate model members that perform well in given months or lead

times (e.g. Slater et al., 2017).
4.4 Seamless forecasting: merging forecasts, predictions and projections

The utility of hybrid models for ‘seamless’ hydroclimatic prediction systems spanning weeks to decades is an open research
question (Figure 5). There is a growing need for reliable long-term predictions of climate change impacts on the risk of floods
and droughts over the coming decades (i.e. 1-40 years ahead), yet reliable information does not exist over such timescales. The
lack of seamless climate information is explained by the fact that different scientific weather and climate products have been
developed for different applications. Short-term predictions (less than 5 years ahead) tend to rely more on correct initial condi-
tions while long-term predictions and projections (>10 years ahead) rely more on correct external forcings such as greenhouse
gases (Boer et al., 2016).

One way to provide longer-term climate impacts information over the coming decades is to constrain uninitialized climate
model projections (e.g. climate simulations for the RCP4.5 or RCP8.5 scenarios) using initialized decadal predictions (such
as the CMIP6 decadal hindcasts), which tend to better reflect observed climate variability. Befort et al. (2020) developed a
method that does this by selecting the climate projections that best match the mean of the decadal predictions over the next
10 years. They showed that the constrained ensemble, which consisted of uninitialized projections for the upcoming 50 years,
had higher skill than the full projection ensemble, even after the 10-year period, once decadal prediction information was no
longer available. A hybrid system for enhanced prediction of hydroclimatic impacts (e.g. flood risk) could integrate the outputs
of such a constrained ensemble.

Beyond the use of uninitialized projections by themselves (covering the whole 1-50 year period), temporally concatenating
bias-corrected time series of decadal climate predictions and climate projections is also possible. Befort et al. (2022) assessed
different types of bias correction and found that the variance inflation (VINF) method could reduce inconsistencies between the

decadal and century-scale time series, especially for central quantiles of the climate time series (close to the multi-model en-
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semble median). However, the method could not eliminate all inconsistencies, notably those for extreme quantiles. A seamless
hybrid method would therefore be more difficult to generate for hydroclimate extremes such as floods and droughts. How-
ever, these two papers (Befort et al., 2020, 2022) open the way for novel research on the merging of decadal predictions and

uninitialized projections as input to seamless prediction schemes for hydroclimate impacts using hybrid ML-based approaches.

Weather Subseasonal Climate

High forecasts to seasonal projections

forecasts
Prediction

skill

Low \ —\
1 day 1 month 1 year 10 years 50 years

Lead time

Figure 5. Hybrid models could be a promising route for seamlessly linking initialized predictions from seasonal and decadal forecasts to
scenario-based projections across timescales. Different ML-based bias-correction approaches could be explored for merging or concatenating
the covariate time series (e.g. Befort et al., 2022) before using them to drive a hybrid hydroclimate prediction model (e.g. for streamflow).

Such an approach is likely to be more challenging for extremes such as floods and droughts, and remains an open research question.

4.5 Incorporating spatial variability

The data employed in many hybrid hydrological models are often lumped, i.e. spatially-averaged at the catchment scale, ignor-
ing spatial variability in landscape and atmospheric forcing. Lumped models are challenging for the prediction of hydroclimate
in complex environments such as snow-dominated watersheds, which may have karst conduits, or spatiotemporal variation in
snow accumulation and snowmelt processes. However, new approaches exist to overcome this limitation in statistical/machine
learning models. For instance, Shi et al. (2015) developed a convolutional LSTM, termed convLLSTM, which is able to capture
spatiotemporal correlations, considering both the input and the prediction target as spatiotemporal sequences. One example is
the use of past and future radar maps as input and output: such spatiotemporal sequences have high dimensionality and until
recently could not be included in hydroclimate prediction schemes. Similarly, Gupta et al. (2021) developed a spatial variability
aware neural network, termed SVANN-E, in which the architecture of the neural network varied spatially across geographic
locations. They evaluated the approach using high resolution imagery for wetland mapping. Such novel spatiotemporal pre-
diction approaches are just starting to be used for hydroclimate prediction. Xu et al. (2022) used a hybrid approach to predict
streamflow in a watershed with spatially variable karst carbonate bedrock. They combine a spatially-distributed snow model
with a deep learning karst model based on convLSTM, which simulated the effect of surface and subsurface properties on the
streamflow. This approach allowed the authors to better include the spatial variability in the input variables to their prediction

scheme.

23



605

610

615

620

625

630

635

4.6 Interpretability, usability, and uptake of hybrid forecasts

Hybrid approaches for hydroclimate prediction over sub-seasonal to decadal lead times face several challenges to their contin-
ued uptake by various communities. One issue that is critical to making hybrid schemes more widely accepted is determining
whether the improvement in forecast skill obtained by building a hybrid model is worth the extra effort. In other words, it
can be difficult to determine a priori how much added value can be obtained without first developing the hybrid model and
benchmarking the results against a more traditional approach. Despite a commitment to develop the use of ML within opera-
tional hydrology (e.g. Environment Agency, 2022), close co-operation is needed between the hydrology, forecasting and ML
communities to explore their potential either alone or in hybrid frameworks (Mosavi et al., 2018), build trust (Haupt et al.,
2022), communicate skill (Thielen-del Pozo and Bruen, 2019), and overcome barriers to operational uptake (Speight et al.,
2021). The benchmarking study of Mai et al. (2022) provided a detailed intercomparison of modelling approaches over the
Great Lakes region (USA and Canada), suggesting that the effort related to ML is justifiable. However, this work was for ret-
rospective simulation, rather than forecasting (for which there are more steps needed) and therefore it is still a jump to suggest
that ML always provides improvements for prediction, particularly over seasonal to decadal horizons, for which studies are
lacking. In the hybrid set-up of Humphrey et al. (2016), for instance, which required the development of both an ML and a
conceptual model for three gauges in southern Australia, the authors found that the hybrid model was more skillful than either
the conceptual or the data-driven models alone. However, the increase in skill was only marginal for one of the three study
locations. They concluded that for this given station, the extra time and effort required to implement the hybrid model was not
worth the small gains. Implementing an operational hybrid framework for hydroclimatic forecasting often requires extensive
time and expertise, given that two completely different types of models must be developed in parallel. These requirements
would also likely require a shift in the expertise of the organisation as well as an upgrade in the computing architecture in the
case of GPU-requiring hybrid and data-driven approaches. Overall, the operational uptake of hybrid models is expected to be
faster in cases where there is no existing forecasting capability (requiring modification) or where complex physical processes

make traditional approaches challenging.

5 Conclusions and remaining research areas in hybrid forecasting

Hybrid forecasting is emerging as a powerful enhancement to traditional hydroclimatic forecasting techniques, but important
questions remain regarding their place in the pantheon of methods. We lay out some of the most important research possibilities.
First are questions about the evaluation of hybrid methods. How well do dynamical-statistical methods perform when compared
with more traditional, operational approaches? What benchmarks should be used? How reliable are these models, and over what
lead times can they be trusted? As far as we are aware, there have been very few papers (if any) comparing the skill of hybrid
models with operational systems. One systematic comparison of 13 different models (including machine-learning-based, basin-
wise, subbasin-based, and gridded models) revealed the superiority of the data-driven LSTM-lumped model in all experiments
(e.g. Mai et al., 2022), suggesting that hybrid LSTM-based prediction systems would be a promising route for daily simulation,

and potentially for applications such as forecasting.
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Second are questions about the potential for seamless prediction. To what extent can hybrid approaches be employed to
meld historical trends, near-term and decadal predictions of hydroclimate variables from atmospheric forecasts, climate model
predictions, and projections? How would such a system be used operationally? Seamless hybrid prediction may provide better
insights into long-term hydroclimatic trends, but merging across time-scales can lead to inconsistencies in the time series (i.e.
‘jumps’ or step-changes) between e.g. decadal climate predictions and the climate projections (Befort et al., 2022). Third are
questions about use of data-driven models to detect and attribute the drivers of hydrologic change (Slater et al., 2021), and
then integrate such knowledge within a predictive framework. How can data-driven approaches be employed to understand the
relative contributions of different predictors, including human impacts such as the effects of reservoirs on streamflow (Brunner
and Naveau, 2022)? To what extent can hybrid models uncover ‘hidden’ large-scale climatic or anthropogenic drivers of change
(Renard et al., 2022; Lees et al., 2022)?

An important step forward would be the development of consistent global datasets of climate hindcasts at various time
scales at the catchment level. Similar datasets developed for large sample hydrological analyses such as CAMELS (e.g. Addor
et al., 2017; Coxon et al., 2020) and Caravan (Kratzert et al., 2023) have driven rapid progress in ML methods for simulating
daily streamflow using observed climate inputs. Such datasets drive progress towards operational hybrid systems by making it
easier for model developers to train and test potential methods in a pseudo-operational context. Moreover, they could integrate
consistent estimates of other potential drivers — including streamflow signatures and local characteristics related to topography,
geology and land cover (as in the CAMELS datasets) — enabling forecasters to understand the contribution of different drivers
to streamflow predictability across time scales.

Finally, there are questions about the acceptance and viability of hybrid models in operational contexts, given the dominance,
familiarity with and deep embedding of physics-based forecasting and prediction methods (Cohen et al., 2019). In what ways
could hybrid approaches complement, support, or replace conventional physically-based systems? The pace of change in such
settings is often constrained by practicalities, institutional resistance (Arnal et al., 2020) or the requirement for decision-
relevant evidence of skill. Acceptance might be advanced by systematically comparing the outputs from hybrid models with
operational models under identical forcings, to assess the physical interpretation of model results (e.g. Mai et al., 2022).
To convince operational forecasters that hybrid models may add value alongside more traditional approaches requires rigorous
benchmarking by the community alongside established approaches. It may also require more extensive changes in the education
and preparation of the workforce that is needed to staff operational centres.

There are several possible paths forward. One of these frames hybrid models not as replacing current operational systems but
as a complementary tool, extension or enhancement, helping on different levels, and likely within existing systems. Another
path forward is to recognize the difference in skill between hybrid models vs. traditional models, and to start to develop
future replacements for current operational models; replacements based fundamentally on data-driven (ML, DL, even Al)
principles, but with the ability to incorporate elements of traditional hydrological and climate science where these are beneficial.
Furthermore, hybrid models could be developed to estimate both impacts and mitigation measures, based on past events.
All these approaches make sense for different reasons and in different scenarios, and various agencies and organizations are

pursuing both these and other strategies for incorporating data-driven methods into operational workflows. Overall, the utility
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of hybrid models is not only for enhancing forecasting and prediction, but also for allowing deeper interrogation of diverse

data, revealing sometimes hidden or obscure hydroclimatological processes.
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