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Abstract 

Emission and backscattering signals of land surfaces at different frequencies have distinctive responses to 15 

soil and vegetation physical states. The use of multi-frequency combined active and passive microwave 

signals provides complementary information to better understand and interpret the observed signals in 

relation to surface states and the underlying physical processes. Such a capability also improves our 

ability to retrieve surface parameters and states such as soil moisture, freeze-thaw dynamics and 

vegetation biomass and vegetation water content (VWC) for ecosystem monitoring. We present here a 20 

prototype Community Land Active Passive Microwave Radiative Transfer Modelling platform (CLAP) 

for simulating both backscatter (𝜎𝜎0) and emission (𝑇𝑇𝐵𝐵) signals of land surfaces, in which the CLAP is 

backboned by an air-to-soil transition model (ATS) (accounting for surface dielectric roughness) 

integrated with the Advanced Integral Equation Model (AIEM) for modelling soil surface scattering, and 

the Tor Vergata model for modelling vegetation scattering and the interaction between vegetation and soil 25 

parts. The CLAP was used to simulate both ground-based and space-borne multi-frequency microwave 

measurements collected at the Maqu observatory on the eastern Tibetan plateau. The ground-based 

systems include a scatterometer system (1-10 GHz) and an L-band microwave radiometer.  The space-

borne measurements are obtained from the X-band and C-band Advanced Microwave Scanning 

Radiometer 2 (AMSR2) radiation observations. The impacts of different vegetation properties (i.e., 30 
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structure, water and temperature dynamics) and soil conditions (i.e., different moisture and temperature 

profiles) on the microwave signals were investigated by CLAP simulation for understanding factors that 

can account for diurnal variations of the observed signals. The results show that the dynamic VWC 

partially accounts for the diurnal variation of the observed signal at the low frequencies (i.e., S- and L-

bands), while the diurnal variation of the observed signals at high frequencies (i.e., X- and C-bands) is 35 

more due to vegetation temperature changing, which implies the necessity to first disentangle the impact 

of vegetation temperature for the use of high frequency microwave signals. The model derived vegetation 

optical depth 𝜏𝜏 differs in terms of frequencies and different model parameterizations, while its diurnal 

variation depends on the diurnal variation of VWC regardless of frequency. After normalizing  τ at multi-

frequency by wavenumber, difference is still observed among different frequencies. This indicates that 𝜏𝜏 40 

is indeed frequency-dependent, and 𝜏𝜏 for each frequency is suggested to be applied in the retrieval of soil 

and vegetation parameters. Moreover, 𝜏𝜏 at different frequencies (e.g., X-band and L-band) cannot be 

simply combined for constructing accurate long time series microwave-based vegetation product. To this 

purpose, it is suggested to investigate the role of the leaf water potential  in regulating plant water use and 

its impact on the normalized τ at multi-frequency. Overall, the CLAP is expected to improve our 45 

capability for understanding and applying current and future multi-frequency space-borne microwave 

systems (e.g. those from ROSE-L and CIMR) for vegetation monitoring.  

 

 

 50 
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1.  Introduction 

Passive microwave remote sensing instrument (radiometers) for land monitoring measures the amount of 55 

microwave radiation that is naturally emitted by the surface, whereas active instruments (scatterometers 

and radars) transmit a specific microwave signal and measure the backscatter signal of land surfaces 

(Ulaby et al., 2014a). When only a bare soil surface is considered, the dominant factors that determine the 

passive emission and active backscatter signals are soil surface roughness and the dynamic soil moisture 

and soil temperature profiles (Choudhury et al., 1979; Raju et al., 1995; Ulaby et al., 1981). For vegetated 60 

land, the vegetation imposes the effect mainly by contributing its own scattering and emission and 

attenuating underlying soil scattering and emission (Jackson and Schmugge, 1991; Ferrazzoli and 

Guerriero, 1996; Ulaby and Wilson, 1985). The presence of the vegetation complicates both components 

by the interactions of the signals in the vegetation-soil system but also provides the needed signature for 

monitoring vegetation.  65 

Utilizing the characteristics of microwaves interacting with vegetation and soil mediums and the existing 

satellite observations (e.g., Sentinel-1 backscatter, the Advanced Scatterometer (ASCAT) backscatter, the 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and its successor AMSR2, Soil Moisture 

Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) radiation), active and passive 

microwave remote sensing of land surfaces on a global scale has mainly focused on soil moisture retrieval 70 

in the recent past (Su et al., 2020; Dorigo et al., 2017; Fernandez-Moran et al., 2017; Li et al., 2022; 

Brocca et al., 2017; Bauer-Marschallinger et al., 2018; Gao et al., 2022; Wigneron et al., 2021), mainly 

due to the crucial impact of soil moisture on the global water, energy and carbon cycles (Humphrey et al., 

2021; Zhou et al., 2021; Chatterjee et al., 2022). On the other hand, microwave remote sensing is also 

being largely investigated for monitoring vegetation dynamics in natural ecosystems and agricultural 75 

applications (Jones et al., 2011; Frappart et al., 2020; Konings et al., 2019; Konings et al., 2021; Steele-

Dunne et al., 2017; Prigent et al., 2022). A noticeable application is to utilize the derived vegetation 

optical depth (VOD or τ, the attenuation effect of vegetation on microwave signal) to estimate vegetation 

water content for assessing plant status (Konings et al., 2021; Forkel et al., 2022; Wigneron et al., 2020; 

Fan et al., 2019; Brandt et al., 2018; Wu et al., 2021). 80 

Despite these advances, the current operational soil moisture and VOD retrieval algorithms mainly rely 

on zeroth-order radiative transfer theory with numerous empirical assumptions. For instance, in the τ-ω 

passive microwave model for the forward simulation and retrievals (Wigneron et al., 2007; De Rosnay et 

al., 2020; Chan et al., 2015; Li et al., 2022),  the effective scattering coefficients ω is set constant for each 

land type and independent of polarizations, vegetation structures and soil moisture, although the 85 

dependence of ω on the foregoing factors and vegetation biome types has been reported (Kurum, 2013; 
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Konings et al., 2017a; Van De Griend et al., 1996). The parameterized VOD at nadir (τNAD) is generally 

linked with vegetation indices (e.g., Leaf Area Index (LAI), Normalized Difference Vegetation Index 

(NDVI) and vegetation water content (VWC)) through empirical equations for low vegetation covers. 

Similar site-specific best-fit approaches were also applied for determining surface roughness in the 90 

passive microwave case (Wigneron et al., 2017; Chaubell et al., 2020), and for parameterizing vegetation 

and soil variables in the water cloud model (Attema and Ulaby, 1978) in the active microwave case 

(Steele-Dunne et al., 2017; Bai et al., 2021).  

Other than that the sensor configuration (i.e., frequency, polarization and incidence angle) imposes an 

impact on the observed signals. The impacts of the vegetation and surface roughness and their accurate 95 

representations in microwave scattering and emission remain unresolved. Consequently, the soil moisture 

and vegetation parameters estimated from various missions with different model structures and 

parameters differ in their characteristics and are therefore not consistent (Wang et al., 2019; Zeng et al., 

2015). All these results point to a fundamental lack of knowledge in understanding the precise scattering 

and emission mechanism of vegetated lands, and the need for in-depth investigations through the forward 100 

modelling of microwave backscatter and emission signals at multi-frequency, which can provide 

complementary and consistent information, in comparison to the ground truth observations.  

Great efforts have been made to develop the physically-based scattering-emission model based on 

Maxwell’s equations with the complementary relationship between the emission and scattering (Peake, 

1959). The examples include the integral equation model (IEM) (Fung, 1994) and its advanced version 105 

(AIEM) (Chen, 2021; Chen et al., 2003) for a rough bare soil surface, and the discrete scattering model 

(notably Tor Vergata model, hereafter TVG) (Ferrazzoli and Guerriero, 1996; Bracaglia M, 1995) for a 

vegetated surface. It is known that AIEM assumes isotropic roughness properties for a homogenous 

dielectric half-space and does not account for the dielectric effects due to heterogeneities in the soil 

medium (e.g., composition, moisture content, and bulk density) and the resultant mismatch of impedance 110 

between air and soil interface. To account for this, with the aid of comprehensive field observations 

involving ground-based L-band radiometry observations at an alpine meadow of Maqu site on the Eastern 

Tibetan Plateau (Su et al., 2020; Su et al., 2011), a physically-based surface dielectric roughness model 

named the air-to-soil transition (ATS) model (Zhao et al., 2021) has been developed and integrated with 

the AIEM that is further coupled with TVG model for modelling L-band scattering and emission of the 115 

overall vegetation-soil medium. As such, the coupled ATS-AIEM-TVG model forms the prototype of a 

Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP) that can be 

used for integrated modelling, interpretation and application of multi-frequency emission and 

backscattering signals of land surface.   
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Progress has been made to understand the scattering and emission processes in vegetated lands at a multi-120 

annual scale (including freeze-thaw processes) by utilizing the coupled IEM with TVG models and the 

Maqu L-band radiometry data (Zheng et al., 2017; Zhao et al., 2021) and Maqu ground-based broad-band 

scatterometry data during the winter period (Zheng et al., 2021). A successful retrieval of soil moisture 

using Aquarius active and passive microwave data and the foregoing coupled model was achieved (Wang 

et al., 2019), which is proven consistent with satellite-derived precipitation and evaporation products on 125 

the Tibetan plateau that is rarely achievable with current operational soil moisture products. Furthermore, 

the nature of effective soil temperature and its sampling depth was explained by the in-depth analysis of 

the Maqu L-band radiometry data and extended to applications of SMOS and SMAP observation 

configurations (Lv et al., 2014; Lv et al., 2016; Lv et al., 2018; Lv et al., 2019).  

Despite the above advancement, it is noted that the treatments of vegetation in these studies are based on 130 

the calibration results from Dente et al. (2014), which use both active (ASCAT) and passive (AMSR-E) 

microwave signatures of the Maqu area. As a consequence, how the vegetation plays the role in 

mechanistic scattering and emission processes in these (in situ) microwave observations is not explored 

yet. On the other hand, most studies deploy soil moisture (measured or modeled) at the first layer (e.g., 

2.5 cm or 5 cm) for soil emission and backscattering simulations. This is mainly driven by two reasons: 1) 135 

from the theoretical point of view, the penetration depth of soil moisture is about 1/10 of the wavelength 

of observation (Wilheit, 1978; Wang, 1987), and 2) from the practical point of view, these depths are the 

practical ones where soil moisture sensors (e.g., 5TM, Campbell Scientific Crop) can be installed and 

measure soil dielectric constant in the field condition. While it is shown that soil moisture at the real top 

layer (e.g., 0 cm) imposes great impacts on variations of sampling depth, especially for high-frequency 140 

signals (Raju et al., 1995; Wang, 1987). It is very hard, if not impossible, to measure it in the field. 

Fortunately, the soil process model (e.g., HYDRUS (Hansson et al., 2004), Simultaneous Transfer of 

Energy, Mass and Momentum in Unsaturated Soil (STEMMUS) (Zeng et al., 2011a, b; Yu et al., 2018), 

with detailed physical representations of soil water and heat transfer and coupling processes can provide 

physically consistent soil moisture and temperature profiles with fine discretization in the upper soil layer. 145 

Using the outputs of these mechanistic models as inputs for the radiative transfer model can help 

investigate the effect of surface and profile soil states on emission and backscattering signals. It is well 

established for crop and tree species that diurnal variations of radar backscatter are due to variations in 

plant water dynamics (Brisco et al., 1990; Friesen et al., 2012; Steele-Dunne et al., 2012; Ulaby and 

Batlivala, 1976; Vermunt et al., 2021; Konings et al., 2017b; Schwank et al., 2021). The diurnal variation 150 

of L-band emission of grassland during the soil freeze-thaw period is observed being related to soil water 

and temperature dynamics (Zheng et al., 2017; Su et al., 2020). However, the variation in dielectric 

properties due to the temeprature effect, and how the signal diurnal variation affected by these factors 
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differ in terms of frequencies and surface condition changes are not fully investigated, due to the lack of 

assembled in situ long term microwave measurements at multiple frequencies.  155 

Supported by the in situ active and passive observations and extracted satellite microwave observations at 

the Maqu site, as well as the in situ measured and process modeled soil states data, the objective of this 

paper is to: 1) use the CLAP for forward simultaneous simulations of both backscatter and emission at 

multi-frequency and assess the model performance; 2) investigate how the vegetation structure and 

vegetation water and temperature dynamics affect the signal simulation and the derived τ and ω; 3) probe 160 

the penetration depth of the microwave signals; 4) investigate what factors drive diurnal variations of in 

situ microwave observations. The improvement of the forward signal modelling is expected to benefit 

retrieval methods in the view of monitoring land surfaces from current and future spaceborne radiometer 

and SAR observations, such as the Copernicus Imaging Microwave Radiometer (CIMR) (Kilic et al., 

2018), the Copernicus L-band radar observing system for Europe (ROSE-L) (Pierdicca et al., 2019) and 165 

the Water Cycle Observation Mission (WCOM) (Shi et al., 2014).  

2. Data and methods 

2.1 Measurements on the Maqu site 

The Tibetan Plateau observatory for soil moisture and soil temperature (Tibet-Obs) was built and 

maintained since 2006 onwards (Su et al., 2011; Zeng et al., 2016; Zhuang et al., 2020; Zhang et al., 170 

2021) to provide comprehensive observations for validating reanalysis SM datasets and SM retrievals 

from satellite microwave remote sensing (Wang et al., 2018; Dente et al., 2012; Zheng et al., 2018b; 

Zheng et al., 2018a; Su et al., 2013; Zeng et al., 2015). Since 2016, an in situ Dicke-type radiometer 

ELBARA-III at the L-band (1.4 GHz) has been mounted at the Maqu site (33.91°N, 102.16°E) of the 

Tibet-Obs, providing long-term brightness temperature 𝑇𝑇𝐵𝐵
𝑝𝑝 (𝑝𝑝 = H or V polarization) observations (with 175 

half-hourly interval) of the land surface (Su et al., 2020). Next to the radiometer tower, the SMST_LC pit 

(Lv et al., 2018) installed with the 5TM ECH2O probes (METER Group, Inc. USA) at depths ranging 

from 2.5 cm to 1 m, provides profile soil moisture and temperature at 15-minute interval (Su et al., 2020). 

The soil samples collected from this pit were also utilized to provide soil texture information (Zhao et al., 

2018).  180 

In August 2017, the ground-based scatterometer was installed also on the tower and continued to operate 

until December 2018, providing broad-band ranging from L-band (1.5–1.75 GHz), S-band (2.5–3.0 GHz), 

C-band (4.5–5.0 GHz), to X-band (9.0–10.0 GHz) backscatter observations (with hourly interval) at the 

four linear polarizations (i.e., HH, VV, VH and HV) (Hofste et al., 2021). Considering the effect of the 

scatterometer antenna pattern, especially a large pattern angle in the low frequency, Hofste et al. (2021) 185 
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derived the effective incidence angle characterized from the antenna to the calculated footprint center, 

where the surface projected antenna beam intensity is equal to half its maximum value. The incidence 

angle range (i.e., minimum and maximum angles in Table 1) that determine the footprint area was also 

obtained for each frequency (Hofste et al., 2021). Although the backscatter at both cross-polarization (i.e., 

VH and HV) were measured, they exhibit the difference in terms of frequency and land surface condition 190 

change (Hofste et al., 2021). This paper only focuses on the observation at VH polarization for simplicity. 

Table 1 summarizes the sensor configuration of the ground observed active and passive microwave 

signals used in this study. It is to note that there is no in situ measured X- and C-bands emission data, the 

extracted AMSR2 emission data at the descending mode (Table 1) is thus used as a surrogate for 

comparison to assess the model performance.  195 

Data of vegetation parameters such as fresh and dry above-ground biomass, vegetation water content 

(VWC), leaf area index (LAI), and vegetation height are available on two summer days (i.e., 12/06/2018 

and 17/08/2018) during the field campaign (please refer to Table A2 in Hofste et al. (2021)). Time series 

LAI data extracted from MCD15A2H-MODIS/Terra+Aqua Leaf Area Index (500m resolution) 

(https://lpdaac.usgs.gov/products/mcd15a2hv006/) and then processed with the harmonic analysis of the 200 

time series (HANTS) algorithm (Verhoef, 1996) are also for use (i.e., to calculate the number of 

scatterers) in this study.  

Table 1 Information on the microwave observation on the Maqu site.   

Mode Sensor name Band 
Centre 
frequency 
(GHz) 

Effective 
incidence 

angle 

Incidence 
angle 
range 

Polarization Data source 

A Ground-based 
scatterometer X 9.5 54° 48°-58° HH, VV, VH Hofste et al. (2021) 

A Same as above C 4.75 51° 39°-60° Same as above Same as above 
A Same as above S 2.75 44° 39°-60° Same as above Same as above 
A Same as above L 1.625 40° 21°-60° Same as above Same as above 

P 
Ground-based 
ELBARA-III 
radiometer 

L 1.4 40°  H and V Su et al., 2020 

P AMSR2 X/C 6.9/10.7 55°   H and V 

NRT AMSR2 
Unified L3 Daily 
25 km TB  & SIC 
Polar Grids Version 
4 

Where A and P refer to the active and passive modes respectively.  
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2.2 Estimated vegetation water content (VWC)  205 

Vegetation water content is an important parameter determining vegetation dielectric constant. It is 

known that the diurnal solar radiation cycle not only affects vegetation temperature but also vegetation 

water content. The mechanism behind this is that during the day, the rate of transpiration exceeds the rate 

of root water uptake, decreasing the volume of water within vegetation, while water reserves are 

replenished in the late afternoon to the early morning when the rate of root water uptake exceeds the rate 210 

of transpiration (Monteith, 2020; Brisco et al., 1990; Konings et al., 2019). Considering this plant 

physiology, we used the sinusoidal function below (Eq. (1)) to estimate diurnal VWC during the summer 

period (at the end of July in this case) with the aid of in situ measurements.  

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉_𝑚𝑚 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔 + 𝜙𝜙)                 (1) 

Where 𝑉𝑉𝑉𝑉𝑉𝑉_𝑚𝑚 is the mean vegetation water content (kg/kg), A is the amplitude of the VWC fluctuation 215 

(the range from maximum or from minimum to the average temperature). In this case, based on the in situ 

measurement conducted by Hofste et al. (2021), 𝑉𝑉𝑉𝑉𝑉𝑉_𝑚𝑚 is valued at 0.6, and 𝐴𝐴 is valued at 0.05. 𝜔𝜔 is the 

radial frequency, which is 2π times the actual frequency. In the case of diurnal variation, the period is 

86,400 sec (24 hour), so ω= 2π/86,400 = 7.27 × 10−5/sec. 𝜙𝜙 is the phase shift and is valued at π/2 in 

radians. The shape of the estimated diurnal VWC is displayed in Fig. S1 in the supplementary materials.  220 

2.3 Process-model simulated profile soil moisture and temperature data 

As an initial attempt to investigate the effect of the surface (soil moisture) state on the microwave signal 

simulation, we obtained simulated data of soil moisture and temperature at the depths of 0.1, 1, 2, 5, 10, 

15, 20, 30, 40, 50 and 60 cm with the vadose zone process model STEMMUS (Simultaneous Transfer of 

Energy, Mass and Momentum in Unsaturated Soil) (Yu et al., 2020). The simulated data during the winter 225 

period is focused, as we assume that vegetation is dead in this period and the ground surface condition 

changes (i.e., in moisture and temperature) are the main driving factors for the signal variation. Fig. S2 

shows the time series STEMMUS simulated soil moisture and temperature comparable to the in situ 

measurements  (i.e., mean soil moisture of 0.12 vs 0.07 at 2.5  cm, 0.1 vs 0.05 at 5 cm and 0.1 vs 0.09 at 

10 cm shown in Fig. S3) during the winter period. 230 

2.4 Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP) 

As already mentioned, the current prototype of CLAP consists of two main components. One component 

relies on the TVG model (Ferrazzoli and Guerriero, 1996; Bracaglia M, 1995) for modelling vegetation 

scattering and the interaction with underlying soil scattering, which includes effects of multiple scattering 
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both within the vegetation and between vegetation and soil. The other component is the ATS model (Zhao 235 

et al., 2021) integrated with the AIEM (Chen, 2021) for modelling soil surface scattering. 

In the TVG model vegetation is described as an ensemble of discrete scatterers with assigned geometries, 

such as a uniform top layer of discs (leaves) and cylinders (stems) with structure symmetrical in azimuth. 

After defining the shape of discrete scatters, the corresponding electromagnetic approximations are 

adopted in respect of selected geometry and frequency (Fig. 1) to calculate vegetation bistatic scattering 240 

and extinction (absorption plus scattering) cross-sections, in which the vegetation dielectric constant is 

calculated from either the Matzler (1994) model (gravimetric VWC not less than 0.5 (kg/kg)) or Ulaby 

(1987) model (dry vegetation). Thereby the scattering and transmission matrices of the scatter layer are 

computed, in which each element represents the ratio between the specific intensity scattered into an 

upper (lower) angular interval of scattering off-normal angle 𝜃𝜃𝑠𝑠, and the specific intensity incoming from 245 

an upper angular interval of incidence off-normal angle 𝜃𝜃𝑖𝑖. The scattering dependence on the difference 

between incidence and scattering azimuth angles (𝜑𝜑𝑠𝑠 − 𝜑𝜑𝑖𝑖) is expressed by the Fourier series (Ferrazzoli 

et al., 1991). A similar Fourier transform is applied for obtaining soil scattering matrix in terms of 

incoherent bistatic scattering coefficients calculated from the integrated ATS+AIEM model, and coherent 

specular reflection coefficients computed from the Fresnel equations corrected by a roughness factor. By 250 

using the matrix doubling algorithm (Fig. 1), the contributions from all layer scatters are integrated for the 

whole vegetation, and the contributions from the whole vegetation and from the soil part are also 

combined.  

The scattering coefficients in the backward direction, namely backscattering coefficients from the 

vegetation part (𝜎𝜎𝑣𝑣0), soil part (𝜎𝜎𝑠𝑠0) and their interaction (𝜎𝜎𝑣𝑣𝑠𝑠0 ), respectively, are then obtained through 255 

Fourier back-transform with 𝜑𝜑𝑠𝑠 − 𝜑𝜑𝑖𝑖 = 𝜋𝜋, and the total backscattering coefficient (𝜎𝜎0) is calculated by 

summing them up (Eq. (2)). The polarization and frequency dependences are suppressed in the equation 

for brevity. 

𝜎𝜎0 = 𝜎𝜎𝑣𝑣0 + 𝜎𝜎𝑣𝑣𝑠𝑠0 + 𝜎𝜎𝑠𝑠0                         (2) 

The τ and ω can be estimated below (Eq. (3)) from the simulated vegetation emissivity 𝑒𝑒𝑣𝑣 and vegetation 260 

transmissivity 𝛾𝛾𝑣𝑣 same as in Ferrazzoli et al. (2002).  

𝜔𝜔 = (1 − 1−𝜀𝜀𝑣𝑣
𝛾𝛾𝑣𝑣

)                                  (3a) 

τ = − ln(𝛾𝛾𝑣𝑣) cos(𝜃𝜃𝑖𝑖)                         (3b) 
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For the passive part, the emissivity 𝜀𝜀 at an incidence angle 𝜃𝜃𝑖𝑖 is obtained by applying energy conservation 

law by integrating the bistatic scattering coefficients over the half-space above the surface (Fig. 1). Due to 265 

the low vegetation emission, the physical temperature of vegetation is assumed the same as that of soil in 

this study. The effective soil temperature 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 is estimated using Lv incoherent model (Lv et al., 2016) 

(please refer to section 2.2.3 in Zhao et al. (2021)). Finally, the equation 𝜀𝜀(𝜃𝜃𝑖𝑖) ∙ 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 is used to calculate 

brightness temperature 𝑇𝑇𝐵𝐵. The flowchart illustrating the procedure for the forward simulation of 

microwave active and passive signals is presented in Fig. 1.  270 

 

Figure 1 Flowchart illustrating the procedure for the forward 𝜎𝜎0 and  𝑇𝑇𝐵𝐵 simulations by CLAP (the 
coupled ATS-AIEM-TVG model). Freq denotes frequency with a unit of GHz. The square rectangle 
represents inputs and parameters, and the rounded rectangle in orange refers to models and algorithms. 
The outermost dash blue box encloses elements in the ATS-AIEM-TVG model. Inside three dash boxes in 275 
blue enclose elements in modelling scattering of vegetation, soil parts and their combination respectively. 
The black dashed box inside the upper blue dash box encloses different vegetation electromagnetic 
approximation approaches and the corresponding calculated bistatic scattering and extinction cross-
sections. The black dashed box inside the lower blue dash box is with inputs used for the ATS model to 
obtain the effective dielectric constant of the composite air-to-soil medium, in which SM1 refers to soil 280 
moisture at the first layer. Detailed descriptions of the ATS model are seen in section 2.2.2 as well as Lv 
incoherent models in section 2.2.3 in Zhao et al. (2021). 
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2.5 Configuration of simulation experiments  

In the default setting grass leaves at the Maqu site are assumed to be of disc geometries (Dente et al., 285 

2014). Considering Festuca ovina (Gu et al., 2009; Miller, 2005) dominating in the study field (please 

also refer to Fig. A1 in Hofste et al. (2021)), the grass leaves are also parameterized as cylinders in this 

study for comparison. Table 2 lists the geometric parameters and their values used in the disc- and 

cylinder- configurations. The values of the cylinder parameters such as radius, and length (inferred from 

plant height) and the number of cylinders are in situ values measured by Hofste et al. (2021). The 290 

Eulerian angles (alpha, beta and gamma) describing leaf orientation (please refer to Fig. 5 in Eom and 

Fung (1984)) are the investigated values to converge model simulation (see Table 3 in (Hofste et al., 

2022)). The values of angular resolutions in the off-nadir angle 𝜃𝜃 and azimuth angle 𝜑𝜑 directions for 

calculating the scatter’s bistatic cross-sections are doubled in the cylinder configuration, because for 

cylinders high resolutions are necessary, since their scattering patterns are more peaked due to their large 295 

dimensions with respective to the wavelength.  

Table 2 Parameters in the disc- and cylinder- configurations. 

Disc parameterization Reference 
Disc: radius (cm) 1.4 

Dente et al. (2014) 

Disc: thickness (cm) 0.02 
Disc: number per unit of area (1/cm-2) LAI/(π * radius * radius) 
Angular resolution in off-nadir angle 𝜃𝜃 direction 
(namely, number of discrete intervals of incidence and 
scattering off-nadir angles) 

36 

Angular resolution in azimuth angle 𝜑𝜑 direction 
(namely, number of Fourier components for 
dependence on (𝜑𝜑𝑠𝑠 − 𝜑𝜑𝑖𝑖) of scattering (Ferrazzoli et 
al., 1991)) 

64 

Eulerian angles describing leaf orientation (Eom and 
Fung, 1984) 

alpha = 15, 12, 30 
beta = 5, 17, 5 
gamma = 0, 1, 0, where the 1st 
number is starting angle, the 2nd is 
the number of total angles, and the 
3rd number is the angular increment.  

Cylinder parameterization  
Cylinder: radius (cm) 0.05 

Hofste et al. (2021) 
Hofste et al. (2022) 

Cylinder: length (cm) 30 
Cylinder: number per unit of area (1/cm-2) 2 
Angular resolution in off-nadir angle 𝜃𝜃 direction 
(namely, number of discrete intervals of incidence and 
scattering off-nadir angles) 

72 

Angular resolution in azimuth angle 𝜑𝜑 (namely, 
number of Fourier components for dependence on 
(𝜑𝜑𝑠𝑠 − 𝜑𝜑𝑖𝑖) of scattering (Ferrazzoli et al., 1991)) 

128 
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Eulerian angles describing leaf orientation (Eom and 
Fung, 1984) 

alpha = 0, 45, 8 
beta = 0, 30, 3 (for summer period), 
and beta = 90, 1, 90 (for winter 
period) 
gamma = 0, 1, 0, where the 1st 
number is starting angle, the 2nd is 
the number of total angles, and the 
3rd number is the angular increment. 

Considering the different nature of vegetation, soil and surface roughness status during the summer and 

winter periods, this study carries out model simulations for each period separately. We focused on 

simulations with one hour interval during the summer period from 20/07/2018 to 05/08/2018 and during 300 

the winter period from 01/01/2018 to 15/01/2018, where the prior information is available (Hofste et al., 

2021; Zheng et al., 2021). Accordingly, we also analyzed the performance of microwave multi-frequency 

signal forward modelling at the diurnal level.  

Regarding vegetation scattering modelling, the estimated dynamic VWC in section 2.2 is used during the 

summer period, and a constant value of 0.04 (kg/kg) of VWC is applied during the winter period, because 305 

the dehydrated dead vegetation is assumed in this period. The dead vegetation is further assumed lying on 

the ground with a beta angle of 90° (Table 2). The number of cylinders is assumed to be constant over 

these two periods, considering that the observed scene is in a fenced area and without yak grazing 

activities (Su et al., 2020). Variation of vegetation temperature is significant in determining liquid water 

dielectric constant and associated vegetation dielectric constant (Ulaby et al., 2014b). As there is no in 310 

situ measured vegetation temperature, the value of air temperature measured at 2 m above the surface 

(Fig. 2b ) is assigned to the value of vegetation temperature, which is acceptable because of the low air 

pressure on the Tibetan Plateau.  

Regarding soil scattering modelling, the information of soil moisture at the first layer (i.e., 2.5 cm in the 

in situ case and 1 mm in the STEMMUS output) is fed into the ATS model for calculating the effective 315 

dielectric constant of the composite air-to-soil medium (Zhao et al., 2021). For surface roughness 

parameters—the standard deviation of height 𝐴𝐴 and correlation length 𝐿𝐿, the default calibrated 𝐴𝐴 of 0.9 cm 

and 𝐿𝐿 of 9 cm (Dente et al., 2014) at the Maqu site are used during the summer period, considering that 

the calibration is based on satellite observations in the normal (thawed) soil condition. The different 

values of 𝐴𝐴 of 0.4 cm and 𝐿𝐿 of 12 cm are used during the winter period, which were calibrated by Zheng 320 

et al. (2021) based on in-situ observations in this period. Finally, the main simulation is conducted at the 

effective angle of incidence (Table 1) and the results are compared to the observations with the statistics 

of Bias and root mean square error (RMSE) calculated. The uncertainty in the simulation due to the 

https://doi.org/10.5194/hess-2022-333
Preprint. Discussion started: 21 October 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

footprint effect is quantified through conducting simulations at the minimum and maximum angles of 

incidence (Table 1) separately for each frequency.  325 

In the model simulation, during the winter period, the value of the obtained soil backscattering coefficient 

𝜎𝜎𝑠𝑠0 for cross-polarization was often found lower than the equivalent minimum detectable radar cross 

section of the scatterometer, making it meaningless. This level is derived from the minimum detectable 

radar cross section of the scatterometer system specified in Table S1 in the supplementary materials. 

Simulation values below the minimum detectable level were filtered out from the analysis. 330 

3. Results  

3.1 Simulated backscatter (𝝈𝝈𝟎𝟎) signals at multi-frequency during the summer period 

Figure 2 shows that the cylinder-based simulated 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band is closer to the observation, especially 

at VV polarization than those simulated based on the disc parameterization of vegetation (Biases of 0.7 

dB vs 3.0 dB, and RMSEs of 1.8 dB vs 3.4 dB in Table 3). The simulated 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band exhibits 335 

diurnal variations mainly due to the consideration of dynamic vegetation temperature (see also Fig. S4, 

which shows the sensitivity analysis result of signal variation on vegetation temperature and VWC), 

although the variation does not agree with the observation completely, indicating that the observed signal 

at the X-band with weak penetration capability may come from the top structure of vegetation, whose 

variation is readily driven by wind (see the Fourier transform analysis shown in Fig. S5, where in the 340 

frequency domain, both the observed 𝜎𝜎0 and wind speed variable show fluctuations). By analysing the 

contribution from the different components, the vegetation contribution is found dominating in both disc- 

and cylinder-based simulations at all polarizations (Fig. S6), where the difference on average between the 

cylinder- (disc-) based simulated total signal 𝜎𝜎0 and the vegetation component 𝜎𝜎𝑣𝑣0 is 0. (0.6) dB, and the 

difference between the cylinder- (disc-) based simulated 𝜎𝜎0 and the soil component 𝜎𝜎𝑠𝑠0 is 35.9 (19.5) dB. 345 
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Figure 2 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band simulated by the CLAP with the disc and cylinder parameterizations 
compared to the ground-based observations during the summer period. Panels a and b display the in situ 
measured (o_) soil moisture and temperature at different depths and environmental variables during this 
period, in which TG refers to ground surface temperature, Tair represents air temperature at 2 m, and 350 
Pre denotes precipitation. In panels c, d and e, the shaded area overlapping the simulation results refer 
to the uncertainty due to the effect of the footprint area determined by the different incidence angles 
(please refer to Table 1), and the yellow shaded area refers to the uncertainty in the observed backscatter 
data (see Hofste et al. (2021)). 
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Table 3 Statistics of the comparison of 𝜎𝜎𝑝𝑝𝑝𝑝0  at multi-frequency simulated by the CLAP using the disc and 355 

cylinder parameterizations respectively, to the ground-based observations during the summer period. 

Bias and RMSE are in the unit of dB.  

Band Scheme HH  VV  VH  
Bias RMSE Bias RMSE Bias RMSE 

X Disc 0.3 1.3 3.0 3.4 -3.4 3.8 
Cylinder -0.7 1.4 0.7 1.8 2.1 2.6 

C Disc 4.1 4.3 5.8 6.0 -1.1 1.7 
Cylinder -1.2 1.7 0.5 1.5 -0.3 1.1 

S Disc 6.0 6.1 6.2 6.3 -4.0 4.2 
Cylinder 2.9 3.0 1.8 2.1 -2.0 2.3 

L Disc -1.5 1.8 5.8 5.9 -9.9 10.0 
Cylinder -4.7 4.8 3.9 4.1 -32.1 32.2 

Figure 3 (C-band) and Figure 4 (S-band) also show that the cylinder parameterization performs better 

(lower Biases and RMSEs (e.g., RMSEs of 1.5 dB vs 6.0 dB in Table 3) than the disc parameterization in 

𝜎𝜎𝑝𝑝𝑝𝑝0  simulations, especially at VV polarization. In the simulation of 𝜎𝜎0 at the C-band at all polarizations, 360 

the vegetation contribution still dominates in both simulations (Fig. S7), where the difference on average 

between cylinder- (disc-) based simulated 𝜎𝜎0 and 𝜎𝜎𝑣𝑣0 is 2.5 (0.6) dB, and the difference between cylinder- 

(disc-) based simulated 𝜎𝜎0 and 𝜎𝜎𝑠𝑠0 is 16.7 (21.8) dB. While in the simulation of co-polarization 𝜎𝜎0 at the 

S-band, the soil contribution is found dominant in both simulations (Fig. S8), where the difference on 

average between cylinder- (disc-) based simulated 𝜎𝜎0 and 𝜎𝜎𝑠𝑠0 is 2.7 (2.3) dB, and the difference between 365 

cylinder- (disc-) based simulated 𝜎𝜎0 and 𝜎𝜎𝑣𝑣0 is 4.9 (5.5) dB. Comparatively, both 𝜎𝜎𝑣𝑣0 and 𝜎𝜎𝑣𝑣𝑠𝑠0  are dominant 

in both simulations of 𝜎𝜎𝑉𝑉𝑉𝑉0  at the S-band (Fig. S8), and the mean difference is 2.6 dB between simulated 

𝜎𝜎𝑉𝑉𝑉𝑉0  and 𝜎𝜎𝑣𝑣0 and 3.9 dB between simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  and 𝜎𝜎𝑣𝑣𝑠𝑠0 ). Moreover, consistent diurnal variations are 

found between the simulated 𝜎𝜎𝑝𝑝𝑝𝑝0  at the C- and S-bands and the observations (Figs. 3 and 4), especially at 

HH polarization. Based on the results of sensitivity analysis of signal variation on vegetation temperature 370 

and VWC shown in Fig. S9, it is observed that the impact of dynamic vegetation temperature is larger 

than that of dynamic VWC in simulating C-band microwave signal with diurnal variations (also see Figs. 

2a and 2b with Fig. 3), which is consistent with the foregoing at the X-band. While it is the other way 

around, namely the dynamic VWC rather than vegetation temperature contributes more to the diurnal 

variations of  the observed 𝜎𝜎0 at the S-band (Fig. S10). 375 
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Figure 3 Similar to Figure 2 but for C-band. The plot of in situ soil moisture and temperature at different 

depths and environmental variable observations in this period can be found in Figures 2a and 2b. 
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Figure 4 Same as Figure 2 but for S-band.  380 

Figure 5 shows that the disc parameterization performs better in simulating 𝜎𝜎𝑉𝑉𝑉𝑉0  and 𝜎𝜎𝑉𝑉𝑉𝑉0  at the L-band, 

where the close values of Biases and RMSEs (e.g., RMSEs of 1.8 dB vs 4.8 dB for HH polarization in 

Table 3) are observed, while a large discrepancy (RMSEs of 10.0 dB vs 32.2 dB in Table 3) is observed 

between the simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  and the observation. Based on the sensitivity analysis of signal variation on 

vegetation temperature and VWC shown in Figs. S11 and S12, the diurnal variations of the simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  385 

and 𝜎𝜎𝑉𝑉𝑉𝑉0  are observed mainly due to the dynamic VWC rather than the vegetation temperature reported 

for X- and C-bands (Figs. S4 and S9). Comparably, better performance of the cylinder parameterization is 

still found in the signal simulation at VV polarization (Fig. 5, Biases of 3.9 dB vs 5.8 dB and RMSEs of 

4.1dB vs 5.9 dB in Table 3), and the use of dynamic VWC results in simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  closer to the 

observation than using constant VWC does (see the sensitivity analysis result shown in Fig. S12). The 390 

soil contribution is found dominating in the cylinder-based simulation at all polarizations with a mean 

difference of 1.6 dB between simulated 𝜎𝜎0 and 𝜎𝜎𝑠𝑠0 (Fig. S13). In the disc-based simulation, 𝜎𝜎𝑠𝑠0 is 

dominant only at VV polarization, and both 𝜎𝜎𝑣𝑣0 and 𝜎𝜎𝑣𝑣𝑠𝑠0  are dominant at HH and VH polarizations (Fig. 

S13). 
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 395 

Figure 5 Same as Figure 2 but for L-band. 

It can be concluded that the CLAP using the cylinder parameterization can mimic the observed 𝜎𝜎𝑝𝑝𝑝𝑝0  at 

multi-frequency well for grassland during the summer period, despite the discrepancy between the 

simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  at the L-band and the observation. Moreover, the CLAP simulation results demonstrate the 

characteristic of multi-frequency microwave interacting with soil and grass during the peak growth period 400 

(i.e., July and August). Such results indicate that the vegetation scattering dominates in the observed total 

scattering at high frequencies (i.e., X- and C-bands), while soil scattering itself dominates at low 

frequencies (i.e., S- and L-bands) at co-polarization, and both vegetation and the interaction between 

vegetation and soil are dominant for cross-polarization at the low frequencies. Furthermore, by 

considering dynamic diurnal vegetation temperature and VWC in the simulation system, the observed 405 

diurnal variations of microwave signals can be mimicked well. 

 

3.2 Simulated emission (𝑻𝑻𝑩𝑩) at multi-frequency during the summer period 

Figure 6 shows that the disc parameterization performs better in mimicking ELBARA-III observed 𝑇𝑇𝐵𝐵𝑉𝑉 at 

the L-band (RMSEs of 12.7 vs 49.7 K in Table 4), while performing similarly as the cylinder 410 
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parameterization does in the simulation of 𝑇𝑇𝐵𝐵𝑉𝑉 (RMSEs of 6.5 K and 7.7 K in Table 4). This finding is 

consistent with those in simulating scatterometer observed co-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  at the L-band (Fig. 5 and 

Table 3). Figures S14 and S15 show that the simulated 𝑇𝑇𝐵𝐵
𝑝𝑝 signals at the X- and C-bands during the 

summer period can capture the variation of the AMSR2 observed 𝑇𝑇𝐵𝐵
𝑝𝑝 signals, and the disc 

parameterization results in simulated 𝑇𝑇𝐵𝐵
𝑝𝑝 closer to the AMSR2 measurements (lower Biases and RMSEs 415 

in Table 4) than the cylinder parameterization does. However, caution should be taken about the different 

spatial resolution (i.e., m vs km) between simulated results and the satellite measurements in drawing this 

conclusion. 

 

Figure 6 𝑇𝑇𝐵𝐵
𝑝𝑝 at the L-band simulated by the CLAP with the disc and cylinder parameterizations compared 420 

to the ELBARA-III observations during the summer period. Similar to Figure 5, the shaded area 

overlapping the simulation results refers to the uncertainty due to the effect of the footprint area 

determined by the different incidence angles (please refer to Table 1). Regarding ELBARA-III 

observations, the peaks (e.g., from 31/07/2018 to 03/08/2018) due to surface reflected solar beams into 

the ELBARA-III antenna horn under certain surface conditions such as after rainfall events (Su et al., 425 

2020) are filtered. 

Table 4 Same as Table 3 but for the comparison of  𝑇𝑇𝐵𝐵
𝑝𝑝 (𝑝𝑝 = H or V polarization). Bias and RMSE are in 

the unit of K.  

Band Scheme H V 
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Bias RMSE Bias RMSE 

X Disc 0.7 5.9 15.2 2.4 
Cylinder 8.3 14.0 21.7 5.8 

C Disc -11.7 14.7 6.0 9.2 
Cylinder 12.2 15.3 21.8 10.4 

L Disc -8.5 12.7 5.4 6.5 
Cylinder -48.6 49.7 6.9 7.7 

 

3.3 Simulated backscatter (𝝈𝝈𝟎𝟎) at multi-frequency during the winter period 430 

Figure 7 shows that the cylinder-based simulated 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band is closer to the observation at all 

polarizations than the disc-based simulated 𝜎𝜎𝑝𝑝𝑝𝑝0  does. The cylinder-based simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  matches the 

observation well (RMSE of 1.7 dB in Table 5), while a large discrepancy is observed between simulated 

𝜎𝜎𝑉𝑉𝑉𝑉0  and the observation (RMSE of 11.5 dB) due to the overestimated 𝜎𝜎𝑠𝑠0 as shown in Fig. S16. A large 

discrepancy is also observed for simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  against the observation (RMSE of 9.6 dB).  435 
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Figure 7 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band simulated by the CLAP with the disc and cylinder parameterizations 
compared to the ground-based observations during the winter period. Panels a and b display the in situ 
measured (o_) soil moisture and temperature at different depths and environmental variables during this 
period, in which TG refers to ground surface temperature and Tair represents air temperature at 2 m. In 440 
panels c, d and e, the shaded area overlapping the simulation results refer to the uncertainty due to the 
effect of the footprint area determined by the different incidence angles (please refer to Table 1, and the 
yellow shaded area refers to the uncertainty in the observed backscatter data (see Hofste et al. (2021)). 

Table 5 Same as Table 3 but for the winter period. Bias and RMSE are in the unit of dB. 

Band Scheme HH   VV   VH   
Bias RMSE Bias RMSE Bias RMSE 
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X Disc 18.6 18.6 5.4 5.7 -15.2 15.4 
Cylinder 11.4 11.5 0.1 1.7 -9.4 9.6 

C Disc 6.9 7.1 -4.6 5.0 -12.5 12.6 
Cylinder -2.7 3.0 -4.9 5.1 -11.9 12.0 

S Disc 5.6 5.9 5.3 5.5 -15.2 15.3 
Cylinder 5.9 6.1 5.5 5.7 -11.8 12 

L Disc -2.1 2.4 4.0 4.2 -20.5 20.5 
Cylinder -1.8 2.2 4.1 4.3 -20.5 20.5 

Figure 8 shows that the cylinder parameterization performs better than the disc parameterization in 𝜎𝜎𝑉𝑉𝑉𝑉0  445 

simulation at the C-band, and the disc parameterization overestimates 𝜎𝜎𝑉𝑉𝑉𝑉0  mainly due to the 

overestimated 𝜎𝜎𝑠𝑠0 (Fig. S17), while these two different parameterizations show the same performance in 

𝜎𝜎𝑉𝑉𝑉𝑉0  and 𝜎𝜎𝑉𝑉𝑉𝑉0  simulations. The cylinder-based simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  at the C-band is close to the observation 

(RMSE of 3.0 dB in Table 5), but 𝜎𝜎𝑉𝑉𝑉𝑉0  at the C-band is underestimated (Bias of -2.7 dB in Table 5) and 

the simulated 𝜎𝜎𝑉𝑉𝑉𝑉0  does not exhibit diurnal variations as the observation does (Fig. 8). 450 

  

Figure 8 Similar to Figure 7 but for C-band. The plot of in situ soil moisture and temperature at different 

depths and environmental variable observations in this period can be found in Figures 7a and 7b. 
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Figures 9 and 10 show that the different vegetation structure parameterizations do not affect the 

simulation of 𝜎𝜎𝑝𝑝𝑝𝑝0  at the S- and L-bands during the winter period (small difference of 0.2 dB in Biases and 455 

RMSEs at the S- and L-bands, respectively, in Table 5), and the soil contribution is dominant (Figs. S18 

and S19). The simulated co-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  at the S-band reflects the observed diurnal variations (Fig. 8 

and Fig. S18), while simulated those at the L-band do not (Fig. 13 and Fig. S19). Figure 4 shows that the 

𝜎𝜎𝑉𝑉𝑉𝑉0  at the X-, C-, S- and L-bands are all heavily underestimated (Biases < 0 for VH and RMSEs > 9.0 dB 

in Table 5) during the winter period, especially at the L-band (RMSE of 20.5 dB in Table 5). This should 460 

be due to the deficiency of the currently used AIEM model that does not involve the volume and multiple 

scattering terms, whereas the volume scattering effect does present in the soil due to the presence of ice 

and snow during this period (Figs. 7a and 7b). 

  

Figure 9 Same as Figure 7 but for S-band.   465 
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Figure 10 Same as Figure 7 but for L-band.   

Next, we explore the impact of soil moisture on simulated backscatter using soil moisture at a shallower 

depth (e.g., 1 mm) than the in situ observed soil moisture at 2.5 cm. For this purpose, the soil moisture 

and temperature profiles simulated by STEMMUS were used. Figure 11 shows that using STEMMUS 470 

simulated soil moistures and temperature as the input in the CLAP does not outperform using the in situ 

measured soil moisture and temperature in reproducing the observed 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band, and both lead to 

the heavy overestimation of 𝜎𝜎𝑉𝑉𝑉𝑉0  at the X-band (Biases > 10 dB in Table 5). However, using STEMMUS 

simulated soil moisture and temperature outperforms in reproducing the observed 𝜎𝜎𝑝𝑝𝑝𝑝0  at the C-band (Fig. 

12). Moreover, the observed diurnal variation of 𝜎𝜎𝑝𝑝𝑝𝑝0  at the C-band can be captured by the simulation 475 

(Fig. 12), which is not seen in the simulation results using the in situ soil moisture measured at 2.5 cm. 

This finding also applies to S-band at the HH polarization (Fig. 13), where the difference between 𝜎𝜎𝑉𝑉𝑉𝑉0  

simulated with the STEMMUS simulated soil moisture and temperature and the observation is lower than 

that of 𝜎𝜎𝑉𝑉𝑉𝑉0  simulated with the in situ soil states against the observation (RMSEs of 2.4 dB vs 3.7 dB in 

Table 5). While this improvement is not observed in simulating 𝜎𝜎𝑉𝑉𝑉𝑉0 , where using STEMMUS simulated 480 

soil states overestimates 𝜎𝜎𝑉𝑉𝑉𝑉0 , and the degree of overestimation is larger than that of the underestimation 

using the in situ soil states (Fig. 13, Biases of 4.6 dB vs -2.5 dB in Table 5).  
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Figure 11 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X-band simulated by the CLAP (ATS_AIEM_TVG model) with the use of the in situ 
measured and STEMMUS simulated profile soil moisture and temperature respectively, compared to the 485 
scatterometer observations during the winter period. The yellow shaded area refers to the uncertainty in 
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the observed backscatter data (see Hofste et al. (2021)).

  

Figure 12 Same as Figure 11 but for C-band. 

 490 
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Figure 13 Same as Figure 11 but for S-band. 
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Figure 14 Same as Figure 11 but for L-band. 

Both simulated co-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  at the S-band shows diurnal variations that agree with the 495 

observations (Fig. 13). These analyses imply the different sensing depths of soil moisture through the 

observed backscatter at the different frequencies. Thus, obtaining precise dynamic surface soil (moisture) 

information and further investigating the foregoing sensing depth play a significant role in reproducing 

the observed diurnal microwave signal at high frequencies. Figure 14 shows a small difference in 𝜎𝜎𝑝𝑝𝑝𝑝0  at 

the L-band simulated with the in situ measured and STEMMUS simulated soil moisture and temperature 500 

(e.g., RMSEs of 4.3 dB and 3.1 dB under VV polarization in Table 6). This implies that not only the 

surface soil but also the soil at the deeper depth (e.g., soil temperature penetration depth in this case) 

contributes to the observed L-band signal since its stronger penetration capability than that at the S- and 

C-bands.  

Table 6 Statistics of the comparison of 𝜎𝜎𝑝𝑝𝑝𝑝0  at multi-frequency simulated by the CLAP using the in situ 505 
measured and STEMMUS simulated profile soil moisture and temperature as the input respectively, to the 
ground-based observations during the winter period. Bias and RMSE are in the unit of dB.  

Band Scheme HH   VV   VH   
Bias RMSE Bias RMSE Bias RMSE 
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X In situ 10.9 11 -1.1 1.9 -9.6 9.8 
STEMMUS 13.4 13.5 5.4 5.6 -8.4 8.6 

C In situ -2.9 3.2 -5.2 5.3 -11.9 12.0 
STEMMUS 2.2 2.5 1.6 1.9 -11.0 11.1 

S In situ -3.3 3.7 -2.5 3.0 -15.2 15.3 
STEMMUS 2.0 2.4 4.6 4.8 -15.2 15.3 

L In situ -1.8 2.1 4.1 4.3 -20.5 20.5 
STEMMUS -2.7 2.9 2.9 3.1 -20.5 20.5 

In short, the observed co-polar 𝜎𝜎𝑝𝑝𝑝𝑝0  and its diurnal variations especially at VV polarization during the 

winter period can be reproduced by the CLAP using the process model (i.e., STEMMUS in this case) 

simulated soil moisture and temperature as the input. However, the accuracy of soil moisture at different 510 

depths is important for good simulations of co-polar 𝜎𝜎𝑝𝑝𝑝𝑝0  at multi-frequency. The observed cross-polar 

𝜎𝜎𝑝𝑝𝑝𝑝0  during the winter period cannot be reproduced well (RMSEs > 8 dB in Table 5) by the CLAP, 

especially at the longer wavelength (i.e., RMSEs > 14 dB at the S- and L-bands in Table 5).  

3.4 Simulated emission (𝑻𝑻𝑩𝑩) at multi-frequency during the winter period 

Figure 15 and Figures S20 and S21 show that the variation of the ELBARA-III and AMSR2 observed 𝑇𝑇𝐵𝐵
𝑝𝑝 515 

signals at the L-, C- and X-bands, respectively, can be captured by the CLAP during the winter period. 

The cylinder parameterization outperforms in simulating 𝑇𝑇𝐵𝐵𝑉𝑉 at the X-band and 𝑇𝑇𝐵𝐵𝑉𝑉 at the C-band than the 

disc parameterization (Figs. S20 and S21). Due to the strong penetration capability of the L-band signal 

and the assumed dead dry vegetation during the winter period, the simulated 𝑇𝑇𝐵𝐵
𝑝𝑝 at the L-band does not 

differ for different vegetation parameterizations as shown in Fig. 15. Figure 15 also shows that the model 520 

can capture the observed diurnal variations well, although the large systematic underpredictions of 𝑇𝑇𝐵𝐵
𝑝𝑝 are 

observed in comparison to the ELBARA-III observations (RMSEs of 26.3 K under V polarization and 

48.9 K under H polarization in Table 7). This underestimation might be due to the deep modelled average 

dielectric surface (with the thickness of [h/2, h/2-log(SM1)* 𝐴𝐴], where h refers to the dielectric roughness 

height and SM1 refers to the soil moisture of the first layer) used in the calculation of the effective 525 

dielectric constant of the composite air-soil medium in the ATS model (please refer to section 4.2).   
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Figure 15 𝑇𝑇𝐵𝐵
𝑝𝑝 at the L-band simulated by the CLAP with the disc and cylinder parameterizations 

compared to the ELBARA-III observations during the winter period.  

Table 7 Same as Table 4 but for the comparison of  𝑇𝑇𝐵𝐵
𝑝𝑝 during the winter period. Bias and RMSE are in 530 

the unit of K.  

Band Scheme 
H V 

Bias RMSE Bias RMSE 

X Disc -40.4 43.2 -14.3 8.5 
Cylinder -21.2 18.9 16.4 5.7 

C Disc -23.4 18.2 15.7 1.8 
Cylinder -15.8 11.1 15.8 1.8 

L Disc -51.2 51.3 -24.7 24.7 
Cylinder -48.9 48.9 -26.2 26.3 

3.5 Comparison of estimated effective scattering coefficient (𝝎𝝎) and optical depth (𝝉𝝉) 

Figure 16a shows that during the summer period, the estimated 𝜔𝜔 at each frequency based on the disc 

parameterization does not differ between HH and VV polarizations. The values of simulated 𝜔𝜔 at the C-

band are higher than those at the X- and S-bands, despite all of them being higher than 0.05 (Fig. 16a). In 535 

contrast, the estimated 𝜔𝜔 at the S-, C- and X-bands based on the cylinder parameterization exhibits values 

ranging from 0.02 to 0.04 and varies between different polarizations, in which the values of simulated 

Cylinder_𝜔𝜔 at HH polarization are higher than those at VV polarization (Fig. 16c). It is noted that a 

global constant value of 0.06 was used in the X-band microwave emission of the biosphere model (Wang 
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et al., 2021a), while 0.08 was derived from the disc parameterization and 0.04 for the cylinder 540 

parameterization in our simulation. The estimated 𝜔𝜔 at the L-band does not differ between different 

polarizations, and the disc parameterization produces  mean value of 0.02 of ω, which are higher than 

zero values of 𝜔𝜔 produced by the cylinder parameterization (Figs. 16a and 16c), but lower than 0.05 used 

by the SMAP soil moisture retrieval algorithm for grassland as reported by Zheng et al. (2018b). Figures 

16a and 16c show that the 𝜔𝜔 is suppressed by rainfall events during the period from 01-08-2018 to 03-08-545 

2018 (see Figs. 2a and 2b), and this is because the vegetation temperature assigned from air temperature 

drops and then undergoes stable variations in this period, resulting in reduced vegetation emissivity and 

therefore decreased 𝜔𝜔 estimated by Equation (2a). While the 𝜔𝜔 increases after the rainfall, which might be 

due to the increased soil moisture as reported by Kurum (2013).  

 550 

Figure 16 Comparison of estimated 𝜏𝜏 and 𝑤𝑤 at the multi-frequency during the summer period by the 
CLAP (ATS_AIEM_TVG model) using the disc and cylinder parameterizations respectively.  
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Figure 16b shows that the disc parameterization produces 𝜏𝜏 at S-, C- and X-bands ranging from 0.2 to 1.7 

during the summer period, and values of simulated 𝜏𝜏 − 𝐻𝐻 at these bands are higher than those of the 

corresponding simulated 𝜏𝜏 − 𝑉𝑉. Comparably, the simulated Disc_𝜏𝜏 at the L-band under both polarizations 555 

exhibits a low mean value of 0.1. The range of values of disc parameterization derived 𝜏𝜏 is close to the 

satellite 𝑇𝑇𝐵𝐵
𝑝𝑝-derived 𝜏𝜏 reported by Li et al. (2021), and this is expected as the disc parameterization shows 

good performance in simulating satellite 𝑇𝑇𝐵𝐵
𝑝𝑝 at the X- and C-bands (please refer to section 3.1). In 

contrast, the cylinder parameterization produces a large range of 𝜏𝜏 at multi-frequency and high values 

ranging from 0 at the L-band to 6.0 at the X-band (Figs. 16b and 16d). As the simulated microwave signal 560 

based on cylinder parameterization matches the in situ observations as shown in section 3.1, we conclude 

that the estimated Cylinder_𝜏𝜏 is valid. The values of the simulated Cylinder_𝜏𝜏 at the X-, C- and S-bands 

under VV polarization are higher than those under HH polarization, while the simulated Cylinder_𝜏𝜏 at the 

L-band is polarization independent.  

Figures 17a and 17b show that the disc parameterization produces zero values of 𝜔𝜔 and 𝜏𝜏 at the C-, S- and 565 

L-bands under both polarizations, while high values of 𝜔𝜔 around 0.06 and low values of 𝜏𝜏 around 0.001 at 

the X-band under both polarizations. This indicates that the vegetation during the winter period exhibits 

weak scattering at the X-band but becomes transparent at the C-, S- and L-bands. In contrast, the cylinder 

parameterization produces lower values of 𝜔𝜔 ranging from 0.02 to 0.03, and higher values of 𝜏𝜏 ranging 

from 0.08 to 0.15 at the X-band under both polarizations, and non-zero values of 𝜔𝜔 around 0.004 and 𝜏𝜏 570 

around 0.04 at the C- and S-bands as well (Figs. 17c and 17d). Similar to those based on the disc 

parameterization, the estimated Cylinder_ω and Cylinder_𝜏𝜏 at the L-band also exhibit zero values. 

Figures 17c and 17d show that the cylinder parameterization produces higher values of the simulated 𝜏𝜏 at 

the X-, C- and S-bands under HH polarization than those under VV polarization, and this is reasonable as 

the horizontal orientation of vegetation during the winter period is assumed in this study.  575 
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Figure 17 Same as Figure 16 but for the winter period. 

All these analyses imply that the ω of grassland at multi-frequency depends on the plant status (e.g., live 

with high water content or senescent with low water content) and structure. The grass structure 

determines the polarization-dependent behavior mainly at the high frequencies (i.e., X-, C- and S-bands), 580 

while it does not show significant impacts on differing estimated L-band ω and 𝜏𝜏 at the different 

polarizations. The diurnal cycles of the estimated ω and 𝜏𝜏 (Figs. 16 and 17) are due to the consideration 

of the dynamic vegetation temperature and water content on the diurnal scale in the CLAP modelling, 

which is consistent with those reported by Vermunt et al. (2021) and Humphrey and Frankenberg (2022).   
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4. Discussion 585 

4.1 Sensitivity of microwave 𝝈𝝈𝒑𝒑𝒑𝒑𝟎𝟎  simulation to vegetation orientation during the winter period 

Since the totally horizontal orientation of vegetation (beta angle of 90° in Table 2) is assumed during the 

winter period in this study, it decreases the contribution (e.g., multiple reflections between vegetation and 

soil) to the cross-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0 , and as a result the observed cross-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  at high frequencies 

(X-, C- and S-bands) during this period is underestimated by the CLAP (Figs. 7-14). The beta angle 590 

(Table 2) ranging from 60° to 90° is set in the in situ-based simulation to investigate the impact of 

different distributions of leaf angle on 𝜎𝜎𝑝𝑝𝑝𝑝0  simulation. The results (Figs. S22 and S23) show that the 

different leaf angle orientation does not affect the simulated co-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  at the X- and C-bands, 

while it improves the model performance in the simulation of cross-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0 . The improvement is 

also seen in the simulation of  𝜎𝜎𝑝𝑝𝑝𝑝0  at the S-band (Fig. S24) but not at the L-band (Fig. S25). The heavy 595 

underestimation (Bias of -20.5 dB in Table 5) of cross-polar 𝜎𝜎𝑝𝑝𝑝𝑝0  at the L-band may be due to the volume 

and multiple scattering terms missing in the AIEM model. 

4.2 Improving the simulation of 𝑻𝑻𝑩𝑩
𝒑𝒑  at the L-band during the winter period 

In the default ATS model, there are two critical parameters: soil moisture and the dielectric thickness of 

the boundary condition, with the latter parameter used in the averaging procedure for calculating the 600 

effective dielectric constant of the composite air-soil medium (Zhao et al., 2021). The default 

parameterization that uses soil moisture at 2.5 cm (SM1 in Table 8) and the deep boundary b1 = [h/2, h/2-

log(SM1)* 𝐴𝐴] (Case0 in Table 8 and Fig. 18), leads to a large systematic underprediction of 𝑇𝑇𝐵𝐵
𝑝𝑝 at the L-

band in comparison to the ELBARA-III observations as shown in Fig. 15. To investigate the impact of 

these two parameters and improve the 𝑇𝑇𝐵𝐵
𝑝𝑝 simulation during the soil freeze-thaw period, the extra three 605 

simulation experiments for ten days are carried out. As described in Table 8, the first experiment (Case1) 

uses SM1 the same as Case0 as the input, but assumes a shallow average dielectric surface with a 

thickness of [0, -log(SM1)*𝐴𝐴] implying that the signal variation is more due to the surface soil freeze-

thaw process. The second experiment (Case2) continues to use the b2 condition but with soil moisture at 

the penetration depth (SM_pd) of soil temperature (Lv et al., 2018). This configuration considers both 610 

surface condition and soil condition at the penetration layer. The third experiment (Case3) uses SM_pd 

and a new boundary b3 = [wavelength/10,-log(SM_pd)*wavelength/10]. This configuration considers 

also both soil condition at the penetration layer and the surface condition, but with the latter reflected 

along the theoretical effective penetration depth of soil moisture (i.e., 1/10 of the wavelength as described 

in section 1).  615 
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Table 8 Configurations of ATS simulation experiments. 

Variable Case0 Case1 Case2 Case3 
SM (m3/m3) SM1 SM1 SM_pd SM_pd 

The thickness of the 
average dielectric 

surface (cm) 
b1 = [h/2, h/2-
log(SM1)*s] 

b2 = [0, -
log(SM1)*s] b2 

b3 = [wavelength/10, -log(SM_pd)* 
wavelength /10] 

*where SM1 denotes soil moisture at the first layer, SM_pd denotes soil moisture at the penetration depth 
of soil temperature. h denotes the dielectric roughness height. The definition of h and average dielectric 
surface thickness (b) can be found in Zhao et al. (2021).  

Figure 18 shows that the Case1 can reproduce the observed diurnal variation of 𝑇𝑇𝐵𝐵
𝑝𝑝 signals well but 620 

present a heavy systematic overprediction (RMSEs of 26 K at V polarization and 48 K at H polarization 

in Table S3) of 𝑇𝑇𝐵𝐵
𝑝𝑝, which is opposite to the underprediction by Case0. The values of the observed 𝑇𝑇𝐵𝐵

𝑝𝑝 

seem bounded by the simulation results from Case0 and Case1. A phase delay is observed between the 𝑇𝑇𝐵𝐵
𝑝𝑝 

simulated by both Case0 and Case1 and the observation (Fig. 18). The phase delay is understandable, 

since the ELBARA-III 𝑇𝑇𝐵𝐵
𝑝𝑝 observations reflect the real surface condition, while the used model inputs of 625 

soil moisture and temperature measured at 2.5 cm are the delayed information driven by solar radiation 

and soil heat and water transport processes. Regarding the active case, Case 1 that utilizes the surface 

information can generally reproduce the observed diurnal variations of co-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  (Fig. S26). In 

contrast, Case2 (using soil moisture at the penetration depth and the surface shallow boundary condition) 

captures the magnitude of the observed 𝑇𝑇𝐵𝐵𝑉𝑉 (RMSE of 5 K in Table S3) and 𝜎𝜎𝑉𝑉𝑉𝑉0  (RMSE of 0.9 dB in 630 

Table S4), Case 3 (using soil moisture at the penetration depth and wavelength information) mimics the 

magnitude of the observed 𝑇𝑇𝐵𝐵𝑉𝑉 (RMSE of 5 K in Table S3) and 𝜎𝜎𝑉𝑉𝑉𝑉0  (RMSE of 3.3 dB in Table S4), 

although the diurnal changes simulated by both cases are flat. These comparison results indicate that the 

passive H-polarization signal reflects the surface condition and the passive V-polarization signal reflects 

more about the soil states at the penetration depth, which is the other way around in the active case. The 635 

parameterization as such is sufficient to model the contribution of soil at the penetration depth, while the 

surface layer imposing its impact through the freeze-thaw condition needs to be investigated further with 

the aid of accurate information of surface soil states, which is difficult to obtain (either through in situ or 

the process model).  
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 640 

Figure 18 Comparison of  𝑇𝑇𝐵𝐵
𝑝𝑝 at the L-band estimated by four experimental cases to the ELBARA-III 

observations during the winter period. Case0 refers to the parameterization using soil moisture at 2.5 cm 

(SM1) and the average dielectric surface with thickness b1 = [h/2, h/2-log(SM1)* 𝐴𝐴] in the ATS model. 

Case1 refers to the parameterization using SM1 the same as Case0 and the average dielectric surface 

with thickness b2 = [0, -log(SM1)*𝐴𝐴] that represents the shallow surface condition. Case2 refers to the 645 

parameterization using the b2 condition and soil moisture at the penetration depth (SM_pd) of soil 

temperature (Lv et al., 2018). Case3 refers to the parameterization using SM_pd and a new boundary of 

b3 = [wavelength/10, -log(SM_pd)* wavelength/10] that considers the wavelength information and the 

surface condition along the theoretical effective penetration depth of soil moisture (i.e., 1/10 of the 

wavelength as described in section 1). 650 

On the other hand, the abrupt jump of the observed co-polarization 𝜎𝜎𝑝𝑝𝑝𝑝0  (on 07/01/2018 in Figs. 7-10) and 

𝑇𝑇𝐵𝐵
𝑝𝑝 (Fig. 18) due to the snowfall event (please refer to the high albedo value in Fig. 7a) cannot be captured 

by the current setup, as no snow information is involved in the modelling, for which future investigation 

should be conducted. The similar jumps of the observed 𝜎𝜎𝑝𝑝𝑝𝑝0  and 𝑇𝑇𝐵𝐵
𝑝𝑝 (see Figs. 2-6) are also observed due 

to the rainfall event. Figure 2 shows that the effect of a light rainfall (< 2.0 mm/hour) on the observed 655 

signal is pronounced at the X-band at full polarizations, and at the C- and S-bands at cross-polarization 
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(see Figs. 3 and 4). The impact of heavy rainfall (> 6.0 mm/hour, Fig. 2a) on the observed signal is 

pronounced at the X- and C-bands at full polarizations, at the S-band at cross-polarization, and at the L-

band at HH- and cross-polarizations (see Figs. 2-5). This finding is consistent with those reported by 

Vermunt et al. (2021) and Khabbazan et al. (2022), in which the radar backscatter of corn fields at the L-660 

band is found exhibiting diurnal variations partially due to the intercepted water. As there is also no in 

situ measured interception water in this study, the current setup cannot capture the foregoing 

phenomenon. It is, however, to note that the anomaly of the systematic difference between the 

observation and the current CLAP simulation results could be utilized to detect snow and rainfall events. 

Additionally, a future process-based investigation can be conducted based on the modelled interception 665 

water with the land surface model. 

4.3 Normalization of estimated optical depth (𝝉𝝉) 

Different 𝜏𝜏 can be obtained by using different frequency microwave signals and different model 

algorithms, which may become inconvenient for comparison. To link 𝜏𝜏 from different frequencies, we 

proposed to use wavenumber 𝑘𝑘0 ( 2𝜋𝜋
𝑤𝑤𝑤𝑤𝑣𝑣𝑒𝑒𝑤𝑤𝑒𝑒𝑤𝑤𝑤𝑤ℎ

) to normalize the estimated 𝜏𝜏. The results shown in Fig. 19 670 

indicate that the normalized 𝜏𝜏 (𝜏𝜏/𝑘𝑘0) does not converge to one value and still depends on frequency, 

implying that 𝜏𝜏 is indeed frequency-dependent, and the retrieved 𝜏𝜏 at different frequencies may reflect 

either different vegetation layers or different properties of vegetation . As such, 𝜏𝜏 at different frequencies 

cannot be directly intercompared and 𝜏𝜏 for each frequency is suggested to be applied in the retrieval of 

soil and vegetation parameters . The disc-based 𝜏𝜏/𝑘𝑘0 for each frequency shows a decreasing trend (Fig. 675 

19), which is due to the number of discs that is related to LAI (see Table 2 and Figure 2a). While the 

cylinder-based 𝜏𝜏/𝑘𝑘0 for each frequency does not show a trend (Fig. 19) as the number of cylinders is set 

constant in this case (see Table 2), which is noted being constrained indirectly via the measured fresh 

biomass (Hofste et al., 2022). Figure 19 also shows that the diurnal shape of 𝜏𝜏 is determined by the shape 

of the estimated VWC regardless of frequency. This finding further demonstrates the sensitivity of the 680 

microwave derived 𝜏𝜏 to both plant biomass and water content, and supports the rationality of current 

research using radar backscatter to detect dynamic VWC (Steele-Dunne et al., 2017), while the results 

shown in our study implies the need to first disentangle the impact of vegetation temperature for high 

frequency signals, since the diurnal variation of the observed signals at high frequencies is found more 

due to vegetation temperature changing (see section 3.1 and Fig. S27) that is reflected on estimated 𝜔𝜔 (see 685 

Fig. 16). As such, the retrieved 𝜏𝜏 at different frequencies (e.g., X-band and L-band) cannot be simply 

combined for constructing the long-term global microwave-based vegetation product. Instead, the 

radiative transfer modelling approach needs to be considered for combination, but this is beyond the 

scope of this study. While as leaf water potential, which measures plant water status, is the driving force 
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behind VWC (Konings et al., 2019). The difference in 𝜏𝜏 at multi-frequency even after the normalization 690 

might be due to the difference in leaf water potential, which is sensed differently by varied frequency 

signals, but this aspect needs to be further investigated by, either combining CLAP with the process 

model or using the measured leaf water potential data, which is unfortunately not available in this study. 

Using microwave signals to probe leaf water potential can help understand plant water use regulation and 

the associated drought vulnerability on the global scale. 695 

  

Figure 19 Wavenumber (𝑘𝑘0) normalized optical depth (𝜏𝜏) estimated by the disc and cylinder 

parameterizations respectively, during the summer period. The dashed line denotes the trend.  

4.4 Potential application of CLAP  

Although model performance from several aspects as discussed in sections 4.1 and 4.2 needs to be 700 

improved and the model validity for other vegetated lands needs to be further demonstrated, the CLAP 

has been proven in this study as a key tool to advance our knowledge in understanding the microwave 

scattering-emission mechanism of vegetated lands by simulating simultaneous active and passive 

microwave observations at the Maqu observatory. It is noted that the essential CLAP inputs such as 

moisture content and temperature of soil and vegetation as well as vegetation geometry (e.g., size, shape, 705 

orientation and distributions of elements) are not always available in situ. One of the innovative 

approaches to circumvent this limitation is to include the integrated process model STEMMUS-SCOPE 

(Wang et al., 2021b) in the CLAP, in which the SCOPE (Van Der Tol et al., 2009) modelling canopy 

https://doi.org/10.5194/hess-2022-333
Preprint. Discussion started: 21 October 2022
c© Author(s) 2022. CC BY 4.0 License.



39 
 

radiative and photochemical processes provides vegetation information and STEMMUS model (Zeng et 

al., 2011a; Yu et al., 2018; Yu, 2022) provides information of profile soil moisture and temperature. The 710 

corresponding investigations carried out with this new integrated framework are expected to provide 

insights for resolving the challenge of remote sensing of vegetation: to be able to describe and separate 

the contributions of the different components in the observed total signature of the vegetated lands, to 

further root satellite observations into the actual surface conditions for ecological and hydrological 

applications. The role of leaf water potential described in section 4.3 can also be investigated by using 715 

this framework. 

Consequently, three main applications of CLAP are feasible. The first application would be to simulate 

observations from current and future multi-frequency space-borne microwave systems (e.g. ROSE-L and 

CIMR), derive the added value (e.g., a physically consistent dynamic 𝜏𝜏 and 𝜔𝜔 dataset) and test the 

operational soil moisture and vegetation parameter retrieval algorithms. The second application would be 720 

to include CLAP as an observation operator in the data assimilation framework, which is useful for 

estimating vegetation and soil  properties and land surface fluxes with land surface models in a physically 

consistent manner. The third application is to utilize CLAP to conduct sensitivity studies to explore 

physical meaningful parameter space for the use of machine learning in soil moisture and vegetation 

parameter estimation (Stamenkovic et al., 2017; Gao et al., 2022; Chaudhary et al., 2022).  725 

5. Conclusions 

In this study, we describe a Community Land Active Passive Microwave Radiative Transfer Modelling 

Platform (CLAP) that can be used for integrated modelling, interpretation and application of multi-

frequency emission and backscattering signals of land surfaces. Specifically, the CLAP is backboned by 

an air-to-soil transition model (ATS) (accounting for surface dielectric roughness) integrated with the 730 

Advanced Integral Equation Model (AIEM) for modelling soil surface scattering, and the Tor Vergata 

model for modelling vegetation scattering and the interaction between vegetation and soil parts. In 

comparison to the in situ and satellite microwave observations at the Maqu site on the Eastern Tibetan 

Plateau, the CLAP has been demonstrated to be capable to reproduce the observed multi-frequency 

microwave backscatter 𝜎𝜎𝑝𝑝𝑝𝑝0  and emission 𝑇𝑇𝐵𝐵
𝑝𝑝 signals of grassland during the summer period well, and the 735 

CLAP using the cylinder parameterization of vegetation representation can mimic multi-frequency 𝜎𝜎𝑝𝑝𝑝𝑝0  

better than the disc parameterization does. Regarding the diurnal variation of the observed signal at the 

high frequencies (i.e., X- and C- bands), the simulation comparison results indicate that dynamic 

vegetation temperature partially accounts for, while the dynamic VWC partially results in the diurnal 

variation of the observed signal at the low frequencies (i.e., S- and L-bands). Accordingly, the CLAP-740 
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derived effective scattering coefficients ω and vegetation optical depth (VOD or τ) exhibit diurnal 

variations, which are due to the impact of the dynamic vegetation temperature and water content on the 

vegetation dielectric constant.  

The CLAP using the cylinder parameterization and either the in situ measurements or the process model 

outputs can mimic the observed co-polarization 𝜎𝜎0 of grassland and its diurnal variations especially at 745 

VV polarization during the winter period, in which the accuracy of soil moisture at the penetration depth 

influences the good simulation of co-polarization 𝜎𝜎0 and 𝑇𝑇𝐵𝐵
𝑝𝑝, and the vegetation orientation information 

plays an important role in obtaining good simulations of cross-polarization 𝜎𝜎0 at high frequencies (i.e., X- 

and C-bands). However, the current platform cannot mimic the observed cross-polarization 𝜎𝜎0 at the L-

band during the winter period, which might be due to the deficiency of the currently used AIEM model 750 

that does not involve volume and multiple scattering terms.  

Future work may apply CLAP modelling for agricultural plants, for instance, the maize field in the Reusel 

site in the Netherlands (Vermunt et al., 2021), where the satellite microwave observations (e.g., Sentinel-1 

C-band backscatter, SAOCOM X-band and L-band backscatters, and AMSR2 and SMAP 𝑇𝑇𝐵𝐵
𝑝𝑝) and the 

ground-based active observations (X, C- and L-bands, per communication with Susan C. Steele-Dunne), 755 

and the in situ measured vegetation parameters and soil moisture and temperature profiles are available 

for validation. On the other hand, CLAP will be extended as a full-spectrum observation operator by 

adding SCOPE modelling canopy radiative and photochemical processes and STEMMUS modelling soil 

water, heat and vapor transfer processes modeled by model, which can be used to synergistically utilize 

available and future satellite resources for monitoring (vegetation and soil) variables of interest at the 760 

global scale. 
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