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Abstract. An airborne gamma-ray remote sensing technique provides a strong potential to estimate reliable snow water 10 

equivalent (SWE) in forested environments where typical remote sensing techniques have large uncertainties. This study 

explores the utility of assimilating the temporally (up to four measurements during a winter period) and spatially sparse 

airborne gamma SWE observations into a land surface model to improve SWE estimates in forested areas in the northeastern 

U.S. Here, we demonstrate that the airborne gamma SWE observations add value to the SWE estimates from the Noah land 

surface model with multiple parameterization options (Noah-MP) via assimilation despite the limited number of the 15 

measurements. Improvements are witnessed during the snow accumulation period while reduced skills are seen during the 

snow melting period. The efficacy of the gamma data is greater for areas with lower vegetation cover fraction and topographic 

heterogeneity ranges, and it is still effective in reducing the SWE estimation errors for areas with higher topographic 

heterogeneity. The gamma SWE data assimilation (DA) also shows a potential of extending the impact of flight line-based 

measurements to adjacent areas without observations by employing a localization approach. The localized DA reduces the 20 

modeled SWE estimation errors for adjacent grid cells up to 32-km distances from the flight lines. The enhanced performance 

of the gamma SWE DA is evident when the results are compared to those from assimilating the existing satellite-based SWE 

retrievals from the Advanced Microwave Scanning Radiometer 2 (AMSR2) for the same locations and time periods. Although 

there is still room for improvement, particularly for the melting period, this study shows that the gamma SWE DA is a 

promising method to improve the SWE estimates in forested areas. 25 
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1 Introduction 

Seasonal snowpack is an important freshwater resource in snow-dominated regions, and thus, accurate estimation of snow 

water equivalent (SWE), has been a pressing issue for managing water supply and forecasting snowmelt-driven flood events 30 

in a changing climate (Barnett et al., 2005; Cho et al., 2021; Sturm et al., 2017; Musselman et al., 2021). Due to its large 

variability, spatiotemporally continuous estimates of SWE cannot be generated by the existing in situ measurement network 

alone (e.g., Dozier, 2011). Large-scale distributions of SWE can be obtained from satellite remote sensing techniques such as 

passive microwave sensors (Derksen et al., 2005; Vuyovich et al. 2014); however, these are subject to errors resulting from 

retrieval algorithm limitations and uncertainties in certain conditions (Kang et al., 2014). Spatiotemporally continuous snow 35 

estimates at large scales can be generated by land surface modeling, which however suffer from large uncertainties associated 

with model physics, parameterizations, and meteorological boundary conditions (Broxton et al., 2016b; Cho et al., 2022; Kim 

et al., 2021; Raleigh et al., 2015; Yoon et al., 2019). Given the limitations of each method, data assimilation (DA) has been 

considered as a promising alternative to improve the SWE estimation skill as it systematically merges remote sensing 

observations with land surface model (LSM) predictions (e.g., Durand et al., 2009; Forman et al., 2012; Kwon et al., 2019; Liu 40 

et al., 2013; Zhang et al., 2014). 

Given the sensitivity to snow properties and long record of observations, passive microwave brightness temperature (TB) 

observations have been used to retrieve SWE or snow depth (e.g., Change et al., 1990; Derksen et al., 2010; Foster et al., 2005; 

Kelly et al., 2003; Kelly, 2009), and used within DA frameworks, for the assimilation of TB (e.g.,  Durand and Margulis, 2006, 

2007; Durand et al., 2009; Kwon et al., 2015, 2017; Larue et al., 2018a, 2018b) and assimilation of TB-based retrievals of SWE 45 

or snow depth (e.g., Dziubanski and Franz, 2016; Kumar et al., 2014). However, as mentioned above, TB-based approaches 

are considered suboptimal for the following surface conditions: (1) deep snow, (2) wet snow, and (3) dense forest. Previous 

studies (e.g., Derksen et al., 2010; Kwon et al., 2019; Lemmetyinen et al., 2015) found that the TB signal, especially at high 

frequency (e.g., 36.5 GHz), saturates in deep snowpacks (i.e., when SWE is greater than 100 to 200 mm), hampers microwave 

TB-based SWE estimations. In the presence of wet snow, the TB sensitivity to SWE decreases because liquid water of snowpack 50 

dominates the TB signal due to the high emissivity of liquid water (Clifford, 2010; Walker and Goodison, 1993). Thus, the 

quality of the TB-based SWE estimates is degraded under wet snow conditions (Kwon et al., 2019). The TB sensitivity to SWE 

also diminishes in forested areas (Roy et al., 2012) because the forest canopy blocks the microwave TB emission from the 

snowpack and emits its own TB signal (Foster et al., 1991), which adds considerable uncertainties in the TB-based SWE 

estimates in forested areas (e.g., Kwon et al., 2016, Vuyovich et al. 2014). Vuyovich et al. (2014) showed specifically in the 55 

New England area that passive microwave retrievals underestimate SWE, though algorithms that account for forest fraction 

show improved performance. Although many enhancements have been proposed for the use of TB observations in estimating 

SWE, there are still significant limitations to overcome. 

Recently, airborne remote sensing approaches such as Light detection and ranging (LiDAR) that have potential to overcome 

the existing challenges have been used within DA schemes to improve snow depth or SWE (e.g., Hedrick et al., 2018; Smyth 60 
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et al., 2019; 2020). Hedrick et al. (2018) focused on enhancing snow depth estimations over the Tuolumne River Basin in 

California by directly inserting the NASA Airborne Snow Observatory (ASO) airborne LiDAR snow data into the iSnobal 

model (Mark et al., 1999). They found that agreement between the LiDAR snow depth and updated modeled snow depth was 

improved as compared to original modeled snow depth. Smyth et al. (2020) attempted to assimilate the ASO LiDAR snow 65 

depth observations into the Flexible Snow Model to improve snow density and SWE estimations. They showed that DA 

reduced snow density bias by over 40% and SWE bias by over 70% across eight climate zones in the western U.S. and in both 

wet and dry years. However, the impacts of known limitations such as forest cover and wet snow (in melting period) within a 

DA framework have not been widely examined, which were emphasized to be conducted in future research. Furthermore, most 

previous studies have mainly focused on the western U.S. environments (e.g. mountainous regions) with limited investigations 70 

in other regions such as temperate forest environments over northeastern U.S. 

As a historically well-established remote sensing technique, the airborne gamma radiation technique provides an opportunity 

to estimate reliable SWE, because the gamma approach uses the attenuation of the terrestrial gamma-ray emission by water in 

the snowpack (any phase) with minimal effects by wet snow and dense forest (Carroll, 2001; Carroll and Vose, 1984; Goodison 

et al., 1984). Since the early 1980s, airborne gamma radiation snow surveys operated by the National Oceanic and Atmospheric 75 

Administration's (NOAA) Office of Water Prediction (OWP; formerly by the National Operational Hydrologic Remote 

Sensing Center [NOHRSC]) have provided SWE observations to regional NOAA National Weather Service (NWS) River 

Forecast Centers (RFCs) and other agencies across the United States and southern Canada to support operational flood 

forecasting system and water supply outlooks (Carroll, 2001; Peck et al., 1980). Recently, Cho et al. (2020b) found that the 

long-term gamma SWE observations have a remarkable agreement with ground-based gridded SWE products particularly in 80 

forest regions (R-value = 0.73 and 0.72 and Bias = 0.0 and -1.3 cm for mixed forest and deciduous forest, respectively), 

implying that the gamma-based SWE observations have the potential to be used in a DA framework to improve modeled SWE 

estimates. While the airborne gamma SWE products along with in-situ snow depth and SWE and satellite-based snow cover 

areas are currently assimilated into the NWS SNOw Data Assimilation System (SNODAS) to provide the near-real-time, high 

spatial resolution (1 km2 gridded) SWE information (Barrett, 2003), how much the gamma radiation SWE retrievals help 85 

improve the modeled SWE estimates is not well quantified particularly in a forested region.  

The objective of this study is to evaluate the potential of the airborne gamma SWE retrievals within a DA framework to 

enhance SWE estimates in a temperate forest environment in the northeastern U.S. More specifically, we aim to answer three 

research questions: (1) How much is the modeled SWE improved by assimilating the airborne gamma SWE into a model? (2) 

Do land surface characteristics such as forest density, slope, and elevation affect the assimilation performance? (3) Can the 90 

spatial sparseness of the gamma SWE observations be overcome by employing the localized DA approach? In this study, the 

Noah land surface model with multi-parameterization options (Noah-MP) is used to assimilate the long-term airborne gamma 

radiation SWE observations with the ensemble Kalman filter (EnKF) scheme within the NASA Land Information System 

(LIS). This paper is organized as follows. Section 2 provides the study area with general land cover characteristics. Section 3 

describes the datasets including the airborne gamma radiation survey, reference SWE data, tree cover fraction, and topographic 95 
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feature variables. The description of the Noah-MP model with assimilation scheme is included in the section 4. Section 5 

presents evaluation results of DA SWE performances with discussion about the similarities, differences, and new findings in 

the results with respect to previous studies. Conclusion and future perspectives are drawn in section 6. 

2 Study Area 100 

The study area comprises parts of the northeastern United States, including New Hampshire and Maine with heavily forested 

regions which remain a challenging region in snow remote sensing and modeling communities. The dominant seasonal snow 

class in this region is montane forest (Figure 1a; Sturm & Liston, 2021). Land cover types are mainly deciduous broadleaf 

forest and mixed forest. Fractional tree cover over the study area ranges from 70 to 100% based on the vegetation continuous 

field (VCF) map from the NASA Making Earth System Data Records for Use in Research Environments (Hansen & Song, 105 

2018; Figure 1b). The NOAA OWP airborne gamma snow surveys occur almost every year over the designated flight lines 

(yellow lines in Figure 1b).  

 

 

Figure 1. (a) Sturm and Liston’s new seasonal snow classification (Sturm and Liston, 2021), and (b) Vegetation Continuous Field 
maps of the study area over the northeastern United States with the NOAA airborne gamma flight lines 

 



5 

 

3 Data 110 

3.1 NOAA airborne gamma snow survey  

The operational airborne gamma radiation snow and soil moisture survey operated by the NOAA’s OWP has been conducted 

to observe near real-time areal SWE (Carroll, 2001) throughout the United States and Canada provinces since 1979. The 

gamma SWE observations have been used by the NWS Hydrologic Services Program for spring flood forecasts and water 

supply outlook. The key principle of the gamma SWE technique is the attenuation of the natural gamma-ray signal due to the 115 

snowpack (Carroll, 2001; Peck et al., 1980). The gamma SWE values are estimated using the difference in the rates of gamma 

radioisotopes (40K0, 208Tl0, and gross count, GC0) between over bare  and snow-covered land surface (Cho et al., 2020a). The 

gamma-ray signal for designated flight lines are measured in the fall prior to freezing onset and then revisited in the winter. A 

gamma radiation detector equipped on a low-flying aircraft observes the gamma-ray particles. This detector measures 

terrestrial gamma radiation naturally emitted from trace elements of the three radioisotopes in the upper 20 cm of soil. The 120 

operational approach assumes the gamma rates over bare ground from the fall survey remain constant during the winter 

surveys. A typical gamma flight footprint covers approximately 5 km2 (a 300 m wide and 16 km long). The final gamma SWE 

value is generated as an area-mean value for each flight path. The airborne gamma SWE values are estimated using the 

equations below: 

𝑆𝑊𝐸( 𝐾40 ) =
1

𝐴
⋅ [𝑙𝑛 (

40𝐾𝑏

40𝐾𝑠
) − 𝑙𝑛 (

100+1.11⋅𝑆𝑀(40𝐾𝑠)

100+1.11⋅𝑆𝑀(40𝐾𝑏)
)]                                                     (1) 125 

𝑆𝑊𝐸( 𝑇𝑙208 ) =
1

𝐴
⋅ [𝑙𝑛 (

208𝑇𝑙𝑏

208𝑇𝑙𝑠
) − 𝑙𝑛 (

100+1.11⋅𝑆𝑀(208𝑇𝑙𝑠)

100+1.11⋅𝑆𝑀(208𝑇𝑙𝑏)
)]                                              (2) 

𝑆𝑊𝐸(𝐺𝐶) =
1

𝐴
⋅ [𝑙𝑛 (

𝐺𝐶𝑏

𝐺𝐶𝑠
) − 𝑙𝑛 (

100+1.11⋅𝑆𝑀(𝐺𝐶𝑠)

100+1.11⋅𝑆𝑀(𝐺𝐶𝑏)
)]                                                          (3) 

where 40Kb, 208Tlb, and GCb and 40Ks, 208Tls, and GCs are uncollided gamma count rates in the top 20 cm of soil over bare and 

snow-covered grounds, respectively. 𝑆𝑀(40𝐾𝑏), 𝑆𝑀(208𝑇𝑙𝑏), and 𝑆𝑀(𝐺𝐶𝑏) and 𝑆𝑀(40𝐾𝑠), 𝑆𝑀(208𝑇𝑙𝑠), and 𝑆𝑀(𝐺𝐶𝑠) 

are the corresponding soil moisture values by weight (%). The airborne gamma SWE (𝑆𝑊𝐸𝑔𝑎𝑚𝑚𝑎; g cm–2) is a weighted value 130 

by multiplying the three independent SWE estimates by weighting coefficients, 0.346, 0.518, and 0.136, and summing the 

calculated three values as below (Jones and Carroll, 1983; Carroll, 2001).  

𝑆𝑊𝐸𝑔𝑎𝑚𝑚𝑎 =  0.346 ∙ 𝑆𝑊𝐸( 𝐾40 ) + 0.518 ∙ 𝑆𝑊𝐸( 𝑇𝑙208 ) + 0.136 ∙ 𝑆𝑊𝐸(𝐺𝐶)                               (4) 

The final SWE value is reported in the Standard Hydrometeorological Exchange Format (SHEF) product through the NOHRSC 

website (https://www.nohrsc.noaa.gov/snowsurvey/) (Carroll, 2001). In this study for dense forest environments, 1,508 135 
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airborne gamma SWE observations covering 79 flight lines flown over densely forested environments in the northeastern 

United States are used from January 1985 to May 2017. 

3.2 UA SWE 

The University of Arizona (UA) SWE is the ground observation-based 4-km gridded SWE product developed by consistently 

assimilating the snow telemetry (SNOTEL) SWE and NWS Cooperative Observer Program (COOP) snow depth 140 

measurements (which was first converted to SWE using a newly developed snow density parameterization) with the Parameter-

elevation Regressions on Independent Slopes Model (PRISM) temperature and precipitation data over the continental United 

States (Broxton et al., 2016a; Dawson et al., 2017; Zeng et al., 2018). In this study, the UA SWE is used as reference data to 

evaluate and compare the open-loop and assimilation results from the Noah-MP simulations. The accuracy and robustness of 

the UA SWE product have been proven by examinations of point‐to‐point and pixel‐to‐pixel interpolations (Broxton et al., 145 

2016a, b), and evaluations against independent airborne snow observatory (ASO) LiDAR-based SWE and gamma radiation 

SWE measurements (Dawson et al., 2018; Cho et al., 2020b). Cho et al. (2020b) demonstrated that the UA SWE product 

strongly agreed with the airborne gamma SWE regardless of land cover type and snow classification over the continental U.S. 

This product has been used as a reference SWE for multiple purposes such as quantifying uncertainties in land surface modeled 

SWE (Kim et al., 2020; Zhang et al., 2022); characterizing extreme events (Welty and Zeng, 2021), and estimating extreme 150 

values for infrastructure design (Cho and Jacobs, 2020). The daily UA SWE product (version 1) from October 1984 to 

December 2017 is used in this study, which is publicly available from the National Snow and Ice Data Center website 

(https://nsidc.org/data/nsidc-0719).  

3.3 AMSR2 Passive Microwave SWE 

For comparison purposes, the existing satellite-based SWE retrievals from the Advanced Microwave Scanning Radiometer 2 155 

(AMSR2) were also assimilated in this study. AMSR2 passive microwave sensor is the follow-on instrument to the Advanced 

Microwave Scanning Radiometer for Earth Observing System on board Aqua satellite (AMSR-E; Imaoka et al., 2010). 

AMSR2 on board the Global Change Observation Mission - Water  (GCOM-W1) satellite has measured daily scans at 1:30 

a.m./p.m. local time at 1–2 days revisit frequency since May 2012. AMSR2 SWE product is calculated by using snow depth 

estimated from an empirical relationship between snow depth and brightness temperatures observations at 19.7 and 36.5 GHz 160 

along with higher and lower frequencies and snow density values for each snow class from the Sturm's snow classification 

system (Kelly, 2009; Sturm et al., 2010). The Level 3 AMSR2 SWE products with the 10 km spatial grid were obtained from 
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the JAXA GCOM-W1 Data providing service (http://gcom-w1.jaxa.jp). In this study, the AMSR2 data at descending overpass 

(01:30 a.m.) was used only to minimize the wet snow effect. 

3.4 Tree cover fraction and topographic features 165 

In this study, we used tree cover fraction (TCF) and topographic feature data sets to compare DA performance by the degrees 

of them. The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Vegetation 

Continuous Fields (VCF5KYR; Version 1) provides annual global fractional vegetation cover maps with three layers including 

percent tree cover, percent bare ground, and percent non-tree vegetation at 0.05 degree spatial resolution from 1982 to 2016 

(Hansen and Song, 2018). Among them, the percent tree cover was used. To account for the interannual variations in the 170 

fractional tree cover, annual TCF values were obtained for each gamma line. The elevation data (0.0083-degree grid) used in 

this study were an aggregated map using the Shuttle Radar Topography Mission (SRTM) 90 m resolution elevation data (Farr 

et al., 2007). The slope and elevation range maps with the same spatial grid were obtained using the “raster” R-package 

(“terrain” function in this package; Wilson et al., 2007). The elevation range, referred to as “topographic heterogeneity” in this 

manuscript, was calculated as the difference between the minimum and maximum elevation value among a given grid and its 175 

surrounding eight grids (total nine grids). The three topographic features were computed by areal-weighted average for each 

gamma flight footprint.  

4. Model and Methods 

4.1 Noah-MP 

Noah-MP (v3.6; Niu et al., 2011; Yang et al., 2011) was employed to simulate snow variables such as SWE and snow depth. 180 

Noah-MP was developed based on the original Noah LSM (Ek et al., 2003) with improved representations of biophysical and 

hydrological processes. A grid cell in Noah-MP consists of one vegetation canopy layer, up to three layers (depending on the 

whole snow depth) of snowpack, four soil layers (with thicknesses of 0.1 m, 0.3 m, 0.6 m, and 1.0 m from top to bottom), and 

an unconfined aquifer layer. Regarding snow processes, intercepted snow exists in Noah-MP as solid and liquid phases on the 

vegetation canopy, and melting/refreezing of intercepted snow, dew/evaporation, and frost/sublimation on the vegetation 185 

canopy are explicitly represented in the model. Snow depth and SWE are simulated by considering snow layer compaction by 

the weight of the overlying snow layers, snow metamorphisms (destructive and melt), and snowmelt-refreeze processes. 

Physical parameterization scheme options used in the current study are listed below: (1) dynamic vegetation for the vegetation 

option; (2) Noah-type soil moisture factor for stomatal resistance (Chen and Dudhia, 2001); (3) Ball-Berry canopy stomatal 

resistance scheme (Ball et al., 1987); (4) TOPMODEL‐based runoff scheme; (5) simple groundwater scheme (SIMGM; Niu 190 

et al., 2007); (6) general Monin‐Obukhov similarity theory (M-O; Brutsaert, 1982) for surface layer drag coefficient; (7) NY06 

scheme (Niu and Yang, 2006) for supercooled liquid water (or ice fraction) in frozen soil; (8) NY06 scheme (Niu and Yang, 

2006) for frozen soil permeability; (9) modified two-stream radiation transfer scheme (Yang and Friedl, 2003, Niu and Yang, 

http://gcom-w1.jaxa.jp/
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2004); (10) Biosphere-Atmosphere Transfer Scheme (BATS) for the snow albedo (Yang and Dickinson, 1996); (11) Jordan91 

scheme (Jordan, 1991) for partitioning precipitation into rainfall and snowfall; (12) original Noah scheme for lower boundary 195 

condition of soil temperature; and (13) semi-implicit snow and soil temperature time scheme. An ensemble of model initial 

conditions was constructed through a two-step spin-up procedure. First, a single-member model simulation was run for 40 

years, from 1 January 1980 to 1 January 2020, driven by NASA Modern-Era Retrospective analysis for Research and 

Applications, version 2 (MERRA-2; Bosilovich et al., 2015) forcing. Then, using a restart file generated in the first step, an 

additional 3-year spin-up, from 1 January 1981 to 1 March 1984, was conducted using 20 ensemble members to generate 200 

model uncertainty metrics for the DA. The open-loop (OL; without assimilation) and DA experiments were run from 1 March 

1984 to 1 October 2017 using the 20-member ensemble initial conditions. A model simulation time-step of 15 minutes was 

used, and daily mean outputs were evaluated.  

4.2 Assimilation Scheme 

Data assimilation experiments were conducted within the NASA LIS (Kumar et al., 2006; Peters-Lidard et al., 2007; Kumar 205 

et al., 2008). The ensemble Kalman filter (EnKF) scheme was applied (Reichle et al., 2002) to assimilate airborne gamma 

radiation-based SWE retrievals into Noah-MP. In the EnKF scheme, model uncertainty is implicitly represented by the 

ensemble spread and an ensemble size of 20 was used in this study. The ensemble spread was generated by perturbing 

meteorological forcing fields and prognostic model state variables with the assumption of a Gaussian distribution. Perturbation 

parameters applied during the OL and DA runs are presented in Table 1, which are suggested by Kwon et al. (2021) based on 210 

Forman et al. (2012), Kumar et al. (2009, 2014, 2016), and Reichle et al. (2008). When observations (i.e., airborne gamma 

SWE) are available, EnKF updates forecasted model state variables using the following equation: 

𝑀𝑖
+ = 𝑀𝑖

− + 𝐾(𝑂𝑏𝑠 − 𝐻𝑀𝑖
−)                                                                            (5) 

where 𝑀𝑖
+ is the updated (after assimilation) model states (i.e., SWE); 𝑀𝑖

− is the forecasted (before assimilation) model states 

(i.e., SWE); Obs is the gamma SWE retrievals; H is the observation operator (H = 1 in this study); i denotes the ensemble 215 

member; and K is the Kalman gain given by: 

 𝐾 = 𝐶𝑜𝑣(𝑀𝑖
−, 𝐻𝑀𝑖

−){𝐶𝑜𝑣(𝐻𝑀𝑖
−, 𝐻𝑀𝑖

−) + 𝑅}−1                                                              (6) 

where 𝐶𝑜𝑣(𝑀𝑖
−, 𝐻𝑀𝑖

−) = 𝐶𝑜𝑣(𝐻𝑀𝑖
−, 𝐻𝑀𝑖

−) is the covariance of the model forecasted SWE, and R is the covariance of the 

observation error. The gamma SWE retrieval error standard deviation of 23 mm was assumed based on realistic error values 

from previous studies such as Carroll and Vose (1984). Note that assimilation of gamma SWE updates only modeled SWE 220 

and the amount of the SWE update is added to ice content of the bottom snow layer. Then, snow layer variables such as 
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thickness, snow ice and liquid water content, and SWE of each snow layer are adjusted using the same methods as used in the 225 

Noah-MP’s snow layer compaction, combination, and subdivision procedures. 

Table 1. Perturbation parameters applied to model prognostic state variables and atmospheric forcing fields during the OL and DA runs.  

Variable Perturbation 
Types 

Std dev AR(1) Cross correlations 

Model prognostic state variables    SWE SD  

      SWE M 0.01 3 hr – 0.9  

      Snow depth (SD) M 0.02 3 hr 0.9 –  

Atmospheric forcing fields    SW LW P 

Shortwave radiation (SW) M 0.3 1 day – -0.5 -0.8 

Longwave radiation (LW) A 50 W m-2 1 day -0.5 – 0.5 

Precipitation (P) M 0.5 1 day -0.8 0.5 – 

       M: multiplicative; A: additive; AR(1): first-order autoregressive temporal correlation. 

4.3 DA localization  

Due to its sparsity in space, the airborne gamma radiation-based SWE observations can be limited to be used within the DA 230 

system. To quantify if the spatially sparse gamma SWE observations can improve the SWE estimates in the surrounding areas, 

where the observations are not available, we apply a distance-based localization method into the assimilation procedure. The 

localization is applied in the assimilation by weighting distances from the flight lines (up to a specified localization distance; 

r) using the Gaussian decay-based localization method as follows: 

 𝑊 = 𝑒𝑥𝑝 {
−𝑑2

2∙(
𝑟

2
)

2}                                                                                         (7) 235 

where d is the distance between the updated grid cells (i.e., flight lines) and grid cells without observations within a specified 

localization radius r. The magnitude of the SWE DA adjustment for a grid cell from the assimilation is calculated using the 

localization weight (W) which is calculated based on the distance (d) from the updated grid cells overlapped with the flight 

line. If a grid cell is affected by multiple flight lines, an average of the updates is added to the prior SWE estimates of the grid 

cell. We apply a localization function with six different distances (e.g., 4, 8, 16, 24, 32, and 48 km from the lines). For an 240 

evaluation of the DA SWE with a given localization weight, the areal mean DA SWE time series are obtained for an effective 
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area buffered by a specified distance around the gamma flight line. The areal mean OL and UA SWE time series are also 

obtained in the same way to compare with the corresponding OL and UA SWE values. 245 

5. Results and discussion 

5.1 Comparison between DA and OL SWE with airborne gamma SWE  

To examine the updated SWE performance over the gamma lines by assimilating airborne gamma observations into Noah-

MP, statistical metrics were compared between OL and DA SWE using UA SWE (Figure 2). The values of 1:1 slope were 

closer to 1 (a median slope of OL were 1.45 and 0.91, respectively) and RMSD values decreased, even though negative biases 250 

were found. The absolute SWE bias was higher in the DA as compared to the OL simulation (Figure 2). However, this was a 

consequence of the fact that in correcting the overestimated SWE during the accumulation season, the DA introduced a greater 

underestimate during the melt season (Figures 3 and 4). The OL SWE was largely deviated from the 1:1 linear relationship 

during the snow accumulation season (i.e., January, February, and March) and early in the snowmelt season (i.e., April). Figure 

3 shows that the deviation was significantly reduced through the assimilation of the gamma SWE retrievals even though a 255 

reduced R-value was obtained. 

Figure 2. Comparison of statistics between open-loop (OL) SWE and data assimilated (DA) Noah-MP SWE estimates by using 
airborne gamma radiation SWE observations with the University of Arizona SWE from 1985 to 2017: (a) slope from 1:1 plot, (b) 
Bias, and (c) RMSD from a linear relationship between the estimated SWE and UA SWE.  
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A promising aspect is that the assimilation of the temporally sparse (i.e., only one or two data points at the end of the snow 

accumulation period and/or early in the snowmelt period) airborne gamma SWE retrievals improved the model estimates of 

SWE, which was particularly noticeable in some lines and years, such as the gamma line SJ150 in WY1991 (Figure 4). For 

comparison purposes, results of assimilating the AMSR2 SWE retrievals were also plotted (green solid line in Figure 4). The 270 

Figure 3. Examples of scatterplots of two gamma flight lines (SJ150 and SJ203) between the Noah-MP SWE estimates (from the 
open-loop (OL) and data assimilation (DA) experiments; y-axis) and daily University of Arizona SWE (x-axis) from October 1985 
to May 2017 (total 33 water years). R-value, slope, Bias, RMSD, and number of data points (N) in the linear relationship are 
presented in the figures.  
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AMSR2 SWE was largely deviated (underestimated) from the UA SWE in densely forested areas, and assimilating the AMSR2 

SWE data led to degradation of the SWE estimates. This further emphasizes the effectiveness of the gamma SWE data in 

improving the model estimates of SWE via assimilation in forested areas even with fewer available data compared to the 

AMSR2 SWE. However, the assimilation of the airborne gamma SWE measurements was not able to improve the snow 

ablation timing due to sparse gamma data during the spring in combination with the overall poor model performance during 275 

the melt season. As shown in Figure 4, compared to the UA SWE, Noah-MP simulated earlier snow melt-out despite the 

overestimated snow accumulation, which may be attributed to the Noah-MP model structure and physics (e.g., simplified 

representations of snow layers), parameterization schemes, and/or atmospheric forcing. Also, the peak SWE cannot be 

corrected if a single gamma SWE flight exists only after the accumulation period. The availability of more frequent gamma 

observations during both the accumulation and melt seasons could lead to further improvements in estimating SWE in the 280 

ablation period while the model and forcings need to be enhanced. 

Formatted: Font: 10 pt, Not Bold, Not Italic, Font color:

Formatted: Font: Not Bold, Not Italic, Font color: Auto

Formatted: Font: 10 pt, Not Bold, Not Italic, Font color:
Auto
Deleted: probably due to temporally sparse gamma data as well as 

limited model physics



13 

 

 

Figure 4. Examples of daily SWE time series of three gamma lines (SJ150, NH106, and NH109) with latitude (Lat), 
longitude (Lon), elevation (Elev), and vegetation cover fraction (VCF) for individual years including the open-loop (OL) 

and gamma data assimilated (DA_Gamma) Noah-MP SWE estimates along with the passive microwave SWE data from 

the Advanced Microwave Scanning Radiometer 2 (AMSR2) and AMSR2 data assimilated SWE (DA AMSR2). 
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5.2 Effect of land surface characteristics on assimilation performance 285 

To examine effects of land surface characteristics on the DA performances as compared to the OL, the performance of the 

gamma SWE DA, presented as differences (i.e., DA minus OL) in the linear regression slope, bias, and RMSD, with the UA 

SWE were compared by four physical features, TCF, slope, elevation range (i.e., topographic heterogeneity), and elevation 

(Figure 5). Two groups of each land surface characteristics were determined by dividing the gamma flight lines into two (i.e., 

low and high) groups of equal numbers of the flight lines. For TCF, DA SWE in a group with low TCF (less than 85%) has 290 

lower bias and lower RMSD than OL SWE, while the DA led to a marginal improvement in the high TCF. Considering that 

the TCF values in the low group ranges from 31% to 84% (mean: 62 %), DA using airborne gamma SWE improved SWE over 

densely forested regions.  

Differences in the DA performance between the low and high groups were observed for all surface characteristics. The 1:1 

slope was improved by DA for both the low and high ranges of all surface characteristics. DA led to larger improvements in 295 

the 1:1 slope and RMSD for low VCF, slope, elevation range, and elevation. With respect to the bias, assimilation of the 

gamma SWE retrievals improved the group-averaged performance for both the low and high groups of the surface 

characteristics with larger improvement in low VCF and high slope, elevation range, and elevation. For individual physical 

characteristics, the added value of the gamma SWE data on the model SWE estimates via assimilation was greater for the low 

VCF range based on both bias and RMSD. It is worth noting that the low VCF ranges from 31% to 84%, and DA significantly 300 

improved the SWE, even for the high VCF (i.e., greater than 85%). This implies that the gamma-based SWE estimates within 

DA frameworks can be a promising alternative to traditional TB-based approaches in forested areas. Comparable DA 

performance patterns were also obtained for other land surface characteristics. Although the gamma SWE DA exhibited 

smaller RMSD improvements in areas with higher topographic heterogeneity, than those with lower ranges, it was still effective 

in reducing error statistics. 305 
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Figure 5. Boxplots of differences in (a) Slope from 1:1 plot, (b) Bias, and (c) RMSD between the DA and OL cases (computed as DA – 

OL) with respect to vegetation cover fraction (VCF), slope (degree), elevation range (m), and elevation (m). The two groups (low/high) 
were divided into equal numbers of values. The bottom values are 50% quantile values for each characteristic. 
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5.3 Localized data assimilation (DA) performance 310 

One of the limitations of the airborne gamma SWE observations is a limited spatial coverage, which is typically 5-7 km2 with 

a swath 300 m wide and 15-30 km long. It is necessary to assess if the spatially sparse airborne gamma SWE observations can 

also improve the SWE estimates in areas surrounding the gamma flights via assimilation. Here, the DA experimental cases 

that employ a localization function with different distances (e.g., 4, 8, 16, 24, 32, and 48 km from the flight lines) are evaluated 

Figure 6. Localized data assimilation (DA) and open-loop (OL) Noah-MP SWE performances as compared to the UA SWE with 
different localization distances (e.g., 4, 8, 16, 24, 32, and 48 km) for the whole (accumulation and melting periods), accumu lation, and 
melting periods, respectively.  
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(Figure 6). The OL/DA statistics in the figure are calculated using domain-averaged time series of OL/DA SWE over the 

effective surrounding areas by localization distances with the corresponding UA SWE. For the whole snow season that includes 

both accumulation and melting periods, the boxplot of the 1:1 slope shows that the localized DA SWE were improved as 

compared to OL. The slopes of the DA SWE are closer to 1 than the OL’s slopes. The bias and RMSD boxplots also show that 

the DA SWE has lower errors than the OL SWE for all localization distances, expect for bias at 48 km which is too low 320 

(median: – 23 mm). The OL’s RMSDs slightly increased at the distances up to 16 km (median: 72 mm) and decreased after 

that, while the DA’s RMSD values continually decreased with increasing the distances up to 48 km (median: 53 mm). When 

the statistics were calculated for the accumulation and melting periods separately, the lower RMSDs and slopes closer to 1 of 

the localized DA SWE were found consistently. As previously discussed, the efficacy of assimilating the airborne gamma 

SWE is greater during the accumulation period, especially for bias and RMSD, than during the melting period. In the melting 325 

period, the improvements in the RMSD and 1:1 slope with longer distances are achieved, even though biases were consistently 

negative due to early melting.  

To compare the AMSR2 DA outputs to localized gamma DA outputs, we chose the gamma DA outputs at the 16-km 

localization distance which have similar effective spatial coverages of DA around gamma flight lines (10 km AMSR2 
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resolution and 16-km localization; Figure 7). Because the AMSR2 SWE was largely underestimated in the study domain (see 

Figure 4), assimilating the AMSR2 SWE measurements did not improve the modeled SWE estimates. All error metrics of the 

AMSR2 DA SWE were degraded (e.g., median bias: -193 mm and RMSD: 202 mm) as compared to the OL (median bias: 38 

mm and RMSD: 79 mm). The localized gamma DA SWE performance is clearly improved based on the error metrics (median 335 

bias: 4 mm and RMSD: 59 mm). The positive biases and high slopes of the OL SWE were improved, and the RMSD also 

decreased approximately by 20 mm.   

Overall, we found that the localized DA using the airborne gamma SWE observations improved the model SWE up to 32 km 

distances, which is supported by the recent study that a single gamma SWE observation spatially represents up to 50 km even 

in dense temperature forest environments (Cho et al., 2022). The study found that there was strong agreement between the 340 

gamma SWE observations and in-situ snow course transects (R-value: 0.78; RMSD: 53 mm) at distances up to 50 km in the 

northeastern U.S. The results in this study indicate that, even though the airborne gamma SWE measurements exist with limited 

spatial coverages, the combined use of the physical model and DA with the gamma SWE has a potential to improve regional 

estimations of the SWE. 

 345 

6. Discussion 

We observed two issues associated with the Noah-MP SWE estimates in the study domain: 1) Noah-MP considerably 

overestimated SWE during the snow accumulation period; while 2) it underestimated SWE (i.e., early snowmelt) during the 

snow ablation period (see Figure 4). The former issue was mitigated through the assimilation of the gamma SWE retrievals, 

whereas the latter issue was not. These issues can be attributed to parameterization schemes and/or atmospheric forcing 350 

employed in Noah-MP. Parameterization options for the precipitation phase partitioning method, ground surface albedo, 

surface layer drag coefficient, and snow/soil temperature time scheme can affect the snow simulations (You et al., 2020).  

To further analyze the issues, we conducted additional experiments using different parameterization schemes and atmospheric 

forcing. That is, the BATS scheme for partitioning precipitation into rainfall and snowfall, CLASS scheme for snow albedo, 

Chen97 scheme for surface layer drag coefficient, fully-implicit snow and soil temperature time scheme, and the bias-corrected 355 

MERRA-2 forcing were additionally tested. As shown in Figure 8, the use of BATS or CLASS snow albedo schemes do not 

make a significant difference in the SWE estimates as compared to the original OL results. Although the Chen97 or fully-

implicit schemes are effective in delaying the snow removal date, they add considerably more snow during the snow 

accumulation period and do not help capture snowmelt start date (Figure 8). Furthermore, the effectiveness of each 

parameterization scheme varies with flight lines and time periods within the study domain as also emphasized by You et al. 360 

(2020). Figure 8 shows that the use of the bias-corrected MERRA-2 forcing is effective in improving the SWE estimates during 

the snow accumulation period, but did not improved the issue of rapid snow melting. The combined use of the bias-corrected 

MERRA-2 forcing and the fully-implicit scheme leads to improved snow removal timing, but largely overestimated SWE 
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during the snow accumulation period. We originally used the uncorrected MERRA-2 forcing to demonstrate the feasibility of 

the gamma SWE DA for improving the model estimates of SWE, particularly in forested areas, using the atmospheric forcing 

as is (i.e., without bias-correction), which is a typical case of operational prediction or monitoring systems. Here, it is worth 

noting that assimilation of the gamma SWE data provides similar SWE estimates to the case of using the bias-corrected forcing 

with a semi-implicit scheme when the gamma SWE observations are available during the snow accumulation period. 385 
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 390 

Figure 8. Examples of SWE time series including the additional open-loop (OL) experiments using different parameterization 
schemes related to snow simulations such as the snow/soil temperature time scheme (semi-implicit vs. fully-implicit), partitioning 
precipitation phase (Jordan91 vs. BATS), ground surface albedo (BATS vs. CLASS), and surface layer drag coefficient (Monin‐
Obukhov [M-O] similarity theory vs. Chen97 [original Noah]), and (b) DA runs forced by original vs. bias-corrected MERRA2 

forcings with each snow/soil temperature time scheme which is a parameterization option largely affecting snow simulations.  
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Many studies (e.g., Aoki et al., 2011; Augas et al., 2020; Cheng et al., 2008; Jennings et al., 2018; Kwon et al., 2014; Lecomte 

et al., 2011; Livneh et al., 2010; Saha et al., 2017; Suzuki and Zupanski, 2018) have emphasized the importance of the number 

of snow layers for accurate estimates of snowmelt timing because of its impact on the vertical snow temperature gradient. 395 

Augas et al. (2020) demonstrated that the accuracy of the SWE estimates increases with more snow layers, and Lecomte et al. 

(2011) showed that the agreement between the observed and modeled vertical snow temperature gradient is improved by 

adding more snow layers. The minimum threshold of the number of snow layers suggested by existing studies ranges from 3 

to 20 depending on locations, periods, and model setup. Different precipitation partitioning methods may lead to differences 

in the amount of snowfall and subsequent snowpack (Xia et al., 2017; Jennings et al., 2018; Suzuki and Zupanski, 2018; 400 

Letcher et al., 2021), even though there were no significant differences in SWE between the two schemes. We used the scheme 

of Jordan (1991), in which total precipitation is fractionally divided into rainfall and snowfall using two thresholds of air 

temperature (i.e., no snowfall when Tair > 2.5℃; all precipitation is snow when Tair ≤ 0℃; and fractional snowfall when 0℃ 

< Tair ≤ 2.5℃). However, Noah-MP uses a spatially uniform threshold of Tair. Jennings et al. (2018) found that rain-snow Tair 

thresholds exhibited significant spatial variability across the Northern Hemisphere with the warmest thresholds in continental 405 

and mountain areas while with the coolest thresholds in maritime areas and lowlands. This implies that the high Tair threshold 

(i.e., 2.5℃) used in Noah-MP may lead to the overestimated snowfall, and subsequently the overestimated snow depth and 

SWE as the study area is characterized by maritime. Letcher et al. (2021) demonstrated that the use of cooler Tair thresholds in 

Noah-MP can improve the estimates of peak SWE in the northeastern United States. To verify this, four Noah-MP SWE 

simulations with Jordan (1991)’s scheme and a single threshold of 0℃ with two different meteorological forcings (MERRA2 410 

and the North American Land Data Assimilation System; NLDAS2) are compared to ground-based SWE observations from 

Oct 1, 2002, to May 31, 2003, at Hubbard Brook, New Hampshire, which is within the study domain (Figure 9). This supports 

the previous finding that the overestimated SWE with Jordan’s scheme was reduced with a single threshold of 0℃ for both 

forcings. This also presents that the use of regionally reliable meteorological forcings (e.g., precipitation) generates accurate 

SWE estimations. At the same time, further improvement in the modeled SWE during the melting season can be achieved by 415 

employing more sophisticated snow models since the sophisticated snow models with multi-layer of snowpack take into 

account meltwater infiltration and refreezing within the snowpack (Avanzi et al., 2016; Terzago et al., 2020).  
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While the model parameter calibration is not conducted here because it is outside the scope of the current study, we 

acknowledge that the parameter calibration procedure could further improve the model performance for regional applications. 425 

Cuntz et al. (2016) provided a sensitivity analysis of the Noah-MP parameters including both the adjustable and hard-coded 

parameters that affect simulations of hydrological processes. Based on their analysis, some snow-related Noah-MP 

hydrological simulations exhibit high sensitivity to hard-coded parameters rather than tunable parameters. For example, 

snowmelt-induced surface runoff is sensitive to hard-coded snow-related parameters for surface resistance, partitioning of 

incoming radiation into direct and diffuse radiation, and snow thermal conductivity. Meanwhile, the current DA framework 430 

does not perform assimilation if one or more of the prior model ensemble members do not have snow. Thus, the gamma SWE 

retrievals could not add value to the SWE estimates during the snow melting period. To address this issue, a rule-based 

approach (e.g., Kwon et al., 2019), that adds a thin snow layer when the model simulates snow-free conditions, but observations 

have snow, can be explored in a future study.  

While the airborne gamma radiation SWE was used to enhance SWE estimations by assimilating into Noah-MP land surface 435 

models, it is possible that the inherent uncertainties in the gamma radiation method limit the potential improvements through 

DA. The potential sources of error in the gamma SWE retrievals have been explored in previous findings (Carroll & Carroll, 

1989a, 1989b; Glynn et al., 1988; Offenbacher & Colbeck, 1991). An impact of forest biomass on the accuracy of airborne 

gamma SWE measurements has been examined over forested watersheds (Carroll & Vose, 1984; Vogel et al., 1985). Carroll 

and Vose (1984) presented that there was 23 mm of RMSE between airborne gamma SWE and in-situ SWE for the moderate 440 

snowpack (20 to 470 mm of in-situ SWE) in Lake Superior and Saint John basins, New Brunswick, Canada. Spatial variability 

Figure 9. Comparison of SWE time series between four Noah-MP simulations and the Soil Climate Analysis Network 
(SCAN) ground-based observations at Hubbard Brook, New Hampshire from Oct 1, 2002, to May 31, 2003 
(https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2069). The four Noah-MP SWE simulations were generated with Jordan 
(1991)’s scheme and a single threshold of 0℃ and two meteorological forcings (MERRA2 – which is used for OL and the 
North American Land Data Assimilation System; NLDAS2), respectively.  
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in elevations over the gamma flight footprint can cause larger errors in SWE (Cho et al., 2020b; Carroll & Carroll, 1989b; 

Cork & Loijens, 1980). Cho et al. (2020b) found that heterogeneous characteristics (e.g. elevation range and slope) within a 

flight line cause underestimates of gamma SWE as compared to UA SWE. Cork & Loijens (1980) discussed that the 

measurements of the attenuation of the gamma count rate over the snowpack with its large spatial variability were 445 

systematically underestimated leading to the SWE underestimation. Because the results use the NOAA standard gamma 

radiation SWE retrievals without manual corrections, the DA results would be improved with the updated gamma SWE 

products in regions by correcting the existing potential errors. Lastly, the spatiotemporal sparseness of the airborne gamma 

SWE observations due to the operational costs is an inherent issue that may limit the widespread use of gamma SWE 

observations for DA work. However, as supported by our findings, effective uses of the gamma SWE (e.g. localization 450 

function) can enhance the utility of the gamma SWE into the DA framework.  

7 Conclusion and Future Perspectives 

In the snow hydrology community, DA has been used as a promising approach to improve SWE estimation at a large spatial 

scale by merging remote sensing observations with LSM predictions. In densely forested regions, however, most remote 

sensing techniques have limited performance of SWE due to attenuating or/and scattering radiation signals by canopy (e.g. 455 

passive microwave TB and Lidar), resulting in large uncertainty in DA outputs. The historically well-established, airborne 

gamma radiation technique has provided a strong potential in wet snow and dense forest conditions, because the gamma 

approach uses an attenuation difference in the terrestrial gamma-ray emission by water in the snowpack (any phase) between 

snow-off and snow-on conditions. In this study, the airborne gamma SWE observations are assimilated with the Noah-MP 

model’s SWE in densely forested regions in the northeastern U.S. We found that the assimilation of the airborne gamma SWE 460 

observations enhanced the model SWE estimates despite the limited number of the measurements (up to four SWE values 

during a winter period). The added value of the gamma data on the model SWE estimates was greater for the relatively lower 

VCF range. While the gamma-based DA SWE had relatively lower improvement in areas with higher topographic 

heterogeneity, the DA SWE with reduced errors was found as compared to the OL. We also found that the localized DA with 

the gamma SWE observations with distances up to 32 km reduced the model SWE’s errors, indicating the gamma SWE has a 465 

potential to improve regional estimations of the SWE and subsequently snowmelt runoff. Despite the accuracy of the gamma 

data on the DA framework, the improvements were limited by the spatial and temporal sparseness of the gamma measurements. 

With the enhanced physics in LSMs and optimal uses of the gamma data using enhanced DA/interpolation methods, future 

studies may achieve a further improvement of the modeled SWE for larger areas where gamma flights do not exist.  

Data availability. The original airborne gamma radiation SWE data are available from the NOAA NWS NOHRSC website 470 

(http://www.nohrsc.noaa.gov/snowsurvey/). The reformatted airborne gamma SWE data (NetCDF format), the R codes used 

to reformat them, and LIS outputs from the OL and DA runs are available at [will add a link to data from Zenodo, currently 

being setup with an ODC Attribution (ODC-BY) license for access without restrictions]. The UA daily 4-km SWE data 
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(Version 1) and JAXA AMSR2 L3 Global Daily 10 km SWE data (Version 1) are available from the website 475 

(https://nsidc.org/data/nsidc-0719 and https://gportal.jaxa.jp/gpr/information/download, respectively). The MERRA2 forcing 

dataset is distributed by the NASA Goddard Global Modeling and Assimilation Office (GMAO; 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/). To replicate the land surface model simulation and data 

assimilation, users can use the NASA Land Information System which is freely available at https://github.com/NASA-

LIS/LISF. The lis-config files used in this study are available at the above Zenodo repository.  480 
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