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Abstract. In light of ongoing global climate crisis and related increases in extreme hydrological events, it is increasingly 

crucial to assess ecosystem resilience and - in agricultural systems - to ensure sustainable management and food security.  For 

that, comprehensive understanding of ecosystem water cycle budgets and spatio-temporal dynamics are indispensable. 15 

Evapotranspiration (ET) plays a pivotal role returning up to 90 % of ingoing precipitation back to the atmosphere. Here, we 

studied impacts of soil types and management on an agroecosystems water budgets and agronomic water use efficiencies 

(WUEagro). To do so, a plot experiment with winter rye (September 17, 2020 to June 30, 2021) was conducted at an eroded 

cropland which is located in the hilly and dry ground moraine landscape of the Uckermark region in NE Germany. Along the 

experimental plot (110 m x 16 m), a gantry crane mounted mobile and automated two chamber system (FluxCrane as part of 20 

the AgroFlux platform within the CarboZALF-D research site) was used to continuously determine evapotranspiration for the 

first time. Three soil types representing the full soil erosion gradient related to the hummocky ground moraine landscape 

(extremely eroded: Calcaric Regosol, strongly eroded: Nudiargic Luvisol, non-eroded: Calcic Luvisol) and additional soil 

manipulation (topsoil removal and subsoil admixture) were investigated (randomized block design, 3 replicates per treatment). 

Five different gap-filling approaches were used and compared in light of their potential for reliable water budgets over the 25 

entire crop growth period as well as reproduce short-term (day-to-day, diurnal) water flux dynamics. The best calibration 

performance was achieved with approaches based on machine learning, such as support vector machine (SVM) and artificial 

neural networks (with Bayesian regularization; ANN_BR), while especially SVM yielded in best predictions of measured ET 

during validation.  

We found significant differences in dry biomass (DM) and minor in evapotranspiration between soil types, resulting in different 30 

water use efficiencies (WUEagro). The Calcaric Regosol (extremely eroded) shows a maximum of around 37% lower 

evapotranspiration and a maximum of around 52% lower water use efficiency (WUEagro) compared to the non-eroded Calcic 

Luvisol.  The key period contributing to ~ 70% of overall ET of the entire growth period was from April until harvest, however 
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differences in the overall ET budget (ETsum) between soil types and manipulation resulted predominantly from small long-

term differences between the treatments over the entire growth period. 35 

1 Introduction 

More than 70% of the global ice-free land area is directly influenced by humans in distinct ways (Shukla et al., 2019). In fact, 

only 12% of the world's land area is suitable for food and fiber production due to its highly productive soils, 65% of which are 

located in temperate and Mediterranean climatic zones and only 35% in tropical ones (Blum, 2013). Due to a still growing 

human population paired with the ongoing climate crisis, much of this land is already in use worldwide to ensure food security. 40 

Additionally, worldwide land area is largely affected by soil degradation (Jie et al., 2002). According to the European Union, 

agriculture is closely related to soil degradation, since at least six degradation processes (e.g. erosion or compaction) are 

associated with it (Louwagie et al., 2011). In hummocky landscapes, erosion and associated topsoil removal caused by different 

elements (e.g. wind, water or tillage) affects the fertility of field crops (Bakker et al. 2007; Biggelaar et al. 2003). Moreover, 

the global climate crisis, for example, is affecting the amount and spatio-temporal distribution of precipitation worldwide, 45 

leading to more frequent and stronger events in high-precipitation regions and fewer and weaker events in low-precipitation 

regions (Trenberth, 2011). This clear dichotomy is shown, with increases of 10 – 40 % mainly in northern Europe and decreases 

of up to 20 % in the Mediterranean region and southeastern Europe (DWD, 2019). A similar trend can be seen in Germany, 

with annual precipitation budgets of more than 800 mm in most regions in west and south Germany, but only 400 - 500 mm 

y-1 in the northeast (e.g. areas in Brandenburg and Mecklenburg-Western Pomerania; Schappert, 2018). As crop yields and 50 

related crop productivity depend on various factors such as soil properties or water availability, such agricultural used arid 

regions could face increasing problems.  

Brandenburg, a federal state in northeast Germany including some of the driest regions in entire Germany, uses 48.6% or about 

1.44 million hectares of its area for agriculture (Amt für Statistik Berlin-Brandenburg, 2020). Brandenburg is located in the 

continental characterized climate zone and has a water deficit of about 150 mm over the growing season (Wessolek and Asseng 55 

2006). The focus of agriculture in Brandenburg is on grain production, which faces a variety of challenges due to increasingly 

dry conditions (Amt für Statistik Berlin-Brandenburg, 2020). The Uckermark region is the most fertile region for agriculture 

in Brandenburg. It is shaped by glaciation with a hilly to flat-wavy ground moraine landscape whose soils are strongly 

influenced by soil erosion (Nudiargic Luvisol, Calcaric Regosols, Colluvic Regosols) as well as redoximorphic soils (Stagno-

,  Gleysols) (MLUK, 2020). The strong soil heterogeneity and ongoing soil erosion, mainly by tillage, has a great influence on 60 

the fertility of the cultivated areas (Sommer et al. 2016). In combination with climate crisis, it is proving difficult to develop 

land use methods that allow reliable arable farming under these changing conditions.  

There is a tight link of carbon and water cycling in such precipitation limited systems. In particular, on eroded soils with 

limited rootability it becomes highly important because water loss by evapotranspiration (ET) and the water use efficiency of 

a system (WUE) can largely define its productivity (Tallec et al., 2013). To date, methodologically studying the influence of 65 
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small scale soil heterogeneity (e.g. soil erosion) and land use (e.g. soil management) on the dynamics of the water balance 

(especially ET) separately is challenging. However, the effect of both factors can be significantly different with complex 

interaction (Bakker et al. 2007; Biggelaar et al. 2003), making  a separate response analysis an indispensable prerequisite for 

the development of site-specific land use procedures adapted to the changing climate conditions. ET describes the total amount 

of water that evaporates from a given area and is thus defined as the sum of evaporation (E), transpiration (Tr), and interception 70 

evaporation (Fohrer et al., 2016; Rothfuss et al., 2021). Generally, ET is one of the most important components of the 

hydrological cycle in terrestrial ecosystems accounting for up to 100 % of ingoing precipitation (Hanson 1991) and is 

dominated by transpiration in most terrestrial ecosystems with a share of up to 90 %, indicating that terrestrial vegetation is a 

dominant force in the global water cycle (Jasechko et al. 2013). Due to the expected increased dependency of a systems 

productivity on sufficient water supply with ongoing climate change, quantifying the ET plays an important role to achieve a 75 

process-based understanding the mitigation potential of different crops to drought in the future and to, e.g., establish a more 

efficient supplemental irrigation.  

Methods to quantify evapotranspiration have been developed from disciplines ranging from plant physiology to hydrology and 

meteorology and range from plot scale to global estimations. To date, each community and method refers to a specific 

measurement scale, contains its own uncertainties and comparability between methods is rather low (Drexler et al., 2004; 80 

Hamel et al., 2015). A particular challenge in current evapotranspiration research apart from standardized approaches is 

combining high frequency with multi treatment approaches. At the plot scale for example, eddy covariance systems deliver 

high frequency estimates of evapotranspiration of a homogeneous system (few hundred to millions of square meters) while 

currently prevailing manual chamber approaches are able to precisely capture multi treatment effects (<1m²) on 

evapotranspiration but lack temporal resolution. In this regard, modern automated chamber systems allowing a combination 85 

of high temporal with multi-treatment observation provide the unique opportunity to test advanced statistical gap-filling 

approaches able to reproduce not only seasonal budgets but day to day and diurnal variability in ET. Previously often limited 

to eddy covariance approaches, coupling such advanced statistical approaches (e.g. artificial intelligence and neural network 

approaches) might be an ideal fusion of measurement frequency and the ability to capture treatment effects like small scale 

soil differences (Falge et al. 2001a; KIŞI and ÇIMEN 2009).  90 

AgroFLUX – a newly developed research platform centered around an automated gantry crane (FluxCrane) mounted chamber 

system at the “CarboZALF-D” research site – was initially build to capture the effect of soil type and management on CO2 

fluxes with high spatial and temporal resolution (Vaidya et al., 2021). The adaption of the system to measure ET provided us 

with the opportunity to analyze stand scale ET fluxes including the development of a data analysis tool for measured ET-

fluxes, and test different gap-filling strategies. The aim was to establish an approach that would provide reliable predictions of 95 

ET fluxes both in terms of gross seasonal budgets as well as representing diurnal trends for automated canopy chamber systems. 

We tested five different gap-filling approaches including basic statistic and advanced approaches including artificial 

intelligence and machine learning approaches. During the growth period of winter rye from mid-September 2020 to the end of 

June 2021 ET and relevant environmental and plant growth parameters were measured to identify the corresponding drivers 
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of crop evapotranspiration and productivity. The gantry crane system covers a field where three different soil types are present, 100 

which reflect the erosion gradient typical for the hillside of the hummocky ground moraine landscape of NE Germany. This 

enabled to assess the impact of soil type as well as soil management on crop season ET budgets, seasonal development and 

agronomic WUE. In the following we will examine i) soil-type and management effects on budgets as well as spatio-temporal 

variability of ET fluxes over the growing season as well as on WUEagro and ii) the suitability gap-filling strategies used in this 

study as well as potential ways forward to improve these approaches. 105 

2 Material and Methods 

2.1 Study Site and experimental design 

The experimental site is located near Dedelow in the NE of Germany within the Uckermark region (53° 23´ N, 13° 47´ E; ~50-

60 m a.s.l). The typical surface is characterized by the last ice ages, when glaciers shaped the land surface to a hummocky 

moraine landscape (MLUK 2020). Today, this landscape is characterized by an intensive agriculture, where only 20% of the 110 

land is not affected by past and present soil erosion due to tillage and water (Sommer et al. 2008; Wilken et al. 2020) resulting 

in a very high spatial variability of soils (Wehrhan and Sommer 2021) and associated growing conditions for crops (Wehrhan 

et al. 2016). The investigations were carried out on the 100 x 16 m FluxCrane experimental field within the AgroFlux site as 

a part of the interdisciplinary research area CarboZALF-D (Fig. 1a). CarboZALF was initially build to capture the effect of 

soil type and management on CO2 fluxes and face the challenge to establish a robust approach to determine carbon budgets of 115 

erosion deposition processes within the soil-plant-atmosphere system with high spatial and temporal resolution (Sommer et al. 

2016). There is  an elevation difference of one meter and all relevant erosion stages are covered (non-eroded Calcic Luvisol 

(LV-cc), strongly eroded Nudiargic Luvisol (LV-ng) and extremely eroded Calcaric Regosol (RG-ca); see Fig. 1b, e; (Sommer 

et al. 2008; Wehrhan et al. 2016; Vaidya et al. 2021)) , according to the soil classification of the IUSS working group (WRB 

2014). For our study we used 18 plots in total (organic fertilized), 6 per soil type (Fig. 1c). For the 6 plots per soil type, a 120 

randomized, full-factorial design, each repeated three fold, was adopted for topsoil dilution vs. non-topsoil dilution (topsoil 

modification - first 8 to 9 cm). During the study period from September 2020 to June 2021 (287 days), winter rye of the hybrid 

variety "SU Piano" was grown with a density of 200 plants per m² on an area of 0.176 ha. The novel gantry crane automatic 

chamber system (Fig. 1d) was installed over this study site in 2019 (see (Vaidya et al. 2021)); the gas exchange chambers are 

lowered on each plot on round iron frames with a diameter of 1.59 m and a basal area of 1.99 m2.  125 

2.2 Cultivation and manipulation 

Because the AgroFLUX sensor platform site is located on a conventionally farmed agricultural area intended to represent a 

variety of soils in the region, soil manipulation, tillage, cultivation and fertilization measures were implemented before and 

during the experiment. For soil manipulation, the first 5 cm of topsoils (1.2 t per plot) were removed from 6 selected plots of 

the 12 plots per soil type using an excavator on July 14-15, 2020. Then, a soil pit was excavated (20-21 July, 2020) at the 130 
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adjacent field to expose the soil horizons (A, B and C) and for application of an equivalent mass to the former prepared plots. 

Thus, Al horizon was applied to the prepared plots of the non-eroded Calcic Luvisol (LV-cc), Bt horizon on the strongly eroded 

Nudiargic Luvisol (LV-ng) and Ck horizon to the extremely eroded Calcaric Regosol (RG-ca). In order to exchange equal 

amounts, both the removed and the applied material were weighted. The next day (22 July, 2020) a heavy tine cultivator was 

used for slow, deep chiseling (25 cm) of all plots in east-west-direction with subsequent mixing of all manipulated plots by 135 

hand. Finally, the chamber frames were reinstalled. In the following, the resulting treatments of the same soil types are labelled 

as "manipulated” (m) and “non-manipulated” (n-m). 

The actual tillage prior to sowing took place just before seeding on September 17, 2020. For this, the frames were removed 

and the soil was loosened to a depth of 25 cm in west-east-direction. Sowing was done with a power harrow-drill combination. 

Organic fertilization was applied to all plots per soil type, with each 3 plots manipulated and 3 plots non-manipulated, using 140 

digestate (10 m3 ha-1) on September 16, 2020. Due to uneven field emergence, replanting had to be done in all non-manipulated 

plots within the frames (LV-cc: 13 plants per plot; LV-ng: 40 plants per plot; RG-ca: 82 plants plot). For general plant 

protection and soil treatment, herbicides were applied to the field during the growing season (e.g. Roundup / glyphosate). 

2.3 Gantry crane system description and gas exchange measurements 

The ET flux measurements were carried out by a novel automated chamber system using a 5-meter-high gantry crane traveling 145 

on two 110m tracks which has been described in detail by (Vaidya et al. 2021). Briefly, the Gantry Crane carries two transparent 

chambers made of polymethyl methacrylate (PMMA; A: 1.986 m2; V: 4.621 m3). The system, designed by Pfannenstiel 

ProProject GmbH (Bad Tölz, Germany), is capable of moving in three dimensions: the x-axis for movement along the track, 

the y-axis for movement perpendicular to the track, and the z-axis for vertical chamber movement. Since the two chambers do 

not move independent from each other along the track, frames where arranged in rows, from which each half was measured 150 

by one chamber is parallel. To ensure airtight sealing during chamber deployment, steel frames were used and additionally 

equipped with a foam ring to further increase the chambers bearing surface, while deployed.  

2.4 Input parameters for gap filling  

2.4.1 Environmental Parameters 

Relative humidity (RH) [%] was measured simultaneously during the ET flux measurements outside the chambers, while 155 

temperature (T) [°C] and photosynthetically active radiation (PAR) [μmol m-2 s-1] were measured both, outside as well as 

inside the chambers. Like precipitation (Pr) [mm], soil moisture (SM; 13 to 18 cm depth) [%] was measured at an adjacent 

experimental field. 
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2.4.2 Plant specific parameters  

Spectral plant indices, such as the ratio vegetation index (also simple ratio (SR); RVI) were manually recorded weekly for all 160 

18 subplots using a near-infrared (NIR)/visible light (VIS) double, 2 canal sensor device (SKR 1850, Skye Instruments Ltd., 

UK) mounted on a 1.8 m handheld pole (Görres et al. 2014; Kandel et al. 2013), connected to a CR1000 data logger (Campbell 

Scientific Ltd., USA). The double, 2 canal sensor device consist of an up- and downward sensor, measuring the incoming 

(VISi) and reflected (VISr) VIS at a wavelength of 656 ±10 nm and incoming (NIRi) and reflected (NIRr) NIR at 780 ±10 nm. 

The upward sensor was fitted with a cosine-correction diffusor for measurements of the incident radiation, while the downward 165 

sensor had a 25° cone field of view, thus covering an area of 0.5 m2 during measurements. For each plot, 3 successive 10 

seconds (=10 records) measurements were performed.  The RVI was used as an indicator for standing crop biomass and is 

close to zero for a fallow surface and increases as plant cover increases. The RVI was calculated following Equ. 1: 

 

 𝑅𝑉𝐼 =
NIRr
NIRi
VISr
VISi

         (1) 170 

Since only weekly measurement data were available from plot wise RVI, daily RVI data was obtained by fitting a sigmoidal 

function for initial plant growth in autumn up to a stagnation in winter and polynomial function for shoot elongation and later 

on senescence during spring growth and summer ripening, respectively (Fig. A1). No plant growth was assumed during the 

further called “non-growing season” from November 24, 2020, to March 22, 2021, because average daily temperatures were 

mostly below 5°C (<3 consecutive days).        175 

2.5 ET flux calculation and gap filling 

The workflow included various steps to pre-process data obtained by the gantry crane automatic chamber system, calculate 

ET fluxes and finally applying and validating the different gap-filling procedures (Fig. A2).  

2.5.1 ET Flux calculation 

ET fluxes were determined by measuring the development of chamber headspace H2O concentrations (4 sec frequency) over 180 

chamber deployment time of 7 minutes in a flow-through non-steady-state (FT-NSS) mode (Livingston and Hutchinson 1995), 

using two infrared gas analyzers (one per chamber; LI-COR 850, Licor Biosciences, UK). The plots were measured up to 24 

times a day in order to be able to detect daily variations. Diurnal ET fluxes considered in this study were calculated for the 

period from September 17, 2020 (sowing of winter rye), until harvest of winter rye on June 30, 2021. ET flux calculation was 

performed based on the ideal gas equation (Eq. 2) modified by (Hamel et al. 2015) using an adapted R-script, based on those 185 

presented by (Hoffmann et al. 2015).   

 

𝐸𝑇𝑓𝑙𝑢𝑥 =
𝑐H2O × 𝑃×𝑀H2O

𝑅×𝑇
                      (2)  
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With ETflux [mmol m-2 s-1] being the evapotranspiration rate, cH2O the moles of water per total moles present, P the gas pressure 

[Pa], MH2O the molar mass of water [18 g mol-1], R the gas constant [8.314 m³ Pa K-1 mol-1] and T the temperature [K] inside 190 

the chamber. To prevent a disturbance due to initial chamber headspace air homogenization, the first 15% of each measurement 

were discarded prior to flux calculation. The temporal change was determined by linear regressions on several subsets of the 

data generated based on a variable moving window with a starting window size of 1:20 minutes (20 consecutive data points) 

and a maximum length of 2 minutes (30 consecutive data points). This procedure resulted in several ET fluxes for each 

measurement, from which the best flux was subsequently selected using a set of soft and hard criteria. Soft criteria included: 195 

(i) checking whether the conditions for the application of a linear regression were fulfilled (normality, variance homogeneity, 

linearity); (ii) no outliers were present (±6xIQR); (iii) temperature variation during the measurement was <1.5 °C. Calculated 

fluxes per measurement that did not meet the quality criteria were discarded. Afterwards applied hard-criteria reduced 

potentially remaining multiple fluxes per measurement further to the ideal ET flux. Since the air in the chamber headspace 

reached higher water saturation with increasing time, hard criteria were based on the selection of the flux which showed the 200 

shortest temporal distance to the start of measurement and had the maximum length. 

During the measurements, various events could lead to erroneous ET fluxes such as e.g. fog, sensor failures, or chamber 

leakage due to failure in chamber deployment. Erroneous fluxes were hence discarded, such as e.g., in May 2021 (sensor 

failure) or after 23 June 2021. In addition, potential differences of the measurements between the sensors of both chambers 

were evaluated by the measurements of ambient air during periods of no chamber deployment. 205 

2.5.3 ET flux Gap-filling 

To gap fill ET fluxes, five different gap filling approaches were used and compared with each other. Gap-filling procedures 

included: I.) "Mean diurnal variation" (MDV) as a simple statistical approach; two empirical approaches, namely 2.) "non-

linear regression" (NLR) and 3.) "Look-Up-Tables" (LUT) as well as, with 4.) "Support Vector machine" (SVM) and 5.) 

"artificial neural network with Bayesian regularization"(ANN_BR) two machine learning approaches. 210 

MDV (Falge et al. 2001b; Moffat et al. 2007) is used to calculate missing hourly values through interpolation of values 

measured at the same hour during adjacent days. Thus, for the season with 286 days, the missing values were calculated for 

every hour, generating 24 values per day.  

NLR is based on parameterized non-linear equations using the mean least square method to express the relation between ET 

and T, RH, SM, PAR and RVI. Half-hourly values were predicted using the predictor variables and obtained function 215 

parameters. 

Gap-filling missing ET fluxes using the LUT approach is based on the assumption of similar ET fluxes during similar 

environmental conditions, whereby similarity is defined through a number of thresholds for the different environmental 

variables. Thus, missing ET-fluxes can be predicted based on the environmental conditions as well as the RVI associated with 

the missing data. To do so, measured ET-fluxes per subplot were split into different classes (csturges) based on T, RH, SM, PAR 220 
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and RVI, with their class limits determined by Sturges rule (Equ. 3, (Harkins 2022)). Within this study, on average, 12 classes 

of equal size were formed covering the range of all parameters.  

 

𝑐𝑠𝑡𝑢𝑟𝑔𝑒𝑠  =  
1+3.32 ∗ 𝑙𝑜𝑔 (𝑛)

 𝑙𝑜𝑔 (10)
       (3) 

 225 

Gaps in ET-fluxes were subsequently filled with the average ET flux of the class corresponding to obtained environmental 

parameters within the gap. In case, no class could attributed to measured environmental conditions within a gap, the average 

ET flux was used. 

SVM is a black-box-model, where a computer algorithm learns by teaching data to assign values to objects or classes (Noble 

2006). As mentioned by (Kim et al. 2020), the SVM uses a slack variable to circumvent unseparated parameters due to noise 230 

or extreme values in the data, as well as the radial basis kernel function based on previous SVM studies for upscaling fluxes 

(e.g. Ichii et al. 2017; Xu et al. 2018). 

In comparison, ANN_BR is a combination of a purely empirical nonlinear regression model with a stochastic Bayesian 

algorithm for regularizing the network training (Schmidt et al. 2018). An artificial neural network (ANN) consists of nodes 

connected by weights representing the regression parameters (Bishop and others 1995; Hagan et al. 1996; Moffat et al. 2007; 235 

Kubat 1999; Rojas 1996). The network is trained by providing it with sets of input data such as the environmental and plant-

specific parameters mentioned earlier and the associated output data in the form of e.g. ET flux values. Similar to (Moffat et 

al. 2007), all techniques evaluated use the classical back-propagation algorithm, where the training of the ANN is performed 

by propagating the input data through the nodes via the weighted connections and then back-propagating the error and adjusting 

the weights so that the network output optimally approximates the ET-fluxes. Subsequent to this training, the underlying 240 

dependencies of the ET fluxes on the environmental and plant-specific input variables are mapped to the weights and the ANN 

is used to predict half-hourly ET fluxes, where the performance of the ANN depends on several criteria.  

2.6 Seasonal budgets of ET and Water Use Efficiency 

Seasonal budgets of ET were determined using half-hourly ET values predicted by SVM. Daily averages and seasonal budgets 

of ET were formed in order to view the development over the entire growth period. The amount of plant biomass in dry mass 245 

(DM) [kg] was recorded during harvest treatment wise, which, in combination with ETsum yields the agricultural water use 

efficiency WUEagro ((Hatfield and Dold 2019), Equ. 4).  This is the WUEABG variant of WUEagro, as the dry mass is total 

aboveground biomass (Katerji et al. 2008).  

 

 𝑊𝑈𝐸𝑎𝑔𝑟𝑜 =  
𝐷𝑀

𝐸𝑇𝑠𝑢𝑚
        (4) 250 
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2.7 Statistical analysis 

All calculations were performed using the statistic-software R (R Core Team, 2021) version "4.0.4". Therefore, several 

packages (Table B1) were used to calculate the ET fluxes and to perform subsequent gap-filling as well to visualization of 

results. To check the general precision and accuracy of all gap-filling approaches, all measured values were compared with 255 

associated predicted values treatment wise. Additionally, k-fold cross validation (k = 5) was performed on the resulting ET 

data to test the predictive outcome of the approaches and ensure robust statistics. Then, all the coefficient of determination 

(r2), mean absolute error (MAE), normalized root mean square error (NRMSE) and Nash-Sutcliffe efficiency (NSE) were 

calculated and used to define the most accurate approach for the given setup (Moriasi et al. 2015). To determine the parameters 

impact on ET, linear and non-linear models were used. Lastly, differences of ETsum, DM and WUEagro between treatments were 260 

tested with the Kruskal-Wallis-test. 

3. Results  

3.1 Environmental parameters 

The long-term (1991 to 2020; ZALF) mean annual air temperature in this region is 8.8°C with a mean annual precipitation and 

potential evapotranspiration of 467 mm and 637 mm, respectively (ZALF research station, Dedelow). Compared to that, the 265 

study period was significantly warmer and wetter with mean temperature of 9.6°C and an annual precipitation of 508 mm 

between July 1, 2020 and June 30, 2021. Temperatures (Fig. 2a) were above average in the fall and winter period as well as 

June, 2021. On the other hand, April and May, which are crucial for crop growth, were colder and also drier. Daily mean 

relative humidity (rH) ranged between 50 % and 92.4 % with increasing diurnal variation in warm periods. Photosynthetic 

active radiation (PAR) (Fig. 2b) largely reflected the seasonal variation of the day length with a maximum of 1860 µmol m-2 270 

s-1 (half hourly measurements), and reduced values during longer storm events and high cloud cover. The relative soil moisture 

at 13 to 18 cm depth largely reflects the intensity of precipitation events (Fig. 2c), ranging from 12 % to 29 %. One exception 

is a prominent increase in mid-February that can be attributed to low temperatures and subsequent snowmelt. The largest 

precipitation events (> 10 mm d-1) in the observation period occurred in the observed period on September 26, 2020 with 12 

mm, on December 24, 2020 with 15 mm and on February 3, 2021 with 16 mm.  With respect to soil moisture, a sharp downward 275 

trend and no response to precipitation events is evident from late April onward. However, this can be explained by a high water 

consumption by the fully developed crop stand and canopy interception. Shallower soil moisture sensors at 3 to 8 cm (not 

shown) indeed responded to these precipitation events albeit weakly.  

3.2 Plant development  

RVI estimates are based on weekly measurements. Two temporal periods in particular were relevant for plant growth: i) the 280 

period from germination to the non-growing season in winter; and ii) the growing period after winter until harvest (Fig. A1). 
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The maximum RVI values were all reached at a similar time (09. - 13.05.2021). In this regard, the manipulated non-eroded 

soil of “LV-cc” had the highest RVI (~22.16), while the non-manipulated showed minor values (~17.19). In comparison, the 

strongly eroded soil of “LV-ng” revealed a reversed pattern with a high RVI for non-manipulated (~18.53) and low RVI 

manipulated (~13.81) treatments. The extremely eroded soil of "RG-ca", on the other hand, showed nearly no differences for 285 

manipulated and non-manipulated treatments (~12.72, ~12.49). Apart from that, manipulated treatments showed a greater 

maximum standard deviation than non-manipulated treatments (LV-cc: 5.2 < 6.6; LV-ng: 4.7 < 6.1; RG-ca: 1.6 < 6.2). Clearly 

higher RVI values were reached in non-eroded and strongly eroded soils compared to extremely eroded soil only during the 

first growing season in fall of 2020 until the non-growing season. Thus, mean RVI values of ~4.96 to 7.81 were obtained for 

non-eroded and strongly eroded soils, while the extremely eroded soils had mean RVI values of only ~3.22 (manipulated) and 290 

~3.61 (non-manipulated). 

3.3 ET Fluxes 

A total of 13,011 ET flux measurements were performed, resulting in approximately 2,169 measurements per treatment. ET 

fluxes differ mainly between soil types (Fig. 3) with minor differences between non-manipulated and manipulated treatments 

of the same soil type. The seasonal trend of the ET-fluxes is similar for all treatments: a short growth phase after germination 295 

is followed by a drop in fluxes until the non-growing season in winter, when hardly any plant activity is found due to low 

temperatures. At the end of the non-growing season, fluxes in the magnitude of those observed in fall occur quickly and 

subsequent rapidly increase. On the non-eroded soil (LV-cc) this rapid increase continued into June, while the eroded soils 

(LV-ng and RZ-ca) showed their peak already in May. Notably, there is a data gap from late April to late May due to sensor 

failure.  300 

3.4 Gap filling and validation 

Figure 4 shows the calibration model-performance of the different tested gap-filling approaches as 1:1-agreement plots with 

associated coefficients of determination (r2). Pronounced differences of tested gap-filling approaches in terms of respective 

calibration statistics could be found. NLR shows a clear overestimation at low and underestimation of higher ET fluxes. 

Compared to that, MDV more accurately predicts low/high ET fluxes, but is characterized by a much lower precision due to a 305 

higher variance. Among all gap filling approaches, displayed r2 (> 0.89) and NSE (> 0.9; see table 1) indicate a good prediction 

for SVM, ANN_Br and LUT over the entire range of observed ET fluxes. Considering the k-fold-cross validation (Fig. 5, table 

2), one can quickly see that LUT is not suitable due to allocation problems while ANN_Br and SVM also perform well. 

Statistically, ANN_BR and SVM were similarly good in predicting observed ET fluxes (table 1 and 2) even if they show a 

small tendency to overestimate low ET fluxes. However, gap-filled ET fluxes using ANN-BR showed a large number of 310 

negative ET fluxes over the entire non-growing season, which is generally less realistic. Hence, we chose SVM to gap-fill ET 

flux data and predict crop season budgets.  
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3.5 Seasonal ET budgets, temporal dynamics and treatment differences 

In order to compare the individual treatments, daily and cumulative ET budgets were calculated (Fig. 6). ET was affected by 

T, RH, PAR, and RVI, whereas only a small correlation was found with SM (Fig. 7; table B2). Higher ET fluxes were induced 315 

by increases in T, PAR and RVI, whereas increasing RH resulted in lower ET fluxes. The seasonal ET budgets (ETsum, Fig. 

8a) range between 197.74 ± 36.36 mm (LV-cc n-m) and 169.66 ± 24.28 mm (RG-ca m). In general, increasing erosion tends 

to a decrease in ETsum. Statistical analysis of the correlations revealed that no significant difference was found between ETsum 

of the different treatments. DM and WUE, on the other hand, differed significantly between treatments (Kruskal-Wallis-Test, 

DM: χ2 = 14.58, df = 5, p = 0.01; WUE: χ2 = 11.15, df = 5, p = 0.05).   320 

3.6 Crop productivity and WUE 

The amount of plant biomass in dry mass (DM) [kg] is decreasing from non-manipulated to manipulated and less eroded soil 

types to more eroded soil types. DM ranges from 1.5 ± 0.13 kg m-2 for ”LV-cc n-m” to 0.85 ± 0.2 kg m-2 for “RG-ca m”.  

WUEagro is decreasing from less eroded to more eroded soil types ranging from 7.73 ± 1.07 g DM kg-1 H2O to 4.98 ± 0.76 DM 

kg-1 H2O (Fig. 8).  325 

4 Discussion 

ET is the main ecosystem response variables to drought and mostly measured or modelled on a larger scale by e.g. measurement 

systems such as eddy covariance, Bowen ratio or even satellite remote sensing. These methods are unsuitable for assessing 

small scale differences and do require great experimental care or errors can lead to serious economic losses due to incorrect 

water management (Allen et al. 2011; Burba and Verma 2005; Hargreaves 1989). Here, the used, new automated chamber 330 

system, which is based on a gantry crane combined with complex gap-filling approaches, offers an unprecedented opportunity 

to combine benefits of all methods (high temporal resolution of e.g. eddy covariance with high spatial resolution of chamber 

measurements) with less disadvantages (e.g. atmospheric disturbances due to permanently installed chambers). It measure ET 

reliably in high-resolution, while allowing for the assessment of treatment effects on ET (in this case soil type and 

management). We can see, that differences in ET over the growing season as well as between soil types and management 335 

options result from a variety of factors. In the following we will discuss i) soil-type and management effects on budgets as 

well as spatio-temporal variability of ET fluxes over the growing season as well as on  WUEagro and ii) the suitability gap-

filling strategies used in this study as well as potential ways forward to improve these approaches. 

4.1 Seasonal variability, soil and treatment differences in ET fluxes and WUE 

Over the entire growing period, ET fluxes responded on the long term particularly to crop growth, first during the establishment 340 

period in fall (mid of October to mid of November) and then again during the main growth period in spring (end of March to 

mid of May). The close relation of measured ET flux dynamics to obtained RVI (Fig. 7) (e.g. Hanks et al. 1969), can be 
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associated with increasing transpiration rates that superimpose the suppressive effects of increasing canopy biomass (e.g. 

increases in LAI or RVI) on soil evaporation (Dubbert et al. 2014; Groh et al. 2020). More dynamically, ET reacted to changes 

in environmental conditions, particularly temperature and relative humidity which together define the vapour-pressure deficit 345 

(VPD) as well as PAR. In particular, crops that have been bred to prioritize carbon gain over water conservation will tend to 

respond to rising VPD strongly (Dubbert et al. 2014; Massmann et al. 2019).  In summary, air temperature, humidity and PAR 

together with increasing biomass (expressed as higher RVI) control ET variability during the peak growth period in spring 

until harvest. Soil moisture, on the other hand, did not have a limiting effect on ET during the period considered. This is 

noteworthy since the Uckermark region has an ETpot/Pr ratio of nearly 1 which is regarded as a threshold value between systems 350 

that are energy (<1) vs. water limited (>1; DWD 2022).  

The soil types in the region vary in their suitability for agricultural cultivation (MLUK 2020). Luvisols show a good water 

budget due to their clay-depleted deep topsoils in combination with the clay-enriched and mostly decalcified subsoils and thus 

belong to the most fertile soils in Brandenburg (MLUK 2020; Stahr 2022). Regosols are generally only moderately suitable 

for arable farming but cultivated in the studied region. They are usually found on hilltops and are characterized by C horizons 355 

near to the surface, lack of depth development, and limited rootability due to the dense, high carbonate parent material, resulting 

in a low water availability and plant growth (Herbrich et al. 2018). It is a typical soil type, formed by erosion of agricultural 

Luvisols. As a result of these conditions and the associated increase in drought and heat events in Central Europe (Spinoni et 

al., 2018), regional farmers might become limited in their choice of crops grown due to water availability. Here, our results 

indicate significant differences between measured soil types in DM and WUEagro but no significant differences between ETsum, 360 

although we see a clear decreasing trend along the erosion gradient and topsoil manipulation of the three studied soil types 

(198 ± 36 mm to 170 ± 25 mm). This was expected due to the supposed lower rootability and soil fertility, but the difference 

was likely reduced by the comparatively wet year of observation. A dry spell during the main growth period could lead to 

larger differences here. Since there are no significant differences in ETsum, it can be concluded that the observed 

agroecosystems was mostly energy limited, however it is very likely that the ETpot/Pr ratio will vary considerably between 365 

wetter and drier years and between different crops (particularly winter vs. summer crops). Winter crops and especially winter 

rye, are more resilient to drought (Ehlers 1997) and an investigation with other crops and management strategies could lead to 

a higher decrease in ET with soil erosion. The difference in DM for the observed year was much larger compared to the ET 

differences in turn driving soil type or erosion effects on the water use efficiency (WUEagro). In a period of consecutive dry 

years e.g., a lower WUE could additionally have a negative effect on the water and carbon balance of the whole system, since 370 

the water consumption becomes largely unproductive (up to 36% less yield per used amount of water; Meena et al. 2020). This 

could further exacerbate the drought.  

One of our expectations was that differences in ET crop season budgets would result mainly from differences during the main 

vegetation period from April to harvest due to variations in biomass and thus transpiration. In contrast, differences in ET 

budgets between soil types, rather occur continuously throughout the period with very little variation. It is noticeable that ET-375 

fluxes of eroded treatments prior the growing season are lower than those of non-eroded plots for long periods. Although the 
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growing season between April and June is responsible for a large portion of total evapotranspiration for the entire period, 

ranging from ~ 64% to ~ 70%, it is only responsible for a small portion of differences, with a maximum of ~  12.3 mm from 

the non-eroded plot. The prior period, on the other hand, is responsible for a difference of up to ~ 15.8 mm from non-eroded 

plots, although it accounts for only ~ 30 % to 36 % of total evapotranspiration. However, it should be noted that mean 380 

differences per day of about 0.14 mm in the growing season was about 75% higher than in the previous period with about 0.08 

mm per day. This is interesting, because it suggests that the reason behind the soil type differences in ET are caused by static 

differences (e.g. lower biomass) rather than dynamic differences (e.g. the vegetation responses to environmental drivers or 

drought). Here, partitioning ET into evaporation and transpiration (e.g. Rothfuss et al. 2021) could help explain the reasons 

for small-scale ET variability.  385 

Beside this static differences, high ET fluxes could be detected at the beginning of the growing season which could be explained 

by a lower soil cover. This may be related to the fact that vegetation cover due to uneven field emergence, which is visible in 

the RVI, can largely reduce soil evaporation (Dubbert et al. 2014; Hu et al. 2009; Raz-Yaseef et al. 2012; Wang et al. 2012).  

However, the vegetation period studied can be described as rather wet compared to long-term environmental conditions and it 

will be interesting to monitor this for a number of years differing in environmental and hydrological conditions as well as for 390 

different crops. For example, the more eroded soil types are reported to lead to decreases in rooting depths (Öttl et al. 2021; 

Sommer et al. 2016; Herbrich et al. 2018). In dry years, this may very well lead to a more pronounced response in ET flux 

dynamics between the treatments particularly in the spring summer transition compared to results from the present study, when 

the crop benefits stronger from deep water sources during pronounced dry spells (Thorup-Kristensen et al. 2020). Finally, 

results for evapotranspiration from nearby lysimeters suggested annual gross ET budgets of around 300 mm to 600 mm in 395 

years between 2014 and 2018 with varying crops (Groh et al. 2020). The budgets estimated in (Groh et al. 2020), however, 

were spanning over the entire year, whereas in this study budgets were calculated to the crop period (only ~9 months and the 

summer months with high ETpot excluded), explaining the overall higher budgets. In addition, temperatures and precipitation 

were below average in April and May during the growing season under consideration which result in lower ET thus matching 

our results. Thus, our ET budgets seem sensible overall, however, a direct comparison between the new gantry crane chamber 400 

system, lysimeters and potentially drone based observations of ET would be advisable particularly in light of ongoing 

discussions surrounding method constrains of estimating ET across scales (Ding et al. 2021; Ghiat et al. 2021; Hamel et al. 

2015). 

4.2 Gap-filling approaches 

The experimental design of the used gantry crane system with a high amount of different treatments and measurements of 405 

diurnal cycles coupled with unsuitable climate conditions causes data gaps that need to be filled. The challenge was composed 

of two main elements: i) the correct quantification of ETsum and ii) a realistic prediction of diurnal variations both during winter 

(low ET) and summer (high ET). With respect to the gap-filling approaches compared, it was determined that all approaches 

provided fairly plausible results for accounting of ETsum. While LUT showed good calibration results, allocation problems 
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caused the least predictive ability during validation over the entire range of measured ET fluxes. While some studies received 410 

also fairly plausible results for LUT and MDV (Boudhina et al. 2018; Falge et al. 2001a; Moffat et al. 2007), adjusting the 

classes of the LUT could further improve the results of this approach. However, due to the significantly good results of the 

other approaches, this was not done yet. Additionally, other studies found out that MDV (as well as LUT) especially performs 

worse with increasing large gaps (Moffat et al. 2007; Kim et al. 2020). Especially for conditions, where no measurements 

could take place due to environmental conditions, the fact that MDV takes averaged values of close measurements with good 415 

measurement conditions could explain the bad predictions. Same for LUT, since no classes could be created for conditions no 

measurements took place. The machine learning approaches SVM and ANN_BR, on the other hand, also performs well here. 

For seasonal variability and budgets we also achieved the best performance with approaches ANN_BR and SVM. However, 

the best approach for gap filling can vary depending on the application and investigated parameter. For example, in gap-filling 

methane fluxes using eddy covariance (Kim et al. 2020), ANN_BR was superior to SVM. Additionally, results of other studies 420 

like (Shrestha and Shukla 2015), who tried to predict actual evapotranspiration (ETa) measured with lysimeters with different 

approaches (e.g. ANN_BR and SVM) and crops (pepper, watermelon) in a sub-tropical environment resulting in best 

predictions with SVM (pepper: 204.7 mm lysimeter vs. 181.8 mm SVM; watermelon: 231.71 mm lysimeter vs. 189.83 mm 

SVM) found a overestimation of low- and underestimation of high-fluxes of ANN_BR and SVM. We were able to detect this 

tendency only with a slight overestimation of small fluxes. In comparison to empirical calculations, another study by (KIŞI 425 

and ÇIMEN 2009) worked out, that SVM performed even better for ET0 predictions (FAO-56 PM) with solar radiation, 

temperature, relative humidity and wind speed compared to commonly used empirical approaches like CIMIS-Penman, 

Hargreaves, Ritchie or Turc and similar with reduced parameters (solar radiation and temperature). Thus, using other 

environmental parameters such as wind speed could also improve SVM results for our application. Additionally, it must be 

noted that the quality of SVM (and ANN_BR) predictions is highly dependent on the amount of data (Chia et al. 2020; Abudu 430 

et al. 2010). 

4.3 Conclusion and outlook 

Filling data gaps using statistical and empirical approaches is used in many fields like calculations of reference ET (ET0) with 

limited meteorological parameters (Chia et al. 2020) or actual ET (ETa) from eddy-covariance measurements as well as plant 

chamber measurements (Hui et al. 2004; Moffat et al. 2007; Falge et al. 2001a; Falge et al. 2001b; Hamel et al. 2015; Kübert 435 

et al. 2019). The connection between gap-filling approaches in combination with the described continuous high-resolution 

long-term ET measurements of numerous small-scale treatments gives additional opportunities to observe the progression of 

ET over an entire growing season. In comparison to eddy covariance measurements (e. g. Boudhina et al. 2018; Simpson et al. 

2019), this approach is able to point out small scale treatment differences like soil type differences and associated erosion 

stages at a heterogeneous field with a relatively high number of different treatments simultaneously.  Additionally, there is not 440 

such a big impact through the system compared to e.g. permanently installed plant chambers or manually conducted approaches 

which deal with condensation problems due to fix installed tubing and inappropriate air mixing inside the chamber (e. g. 
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(Hamel et al. 2015). This problem does not exist with the automated gantry crane system, since there are permanent 

measurements and a consistent air flow through the system.  

The study could demonstrate, that the gantry crane system used provided plausible ET fluxes. While it has many benefits over 445 

other measurement systems, there are some particular challenges. For example, the crane and the installed measuring 

equipment have to be checked regularly and in case of strong winds a manual shutdown and fixation have to be performed. 

With respect to the ET measurements, there might also be an underestimation of the automated chambers, which has already 

been found in comparison to the measurement with the eddy covariance in other studies (e.g. Simpson et al., 2019). To shed 

light on this problem, a more detailed comparison could be made in the future with nearby lysimeters with the same soil types. 450 

In order to the gap filling approaches, only the support vector machine (SVM), artificial neural network with Bayesian 

regularization (ANN_BR) and non-linear regression (NLR) approaches are suitable for a consistently consideration of diurnal 

variations at this stage, while all approaches provided plausible data for the seasonal period. Thereby, gap filling is highly 

dependent on data quality, with larger gaps leading to greater problems. Since the gantry crane was unable to provide data for 

extended periods (up to approx. 1. month), this led to uncertainties. However, the studied measurement period was the first 455 

full crop period observed by the novel infrastructure and these initial problems will be very likely mitigated in the future 

through reliable and regular maintenance. One gap in particular should be highlighted in the data considered: hardly any data 

could be collected with chamber 1 for an extended period of time due to a sensor problem in May (May 1 to May 29.). Although 

the gap could be filled reasonably well with the SVM, with validation statistics indicating a reasonable predicting performance 

(Table 2), an underestimation is possible due to the large gaps importance of this month for plant growth. Additionally, an 460 

interruption of the non-growing season could cause better results, since it can be assumed that already in short warmer period’s 

plant activity is to be found (<3 days less than 5°C). Here, e.g. several non-growing seasons could represent the plant growth 

much better and lead to a further increase of the predicted accuracy. 

Despite these small flaws, the system has a very large potential to bring new insights into water-flux dynamics and budgets 

and, in combination with measurements of NEE into growths season dynamics of water use efficiencies in the future. On the 465 

one hand, the different effects of soil types and related erosion levels on other crops could be investigated, and on the other 

hand, related knowledge for cultivation could be gained. Furthermore, in contrast to other established approaches to quantify 

ET at the plots scale, the novel system is unique in its potential to combine it with innovative measurements such as stable 

water isotopes (Dubbert et al. 2014; Kübert et al. 2020). Stable water isotopes could be used to separate the evapotranspiration 

into transpiration and evaporation, [which is of crucial importance for the terrestrial water balance and for the prediction of 470 

future ecosystem feedbacks] (Groh et al. 2020). This could lead to further plant specific knowledge like e.g. root water uptake 

and uptake depths of different crops. Especially the possibility of automated high-resolution long-term measurements of these 

parameters is unique and could provide further knowledge about the ratio of evaporation and transpiration in the course of the 

season, since we expect huge changes through drought here.  
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Tables: 

 

 710 

Table 1: Statistical values for the calibration of all gap-filling approaches and treatments. 
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Approach MAE NRMSE NSE R2 

 

Approach MAE NRMSE NSE R2 

RG-ca nm RG-ca m 

MDV 0.26 39.2 0.85 0.85 MDV 0.24 35.4 0.87 0.88 

LUT 0.06 11.5 0.99 0.99 LUT 0.06 11.9 0.99 0.99 

NLR 0.51 50.7 0.74 0.75 NLR 0.49 48.6 0.76 0.77 

SVM 0.26 30 0.91 0.91 SVM 0.24 28.7 0.92 0.92 

ANN_BR 0.28 28.1 0.92 0.92 ANN_BR 0.24 25.5 0.93 0.93 

LL-ng nm LL-ng m 

MDV 0.25 28.7 0.92 0.92 MDV 0.24 29.7 0.91 0.91 

LUT 0.06 10.9 0.99 0.99 LUT 0.06 10.7 0.99 0.99 

NLR 0.48 41.6 0.83 0.83 NLR 0.49 41.3 0.83 0.84 

SVM 0.25 23.1 0.95 0.95 SVM 0.26 24.1 0.94 0.94 

ANN_BR 0.28 24.5 0.94 0.94 ANN_BR 0.27 24.3 0.94 0.94 

LL-cv nm LL-cv m 

MDV 0.22 30.4 0.91 0.91 MDV 0.21 29.1 0.92 0.92 

LUT 0.06 13.3 0.98 0.98 LUT 0.05 10.9 0.99 0.99 

NLR 0.44 42 0.82 0.83 NLR 0.43 41.8 0.83 0.83 

SVM 0.23 25.1 0.94 0.94 SVM 0.21 23.7 0.94 0.94 

ANN_BR 0.26 26.8 0.93 0.93 ANN_BR 0.25 26.5 0.93 0.93 
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Table 2: Statistical values for the validation of all gap-filling approaches and treatments. 740 
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Approach MAE NRMSE NSE R2 

 

Approach MAE NRMSE NSE R2 

RG-ca nm RG-ca m 

MDV 0.27 44.5 0.8 0.82 MDV 0.23 35.4 0.87 0.88 

LUT 0.69 72.3 0.48 0.48 LUT 0.65 71.1 0.49 0.5 

NLR 0.51 50.9 0.74 0.75 NLR 0.49 48.8 0.76 0.77 

SVM 0.3 33.9 0.89 0.89 SVM 0.28 32 0.9 0.9 

ANN_BR 0.31 32.1 0.9 0.9 ANN_BR 0.27 29.6 0.91 0.91 

LL-ng nm LL-ng m 

MDV 0.25 31 0.9 0.91 MDV 0.25 31.6 0.9 0.9 

LUT 0.74 65.9 0.57 0.57 LUT 0.78 67.7 0.54 0.54 

NLR 0.48 41.7 0.83 0.83 NLR 0.49 41.4 0.83 0.84 

SVM 0.28 25.4 0.94 0.94 SVM 0.29 26.6 0.93 0.93 

ANN_BR 0.3 26.2 0.93 0.93 ANN_BR 0.29 26.3 0.93 0.93 

LL-cv nm LL-cv m 

MDV 0.24 33.7 0.89 0.89 MDV 0.21 30.3 0.91 0.91 

LUT 0.72 72.3 0.48 0.48 LUT 0.65 68.8 0.53 0.53 

NLR 0.44 42.2 0.82 0.83 NLR 0.43 42 0.82 0.83 

SVM 0.26 28.2 0.92 0.92 SVM 0.23 26.3 0.93 0.93 

ANN_BR 0.28 29.8 0.91 0.91 ANN_BR 0.28 29.5 0.91 0.91 
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Figures: 

 

 

Figure 1: (a) AgroFLUX research site in the CarboZALF-D experimental area with (b) the 110 x 16 m field where (d) the FluxCrane operates 775 
on (c) 18 measurement plots from (e) three different soil types (LV-cc: non-eroded calcareous Luvisol, LV-ng: highly eroded nudiargic 

Luvisol, and RG-ca: extremely eroded calcareous Regosol). 
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 780 

Figure 2: Environmental parameters during the measurement period with (a) daily mean temperatures (orange line; light grey = associated 

variation) and daily mean relative humidity (black line; dotted lines = associated variation), (b) photosynthetically active radiation (purple) 

and (c) soil moisture (blue line) and precipitation (blue bars). 
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Figure 3: Measured ET fluxes of the three soil types (replicates summarized) over the entire observation period (non-manipulated treatments 785 
on the left, manipulated treatments on the right). 
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 790 

Figure 4: Comparison of the measured (bottom) with the predicted (left) ET fluxes and associated r-square values (R2) of the calibration 

results of all approaches. The black line forms the 1/1 line. The different treatments are shown above, the approaches on the right. 
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Figure 5: Comparison of the measured (bottom) with the predicted (left) ET fluxes and associated r-square values (R2) of the validation 

results of all approaches. The black line forms the 1/1 line. The different treatments are shown above, the approaches on the right. 795 
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Figure 6:  Daily mean ET sums (colored lines) of the different treatments and mean seasonal ET budgets (dashed lines) with variations 

between replicates (light and dark grey). 
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Figure 7: Relationship between ET and temperature (T) [°C], relative humidity (rH) [%], photosynthetically active radiation (PAR) [μmol 800 
m-2 s-1] and ratio vegetation index (RVI) [mmol m-2 s-1] as well as associated regression lines. 
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Figure 8: Averaged seasonal ET-totals [mm] (a), harvest in form of dry mass (DM) [kg] (b), and WUEagro of the different treatments and 

the associated standard deviation. 805 
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Appendix A: 

 

  810 

Figure A1: RVI fit (colored lines) of the different treatments with variations between replicates (light grey). 
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Figure A2: Schematic representation of the main steps of the presented data processing: raw data preparation was followed by a campaign-

specific ET-flux calculation. Then, environmental parameters were used for gap filling using five different approaches. After calibration and 

validation, the most accurate approach was used for gap filling. 820 
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Appendix B: 

                                                           

 825 
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 855 

 

package source 

Akima Akima & Gebhardt (2021) 

Andrews Myslivec (2012) 

Base R Core Team (2021) 

Boot Davison & Hinkley (1997) 

Caret Kuhn (2021) 

data.table Dowle & Srinivasan (2021) 

e1071 Meyer et al. (2021) 

FSA Ogle et al. (2022) 

ggplot2 Wickham (2016) 

gridExtra Auguie (2017) 

gt Iannone et al. (2022) 

hydroGOF Mauricio Zambrano-Bigiarini (2020) 

Kernlab Karatzoglou et al. (2004) 

Lattrice Sarkar (2008) 

Lmtest Zeileis & Hothorn (2002) 

lookupTable Jia & Maier (2015) 

Lubridate Grolemund & Wickham (2011) 

Neuralnet Fritsch et al. (2019) 

Nortest Gross & Ligges (2015) 

Plotrix J (2006) 

Plyr Wickham (2011) 

Reshape Wickham (2007) 

Shape Soetaert (2021) 

Tibble Müller & Wickham (2021) 

tidyr Wickham & Girlich (2022) 

Vioplot Adler & Kelly (2020) 

webshot Chang (2022) 

Zoo Zeileis & Grothendieck (2005) 

Table B1: Used R packages and associated sources. 
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 890 

Treatment Parameter r2 p 

LV-cc n-m T 0.49 4.27E-16 

LV-cc m T 0.54 3.52E-18 

LV-ng n-m T 0.54 3.02E-18 

LV-ng m T 0.61 7.71E-22 

RG-ca n-m T 0.46 1.05E-14 

RG-ca m T 0.56 3.45E-19 

LV-cc n-m RH 0.56 1.71E-19 

LV-cc m RH 0.54 3.10E-18 

LV-ng n-m RH 0.52 1.57E-17 

LV-ng m RH 0.48 1.48E-15 

RG-ca n-m RH 0.44 5.30E-14 

RG-ca m RH 0.39 4.11E-12 

LV-cc n-m PAR 0.84 1.40E-41 

LV-cc m PAR 0.84 2.12E-41 

LV-ng n-m PAR 0.85 3.82E-43 

LV-ng m PAR 0.85 4.43E-43 

RG-ca n-m PAR 0.87 3.57E-45 

RG-ca m PAR 0.85 6.75E-43 

LV-cc n-m RVI 0.24 1.67E-04 

LV-cc m RVI 0.2 6.51E-04 

LV-ng n-m RVI 0.17 1.76E-03 

LV-ng m RVI 0.21 4.81E-04 

RG-ca n-m RVI 0.33 5.06E-06 

RG-ca m RVI 0.39 3.47E-07 

Table B2: Statistical values (r² and p) for 

the relationship between ET and response 

variables (environmental parameter). 
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