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Abstract. In light of the ongoing global climate crisis and related increases in extreme hydrological events, it is crucial to 

assess ecosystem resilience and - in agricultural systems - to ensure sustainable management and food security.  For that 

purpose, comprehensive understanding of ecosystem water cycle budgets and spatio-temporal dynamics are indispensable. 15 

Evapotranspiration (ET) plays a pivotal role returning up to 90 % of incoming precipitation back to the atmosphere. Here, we 

studied impacts of soil types and management on an agroecosystem’s seasonal cumulative ET (ETsum) and agronomic water-

use efficiencies (WUEagro, dry matter per unit of water used by the crop). To do so, a plot experiment with winter rye (September 

17, 2020 to June 30, 2021) was conducted at an eroded cropland which is located in the hilly and dry ground moraine landscape 

of the Uckermark region in NE Germany. Along the experimental plot (110 m x 16 m), two closed chambers were mounted 20 

on a robotic gantry crane system (FluxCrane as part of the AgroFlux platform) and used to continuously determine ET. Three 

soil types representing the full soil erosion gradient related to the hummocky ground moraine landscape (extremely eroded: 

Calcaric Regosol, strongly eroded: Nudiargic Luvisol, non-eroded: Calcic Luvisol) and additional top-soil dilution (topsoil 

removal and subsoil admixture) were investigated (randomized block design, 3 replicates per treatment). Five different gap-

filling approaches were used and compared in light of their potential for reliable ETsum over the entire crop cultivation period 25 

as well as to reproduce short-term (day-to-day, diurnal) water-flux dynamics. While machine learning approaches such as 

support vector machines (SVM) and artificial neural networks (with Bayesian regularization; ANN_BR) generally performed 

well during calibration, SVM also provided a satisfactory prediction of measured ET during validation (k-fold cross validation, 

k = 5). 

We found significant, major differences in dry biomass (DM) and small trends in ETsum between soil types, resulting in 30 

different WUEagro. The extremely eroded Calcaric Regosol showed an up to 46 % lower ETsum and up to 54 % lower WUEagro 

compared to the non-eroded Calcic Luvisol.  The key period contributing to 70 % of ETsum was from the beginning of stem 

elongation in April to harvest in June. However, differences in the ETsum between soil types and topsoil dilution resulted 
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predominantly from small differences between the treatments throughout the cultivation, rather than only during this short 

period of time. 35 

1 Introduction 

Only 12 % of the world's land area is suitable for food and fiber production due to its highly productive soils (Blum, 2013). 

Much of this land is already in use to ensure food security, mandated by a still growing human population paired with the 

ongoing climate crisis (Searchinger et al. 2018). Worldwide, land area is largely affected by soil degradation (Jie et al., 2002) 

and agriculture is closely related, since at least six degradation processes (e.g. erosion or compaction) are associated with it 40 

(Louwagie et al., 2011). In hummocky landscapes, erosion and associated topsoil dilution caused by, e.g. wind, water or tillage, 

affects the crop yields (Bakker et al. 2007; Biggelaar et al. 2003). In addition, weaker rootability on eroded soils suggests a 

higher susceptibility towards droughts (Schneider and Don 2019). However, methodologically studying the influence of small 

scale soil heterogeneity (e.g. soil erosion) and land use (e.g. soil management) on the dynamics of the water balance (especially 

evapotranspiration (ET)) separately has been challenging. The effect of both factors can be significantly different with complex 45 

interactions, e.g. soil erosion can lead to differences in soil water storage capacity and management affects soil organic matter 

and water retention  (Bakker et al. 2007; Biggelaar et al. 2003) Thus,  a separate response analysis is an indispensable 

prerequisite for the development of site-specific land use procedures adapted to the changing climate conditions. Moreover, 

the climate crisis is affecting the amount and spatio-temporal distribution of precipitation worldwide, leading to more frequent 

and stronger precipitation events in high-precipitation regions (e.g. increase of 10 – 40 % in northern Europe; DWD, 2019) 50 

and fewer and weaker events in low-precipitation regions (e.g. up to 20 % decrease in the Mediterranean region and 

southeastern Europe; Trenberth, 2011). In Germany, annual precipitation is more than 800 mm in most regions of west and 

south Germany but only 400 - 500 mm y-1 in the northeast (e.g. areas in Brandenburg and Mecklenburg-Western Pomerania; 

Schappert, 2018). Here, dry hydrological conditions and erosion shaped landscapes meet. As crop yields and related crop 

productivity depend on various factors such as soil properties or water availability, such agriculturally used precipitation 55 

limited regions could face increasing problems.  

ET describes the total amount of water that evaporates from a given area and is thus defined as the sum of soil evaporation 

(E), transpiration (T) and interception evaporation (Fohrer et al., 2016; Rothfuss et al., 2021). Generally, ET is one of the 

most important components of the hydrological cycle in terrestrial ecosystems, accounting for up to 100 % of ingoing 

precipitation (Hanson 1991). With a share of up to 90 %, it is largely dominated by T in most terrestrial ecosystems, 60 

indicating that terrestrial vegetation is a dominant force in the global water cycle (Jasechko et al. 2013). Due to the expected 

increasing dependency of a systems productivity on sufficient water supply with an accelerating climate crisis, quantifying 

the ET plays an important role to achieve a process-based understanding of the mitigation potential of different crops to 

drought in the future and to, e.g., establish a more efficient supplemental irrigation. Moreover, there is a tight link of carbon 
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and water cycling in precipitation limited systems because water loss by ET and the water use efficiency of a system can 65 

largely define its productivity (Tallec et al., 2013).  

A particular challenge in current ET research is combining high frequency with multi treatment approaches. At the field scale 

for example, eddy covariance systems provide high frequency estimates of ET of a homogeneous system while currently 

dominant manual chamber approaches are able to precisely capture multi treatment effects (<1m²) on ET at the plot scale, but 

lack the high frequency. In this regard, modern automated chamber systems allow a combination of high frequency 70 

measurements and thus high temporal resolution with multi-treatment observation. They provide the unique opportunity to test 

advanced gap-filling strategies, able to reproduce not only seasonal cumulative ET (ETsum) but day to day and diurnal 

variability in ET. Modern gap-filling methods (e.g. artificial intelligence and neural network approaches) have previously been 

limited to eddy covariance measurements. Coupling such advanced gap-filling strategies with modern automatic chamber 

systems might be an ideal fusion of measurement frequency and the ability to capture treatment effects like small scale soil 75 

differences (Falge et al. 2001a; KIŞI and ÇIMEN 2009). AgroFlux – a newly developed sensor platform centered around 

closed chambers mounted on an robotic gantry crane (FluxCrane) – was initially built to capture the effect of soil type and 

management on GHG emissions and in particular CO2 fluxes with high spatial and temporal resolution (Vaidya et al. 2021). 

The adaption of the system to measure ET provided us with the opportunity to analyze stand scale ET fluxes including the 

development of a data analysis tool for measured ET-fluxes, and test different gap-filling strategies. We tested five different 80 

gap-filling strategies including basic statistic and advanced approaches including machine learning approaches. During the 

cultivation period of winter rye from mid-September 2020 to the end of June 2021, ET and relevant environmental and plant 

growth parameters were measured to identify the corresponding drivers of crop ET and productivity. The FluxCrane system 

covers a field where three different soil types are present, which reflect the erosion gradient typical for the hillside of the 

hummocky ground moraine landscape of northeast Germany. This made it possible to evaluate the impact of soil type as well 85 

as soil management on ETsum, seasonal development and agronomic water use efficiency (WUEagro; dry matter per unit of water 

used by the crop).  

In the following we will examine i) soil type and top soil dilution effects on crop yield, ETsum and WUEagro, ii) the spatio-

temporal variability of ET fluxes over the growing season, and iii) the suitability of various gap-filling strategies. The paper’s 

aim is to establish an approach that would provide reliable predictions of ET fluxes both in terms of ETsum as well as diurnal 90 

trends of ET fluxes. We hypothesize that: i) eroded soils and top-soil dilution lead to decreased ET controlled by weaker plant 

growth, ii) WUEagro declines from least to most eroded soil type and with top soil dilution; iii) the automated, continuous 

FluxCrane measurements result in unique insights into small scale dynamics such as night time ET fluxes and ET fluxes during 

the non-growing season. Here, we hypothesize, that iv) the uncommonly (compared to manual chamber systems) large data 

set allows for a robust use of gap-filling strategies based on machine learning. We envisage that this will greatly improve ETsum 95 

and subsequently WUEagro based on automated closed chamber systems. 

 

 



4 

 

 

2 Material and Methods 100 

2.1 Study Site and experimental design 

The AgroFlux experimental platform is located in Brandenburg, a federal state in northeast Germany, near Dedelow within 

the Uckermark region (53° 23´ N, 13° 47´ E; ~50-60 m a.s.l). Brandenburg, which includes some of the driest regions in 

Germany, uses 48.6% or about 1.44 million hectares of its area for agriculture (Amt für Statistik Berlin-Brandenburg, 2020). 

It is located in the continental climate zone and has a water deficit of about 150 mm during the growing season (Wessolek and 105 

Asseng 2006). The long-term (1991 to 2020; ZALF) mean annual air temperature in this region is 8.8°C with a mean annual 

precipitation and potential evapotranspiration of 467 mm and 637 mm, respectively (ZALF research station, Dedelow).  The 

focus of agriculture in Brandenburg is on grain production, which faces a variety of challenges due to increasingly dry 

conditions during the main growing season (Amt für Statistik Berlin-Brandenburg, 2020). The Uckermark region is the most 

productive region for agriculture within Brandenburg. It is shaped by glaciation with a hilly to flat-wavy ground moraine 110 

landscape whose soils are strongly influenced by soil erosion (Nudiargic Luvisol, Calcaric Regosols, Colluvic Regosols) as 

well as redoximorphic soils (Stagno-,  Gleysols) (MLUK, 2020). The strong soil heterogeneity and ongoing soil erosion, 

mainly by tillage, has a great influence on the productivity of the cultivated areas (Sommer et al. 2016). Today, only 20% of 

the land is not affected by past and present soil erosion due to tillage and water (Sommer et al. 2008; Wilken et al. 2020) 

resulting in a very high spatial variability of soils (Wehrhan and Sommer 2021) and associated growing conditions for crops 115 

(Wehrhan et al. 2016). In combination with the ongoing climate crisis, it is proving difficult to develop land-use methods that 

allow reliable and sustainable arable farming under these challenging conditions.  

The study was carried out on the 100 x 16 m FluxCrane experimental field, an integral part of the AgroFlux sensor platform 

located at the interdisciplinary research area CarboZALF-D (Fig. 1a). There is  an elevation difference of one meter and all 

relevant local erosion stages are covered (WRB 2014): non-eroded Calcic Luvisol (LV-cc), strongly eroded Nudiargic Luvisol 120 

(LV-ng) and extremely eroded Calcaric Regosol (RG-ca); see Fig. 1b, e; (Sommer et al. 2008; Wehrhan et al. 2016; Vaidya et 

al. 2021). Here we used 18 plots in total, 6 per soil type (Fig. 1c). For the 6 plots per soil type, a randomized, full-factorial 

design, each repeated three fold, was adopted for topsoil dilution vs. non-topsoil dilution (first 8 to 9 cm). During the study 

period from September 2020 to June 2021 (286 days), winter rye of the hybrid variety SU Piano was grown with a density of 

200 plants per m² on an area of 0.176 ha. The novel gantry crane automatic chamber system (Fig. 1d) was installed on this 125 

study site in 2019 (see Vaidya et al. 2021). The attached gas exchange chambers were lowered on each plot on round structural 

steel frames with a diameter of 1.59 m and a basal area of 1.99 m2.  

2.2 Cultivation and top-soil dilution 

The AgroFLUX sensor platform site is located on a conventionally farmed agricultural area that is intended to represent a 

variety of soils in the region. Hence, top-soil dilution, tillage, cultivation and fertilizer application measures were implemented 130 
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before and during the experiment. The manipulative field experiment was originally established to study the feedbacks of a 

dynamic disequilibrium in the carbon cycle of arable lands. Deep tillage or soil erosion lead to an admixture of subsoil material 

into the plough layer (Doetterl et al. 2016) which alters topsoil properties (SOC, clay content etc.). The resulting changes in 

the main rooting zone might reduce crop growth (Öttl et al. 2021). We mimic these common landscape processes in our top-

soil dilution experiment under controlled conditions (Vaidya et al. 2021). After topsoil removal (1.2 t per plot; first 8-9 cm; 3 135 

of the 6 plots per soil; July 14-15, 2020) we added the equivalent mass (1.2 t) of the respective subsoil horizons (E, Bt, Ck) 

taken from a large soil pit nearby. Thus, E horizon was applied to the prepared plots of the non-eroded Calcic Luvisol (LV-

cc), Bt horizon on the strongly eroded Nudiargic Luvisol (LV-ng) and Ck horizon to the extremely eroded Calcaric Regosol 

(RG-ca). Subsequently we mixed the added subsoil material with the remaining local Ap horizon. Finally, the chamber frames 

were reinstalled. In the following, the resulting treatments of the same soil types are labelled as non-diluted (n-d) and diluted 140 

(d). The actual tillage prior to sowing took place just before seeding on September 17, 2020. For this, the frames were removed 

and the soil was loosened to a depth of 25 cm in west-east-direction. Sowing was done with a power harrow-drill combination. 

Fertilization was applied to all plots per soil type before and during the growing season using digestate from Pflanzenbauhof 

GbR (Uckermark, Germany), Triple Super Phosphate (TSP) and grain potash (Table B1). Due to initial changes in the topsoil 

structure (after the addition of subsoil material), germination differed between manipulated and non-manipulated plots. In 145 

order to achieve similar plant densities in all plots, replanting had to be done in all non-diluted plots within the frames (LV-

cc: 13 plants per plot; LV-ng: 40 plants per plot; RG-ca: 82 plants per plot).  For general plant protection and soil treatment, 

herbicides were applied to the field prior to the growing season (e.g. glyphosate; September 3, 2020). 

2.3 Gantry crane system description and gas exchange measurements 

The ET flux measurements were carried out by a novel automated chamber system (FluxCrane) using a 5-meter-high gantry 150 

crane traveling on two 110 m tracks which has been described in detail (Vaidya et al. 2021). Briefly, the system designed by 

Pfannenstiel ProProject GmbH (Bad Tölz, Germany), is capable of moving in three dimensions: the x-axis for movement along 

the track, the y-axis for movement perpendicular to the track, and the z-axis for vertical chamber movement. The FluxCrane 

carries two transparent chambers made of polymethyl methacrylate (PMMA; A: 1.986 m2; V: 3.756 m3). Since the two 

chambers do not move independent from each other along the track, frames where arranged in rows, from which each half was 155 

measured by one chamber. To ensure airtight sealing during chamber deployment, steel frames with a diameter of 1.59 m and 

a depth of 5 cm into the soil equipped with a foam ring were used to further increase the chambers bearing surface, while 

deployed. ET fluxes were determined by measuring the development of chamber headspace H2O concentrations (4 sec 

frequency) over 7 minutes in a flow-through non-steady-state (FT-NSS) mode (Livingston and Hutchinson 1995), using two 

infrared gas analyzers (one per chamber; LI-COR 850, Licor Biosciences, UK).  The chambers have an average light 160 

transmittance of about 76 % (74% for chamber 1 and 78% for chamber 2), but a reduction in ET due to reduced light availability 

is not expected (Pape et al. 2009). Temperature differences during chamber closure were minimized by the short measurement 

time and ventilation (<1.5°C) with two small axial flow fans (5.61 m3 min-1) used to homogenize the chamber headspace air. 



6 

 

To compensate for the difference in tubing length between the chambers and the analyzer (chamber 1: 15 m vs. chamber 2: 22 

m), a flow rate of 2.3 l min-1 and 3.6 l min-1 was set to obtain a similar sensor death time of 13 seconds. A CR6 data logger 165 

and CDM-A116 analog multiplexer (Campbell Scientific Inc., USA) were used for data recording and storage. The plots were 

measured hourly up to 24 times a day in order to be able to detect daily variations. Due to the randomized measurement design, 

each plot was measured approximately twice per week, which would theoretically result in approximately 2200 measurements 

per plot throughout the entire season. However, the system was designed to shut down under high winds and cold temperatures, 

resulting in a true average of only 724 measurements per plot per season. Diurnal ET day- and nighttime fluxes considered in 170 

this study were calculated for the cultivation period from September 17, 2020 (sowing of winter rye), until harvest of winter 

rye on June 30, 2021.   

2.4 Input parameters for gap filling  

2.4.1 Environmental Parameters 

Relative humidity (RH) [%] (WXT520, Vaisala, FI) was measured during the ET flux measurements outside the chambers 175 

while temperature (T) [°C] (109, Campbell Scientific Ltd., USA) and incoming photosynthetically active radiation (PAR)                     

[μmol m-2 s-1] (SKP 215, Skye Instruments Ltd., UK) were measured both outside as well as inside the chambers. Precipitation 

(Pr) [mm] (Tipping Bucket Rain Gauge 52203, R. M. Young Company, USA) and relative soil moisture (SM; 13 to 18 cm 

depth) [%] (ML2x, Delta-T Devices Ltd., UK) were measured at an adjacent field (< 25m; Fig. 1).  

2.4.2 Plant specific parameters  180 

Spectral plant indices, such as the ratio vegetation index (RVI; also simple ratio SR) were manually recorded weekly for all 

18 plots using a near-infrared (NIR)/visible light (VIS) double, 2 channel sensor device (SKR 1850, Skye Instruments Ltd., 

UK) mounted on a 1.8 m handheld pole (Görres et al. 2014; Kandel et al. 2013), connected to a CR1000 data logger (Campbell 

Scientific Ltd., USA). The double, 2 channel sensor device consisted of an upward- and downward–facing sensor, measuring 

the incoming (VISi) and reflected (VISr) VIS at a wavelength of 656 ± 10 nm and incoming (NIRi) and reflected (NIRr) NIR 185 

at 780 ±10 nm. The upward sensor was fitted with a cosine-correction diffusor for measurements of the incident radiation, 

while the downward sensor, installed 1.8m above the ground, had a 25° cone field of view, thus covering an area of 0.5 m2 

during measurements (Görres et al. 2014). Each plot was measured once a week for 30 seconds, resulting in one mean value 

including 30 measurement points.  The RVI was used as an indicator for standing crop biomass and is close to zero for a fallow 

surface and increases as plant cover increases. The RVI was calculated following Equ. 1: 190 

 𝑅𝑉𝐼 =
NIRr
NIRi
VISr
VISi

         (1) 

Since only weekly plot-wise RVI data were available, daily RVI data were obtained by fitting a sigmoidal function for initial 

plant growth in the fall up to stagnation due to plant inactivity in the winter and a polynomial function for shoot elongation 
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and later senescence during spring growth and summer maturation, respectively (Fig. A1). During the period from November 

24, 2020 to March 22, 2021, which we refer to as the non-growing season, no plant growth was assumed due to average daily 195 

temperatures below 5°C (<3 consecutive days). 

2.5 ET flux calculation and gap filling 

2.5.1 ET Flux calculation 

The workflow included various steps to pre-process data obtained by the FluxCrane, calculate ET fluxes and finally applying 

and validating the different gap-filling procedures (Fig. A2). ET flux calculation was performed based on the ideal gas equation 200 

(Eq. 2) modified by (Hamel et al. 2015) using an adapted R-script, based on those presented by (Hoffmann et al. 2015).   

 

𝐸𝑇𝑓𝑙𝑢𝑥 =
𝑐H2O × 𝑃×𝑀H2O

𝑅×𝑇
 [

𝑚𝑚

𝑑
]                      (2)  

𝐸𝑇𝑓𝑙𝑢𝑥[𝑚𝑚𝑜𝑙 𝑚−2𝑠−1] =   
𝐸𝑇𝑓𝑙𝑢𝑥[

𝑚𝑚

𝑑
] 

(𝑡 × 1000)
 ∗  (

1

𝑀H2O
)                    (3)  

 205 

With ETflux [mm d-1] being the evapotranspiration rate, cH2O the moles of water per total moles present, P the gas pressure [Pa], 

MH2O the molar mass of water [18 g mol-1], R the gas constant [8.314 m³ Pa K-1 mol-1] and T the temperature [K] inside the 

chamber. The ET flux in mmol m-2 s-1 (Equ. 3) was also calculated to ensure comparability with other studies. The first 15% 

of each measurement were discarded prior to flux calculation, to prevent a disturbance due to initial homogenization of the 

chamber headspace air. The temporal change was determined by linear regressions on several subsets of the data generated 210 

based on a variable moving window with a starting window size of 1:20 minutes (20 consecutive data points) and a maximum 

length of 2 minutes (30 consecutive data points). This procedure resulted in several ET fluxes for each measurement, from 

which the best flux was subsequently selected using a set of soft and hard criteria. Soft criteria included: (i) checking whether 

the conditions for the application of a linear regression were fulfilled (normality, variance homogeneity, linearity); (ii) no 

outliers were present (±6x interquartile range); (iii) temperature variation during the measurement was < 1.5 °C. Calculated 215 

fluxes per measurement that did not meet the quality criteria were discarded. Afterwards applied hard-criteria reduced 

potentially remaining multiple fluxes per measurement further to the ideal ET flux. Since the air in the chamber headspace 

reached higher water saturation with increasing time, hard criteria were based on the selection of the flux which showed the 

shortest temporal distance to the start of measurement and had the maximum length. 

During the measurements, various events could lead to erroneous ET fluxes such as e.g. fog (saturation of the chamber interior), 220 

sensor failures, or chamber leakage due to failure in chamber deployment. Erroneous fluxes were hence discarded. In addition, 

potential differences of the measurements between the sensors of both chambers were evaluated by the measurements of 

ambient air during periods of no chamber deployment.  
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A complete data set of hourly data points for the 286 days of the cultivation period would consist of 6888 measurements per 

treatment. After the flux calculation and filtering using the soft and hard criteria, a total of 13,011 ET flux measurements were 225 

performed, resulting in approximately 2,169 measurements per treatment. For individual plots, an average of 723 (624 to 1210; 

10.5 %) measurements were measured and the remaining were predicted by the gap approaches (Table B2; 89.5% on average). 

2.5.2 Gap-filling ET flux  

To gap fill ET fluxes, five different gap filling approaches were used and compared with each other. Gap-filling procedures 

included: 1.) a simple statistical approach: Mean diurnal variation (MDV); two empirical approaches: namely 2.) non-linear 230 

regression (NLR) and 3.) Look-Up-Tables (LUT) as well as two machine learning approaches: with 4.) Support Vector 

machine (SVM) and 5.) artificial neural network with Bayesian regularization(ANN_BR). 

MDV (Falge et al. 2001b; Moffat et al. 2007) is used to calculate missing hourly values through interpolation of values 

measured at the same hour during adjacent days. Thus, for the season with 286 days, the missing values were calculated for 

every hour, generating 24 values per day.  235 

NLR is based on parameterized non-linear equations using the mean least square method to express the relation between the 

total seasonal data of ET and T, RH, SM, PAR and RVI. Half-hourly values were predicted using the predictor variables and 

obtained function parameters. 

Gap-filling missing ET fluxes using the LUT approach is based on the assumption of similar ET fluxes during similar 

environmental conditions, whereby similarity is defined through a number of thresholds for the different environmental 240 

variables. Thus, missing ET-fluxes can be predicted based on the environmental conditions as well as the RVI associated with 

the missing data. To do so, measured ET-fluxes per subplot were split into different classes (csturges) based on T, RH, SM, PAR 

and RVI, with their class limits determined by Sturges rule (Equ. 4, Harkins 2022). Within this study, on average, 12 classes 

of equal size were formed covering the range of all parameters.  

 245 

𝑐𝑠𝑡𝑢𝑟𝑔𝑒𝑠  =  
1+3.32 ∗ 𝑙𝑜𝑔 (𝑛)

 𝑙𝑜𝑔 (10)
       (4) 

 

Gaps in ET-fluxes were subsequently filled with the average ET flux of the class corresponding to obtained environmental 

parameters within the gap. In case, no class could attributed to measured environmental conditions within a gap, the average 

ET flux was used. 250 

SVM is a black-box-model, where a computer algorithm learns by teaching data to assign values to objects or classes (Noble 

2006). As mentioned by Kim et al. (2020), the SVM uses a slack variable to circumvent unseparated parameters due to noise 

or extreme values in the data, as well as the radial basis kernel function based on previous SVM studies for upscaling fluxes 

(e.g. Ichii et al. 2017; Xu et al. 2018). 
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In comparison, ANN_BR is a combination of a purely empirical nonlinear regression model with a stochastic Bayesian 255 

algorithm for regularizing the network training (Schmidt et al. 2018). An artificial neural network (ANN) consists of nodes 

connected by weights representing the regression parameters (Bishop and others 1995; Hagan et al. 1996; Moffat et al. 2007; 

Kubat 1999; Rojas 1996). The network is trained by providing it with sets of input data such as the environmental and plant-

specific parameters mentioned earlier and the associated output data in the form of e.g. ET flux values. Similar to (Moffat et 

al. 2007), all techniques evaluated use the classical back-propagation algorithm, where the training of the ANN is performed 260 

by propagating the input data through the nodes via the weighted connections and then back-propagating the error and adjusting 

the weights so that the network output optimally approximates the ET-fluxes. Subsequent to this training, the underlying 

dependencies of the ET fluxes on the environmental and plant-specific input variables are mapped to the weights and the ANN 

is used to predict half-hourly ET fluxes, where the performance of the ANN depends on several criteria.  

2.6 Seasonal cumulative ET, Water Use Efficiency and crop ET  265 

ETsum were determined using half-hourly or hourly ET values predicted by all five gap filling approaches (Figure 6, Figure A3 

- A6). Daily averages [mm d-1] and ETsum (mm cultivation period-1) were formed in order to view the development over the 

entire cultivation period. The amount of plant biomass in dry mass (DM) [kg] was recorded during harvest for each treatment, 

which, in combination with ETsum yields the agricultural water use efficiency WUEagro (Hatfield and Dold 2019, Equ. 5).  This 

is the WUEABG variant of WUEagro, as the dry mass is total aboveground biomass (Katerji et al. 2008).  270 

 

 𝑊𝑈𝐸𝑎𝑔𝑟𝑜 =  
𝐷𝑀

𝐸𝑇𝑠𝑢𝑚
        (5) 

 

To obtain a comparable value for the ETsum calculated by the FluxCrane, crop evapotranspiration (ETc) was calculated (Allen 

1998). ETc (Equ.6) was calculated from the crop factor Kc and the potential evapotranspiration ET0 using monthly averages 275 

(DWD 2022).  

   𝐸𝑇𝑐  =  𝐾𝑐  × 𝐸𝑇0       (6) 

 

2.7 Statistical analysis 

All calculations were performed using the statistical software R (R Core Team, 2021) version 4.0.4. Therefore, several 280 

packages (Table B3) were used to calculate the ET fluxes and to perform subsequent gap-filling as well to visualization of 

results. To check the general precision and accuracy of all gap-filling approaches, all measured values were compared with 

associated predicted values for each treatment. Additionally, k-fold cross validation (k = 5) was performed on the resulting ET 

data to test the predictive outcome of the approaches and ensure robust statistics. Then, all the coefficient of determination 

(R2), mean absolute error (MAE), normalized root mean square error (NRMSE) and Nash-Sutcliffe efficiency (NSE) were 285 
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calculated and used to define performance classes (Table 1) to evaluate the accuracy of the approaches for the given setup 

(Moriasi et al. 2015). To determine parameter impact on ET, linear and non-linear models were used. Lastly, differences of 

ETsum, DM and WUEagro between treatments were tested with the Kruskal-Wallis-test. 

3. Results  

3.1 Environmental parameters 290 

The study year was significantly warmer (mean temperature 9.6 °C) and wetter (508 mm annual precipitation) between July 

1, 2020 and June 30, 2021, compared to mean annual air temperature (8.8 °C) and precipitation (467 mm). In particular, 

temperatures (Fig. 2a) were above average in the fall and winter period in 2020 as well as June, 2021. On the other hand, April 

and May, which are crucial for crop growth, were colder and also drier. Daily mean RH ranged between 50 % and 92.4 % with 

increasing diurnal variation in warm periods. PAR (Fig. 2b) largely reflected the seasonal variation of the day length with a 295 

maximum of 1860 µmol m-2 s-1 (half hourly measurements), and reduced values during longer storm events and high cloud 

cover (e.g. through changes in photosynthesis). The SM at 13 to 18 cm depth largely reflects the intensity of precipitation 

events (Fig. 2c), ranging from 12 % to 29 %. One exception is a prominent increase in mid-February that can be attributed to 

low temperatures and subsequent snowmelt. The largest precipitation events (> 10 mm d-1) occurred on September 26, 2020 

with 12 mm, on December 24, 2020 with 15 mm and on February 3, 2021 with 16 mm.  A sharp declining trend in SM and no 300 

response to precipitation events is evident from April (about 25 %) to harvest in June (about 12 %). However, this can be 

explained by a high water consumption of the fully developed crop stand and canopy interception. Shallower SM sensors at 3 

to 8 cm (not shown) indeed responded to these precipitation events albeit weakly, indicating the infiltration to deeper soil 

layers was impaired.  

3.2 Plant development  305 

RVI estimates are based on weekly measurements. Two temporal periods in particular were relevant for plant growth: i) the 

period from germination to the non-growing season in winter; and ii) the growing period after winter until harvest (Fig. A1). 

The maximum RVI values were all reached at a similar time (May 15, 2021 to May 18, 2021). In this regard, the non-diluted 

non-eroded soil LV-cc n-d had the highest RVI (16.46 on average), while the diluted non-eroded soil LV-cc d showed lower 

values (13.88 on average). The strongly eroded soil of LV-ng revealed the same pattern with a higher RVI for non-diluted (12 310 

on average) and lower RVI on diluted (10.35 on average) treatments. The extremely eroded soil of RG-ca, on the other hand, 

showed huge differences between the non-diluted and diluted treatments (10.95 vs. 5.87 on average). Apart from that, the 

maximum standard deviation differed between non-diluted and diluted treatments for the three soil types (LV-cc: 1.65 < 3.29; 

LV-ng: 1.09 < 1.94; RG-ca: 1.17 < 0.82). Higher RVI values were already reached in non-eroded and strongly eroded soils 

compared to extremely eroded soil during the initial growing season in fall of 2020 until the non-growing season. Thus, mean 315 
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RVI values of 4.47 to 6.63 were obtained for non-eroded and strongly eroded soils, while the extremely eroded soils had mean 

RVI values of only 3.61 (n-d) and 2.31 (d). 

3.3 ET Fluxes 

The seasonal development (Fig. 3) of the quality-screened measured ET-fluxes is similar for all treatments: a short growth 

phase after germination (1 - 2 mmol m-2 s-1) is followed by a decrease of fluxes until and during the non-growing season in 320 

winter (< 0.1 mmol m-2 s-1), when hardly any plant activity is found due to low temperatures. After the non-growing season, 

fluxes quickly return to their maximum fall level (1 - 2 mmol m-2 s-1) and then increase rapidly (> 5 mmol m-2 s-1). On the non-

eroded soil (LV-cc), this rapid increase continued into June, while ET fluxes on the eroded soils (LV-ng and RZ-ca) already 

peaked in May. In addition, there is a clear difference in the maximum fluxes measured between soil types with 6.7 mmol       

m-2 s-1 for both treatments of non-eroded LV-cc, 5.6 / 6.5 mmol m-2 s-1 (n-d / d) for LV-ng, and 5.8 / 5.1 mmol m-2 s-1 (n-d / d) 325 

for RG-ca. Notably, there is a data gap from late April to late May due to sensor failure.  

3.4 Gap filling and validation 

Pronounced differences of tested gap-filling approaches in terms of respective calibration statistics could be found. Calibration 

model-performance differ in their scatter around the 1:1-agreement plots (Fig. 4) and associated coefficients of determination 

(R2). NLR shows a clear overestimation at low and underestimation of higher ET fluxes. Compared to that, MDV more 330 

accurately predicts low/high ET fluxes, but is characterized by a much lower precision due to a higher variance. Among all 

gap filling approaches, displayed calibration statistics (Table 2) indicate a very good or good (Table 1) prediction for SVM, 

ANN_BR, MDV and LUT over the entire range of observed ET fluxes. Considering the k-fold cross-validation (Fig. 5, Table 

3), ANN_BR and SVM perform good, while MDV shows partially satisfactory statistics, and LUT shows unsatisfactory 

statistics due to allocation problems that arise when no class is found for the given climate conditions and the mean is used. 335 

Statistically, ANN_BR and SVM were similarly good in predicting observed ET fluxes (Table 2 and 3), even if they show a 

small tendency to overestimate low ET fluxes. However, gap-filled ET fluxes using ANN_BR showed a large number of 

predicted negative ET fluxes (1547 on average per plot; Figure A6) throughout the cultivation period. These fluxes occurred 

to an unrealistic degree during times when RH was significantly below saturation and plants were active (e.g., during the 

daytime period), resulting in a reduction in seasonal cumulative ET between 1 and 51 mm, depending on the treatment. This 340 

is most likely a method specific extrapolation problem (see discussion) and the reason we use SVM for final budget 

estimations. 

3.5 Treatment differences and crop ET 

In general, eroded soils tend to have a negative effect on ETsum. However, this trend was not statistically significant (Kruskal-

Wallis-Test, ETsum: χ2 = 3.04, df = 5, p = 0.69). DM and WUE, on the other hand, differed significantly between treatments 345 

(Kruskal-Wallis-Test, DM: χ2 = 14.58, df = 5, p = 0.01; WUE: χ2 = 11.12, df = 5, p = 0.05). The amount of plant biomass in 
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dry mass (DM) [kg] is decreasing from non-diluted to diluted and less eroded soil types to more eroded soil types. DM ranges 

from 1.5 ± 0.13 kg m-2 for LV-cc n-d to 0.85 ± 0.2 kg m-2 for RG-ca d. WUEagro is decreasing from less eroded to more eroded 

soil types ranging from 7.25 ± 1.23 g DM kg-1 H2O to 4.69 ± 0.71 DM kg-1 H2O (Fig. 8).  

In order to compare the individual treatments, daily ET and ETsum were calculated (Fig. 6). ET was affected by T, RH, PAR, 350 

and RVI, whereas only a small correlation was found with SM (Fig. 7). Higher ET fluxes were induced by increases in T, PAR 

and RVI, whereas increasing RH resulted in lower ET fluxes. ETsum (Fig. 8a) ranges between 212 ± 45 mm (LV-cc n-d) and 

180 ± 29 mm (RG-ca d).  

ET0 for the observed study period (September 2020 – June 2021) and region (Uckermark) was 370 mm (DWD 2022). We used 

the monthly values to calculate the ETc using ET0 and the crop coefficient (Allen 1998), resulting in an ETc of 263 mm for the 355 

cultivation period. 

4 Discussion 

In the following, we will discuss i) the effects of soil-type and top-soil dilution on ETsum, yield (DM) and WUEagro, along with 

ii) the spatio-temporal variability of ET fluxes over the cultivation period, and iii) the suitability of the gap-filling strategies 

used in this study as well as potential ways forward to improve our approaches. 360 

4.1 Effects of soil-type and top-soil dilution on ET 

In the studied region, soil types vary in their suitability for agricultural cultivation (MLUK 2020). Luvisols support large water 

fluxes due to their clay-depleted deep top-soils in combination with the clay-enriched and mostly decalcified sub-soils. They 

are among the most productive soils in Brandenburg (MLUK 2020; Stahr 2022). Regosols are generally only moderately 

suitable for arable farming. They are usually found on hilltops and are characterized by parent material near to the surface, 365 

lack of depth development, and limited rootability due to the dense, carbonate-rich parent material. They typically have low 

water availability and plant growth (Herbrich et al. 2018). They are formed by erosion of agricultural Luvisols as relatively 

organic matter rich top-soil is removed and deeper, nutrient-depleted lower soil layers are mixed into the cultivated layer 

(Arriaga and Lowery 2003; Pimentel and Kounang 1998). In addition, the carried out top-soil dilution aimed at testing one of 

the processes of an approach to enhance soil C storage through top-soil deepening. Topsoil deepening through deeper 370 

ploughing might store originally top-soil bound SOC in the deeper subsoil and generate SOC recharge in the diluted C poor 

top soil (Sommer et al. 2016). The latter being tested during this study by the carried out top-soil dilution. However, side 

effects include, similar to erosion, nutrient deficiency and weaker rootability leading to decreased crop growth and yield (Al-

Kaisi and Grote 2007; Schneider et al. 2017; Feng et al. 2020). The boundary soil conditions established by erosion and top-

soil dilution may not only impact crop growth and yield but also disrupt the crop water balance, especially with the expected 375 

increase in drought and heat events in Central Europe (Spinoni et al. 2018). Consequently, farmers might become limited in 

their choice of crops due to water availability. 
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As predicted, we observed a significant decline in yield with erosion and top-soil dilution during the study period. However, 

the impact of soil-type specific erosion intensity and top-soil dilution on ETsum was not as pronounced and the trend of declining 

ETsum with soil-type and top-soil dilution was not statistically significant among all treatments (212 ± 45 mm on non-eroded 380 

Calcic Luvisol to 180 ± 29 mm on extremely eroded top-soil diluted Calcaric Regosol). Notably, the studied year 2020/21 was 

comparatively wet (231.1 mm precipitation during the observed period), and potential effects of lower rootability and enhanced 

drought stress were not observed during the main growth period. This is of great importance because the Uckermark region 

generally has an overall water balance of about 1 (precipitation input equals ETpot output) and is therefore water or energy 

limited depending on the annual precipitation and ETpot of each year. For example, the extremely dry year of 2018 was very 385 

likely water limited with an annual precipitation of < 450 mm and a predicted ETpot of > 650 mm and thus by far exceeding 

annual precipitation. However, the year 2021 had an annual precipitation of about 600 mm and a predicted ETpot of < 575 mm 

(DWD 2022). Hence, in rather wet years, like the observed 2021, plant growth in the region is rather energy limited (of course 

dependent on precipitation during the growth period). This fits with our results, as during the studied period most plots had a 

lower ETsum than cumulative precipitation. However, it is very likely that the ETpot/Pr ratio, and in fact also the observed actual 390 

ETsum/Pr ratio will vary considerably between wetter and drier years and between different crops (particularly winter vs. 

summer crops).  

Additionally, the observed imbalance of response in yield vs. ETsum led to significantly reduced WUEagro. In a period of 

consecutive dry years, a lower WUEagro could additionally have a negative effect on the water and carbon balance of the whole 

system, since the water consumption becomes less efficient, especially for the Calcaric Regosol  (up to 36% less yield per used 395 

amount of water; Meena et al. 2020). This could further exacerbate the drought and potentially lead to legacy effects. Finally, 

winter crops and especially winter rye, are more resilient to drought (Ehlers 1997) due to their head start in growth. Hence, a 

long-term investigation spanning with other crops (e.g. summer cereal crops) and management strategies would be particularly 

interesting, as a greater decrease in ET may be observed with soil-specific erosion intensity.  

4.2 Seasonal variability of ET fluxes and WUE 400 

Over the entire cultivation period, ET fluxes responded particularly to crop growth, first during the establishment period in fall 

(mid of October to mid of November) and then again during the main growth period in spring (end of March to mid of May). 

The close relation of measured ET flux dynamics to RVI  (Fig. 7; e.g. Hanks et al. 1969) can be associated with increasing T 

rates that strongly compensate for the suppression of E, as canopy biomass increases (Dubbert et al. 2014; Groh et al. 2020). 

Over the diurnal cycle, ET reacted to changes in environmental conditions, particularly temperature and RH, which together 405 

define the vapor-pressure deficit (VPD), as well as PAR. In particular, crops that have been bred to prioritize carbon gain over 

water conservation will tend to respond to rising VPD strongly (Dubbert et al. 2014; Massmann et al. 2019). Air temperature, 

humidity and PAR together with increasing biomass (expressed as higher RVI) controlled ET variability during the peak 

growth period in spring until harvest. SM, on the other hand, did not have a limiting effect on ET, which we attribute to the 
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wet conditions during the observation period (see above), confirming that the observed crop cycle was not limited by water 410 

availability.  

One of our expectations was that expected differences in ETsum would result mainly from differences during the main 

vegetation period from April to harvest due to variations in biomass and thus T. However, while the growing season between 

April and June is responsible for a large portion of ETsum, ranging from 66 % to 73 %, it is only responsible for a small portion 

of differences between treatments, with a maximum of 14.3 mm from the non-eroded soil-types. The combined fall and winter 415 

period, on the other hand, is responsible for a difference of up to 17.5 mm in ETsum between non-eroded and extremely eroded 

soil-types, although it accounts for 27 % to 34 % of ETsum only. This is interesting, because it suggests that the reason behind 

the soil type differences in ET for winter rye are caused by static differences (e.g. lower biomass) and suppressed E (e.g. a 

shift in the T/ET ratio) rather than dynamic differences (e.g. the vegetation responses to environmental drivers or drought).  

This should be further evaluated by partitioning ET into T and E. The described FluxCrane is particularly suited for such an 420 

approach by combining flux and in-situ stable isotope approaches (Dubbert et al. 2014; Rothfuss et al. 2021). Beside the overall 

slight reduction of ETsum on eroded soil-types and top-soil diluted treatments, measured ET fluxes were larger on extremely 

eroded plots at the beginning of the growing season before canopy closure which could be explained by a lower soil cover. 

This may be related to the fact that lower vegetation cover, which is visible in the RVI, can lead to higher E prior to canopy 

closure (Dubbert et al. 2014; Hu et al. 2009; Raz-Yaseef et al. 2012; Wang et al. 2012).  425 

4.3 Gap-filling approaches 

Methodologically, the study faced two main challenges: accurately quantifying ETsum and realistically predicting diurnal 

variations during both, the low ET winter and high ET summer periods. Among the gap-filling approaches compared in this 

study, only NLR showed calibration statistics less than good (Table 2). While the LUT showed very good calibration results, 

the allocation problems that occur when no class is found (Fig. 5) and the mean is used resulted in the lowest predictive ability 430 

during validation over the full range of measured ET fluxes. Some studies also obtained quite plausible results for LUT and 

MDV (Boudhina et al. 2018; Falge et al. 2001a; Moffat et al. 2007), and adjusting the classes of the LUT could further improve 

the results of this approach. However, with the available dataset, the only way to avoid allocation problems was to use fewer 

classes. This resulted in a loss of variability, making diurnal differences invisible and ET estimates less accurate. MDV, on the 

other hand, partially showed only satisfactory values during validation (Table 3), while SVM and ANN performed good or 435 

very good according to the defined classes (Table 1). Additionally, previous studies found that MDV (as well as LUT) performs 

particularly weakly with increasingly large gaps (Moffat et al. 2007; Kim et al. 2020). Especially for conditions where no 

measurements could take place due inter-alia environmental conditions (large gaps in winter), the fact that MDV takes 

averaged values of adjacent measurements could explain the rather bad predictions. This is similar for LUT, since no classes 

could be created for conditions where no measurements took place. The machine learning approaches SVM and ANN_BR, on 440 

the other hand, are not as sensitive to larger observational gaps because their training includes all measurements. For seasonal 

variability and budgets, we achieved the best performance with the SVM approach, while ANN showed reduced daily and 



15 

 

seasonal cumulative ET due to an unrealistic amount of predicted negative fluxes (up to 51 mm; Fig. A6). However, the best 

approach for gap filling can vary depending on the application and investigated parameters. For example, in gap-filling 

methane fluxes using eddy covariance (Kim et al. 2020), ANN_BR was superior to SVM.  445 

Another important aspect of gap-filling is potential over- or underestimation of fluxes. Shrestha and Shukla (2015), for 

example, attempted to predict actual lysimeter ET using different approaches (e.g. ANN_BR and SVM) and crops (pepper, 

watermelon) in a subtropical environment. Best predictions were obtained with SVM (pepper: 204.7 mm lysimeter vs. 181.8 

mm SVM; watermelon: 231.71 mm lysimeter vs. 189.83 mm SVM). However, they reported overestimation of low fluxes and 

underestimation of high fluxes by ANN_BR and SVM. In our study, we observed a tendency to slightly overestimate small 450 

fluxes using SVM based gap-filling. In this regard, using plot specific multi-depth SM data could also improve the predicted 

ETsum based on SVM in the future. Similarly, we expected considering wind speed to improve ET prediction, but could not 

find an effect on observed ET for the study period.  

Furthermore, it must be noted that the quality of SVM (and ANN_BR) predictions is highly dependent on the amount of data 

available (Chia et al. 2020; Abudu et al. 2010). Consequently, we tested the minimum amount of data necessary to provide 455 

predicted ET fluxes of good quality (see criteria in M&M). For the particular dataset already 50 % of the total data available 

(minimum 300 measurements) provided good results. Thus, we emphasize that capturing a large variability of fluxes under 

different environmental conditions seems to be more important than a merely large data set. 

4.4 Accuracy of the new system 

ETc was 263 mm from the cultivation period. This is comparable to our observed results (ETsum) of 212 mm for non-eroded 460 

Calcic Luvisol, given that ET0 calculations using the Penman-Monteith equation (FAO56-PM) are reported to overestimate 

ET0 and thus ETc (Allen 1998). Thus, our ETsum seem sensible overall, however, a direct comparison between the FluxCrane, 

lysimeters and potentially drone based observations of ET would be advisable. This is particularly true in light of ongoing 

discussions surrounding method constraints of estimating ET across scales (Ding et al. 2021; Ghiat et al. 2021; Hamel et al. 

2015). 465 

For example, a multi treatment lysimeter experiment is located nearby the FluxCrane and Groh et al. (2020) report a wide 

range of ETsum for the period between 2014 and 2018 (300 to 600 mm), with the lower range boundary being comparable to 

our results (considering that we only calculated budgets for the 9 months growths period and exclude the fallow period during 

the summer months with high ET). It has to be noted however that not only environmental conditions but also crops studied 

in Groh et al. (2020) varied from year to year and more importantly from our study, hampering comparability between studies. 470 

However, the direct vicinity of two large scale set-ups able to estimate ETsum should be utilized in the future. Another lysimeter 

based study conducted in Brunswick (Lower Saxony, Germany) for a cultivation season of winter rye report a range of 

observed ET fluxes very comparable to our study, with less than 1 mm day-1 in winter to a maximum of 6 - 7 mm day-1 in 

summer (bfg 2023).  
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Finally, filling data gaps using statistical and empirical approaches is used in many fields e.g. to calculate of reference ET 475 

(ET0) with limited meteorological parameters (Chia et al. 2020) or ET from eddy-covariance measurements as well as canopy 

chamber measurements (Hui et al. 2004; Moffat et al. 2007; Falge et al. 2001a; Falge et al. 2001b; Hamel et al. 2015; Kübert 

et al. 2019). The connection between gap-filling approaches, in combination with the described continuous high-resolution 

long-term ET measurements of numerous small-scale treatments, gives additional opportunities to observe the progression of 

ET over an entire cultivation season and, for example, to identify key periods that drive overall treatment differences.  480 

Compared to other methods for estimating ET, such as eddy covariance measurements (e. g., Boudhina et al. 2018; Simpson 

et al. 2019), our approach is able to highlight small-scale treatment differences, such as soil type differences and associated 

erosion stages, in a heterogeneous field with a relatively high number of different treatments simultaneously. In addition, the 

system is not as disruptive to plant growth. For example, permanently installed canopy chambers or manually conducted 

approaches, tend to physically harm the canopy and have condensation issues due to permanently installed tubing and 485 

inappropriate air mixing within the chamber (e. g. Hamel et al. 2015). The FluxCrane eliminates these problems by providing 

continuous measurement and a constant flow of air through the attached canopy chambers. Moreover, the ability to observe 

nighttime fluxes has great potential to study previously overlooked short-term dynamics in ET and to improve the 

representation of underlying processes in process-based hydrological modeling, compared to other measurement systems and 

especially to manually operated chambers.  490 

4.4 Conclusion and outlook 

Here, we present a possibility to obtain not only plausible ETsum but also diurnal cycles of ET by using the novel FluxCrane 

system in combination with SVM based gap filling. We expected strong negative effects of eroded soils and top-soil dilution 

on ETsum as well as yield. However, crop yield responded much more strongly to eroded soils and top-soil dilution than ETsum 

in the observed rather wet year, leading to strong negative shifts in WUEagro. The novel FluxCrane with its potential to observe 495 

temporal dynamics and seasonal budgets for distinct landscape elements simultaneously, combines the contrasting benefits of 

eddy covariance and manual chamber techniques. Thus the new system has a large potential to bring new insights into water-

flux dynamics and budgets and, in combination with measurements of NEE into growth season dynamics of WUE in the future. 

This is particularly relevant for the studied region in the Uckermark with its strong spatial heterogeneity in soils and its 

generally low precipitation. Finally, the novel FluxCrane is unique in its potential to combine it with innovative measurements 500 

such as in-situ stable water isotopes (Dubbert et al. 2014; Kübert et al. 2020). Stable water isotopes could be used to separate 

the ET into T and E. This separation is of crucial importance for the terrestrial water balance and for the prediction of future 

ecosystem feedbacks (Groh et al. 2020). Water isotopes might also be used to study root water-uptake dynamics (Deseano 

Diaz et al. 2023; Kühnhammer et al. 2020). 
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Tables: 

Table 1: Performance classes to evaluate gap-filling approaches. 

Class MAE NRMSE NSE R2 

Very Good < 0.35 < 30 > 0.85 > 0.85 

Good 0.35 <= 0.67 30 <= 40 0.85 => 0.75 0.85 => 0.75 

Satisfactory 0.67 <= 1 40 <= 50 0.75 => 0.5 0.75 => 0.6 

Not Satisfactory > 1 > 50 < 0.5 < 0.6 
 

 770 

Table 2: Calibration statists of all gap-filling approaches and treatments. 

Approach MAE NRMSE NSE R2 

 

 

Approach MAE NRMSE NSE R2 

LL-cv n-d LL-cv d 

MDV 0.27 39.6 0.84 0.85 MDV 0.25 35.2 0.88 0.88 

LUT 0.09 14.3 0.98 0.98 LUT 0.08 13.4 0.98 0.98 

NLR 0.56 49.0 0.76 0.77 NLR 0.53 46.8 0.78 0.79 

SVM 0.26 25.7 0.93 0.93 SVM 0.23 23.0 0.95 0.95 

ANN_BR 0.31 28.0 0.92 0.92 ANN_BR 0.27 25.7 0.93 0.93 

LL-ng n-d LL-ng d 

MDV 0.25 29.3 0.91 0.92 MDV 0.25 30.6 0.91 0.91 

LUT 0.09 13.6 0.98 0.98 LUT 0.10 14.6 0.98 0.98 

NLR 0.54 41.1 0.83 0.84 NLR 0.55 40.6 0.84 0.84 

SVM 0.28 22.9 0.95 0.95 SVM 0.29 23.6 0.94 0.94 

ANN_BR 0.31 24.6 0.94 0.94 ANN_BR 0.32 25.0 0.94 0.94 

RG-ca n-d RG-ca d 

MDV 0.26 30.9 0.90 0.91 MDV 0.22 29.8 0.91 0.91 

LUT 0.09 15.7 0.98 0.98 LUT 0.09 14.3 0.98 0.98 

NLR 0.50 42.4 0.82 0.83 NLR 0.48 41.8 0.82 0.83 

SVM 0.26 25.6 0.93 0.93 SVM 0.23 23.4 0.95 0.95 

ANN_BR 0.30 27.3 0.93 0.93 ANN_BR 0.29 26.0 0.93 0.93 
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Table 3: Validation statists of all gap-filling approaches and treatments. 

Approach MAE NRMSE NSE R2 

 

 

Approach MAE NRMSE NSE R2 

LL-cv n-d LL-cv d 

MDV 0.33 46.0 0.79 0.81 MDV 0.26 35.8 0.87 0.88 

LUT 0.74 69.8 0.51 0.51 LUT 0.72 70.0 0.51 0.51 

NLR 0.57 50.9 0.74 0.75 NLR 0.55 48.8 0.76 0.77 

SVM 0.34 33.7 0.89 0.89 SVM 0.31 32.1 0.90 0.90 

ANN_BR 0.35 32.2 0.90 0.90 ANN_BR 0.32 29.6 0.91 0.91 

LL-ng n-d LL-ng d 

MDV 0.31 32.1 0.90 0.90 MDV 0.31 33.3 0.89 0.89 

LUT 0.78 62.7 0.61 0.61 LUT 0.83 64.7 0.58 0.58 

NLR 0.54 41.7 0.83 0.83 NLR 0.55 41.5 0.83 0.84 

SVM 0.32 25.4 0.94 0.94 SVM 0.33 26.5 0.93 0.93 

ANN_BR 0.33 25.9 0.93 0.93 ANN_BR 0.34 26.6 0.93 0.93 

RG-ca n-d RG-ca d 

MDV 0.28 34.4 0.88 0.89 MDV 0.27 31.8 0.90 0.90 

LUT 0.79 71.8 0.48 0.49 LUT 0.69 65.9 0.57 0.57 

NLR 0.49 42.2 0.82 0.83 NLR 0.48 42.0 0.82 0.83 

SVM 0.29 28.1 0.92 0.92 SVM 0.26 26.2 0.93 0.93 

ANN_BR 0.33 29.9 0.91 0.91 ANN_BR 0.31 28.8 0.92 0.92 
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Figures: 795 

 

 

Figure 1: (a) AgroFLUX research site in the CarboZALF-D experimental area with (b) the 110 x 16 m field where (d) the FluxCrane operates 

on (c) 18 measurement plots of (e) three different soil types (LV-cc: non-eroded calcic Luvisol, LV-ng: highly eroded nudiargic Luvisol, 

and RG-ca: extremely eroded calcaric Regosol). Soil moisture and precipitation measurements were taken in the marked area (black circle, 800 
b). The separation of non-diluted (unframed green) and diluted (framed light green) plots can be seen in (c). 
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Figure 2: Environmental parameters during the measurement period with (a) daily mean 

temperatures (T; orange line; light gray = corresponding variation) and daily mean relative humidity 

(RH; black line; dotted lines = corresponding variation), (b) incoming photosynthetically active 

radiation (PAR; purple) and (c) soil moisture (SM; blue line) and precipitation (PR; blue bars). 810 
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Figure 3: Measured and quality-screened (by soft and hard criteria) ET fluxes of the three soil types over the entire observation period 

(non-diluted treatments on the left, diluted treatments on the right). 815 
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Figure 4: Comparison of the measured (bottom) with the predicted (left) ET fluxes and associated r-

squared values (R2) of the calibration results of all approaches. The black line represents the 1/1 line. 820 
The different treatments are shown on top, the approaches on the right. 
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Figure 5: Comparison of the measured (bottom) with the predicted (left) ET fluxes and the associated 

r-squared values (R2) of the validation results of all approaches. The black line represents the 1/1 line. 

The different treatments are shown on top, the approaches on the right. 825 
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Figure 6:  Daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET 

(ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Figure 7: Relationship between ET and temperature (T) [°C], relative humidity (RH) [%], photosynthetically active radiation (PAR) [μmol 

m-2 s-1], and ratio vegetation index (RVI) [mmol m-2 s-1], and associated regression lines. Statistical values (r² and p) for the relationship 

between ET and response variables (environmental parameters) are presented in the table. 
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Figure 8: Averaged seasonal cumulative ET (ETsum) [mm] (a), harvest in form of dry mass (DM) [kg] (b), and WUEagro of the different 

treatments and the associated standard deviation. 
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Appendix A: 850 

 

 

Figure A1: RVI fit (colored lines) of the different treatments with the standard deviation between replicates 

(light gray) and the corresponding averages of the daily measurements (points). 
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 860 

Figure A2: Schematic representation of the main steps of the presented data processing: raw data 

preparation was followed by a campaign-specific ET-flux calculation. Then, environmental 

parameters were used for gap filling using five different approaches. After calibration and validation, 

the most accurate approach was used for gap filling. 
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Figure A3:  LUT predicted daily mean ET sums (colored lines) of the different treatments and seasonal 

cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Figure A4:  MDV predicted daily mean ET sums (colored lines) of the different treatments and seasonal 870 
cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Figure A5:  NLR predicted daily mean ET sums (colored lines) of the different treatments and seasonal 

cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 



41 

 

875 
Figure A6:  ANN_BR predicted daily mean ET sums (colored lines) of the different treatments and seasonal 

cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Appendix B: 

 

Table B1: Fertilization information for the field. 880 
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Table B2:  The number of measurements per treatment and 

the percentage of gap-filling data. 890 

Plot  Measurements [n] gap-filled [%] 

LV-cc n-d 1 990 85.63 

LV-cc n-d 2 624 90.94 

LV-cc n-d 3 996 85.54 

LV-cc d 1 624 90.94 

LV-cc d 2 735 89.33 

LV-cc d 3 989 85.64 

LV-ng n-d 1 1210 82.43 

LV-ng n-d 2 1210 82.43 

LV-ng n-d 3 705 89.76 

LV-ng d 1 718 89.58 

LV-ng d 2 1215 82.36 

LV-ng d 3 1205 82.51 

RG-ca n-d 1 657 90.46 

RG-ca n-d 2 772 88.79 

RG-ca n-d 3 669 90.29 

RG-ca d 1 669 90.29 

RG-ca d 2 1130 83.59 

RG-ca d 3 1129 83.61 
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Date Amount Details 

15.10.2020 161 kg P2O5 ha-1 applied on 6 plots of LL as TSP 

22.03.2020 77   kg P2O5 ha-1 as Triple Super Phosphate (TSP) 

22.03.2020 259 kg K2O ha-1 as 40% grain potash 

16.09.2020 30   kg N ha-1 10 m³ ha-1 digestate 

10.03.2021 91   kg N ha-1 30 m³ ha-1 digestate 

08.04.2021 45   kg N ha-1 12 m³ ha-1 digestate 
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            Table B3: Used R packages and associated sources. 
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package source 

Akima Akima & Gebhardt (2021) 

Andrews Myslivec (2012) 

Base R Core Team (2021) 

Boot Davison & Hinkley (1997) 

Caret Kuhn (2021) 

data.table Dowle & Srinivasan (2021) 

e1071 Meyer et al. (2021) 

FSA Ogle et al. (2022) 

ggplot2 Wickham (2016) 

gridExtra Auguie (2017) 

gt Iannone et al. (2022) 

hydroGOF Mauricio Zambrano-Bigiarini (2020) 

Kernlab Karatzoglou et al. (2004) 

Lattrice Sarkar (2008) 

Lmtest Zeileis & Hothorn (2002) 

lookupTable Jia & Maier (2015) 

Lubridate Grolemund & Wickham (2011) 

Neuralnet Fritsch et al. (2019) 

Nortest Gross & Ligges (2015) 

Plotrix J (2006) 

Plyr Wickham (2011) 

Reshape Wickham (2007) 

Shape Soetaert (2021) 

Tibble Müller & Wickham (2021) 

tidyr Wickham & Girlich (2022) 

Vioplot Adler & Kelly (2020) 

webshot Chang (2022) 

Zoo Zeileis & Grothendieck (2005) 


