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Abstract. In light of the ongoing global climate crisis and related increases in extreme hydrological events, it is crucial to 

assess ecosystem resilience and - in agricultural systems - to ensure sustainable management and food security.   For that 

purpose, comprehensive understanding of ecosystem water cycle budgets and spatio-temporal dynamics are indispensable. 15 

Evapotranspiration (ET) plays a pivotal role returning up to 90 % of incoming precipitation back to the atmosphere. Here, we 

studied impacts of soil types and management on an agroecosystem’s seasonal cumulative ET (ETsum) and agronomic water-

use efficiencies (WUEagro, dry matter per unit of water used by the crop). To do so, a plot experiment with winter rye (September 

17, 2020 to June 30, 2021) was conducted at an eroded cropland which is located in the hilly and dry ground moraine landscape 

of the Uckermark region in NE Germany. Along the experimental plot (110 m x 16 m), two closed chambers were mounted 20 

on a robotic gantry crane system (FluxCrane as part of the AgroFlux platform) and used to continuously determine ET. Three 

soil types representing the full soil erosion gradient related to the hummocky ground moraine landscape (extremely eroded: 

Calcaric Regosol, strongly eroded: Nudiargic Luvisol, non-eroded: Calcic Luvisol) and additional top-soil dilution (topsoil 

removal and subsoil admixture) were investigated (randomized block design, 3 three replicates per treatment). Five different 

gap-fillingmodeling approaches were used and compared in light of their potential for reliable ETsum over the entire crop 25 

cultivation period as well as to reproduce short-term (day-to-day,e.g.,  diurnal) water-flux dynamics. While machine learning 

approaches such as support vector machines (SVM) and artificial neural networks (with Bayesian regularization; ANN_BR) 

generally performed well during calibration, SVM also provided a satisfactory prediction of measured ET during validation 

(k-fold cross validation, k = 5). 

We found significant, major differences in dry biomass (DM) and small trends in ETsum between soil types, resulting in 30 

different WUEagro. The extremely eroded Calcaric Regosol showed an up to 46 % lower ETsum and up to 54 % lower WUEagro 

compared to the non-eroded Calcic Luvisol.  The key period contributing to 70 % of ETsum was spanned from the beginning 

of stem elongation in April to harvest in June. However, differences in the ETsum between soil types and topsoil dilution resulted 
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predominantly from small differences between the treatments throughout the cultivation, rather than only during this short 

period of time. 35 

1 Introduction 

Only 12 % of the world's land area is suitable for food and fiber production due to its highly productive soils (Blum 2013). 

Much of this land is already in use to ensure food security, mandated by a still growing human population paired with the 

ongoing climate crisis (Searchinger et al. 2018). Worldwide, land area is largely affected by soil degradation (Jie et al. 2002) 

and agriculture is closely related, since at least six degradation processes (e.g., erosion or compaction) are associated with it 40 

(Louwagie et al. 2011). In hummocky landscapes, erosion and associated topsoil dilution caused by, e.g., wind, water or tillage, 

affects the crop yields (Bakker et al. 2007; Biggelaar et al. 2003). In addition, weaker rootability on eroded soils suggests a 

higher susceptibility towards droughts (Schneider and Don 2019). However, methodologically studying the influence of small- 

scale soil heterogeneity (e.g., soil erosion) and land use (e.g., soil management) on the dynamics of the water balance 

(especially evapotranspiration (ET)) separately has been challenging. The effect of both factors can be significantly different 45 

with complex interactions, e.g., soil erosion can lead to differences in soil water storage capacity and management affects soil 

organic matter and water retention  (Bakker et al. 2007; Biggelaar et al. 2003). Thus,   a separate response analysis is an 

indispensable prerequisite for the development of site-specific land use procedures adapted to the changing climate conditions. 

Moreover, the climate crisis is affecting the amount and spatio-temporal distribution of precipitation worldwide, leading to 

more frequent and stronger precipitation events in high-precipitation regions (e.g., increase of 10 – 40 % in northern Europe; 50 

(DWD 2019) and fewer and weaker events in low-precipitation regions (e.g., up to 20 % decrease in the Mediterranean region 

and southeastern Europe; (Trenberth 2011). In Germany, annual precipitation is more than 800 mm in most regions of west 

and south Germany but only 400 - 500 mm y-1 in the northeast (e.g., areas in Brandenburg and Mecklenburg-Western 

Pomerania; (Schappert 2018)). Here, dry hydrological conditions and erosion shaped landscapes meet. As crop yields and 

related crop productivity depend on various factors such as soil properties or water availability, such agriculturally used 55 

precipitation limited regions could face increasing problems.  

ET describes the total amount of water that evaporates from a given area and is thus defined as the sum of soil evaporation 

(E), transpiration (T) and interception evaporation (Fohrer et al. 2016; Rothfuss et al. 2021). Generally, ET is one of the most 

important components of the hydrological cycle in terrestrial ecosystems, accounting for up to 100 % of ingoing precipitation 

(Hanson 1991). With a share of up to 90 %, it is largely dominated by T in most terrestrial ecosystems, indicating that terrestrial 60 

vegetation is a dominant force in the global water cycle (Jasechko et al. 2013). Due to the expected increasing dependency of 

a system’s productivity on sufficient water supply with an accelerating climate crisis, quantifying the ET plays an important 

role to achieve a process-based understanding of the mitigation potential of different crops to drought in the future and to, e.g., 

establish a more efficient supplemental irrigation. Moreover, there is a tight link of carbon and water cycling in precipitation 
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limited systems because water loss by ET and the water use efficiency of a system can largely define its productivity (Tallec 65 

et al. 2013).  

A particular challenge in current ET research is combining high- frequency with multi- treatment approaches. At the field scale 

for example, eddy covariance systems provide high high-frequency estimates of ET of a homogeneous system (e.g., Ding et 

al. 2021), while currently dominant manual chamber approaches are able to precisely capture multi multi-treatment effects 

(<1m²) on ET at the plot scale (e.g., Hamel et al. 2015)., However, the data frequency obtained by manual chamber 70 

observations is often too small to achieve reliable flux budget calculations in combination with data-driven gap-

fillingmodeling. but lack the high frequency. In this regard, modern automated chamber systems allow a combination of multi-

treatment observation with a higher frequency of measurements and thus high temporal resolutioncompared to manual 

chambers with multi-treatment observation. They provide the a unique opportunity to test advanced data-driven gap-

fillingmodeling strategies, using empirical, statistical, or machine learning approaches, with the aim ofable to reproduce 75 

reproducing the diurnal variability in ET and the not only seasonal cumulative ET (ETsum) but day to day and diurnal variability 

in ET. In particular, Modern gap-fillingmodeling methods approaches based on machine learning (e.g., artificial intelligence 

and neural network approaches) have previously been limited to eddy covariance measurements. Coupling such advanced gap-

fillingmodeling strategies with modern automatic chamber systems might be an ideal fusion of measurement frequency and 

the ability to capture treatment effects like small small-scale soil differences (Falge et al. 2001a; KIŞI and ÇIMEN 2009). 80 

AgroFlux – a newly newly-developed sensor platform centered around closed chambers mounted on an robotic gantry crane 

(FluxCrane) – was initially built to capture the effect of soil type and management on GHG emissions and in particular CO2 

fluxes with high spatial and temporal resolution (Vaidya et al. 2021). The adaption of the system to measure ET provided us 

with the opportunity to analyze stand scale ET fluxes including the development of a data analysis tool for measured ET -

fluxes, and to test different gap-fillingmodeling strategies. We tested five different gap-fillingmodeling strategies including 85 

basic statistic and advanced approaches including machine learning approaches. During the cultivation period of winter rye 

from mid-September 2020 to the end of June 2021, ET and relevant environmental and plant growth parameters were measured 

to identify the corresponding drivers of crop ET and productivity. The FluxCrane system covers a field where three different 

soil types are present, which reflect the erosion gradient typical for the hillside of the hummocky ground moraine landscape 

of northeast Germany. This made it possible to evaluate the impact of soil type as well as soil management on ETsum, seasonal 90 

development and agronomic water use efficiency (WUEagro; dry matter per unit of water used by the crop).  

In the following, we will examine i) soil type and top soil dilution effects on crop yield, ETsum and WUEagro, ii) the spatio-

temporal variability of ET fluxes over the growing season, and iii) the suitability of various gap-fillingmodeling strategies. 

The paper’s aim is to establish an approach that would provide reliable predictions of ET fluxes both in terms of ETsum as well 

as diurnal trends of ET fluxes. We hypothesize that: i) eroded soils and top-soil dilution lead to decreased ET controlled by 95 

weaker plant growth, ii) WUEagro declines from least to most eroded soil type and with top soil dilution; iii) the automated, 

continuous FluxCrane measurements result in unique insights into small scale dynamics such as night time ET fluxes and ET 

fluxes during the non-growing season. Here, we hypothesize, that iv) the uncommonly (compared to manual chamber systems) 
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large data set (compared to manual chamber systems)  allows for a robust use of gap-fillingmodeling strategies based on 

machine learning. We envisage that this will greatly improve ETsum and subsequently WUEagro based on automated closed 100 

chamber systems. 
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2 Material and Methods 

2.1 Study Site site and experimental design 

The AgroFlux experimental platform is located in Brandenburg, a federal state in northeast Germany, near Dedelow within 

the Uckermark region (53° 23´ N, 13° 47´ E; ~50-60 m a.s.l). Brandenburg, which includes some of the driest regions in 

Germany, uses 48.6% or about 1.44 million hectares of its area for agriculture (Amt für Statistik Berlin-Brandenburg 2020). 115 

It is located in the continental climate zone and has a water deficit of about 150 mm during the growing season (Wessolek and 

Asseng 2006). The long-term (1991 to 2020; ZALF) mean annual air temperature in this region is 8.8°C with a mean annual 

precipitation and potential evapotranspiration of 467 mm and 637 mm, respectively (ZALF research station, Dedelow).  The 

focus of agriculture in Brandenburg is on grain production, which faces a variety of challenges due to increasingly dry 

conditions during the main growing season (Amt für Statistik Berlin-Brandenburg 2020). The Uckermark region is the most 120 

productive region for agriculture within Brandenburg. It is shaped by glaciation with a hilly to flat-wavy ground moraine 

landscape whose soils are strongly influenced by soil erosion (Nudiargic Luvisol, Calcaric Regosols, Colluvic Regosols) as 

well as redoximorphic soils (Stagno-,  Gleysols) (MLUK 2020). The strong soil heterogeneity and ongoing soil erosion, mainly 

by tillage, has a great influence on the productivity of the cultivated areas (Sommer et al. 2016). Today, only 20% of the land 

is not affected by past and present soil erosion due to tillage and water (Sommer et al. 2008; Wilken et al. 2020),  resulting in 125 

a very high spatial variability of soils (Wehrhan and Sommer 2021) and associated growing conditions for crops (Wehrhan et 

al. 2016). In combination with the ongoing climate crisis, it is proving difficult to develop land-use methods that allow reliable 

and sustainable arable farming under these challenging conditions.  

The study was carried out on the 100 x 16 m FluxCrane experimental field, an integral part of the AgroFlux sensor platform 

located at the interdisciplinary research area CarboZALF-D (Fig. 1a). There is  an elevation difference of one meter and all 130 

relevant local erosion stages are covered (WRB 2014): non-eroded Calcic Luvisol (LV-cc), strongly eroded Nudiargic Luvisol 
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(LV-ng) and extremely eroded Calcaric Regosol (RG-ca); see Fig. 1b, e; (RG-ca; see Fig. 1b/c; Sommer et al. 2008; Wehrhan 

et al. 2016; Vaidya et al. 2021). Here we used 18 plots in total, 6 six per soil type (Fig. 1c1d). For the 6 six plots per soil type, 

a randomized, full-factorial design, each repeated three fold, was adopted for topsoil dilution vs. non-topsoil dilution (first 8 

to 9 cm). During the study period from September 2020 to June 2021 (286 days), winter rye of the hybrid variety SU Piano 135 

was grown with a density of 200 plants per m² on an area of 0.176 ha. The novel gantry crane automatic chamber system (Fig. 

1d1e) was installed on this study site in 2019 (Vaidya et al. 2021). The attached gas exchange chambers were lowered on each 

plot on round structural steel frames with a diameter of 1.59 m and a basal area of 1.99 m2.  

2.2 Cultivation and top-soil dilution 

The AgroFLUX sensor platform site is located on a conventionally farmed agricultural area that is intended to represent a 140 

variety of soils in the region. Hence, top-soil dilution, tillage, cultivation and fertilizer application measures were implemented 

before and during the experiment. The manipulative field experiment was originally established to study the feedbacks of a 

dynamic disequilibrium in the carbon cycle of arable lands. Deep tillage or soil erosion lead to an admixture of subsoil material 

into the plough layer (Doetterl et al. 2016) which alters topsoil properties (SOC, clay content etc.). The resulting changes in 

the main rooting zone might reduce crop growth (Öttl et al. 2021). We mimic these common landscape processes in our top-145 

soil dilution experiment under controlled conditions (Vaidya et al. 2021). After topsoil removal (1.2 t per plot; first 8-9 cm; 3 

of the 6 plots per soil; July 14-15, 2020) we added the equivalent mass (1.2 t) of the respective subsoil horizons (E, Bt, Ck) 

taken from a large soil pit nearby. Thus, E horizon was applied to the prepared plots of the non-eroded Calcic Luvisol (LV-

cc), Bt horizon on the strongly eroded Nudiargic Luvisol (LV-ng) and Ck horizon to the extremely eroded Calcaric Regosol 

(RG-ca). Subsequently, we mixed the added subsoil material with the remaining local Ap horizon. Finally, the chamber frames 150 

were reinstalled. In the following, the resulting treatments of the same soil types are labelled as non-diluted (n-d) and diluted 

(d). The actual tillage prior to sowing took place just before seeding on September 17, 2020. For this, the frames were removed, 

and the soil was loosened to a depth of 25 cm in west-east-direction. Sowing was done with a power harrow-drill combination. 

Fertilization was applied to all plots per soil type before and during the growing season using digestate from Pflanzenbauhof 

GbR (Uckermark, Germany), Triple Super Phosphate (TSP) and grain potash (Table B1). Due to initial changes in the topsoil 155 

structure (after the addition of subsoil material), germination differed between manipulated and non-manipulated plots. In 

order to achieve similar plant densities in all plots, replanting had to be done in all non-diluted plots within the frames (LV-

cc: 13 plants per plot; LV-ng: 40 plants per plot; RG-ca: 82 plants per plot).  For general plant protection and soil treatment, 

herbicides were applied to the field prior to the growing season (e.g., glyphosate; September 3, 2020). 

2.3 Gantry crane system description and gas exchange measurements 160 

The ET flux measurements were carried out by a novel automated chamber system (FluxCrane) using a 5-meter-high gantry 

crane traveling on two 110 m tracks which has been described in detail (Vaidya et al. 2021). Briefly, the system designed by 

Pfannenstiel ProProject GmbH (Bad Tölz, Germany), is capable of moving in three dimensions: the x-axis for movement along 
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the track, the y-axis for movement perpendicular to the track, and the z-axis for vertical chamber movement. The FluxCrane 

carries two transparent chambers made of polymethyl methacrylate (PMMA; A: 1.986 m2; V: 3.756 m3). Since the two 165 

chambers do not move independently from each other along the track, frames where arranged in rows, from which each half 

was measured by one chamber. To ensure airtight sealing during chamber deployment, steel frames with a diameter of 1.59 m 

and a depth of 5 cm were installed into the soil and equipped with an approximately 10 cm wide foam ring were used to further 

increase the chambers bearing surface, while deployed. ET fluxes were determined by measuring the development of chamber 

headspace H2O concentrations (4 sec frequency) over 7 minutes in a flow-through non-steady-state (FT-NSS) mode 170 

(Livingston and Hutchinson 1995), using two infrared gas analyzers (one per chamber; LI-COR 850, Licor Biosciences, UK).  

The chambers have an average light transmittance of about 76 % (74% for chamber 1 and 78% for chamber 2),,  but the 

experiment was designed to minimize abut a reduction in ET due to reduced light availability  is not expected, in our case 

mostly (Fastest possible ET calculation after chamber closure; short closing times due to the short chamber closure timeand 

ventilation). In addition, For more details see also (Pape et al. (2009)) concluded, that the PAR reduction had only a minor 175 

effect (< 5%) on photosynthesis for this type of chamber, which should be comparable or smaller for transpiration.. 

Temperature differences during chamber closure were minimized by the short measurement time and ventilation (<1.5°C) with 

two small axial flow fans (5.61 m3 min-1) used to homogenize the chamber headspace air. To compensate for the difference in 

tubing length between the chambers and the analyzer (chamber 1: 15 m vs. chamber 2: 22 m), a flow rate of 2.3 l min-1 and 

3.6 l    min-1 was set to obtain a similar sensor death time of 13 seconds. A CR6 data logger and a CDM-A116 analog 180 

multiplexer (Campbell Scientific Inc., USA) were used for data recording and storage. The plots were measured hourly up to 

24 times a day in order to be able to detect daily variations. Due to the randomized measurement design, each plot was measured 

approximately twice per week, which would theoretically result in approximately 2200 measurements per plot throughout the 

entire season. However, the system was designed to shut down under high winds and cold temperatures, resulting in a true 

average of only 724 measurements per plot per season. Diurnal ET day- and nighttime fluxes considered in this study were 185 

calculated for the cultivation period from September 17, 2020 (sowing of winter rye), until harvest of winter rye on June 30, 

2021.   

2.4 Input parameters for gap fillingmodeling  

2.4.1 Environmental Parametersparameters 

Relative humidity (RH) [%] (WXT520, Vaisala, FI) was measured during the ET flux measurements outside the chambers 190 

while temperature (T) [°C] (109, Campbell Scientific Ltd., USA) and incoming photosynthetically active radiation (PAR)                      

[μmol m-2 s-1] (SKP 215, Skye Instruments Ltd., UK) were measured both outside as well as inside the chambers. Precipitation 

(Pr) [mm] (Tipping Bucket Rain Gauge 52203, R. M. Young Company, USA) and relative soil moisture (SM; 13 to 18 cm 

depth) [%] (ML2x, Delta-T Devices Ltd., UK) were measured at an adjacent field (< 25m; Fig. 1b).  
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2.4.2 Plant- specific parameters  195 

Spectral plant indices, such as the ratio vegetation index (RVI; also simple ratio SR) were manually recorded weekly for all 

18 plots using a near-infrared (NIR)/visible light (VIS) double, 2 channel sensor device (SKR 1850, Skye Instruments Ltd., 

UK) mounted on a 1.8 m handheld pole (Görres et al. 2014; Kandel et al. 2013), connected to a CR1000 data logger (Campbell 

Scientific Ltd., USA). The double, 2 channel sensor device consisted of an upward- and downward–facing sensor, measuring 

the incoming (VISi) and reflected (VISr) VIS at a wavelength of 656 ± 10 nm and incoming (NIRi) and reflected (NIRr) NIR 200 

at 780 ±10 nm. The upward sensor was fitted with a cosine-correction diffusor for measurements of the incident radiation, 

while the downward sensor, installed 1.8m above the ground, had a 25° cone field of view, thus covering an area of 0.5 m2 

during measurements (Görres et al. 2014). Each plot was measured once a week for 30 seconds, resulting in one mean value 

including 30 measurement points.   The RVI was used as an indicator for standing crop biomass and is close to zero for a 

fallow surface and increases as plant cover increases. The RVI was calculated following Equ. 1: 205 

 𝑅𝑉𝐼 =
NIRr
NIRi
VISr
VISi

         (1) 

Since only weekly plot-wise RVI data were was available, daily RVI data were was obtained by fitting a sigmoidal function 

for initial plant growth in the fall up to stagnation due to plant inactivity in the winter and a polynomial function for shoot 

elongation and later senescence during spring growth and summer maturation, respectively (Fig. A1). During the period from 

November 24, 2020 to March 22, 2021, which we refer to as the non-growing season, no plant growth was assumed due to 210 

average daily temperatures below 5°C (<3 consecutive days). 

2.5 ET flux calculation and gap fillingmodeling 

2.5.1 ET Flux flux calculation 

The workflow included various steps to pre-process data obtained by the FluxCrane, calculate ET fluxes and finally applying 

and validating the different gap-fillingmodeling procedures (Fig. A2). ET flux calculation was performed based on the ideal 215 

gas equation (Eq. 2) modified by (Hamel et al. 2015) using an adapted R-script, based on those presented by (Hoffmann et al. 

2015).   

 

𝐸𝑇𝑓𝑙𝑢𝑥 =
𝑐H2O × 𝑃×𝑀H2O

𝑅×𝑇
 × (𝑡 × 𝑉

𝐴
) [

𝑚𝑚

𝑑
]                       (2)  

𝐸𝑇𝑓𝑙𝑢𝑥[𝑚𝑚𝑜𝑙 𝑚−2𝑠−1] =   
𝐸𝑇𝑓𝑙𝑢𝑥[

𝑚𝑚

𝑑
] 

(𝑡 × 1000)
 ∗  (

1

𝑀H2O
)                    (3)  220 

 

With ETflux [mm d-1] being the evapotranspiration rate, cH2O the moles of water per total moles present, P the gas pressure [Pa], 

MH2O the molar mass of water [18 g mol-1], R the gas constant [8.314 m³ Pa K-1 mol-1] and, T the temperature [K] inside the 

chamber, t the time factor [86.4], V the chamber volume [m³] and A the basal area [m²]. The ET flux in mmol m-2 s-1 (Equ. 3) 
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was also calculated to ensure comparability with other studies. The first 15% of each measurement were was discarded prior 225 

to flux calculation, to prevent a disturbance due to initial homogenization of the chamber headspace air. The temporal change 

was determined by linear regressions on several subsets of the data generated based on a variable moving window with a 

starting window size of 1:20 minutes (20 consecutive data points) and a maximum length of 2 minutes (30 consecutive data 

points). This procedure resulted in several ET fluxes for each measurement, from which the best flux was subsequently selected 

using a set of soft and hard criteria. Soft criteria included: (i) checking whether the conditions for the application of a linear 230 

regression were fulfilled (normality, variance homogeneity, linearity); (ii) no outliers were present (±6x interquartile range); 

(iii) temperature variation during the measurement was < 1.5 °C. Calculated fluxes per measurement that did not meet the 

quality criteria were discarded. Afterwards applied hard -criteria reduced potentially remaining multiple fluxes per 

measurement further to the ideal ET flux. Since the air in the chamber headspace reached higher water saturation with 

increasing time, hard criteria were based on the selection of the flux which showed the shortest temporal distance to the start 235 

of measurement and had the maximum length. 

During the measurements, various events could lead to erroneous ET fluxes such as e.g., fog (saturation of the chamber 

interior), sensor failures, or chamber leakage due to failure in chamber deployment. Erroneous fluxes were hence discarded. 

In addition, potential differences of the measurements between the sensors of both chambers were evaluated by the 

measurements of ambient air during periods of no chamber deployment.  240 

A complete data set of hourly data points for the 286 days of the cultivation period would consist of 6,888 measurements per 

treatment. After the flux calculation and filtering using the soft and hard criteria, a total of 13,011 ET flux measurements were 

performed, resulting in approximately 2,169 measurements per treatment. For On individual plots, an average of 723 

measurements were available (Table B2; ranging from 624 to 1,210; accounting for 10.5 % on average) measurements were . 

measured and the remaining were predicted by the gap approaches (Table B2; 89.5% on average). 245 

2.5.2 Gap-fillingModeling ET fluxes  

To gap fillmodel ET fluxes, five different gap filling approaches were used and compared with each other. Gap-fillingModeling 

procedures included: 1.) a simple statistical approach: Mean diurnal variation (MDV); two empirical approaches: namely 2.) 

non-linear regression (NLR) and 3.) Look-Up-Tables (LUT) as well as two machine learning approaches: with 4.) Support 

Vector machine (SVM) and 5.) artificial neural network with Bayesian regularization (ANN_BR). 250 

MDV (Falge et al. 2001b; Moffat et al. 2007) is used to calculate missing hourly values through interpolation of values 

measured at the same hour during adjacent days. Thus, for the season with 286 days, the missing values were calculated for 

every hour, generating 24 values per day.  

NLR is based on parameterized non-linear equations using the mean least square method to express the relation between the 

total seasonal data of ET and T, RH, SM, PAR and RVI. Half-hourly values were predicted using the predictor variables and 255 

obtained function parameters. 
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Gap-fillingModeling missing ET fluxes using the LUT approach is based on the assumption of similar ET fluxes during similar 

environmental conditions, whereby similarity is defined through a number of thresholds for the different environmental 

variables. Thus, missing ET-fluxes can be predicted based on the environmental conditions as well as the RVI associated with 

the missing data. To do so, measured ET-fluxes per subplot were split into different classes (csturges) based on T, RH, SM, PAR 260 

and RVI, with their class limits determined by Sturges rule (Equ. 4, (Harkins 2022)). Within this study, on average, 12 classes 

of equal size were formed covering the range of all parameters.  

 

𝑐𝑠𝑡𝑢𝑟𝑔𝑒𝑠  =  
1+3.32 ∗ 𝑙𝑜𝑔 (𝑛)

 𝑙𝑜𝑔 (10)
       (4) 

 265 

Gaps in ET- fluxes were subsequently filled assigned with the average ET flux of the class corresponding to obtained 

environmental parameters within the gap. In case, no class could be attributed to measured environmental conditions within a 

gap, the average ET flux was used. 

SVM is a black-box -model, where a computer algorithm learns by teaching data to assign values to objects or classes (Noble 

2006). As mentioned by (Kim et al. 2020)), the SVM uses a slack variable to circumvent unseparated parameters due to noise 270 

or extreme values in the data, as well as the radial basis kernel function based on previous SVM studies for upscaling fluxes 

(Ichii et al. 2017; Xu et al. 2018). 

In comparison, ANN_BR is a combination of a purely empirical nonlinear regression model with a stochastic Bayesian 

algorithm for regularizing the network training (Schmidt et al. 2018). An artificial neural network (ANN) consists of nodes 

connected by weights representing the regression parameters (Bishop and others 1995; Hagan et al. 1996; Moffat et al. 2007; 275 

Kubat 1999; Rojas 1996). The network is trained by providing it with sets of input data such as the environmental and plant-

specific parameters mentioned earlier and the associated output data in the form of e.g., ET flux values. Similar to (Moffat et 

al. (2007), all techniques evaluated use the classical back-propagation algorithm, where the training of the ANN is performed 

by propagating the input data through the nodes via the weighted connections and then back-propagating the error and adjusting 

the weights so that the network output optimally approximates the ET-fluxes. Subsequent to this training, the underlying 280 

dependencies of the ET fluxes on the environmental and plant-specific input variables are mapped to the weights and the ANN 

is used to predict half-hourly ET fluxes, where the performance of the ANN depends on several criteria.  

2.6 Seasonal cumulative ET, Water water Use use Efficiency efficiency and crop ET  

ETsum were determined using half-hourly or hourly ET values predicted by all five gap fillingmodeling approaches (Figure 6, 

Figure A3 - A6). Daily averages [mm d-1] and ETsum (mm cultivation period-1) were formed in order to view the development 285 

over the entire cultivation period. The amount of plant biomass in dry mass (DM) [kg] was recorded during harvest for each 

treatment, which, in combination with ETsum yields the agricultural water use efficiency WUEagro ((Hatfield and Dold 2019), 

Equ. 5).   This is the WUEABG variant of WUEagro, as the dry mass is total aboveground biomass (Katerji et al. 2008).  
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 𝑊𝑈𝐸𝑎𝑔𝑟𝑜 =  
𝐷𝑀

𝐸𝑇𝑠𝑢𝑚
        (5) 290 

 

To obtain a comparable value for the ETsum calculated by the FluxCrane, crop evapotranspiration (ETc) was calculated (Allen 

1998). ETc (Equ.6) was calculated from the crop factor Kc (Kc ini = 0.3; Kc mid = 1.15; Kc end = 0.4) and the potential 

evapotranspiration ET0 using monthly averages (DWD 2022).  

   𝐸𝑇𝑐  =  𝐾𝑐  × 𝐸𝑇0       (6) 295 

 

2.7 Statistical analysis 

All calculations were performed using the statistical software R (R Core Team, 2021) version 4.0.4. Therefore, several 

packages (Table B3) were used to calculate the ET fluxes and to perform subsequent gap-fillingmodeling as well as for tothe 

visualization of results.  300 

To check the generalTo calibrate the  precision and accuracy of all gap-fillingmodeling approaches, all measured values werea 

compared comparison was conducted between all measured values with and their associated corresponding predicted values 

for each treatment. AdditionallyFor validation, the k-fold cross validation method (k = 5) was performed implemented on 

using the resulting ET data to test evaluate the predictive outcome performance of the approaches and ensure robust statisticsal 

analysis. To accomplish this, each data set was divided into five subsets, each comprising 20% of the total data. The modeling 305 

process was then repeated five times, utilizing 80% of the data to calculate the missing 20% and generate a complete dataset 

without relying on the original data. Subsequently, this dataset was compared against the measured data to evaluate the 

modeling approaches. ThenFinally, all performance metrics including the coefficient of determination (R2), mean absolute 

error (MAE), normalized root mean square error (NRMSE) and Nash-Sutcliffe efficiency (NSE) were calculated for both 

calibration and validation. These metrics  andwere used to define performance classes (Table 1) to for evaluatinge the accuracy 310 

of the approaches for in the given setup (Moriasi et al. 2015). To determine parameter impact on ET, linear and non-linear 

models were used. Lastly, differences of ETsum, DM and WUEagro between treatments were tested with the Kruskal-Wallis-test 

and Dunn-Bonferroni post-hoc test. 

3. Results  

3.1 Environmental parameters 315 

The study year was significantly warmer (mean temperature 9.6 °C) and wetter (508 mm annual precipitation) between July 

1, 2020 and June 30, 2021, compared to mean annual air temperature (8.8 °C) and precipitation (467 mm). In particular, 

temperatures (Fig. 2a) were above average in the fall and winter period in 2020 as well as June, 2021. On the other hand, April 
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and May, which are crucial for crop growth, were colder and also drier. Daily mean RH (Fig. 2b) ranged between 50 % and 

92.4 % with increasing diurnal variation in warm periods. PAR (Fig. 2b2c) largely reflected the seasonal variation of the day 320 

length with a maximum of 1860 µmol m-2 s-1 (half half-hourly measurements), and reduced values during longer storm events 

and high cloud cover (e.g., through changes in photosynthesis). The SM at 13 to 18 cm depth largely reflects the intensity of 

precipitation events (Fig. 2c2d), ranging from 12 % to 29 %. One exception is a prominent increase in mid-February that can 

be attributed to low temperatures and subsequent snowmelt. The largest precipitation events (> 10 mm d-1) occurred on 

September 26, 2020 with 12 mm, on December 24, 2020 with 15 mm and on February 3, 2021 with 16 mm.   A sharp declining 325 

trend in SM and no response to precipitation events is evident from April (about 25 %) to harvest in June (about 12 %). 

However, this can be explained by a high water consumption of the fully developed crop stand and canopy interception. 

Shallower SM sensors at 3 to 8 cm (not shown) indeed responded to these precipitation events albeit weakly, indicating the 

infiltration to deeper soil layers was impaired.  

3.2 Plant development  330 

RVI estimates are based on weekly measurements. Two temporal periods in particular were relevant for plant growth: i) the 

period from germination to the non-growing season in winter; and ii) the growing period after winter until harvest (Fig. A1). 

The maximum RVI values were all reached at a similar time (May 15, 2021 to May 18, 2021). In this regard, the non-diluted 

non-eroded soil LV-cc n-d had the highest RVI (16.46 on average), while the diluted non-eroded soil LV-cc d showed lower 

values (13.88 on average). The strongly eroded soil of LV-ng revealed the same pattern with a higher RVI for non-diluted (12 335 

on average) and lower RVI on diluted (10.35 on average) treatments. The extremely eroded soil of RG-ca, on the other hand, 

showed huge differences between the non-diluted and diluted treatments (10.95 vs. 5.87 on average). Apart from that, the 

maximum standard deviation differed between non-diluted and diluted treatments for the three soil types (LV-cc: 1.65 < 3.29; 

LV-ng: 1.09 < 1.94; RG-ca: 1.17 < 0.82). Higher RVI values were already reached in non-eroded and strongly eroded soils 

compared to extremely eroded soil during the initial growing season in fall of 2020 until the non-growing season. Thus, mean 340 

RVI values of 4.47 to 6.63 were obtained for non-eroded and strongly eroded soils, while the extremely eroded soils had mean 

RVI values of only 3.61 (n-d) and 2.31 (d). 

3.3 ET Fluxesfluxes 

The seasonal development (Fig. 3) of the quality-screened measured ET -fluxes is similar for all treatments: a short growth 

phase after germination (1 - 2 mmol m-2 s-1) is followed by a decrease of fluxes until and during the non-growing season in 345 

winter (< 0.1 mmol m-2 s-1), when hardly any plant activity is found due to low temperatures. After the non-growing season, 

fluxes quickly return to their maximum fall level (1 - 2 mmol m-2 s-1) and then increase rapidly (> 5 mmol m-2 s-1). On the non-

eroded soil (LV-cc), this rapid increase continued into June, while ET fluxes on the eroded soils (LV-ng and RZ-ca) already 

peaked in May. In addition, there is a clear difference in the maximum fluxes measured between soil types with 6.7 mmol       
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m-2 s-1 for both treatments of non-eroded LV-cc, 5.6 / 6.5 mmol m-2 s-1 (n-d / d) for LV-ng, and 5.8 / 5.1 mmol m-2 s-1 (n-d / d) 350 

for RG-ca. Notably, there is a data gap from late April to late May due to sensor failure.  

3.4 Gap filling Modeling and validation 

Pronounced differences of tested gap-fillingmodeling approaches in terms of respective calibration statistics could be found. 

Calibration- model -performances differ in their scatter around the 1:1-agreement plots (Fig. 4) and associated coefficients of 

determination (R2). NLR shows a clear overestimation at low and underestimation of higher ET fluxes (Table B4). Compared 355 

to that, MDV more accurately predicts low/high ET fluxes, but is characterized by a much lower precision due to a higher 

variance (Table B4). Among all gap fillingmodeling approaches, displayed calibration statistics (Table 2) indicate a very good 

or good (Table 1) prediction for SVM, ANN_BR, MDV and LUT over the entire range of observed ET fluxes. Considering 

the k-fold cross-validation (Fig. 5, Table 3), ANN_BR and SVM perform good, while MDV shows partially satisfactory 

statistics, and LUT shows unsatisfactory statistics due to allocation problems that arise when no class is found for the given 360 

climate conditions and the mean is used. Statistically, ANN_BR and SVM were similarly good in predicting observed ET 

fluxes (Table 2 and 3), even if they show a small tendency to overestimate low ET fluxes (Table B4). However, gap-

filledmodelled ET fluxes using ANN_BR showed a large number of predicted negative ET fluxes (1547 on average per plot; 

Fig. A6) throughout the cultivation period. These fluxes occurred to an unrealistic degree during times when RH was 

significantly below saturation and plants were active (e.g., during the daytime period), resulting in a reduction in seasonal 365 

cumulative ETsum between 1 and 51 mm, depending on the treatment. This is most likely a method method-specific 

extrapolation problem (see discussion) and the reason we use SVM for final budget estimations.  

3.5 Diurnal Treatment differencesET fluxes, ETsum  and crop ET 

The model was able to predict the diurnal trends of ET fluxes during the cultivation period (Fig. 6). One representative day 

per month was selected in terms of the highest number of measurements. The two days of September and May have a reduced 370 

accuracy (ME: - 0.22 and – 0.3) due to a slight overestimation by the SVM modeling, while most of the other days are modeled 

accurately (ME <= ± 0.06). Additionally, the seasonal development of the SVM-predicted ET is depicted in Fig. 7 (see Fig. 

A3 - A5 for the other modeling approaches) and demonstrates a similar pattern to the measured fluxes described in Section 

3.3.  

In general, eroded soils tend to have a negative effect on ETsum. However, this trend was not statistically significant (Kruskal-375 

Wallis-Test, ETsum: χ2 = 3.04, df = 5, p = 0.69). For DM and WUE, on the other hand, the Kruskal-Wallis test indicated a 

differed significantly difference between treatments (Kruskal-Wallis-Test, DM: χ2 = 14.58, df = 5, p = 0.01; WUE: χ2 = 11.12, 

df = 5, p = 0.05). The subsequent Dunn-Bonferroni post-hoc test revealed only a significant difference in DM between non-

eroded LV-cc n-d and eroded RG-ca d (p = 0.013). However, no statistically significant pairwise differences were found for 

WUE. The amount of plant biomass in dry mass (DM) [kg] is decreasing from non-diluted to diluted and from less eroded soil 380 

types to more eroded soil types. DM ranges from 1.5 ± 0.13 kg m-2 for LV-cc n-d to 0.85 ± 0.2 kg m-2 for RG-ca d. WUEagro 
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is decreasing from less eroded to more eroded soil types ranging from 7.25 ± 1.23 g DM kg-1 H2O to 4.69 ± 0.71 DM kg-1 H2O 

(Fig. 89).  

In order to compare the individual treatments, daily ET and ETsum were calculated (Fig. 67). ET was affected by T, RH, PAR, 

and RVI, whereas only a small correlation was found with SM (Fig. 78). Higher ET fluxes were induced by increases in T, 385 

PAR and RVI, whereas increasing RH resulted in lower ET fluxes. ETsum (Fig. 8a9a) ranges between 212 ± 45 mm (LV-cc n-

d) and 180 ± 29 mm (RG-ca d).  

ET0 for the observed study period (September 2020 – June 2021) and region (Uckermark) was 370 mm (DWD 2022). We used 

the monthly values to calculate the ETc using ET0 and the crop coefficient (Allen 1998), resulting in an ETc of 263 mm for the 

cultivation period. 390 

4 Discussion 

In the following, we will discuss i) the effects of soil -type and top-soil dilution on ETsum, yield (DM) and WUEagro, along with 

ii) the spatio-temporal variability of ET fluxes over the cultivation period, and iii) the suitability of the gap-fillingmodeling 

strategies used in this study as well as potential ways forward to improve our approaches. 

4.1 Effects of soil -type and top-soil dilution on ET 395 

In the studied region, soil types vary in their suitability for agricultural cultivation (MLUK 2020). Luvisols support large water 

fluxes due to their clay-depleted, deep top-soils in combination with the clay-enriched and mostly decalcified sub-soils. They 

are among the most productive soils in Brandenburg (MLUK 2020; Stahr 2022). Regosols are generally only moderately 

suitable for arable farming. They are usually found on hilltops and are characterized by parent material near to the surface, 

lack of depth development, and limited rootability due to the dense, carbonate-rich parent material. They typically have low 400 

water availability and plant growth (Herbrich et al. 2018). They are formed by erosion of agricultural Luvisols as relatively 

organic matter rich top-soil is removed and deeper, nutrient-depleted lower soil layers are mixed into the cultivated layer 

(Arriaga and Lowery 2003; Pimentel and Kounang 1998).  

TIn addition, the carried out top-soil dilution aimed at testing one of the processes of an approach to enhance soil C storage 

through top-soil deepening. Topsoil deepening through deeper ploughing might store originally top-soil- bound  SOC in the 405 

deeper subsoil and generate SOC recharge in the diluted C poor top soil (Sommer et al. 2016). The latter being tested during 

this study by the carried out top-soil dilution. However, side effects include, similar to erosion, nutrient deficiency and weaker 

rootability leading to decreased crop growth and yield (Al-Kaisi and Grote 2007; Schneider et al. 2017; Feng et al. 2020). The 

boundary soil conditions established by erosion and top-soil dilution may not only impact crop growth and yield but also 

disrupt the crop water balance, especially with the expected increase in drought and heat events in Central Europe (Spinoni et 410 

al. 2018). Consequently, farmers might become limited in their choice of crops due to water availability. 
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As predicted, we observed a significant decline in yield with erosion and top-soil dilution during the study period. However, 

the impact of soil-type -specific erosion intensity and top-soil dilution on ETsum was not as pronounced and the trend of 

declining ETsum with soil -type and top -soil dilution was not statistically significant among all treatments (212 ± 45 mm on 

non-eroded Calcic Luvisol to 180 ± 29 mm on extremely eroded top-soil diluted Calcaric Regosol). Notably, the studied year 415 

2020/21 was comparatively wet (231.1 mm precipitation during the observed period), and potential effects of lower rootability 

and enhanced drought stress were not observed during the main growth period. This is of great importance because the 

Uckermark region generally has an overall water balance of about 1 (precipitation input equals ETpot output) and is therefore 

water or energy limited depending on the annual precipitation and ETpot of each year. For example, the extremely dry year of 

2018 was very likely water limited with an annual precipitation of < 450 mm and a predicted ETpot of > 650 mm and thus by 420 

far exceeding annual precipitation. However, the year 2021 had an annual precipitation of about 600 mm and a predicted ETpot 

of < 575 mm (DWD 2022). Hence, in rather wet years, like the observed 2021, plant growth in the region is rather energy 

limited (of course dependent on precipitation during the growth period). This fits with our results, as during the studied period, 

most plots had a lower ETsum than cumulative precipitation. However, it is very likely that the ETpot/Pr ratio, and in fact also 

the observed actual ETsum/Pr ratio will vary considerably between wetter and drier years and between different crops 425 

(particularly winter vs. summer crops).  

Additionally, the observed imbalance of response in yield vs. ETsum led to significantly reduced WUEagro. In a period of 

consecutive dry years, a lower WUEagro could additionally have a negative effect on the water and carbon balance of the whole 

system, since the water consumption becomes less efficient, especially for the Calcaric Regosol  (up to 36% less yield per used 

amount of water; (Meena et al. 2020). This could further exacerbate the drought and potentially lead to legacy effects. Finally, 430 

winter crops and especially winter rye, are more resilient to drought (Ehlers 1997) due to their head start in growth. Hence, a 

long-term investigation spanning withincluding other crops (e.g., summer cereal crops) and management strategies would be 

particularly interesting, as a greater decrease in ET may be observed with soil-specific erosion intensity.  

4.2 Seasonal variability of ET fluxes and WUE 

Over the entire cultivation period, ET fluxes responded particularly to crop growth, first during the establishment period in fall 435 

(mid of October to mid of November) and then again during the main growth period in spring (end of March to mid of May). 

The close relation of measured ET flux dynamics to RVI  (Fig. 78; e.g., Hanks et al. 1969) can be associated with increasing 

T rates that strongly compensate for the suppression of E, as canopy biomass increases (Dubbert et al. 2014; Groh et al. 2020). 

Over the diurnal cycle, ET reacted to changes in environmental conditions, particularly temperature and RH, which together 

define the vapor-pressure deficit (VPD), as well as PAR. In particular, crops that have been bred to prioritize carbon gain over 440 

water conservation will tend to respond to rising VPD strongly (Dubbert et al. 2014; Massmann et al. 2019). Air temperature, 

humidity and PAR together with increasing biomass (expressed as higher RVI) controlled ET variability during the peak 

growth period in spring until harvest. SM, on the other hand, did not have a limiting effect on ET, which we attribute to the 
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wet conditions during the observation period (see above), confirming that the observed crop cycle was not limited by water 

availability.  445 

One of our expectations was that expected differences in ETsum would result mainly from differences during the main 

vegetation period from April to harvest due to variations in biomass and thus T. However, while the growing season between 

April and June is responsible for a large portion of ETsum, ranging from 66 % to 73 %, it is only responsible for a small portion 

of differences between treatments, with a maximum of 14.3 mm from the non-eroded soil -types. The combined fall and winter 

period, on the other hand, is responsible for a difference of up to 17.5 mm in ETsum between non-eroded and extremely eroded 450 

soil -types, although it accounts for 27 % to 34 % of ETsum only. This is interesting, because it suggests that the reason behind 

the soil type differences in ET for winter rye are caused by static differences (e.g., lower biomass) and suppressed E (e.g., a 

shift in the T/ET ratio) rather than dynamic differences (e.g., the vegetation responses to environmental drivers or drought).   

This should be further evaluated by partitioning ET into T and E. The described FluxCrane is particularly suited for such an 

approach by combining flux and in-situ stable isotope approaches (Dubbert et al. 2014; Rothfuss et al. 2021). Beside the overall 455 

slight reduction of ETsum on eroded soil -types and top-soil diluted treatments, measured ET fluxes were larger on extremely 

eroded plots at the beginning of the growing season before canopy closure which could be explained by a lower soil cover. 

This may be related to the fact that a lower vegetation cover, which is visible in the RVI, can lead to higher E prior to canopy 

closure (Dubbert et al. 2014; Hu et al. 2009; Raz-Yaseef et al. 2012; Wang et al. 2012).  

4.3 Gap-fillingModeling approaches 460 

Methodologically, the study faced two main challenges: accurately quantifying ETsum and realistically predicting diurnal 

variations during both, the low ET winter and high ET summer periods. Among the gap-fillingmodeling approaches compared 

in this study, only NLR showed calibration statistics less than good (Table 2). While the LUT showed very good calibration 

results, the allocation problems that occur when no class is found (Fig. 5) and the mean is used, resulted in the lowest predictive 

ability during validation over the full range of measured ET fluxes. Some studies also obtained quite plausible results for LUT 465 

and MDV (Boudhina et al. 2018; Falge et al. 2001a; Moffat et al. 2007), and adjusting the classes of the LUT could further 

improve the results of this approach. However, with the available dataset, the only way to avoid allocation problems was to 

use fewer classes. This resulted in a loss of variability, making diurnal differences invisible and ET estimates less accurate. 

MDV, on the other hand, partially showed only satisfactory values during validation (Table 3), while SVM and ANN 

performed good or very good according to the defined classes (Table 1). Additionally, previous studies found that MDV (as 470 

well as LUT) performs particularly weakly with increasingly large gaps (Moffat et al. 2007; Kim et al. 2020). Especially for 

conditions where no measurements could take place due inter-alia environmental conditions (large gaps in winter), the fact 

that MDV takes averaged values of adjacent measurements could explain the rather bad predictions. This is similar for LUT, 

since no classes could be created for conditions where no measurements took place. The machine learning approaches SVM 

and ANN_BR, on the other hand, are not as sensitive to larger observational gaps because their training includes all 475 

measurements. For seasonal variability and budgets, we achieved the best performance with the SVM approach, while ANN 
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showed reduced daily and seasonal cumulative ET due to an unrealistic amount of predicted negative fluxes (up to 51 mm; 

Fig. A6A5). However, the best approach for gap fillingmodeling or gap-filling can vary depending on the application and 

investigated parameters. For example, in gap-fillinggap-filling methane fluxes using eddy covariance (Kim et al. 2020), 

ANN_BR was superior to SVM.  480 

Another important aspect of gap-fillingmodeling is potential over- or underestimation of fluxes. (Shrestha and Shukla 2015), 

for example, attempted to predict actual lysimeter ET using different approaches (e.g., ANN_BR and SVM) and crops (pepper, 

watermelon) in a subtropical environment. Best predictions were obtained with SVM (pepper: 204.7 mm lysimeter vs. 181.8 

mm SVM; watermelon: 231.71 mm lysimeter vs. 189.83 mm SVM). However, they reported overestimation of low fluxes and 

underestimation of high fluxes by ANN_BR and SVM. In our study, we observed a tendency to slightly overestimate small 485 

fluxes using SVM based gap-fillingmodeling (Fig. B4). In this regard, using plot specific multi-depth SM data could also 

improve the predicted ETsum based on SVM in the future. Similarly, we expected considering wind speed to improve ET 

prediction, but could not find an effect on observed ET for the study period.  

Furthermore, it must be noted that the quality of SVM (and ANN_BR) predictions is highly dependent on the amount of data 

available (Chia et al. 2020; Abudu et al. 2010). Consequently, we tested the minimum amount of data necessary to provide 490 

predicted ET fluxes of good quality (see criteria in M&M). For the particular specific dataset, already even as little as 50 % of 

the total data available (minimum 300 measurements) provided good results. Thus, we emphasize that capturing a large 

variability of fluxes under different environmental conditions seems to be more important than a merely large data set. 

4.4 Accuracy Evaluation of the new system and comparison with other measurement techniques 

ETc was 263 mm from during the cultivation period. This, which is comparable to our observed results (ETsum) of 212 mm for 495 

non-eroded Calcic Luvisol, . However, it is important to consider given that ET0 calculations using the Penman-Monteith 

equation (FAO56-PM) are reported to overestimate ET0 and thus consequently ETc (Allen 1998). Thus, our FluxCrane ETsum 

seem sensible overall, . Neverthelesshowever, it is advisable a to directly comparison compare them withbetween the 

FluxCrane, lysimeter,s and potentially drone drone-based observations of ET would be advisable. This is particularly true 

relevant in light of ongoing discussions surrounding method constraints of estimating ET across scales (Ding et al. 2021; Ghiat 500 

et al. 2021; Hamel et al. 2015). 

For exampleinstance, there is a nearby lysimeter experiment with a multi treatment lysimeter experiment is located nearby the 

FluxCrane andconducted by (Groh et al. 2020). They report a wide range of ETsum for the period between 2014 and 2018 (300 

to 600 mm), with the lower range boundary being comparable to our results (considering that we only calculated budgets for 

the 9 9-months growths cultivation period and excluded the fallow period during the summer months with high ET). It has to 505 

be noted, however, that not only environmental conditions but also crops studied in (Groh et al. 2020) varied from year to year 

and, more importantly, from our study, hampering comparability between studies. However, the direct vicinity of two large 

large-scale set-ups able to estimate ETsum should be utilized in the future. Another lysimeter based study conducted in 
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Brunswick (Lower Saxony, Germany) for a cultivation season of winter rye report a range of observed ET fluxes very 

comparable to our study, with less than 1 mm day-1 in winter to a maximum of 6 - 7 mm day-1 in summer (bfg 2023).  510 

Finally, filling data gapsmodeling using statistical and empirical approaches is used in many fields e.g., to calculate of reference 

ET (ET0) with limited meteorological parameters (Chia et al. 2020) or ET from eddy-covariance measurements as well as 

canopy chamber measurements (Hui et al. 2004; Moffat et al. 2007; Falge et al. 2001a; Falge et al. 2001b; Hamel et al. 2015; 

Kübert et al. 2019). The connection between gap-fillingmodeling approaches, in combination with the described continuous 

high-resolution long-term ET measurements of numerous small-scale treatments, gives additional opportunities to observe the 515 

progression of ET over an entire cultivation season and, for example, to identify key periods that drive overall treatment 

differences.  

Here, our combined approach of automated chamber measurements of ET with data driven modeling fills a unique application 

niche among the different methods to quantify ET fluxes. In comparison, eddy-covariance (e.g., Boudhina et al. 2018; Simpson 

et al. 2019), and lysimeter-based observations (Groh et al. 2020) are unparalleled in measurement frequency and therefore only 520 

require filling gaps, which are typically much smaller compared to our approach. However, eddy-covariance systems operating 

at the ecosystem scale are not able to detect small-scale spatial heterogeneities in ET fluxes, e.g., to test the effects of soil type, 

management, etc., or different crops grown simultaneously (Anapalli et al. 2018). Lysimeter approaches, on the other hand, 

are useful for combining small-scale spatial heterogeneity with high-frequency measurements, but are limited to water cycle 

applications and a direct link to carbon/GHG dynamics is not straightforward.  525 

Classic manual gas exchange chamber applications are capable of analyzing small-scale spatial effects (e.g Macagga et al. 

2023; Antonijević et al. 2023). However, despite the ability to observe diurnal cycles, the total amount of measured data is 

usually very limited. Typically, campaign-based measurements are performed approximately every 3 weeks (Huth et al. 2017). 

This results in a total maximum amount of about 300 fluxes per treatment (3 replicates, 6 measurements per plot per campaign). 

Even when measurement campaigns are performed more frequently, the available fluxes remaining after quality checks are 530 

quite limited (see e.g., Dubbert et al. 2014 with 22 measurement campaigns in 8 months resulting in ~297 fluxes per treatment). 

Under these conditions, combining chamber measurements with data-driven ET flux modeling approaches is usually limited 

to very simple approaches (e.g., Falge et al. 2001a). In the present study, the automated FluxCrane generated approximately 

7-10 times the amount of ET fluxes compared to manually operated chambers. In addition, the system is not as disruptive to 

plant growth. For example, permanently installed automated canopy chambers or manually conducted approaches, tend to 535 

physically harm the canopy and have condensation issues due to permanently installed tubing and inappropriate air mixing 

within the chamber (e.g., Hamel et al. 2015). Moreover, the ability to observe nighttime fluxes has great potential to study 

previously overlooked short-term dynamics in ET and to improve the representation of underlying processes in process-based 

hydrological modeling, compared to manually operated chambers. This offers several benefits: 1) dynamic developments in 

ET fluxes and differences between treatments are easier to analyze (even if only the measured fluxes are considered), 2) the 540 

much larger number of fluxes available bears the potential to apply data-driven ET flux modeling using advanced statistical, 

empirical, and machine-learning based algorithms.  
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 Compared to other methods for estimating ET, such as eddy covariance measurements (e. g., Boudhina et al. 2018; Simpson 

et al. 2019), our approach is able to highlight small-scale treatment differences, such as soil type differences and associated 

erosion stages, in a heterogeneous field with a relatively high number of different treatments simultaneously. In addition, the 545 

system is not as disruptive to plant growth. For example, permanently installed canopy chambers or manually conducted 

approaches, tend to physically harm the canopy and have condensation issues due to permanently installed tubing and 

inappropriate air mixing within the chamber (e. g. Hamel et al. 2015). The FluxCrane eliminates these problems by providing 

continuous measurement and a constant flow of air through the attached canopy chambers. Moreover, the ability to observe 

nighttime fluxes has great potential to study previously overlooked short-term dynamics in ET and to improve the 550 

representation of underlying processes in process-based hydrological gap-filling, compared to other measurement systems and 

especially to manually operated chambers.  

4.4 Conclusion and outlook 

WHere, we present a possibility to obtain not only plausible ETsum but alsoand diurnal cycles of ET by using the novel 

FluxCrane system in combination with data-driven SVM based gap fillingmodeling. We expected strong negative effects of 555 

eroded soils and top-soil dilution on ETsum as well as yield. However, crop yield responded much more strongly to eroded soils 

and top-soil dilution than ETsum in the observed rather wet year, leading to strong negative shifts in WUEagro. The novel 

FluxCrane, combined with data driven modeling, fills the unique application with its potential to observe temporal flux 

dynamics and seasonal budgets for distinct landscape elements simultaneously, combines the contrasting benefits of eddy 

covariance and manual chamber techniques. Thus, the new system has a large potential to bring new insights into water-flux 560 

dynamics and budgets. and, iIn combination with  measurements of NEE CO2 measurements, the novel FluxCrane could give 

new insights in ecosystem WUE in a high spatio-temporalal resolution using NEE (net ecosystem exchange). In addition, 

coupled with the GEP (gross ecosystem production) and innovative measurements such as in-situ stable water isotopes 

(Dubbert et al. 2014; Kübert et al. 2020) (Dubbert et al. 2014; Kübert et al. 2020), a separation of ET into T and E would be 

possible to assess crop performance by assessingdue to the plant specific WUE (Tallec et al. 2013) or to study root water -565 

uptake dynamics (Deseano Diaz et al. 2023; Kühnhammer et al. 2020). into growth season dynamics of WUE in the future. 

This is particularly relevant for regions with strong spatial heterogeneity in soils and generally low precipitation the studied 

region inlike the Uckermark with its strong spatial heterogeneity in soils and its generally low precipitation and. Finally, the 

novel FluxCrane is unique in its potential to combine it with innovative measurements such as in-situ stable water isotopes 

(Dubbert et al. 2014; Kübert et al. 2020). Stable water isotopes could be used to separate the ET into T and E. This separation 570 

is of crucial importance for the terrestrial water balance and as well as for the prediction of future ecosystem feedbacks (Groh 

et al. 2020).Klicken Sie hier, um Text einzugeben.. Water isotopes might also be used to study root water-uptake dynamics 

(Deseano Diaz et al. 2023; Kühnhammer et al. 2020). 
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Tables: 

Table 1: Performance classes to evaluate gap-filling modeling approaches. 880 

Class MAE NRMSE NSE R2 

Very Good < 0.35 < 30 > 0.85 > 0.85 

Good 0.35 <= 0.67 30 <= 40 0.85 => 0.75 0.85 => 0.75 

Satisfactory 0.67 <= 1 40 <= 50 0.75 => 0.5 0.75 => 0.6 

Not Satisfactory > 1 > 50 < 0.5 < 0.6 
 

 

Table 2: Calibration statists of all modeling gap-filling approaches and treatments. 

Approach MAE NRMSE NSE R2 

 

 

Approach MAE NRMSE NSE R2 

LL-cv n-d LL-cv d 

MDV 0.27 39.6 0.84 0.85 MDV 0.25 35.2 0.88 0.88 

LUT 0.09 14.3 0.98 0.98 LUT 0.08 13.4 0.98 0.98 

NLR 0.56 49.0 0.76 0.77 NLR 0.53 46.8 0.78 0.79 

SVM 0.26 25.7 0.93 0.93 SVM 0.23 23.0 0.95 0.95 

ANN_BR 0.31 28.0 0.92 0.92 ANN_BR 0.27 25.7 0.93 0.93 

LL-ng n-d LL-ng d 

MDV 0.25 29.3 0.91 0.92 MDV 0.25 30.6 0.91 0.91 

LUT 0.09 13.6 0.98 0.98 LUT 0.10 14.6 0.98 0.98 

NLR 0.54 41.1 0.83 0.84 NLR 0.55 40.6 0.84 0.84 

SVM 0.28 22.9 0.95 0.95 SVM 0.29 23.6 0.94 0.94 

ANN_BR 0.31 24.6 0.94 0.94 ANN_BR 0.32 25.0 0.94 0.94 

RG-ca n-d RG-ca d 



30 

 

MDV 0.26 30.9 0.90 0.91 MDV 0.22 29.8 0.91 0.91 

LUT 0.09 15.7 0.98 0.98 LUT 0.09 14.3 0.98 0.98 

NLR 0.50 42.4 0.82 0.83 NLR 0.48 41.8 0.82 0.83 

SVM 0.26 25.6 0.93 0.93 SVM 0.23 23.4 0.95 0.95 

ANN_BR 0.30 27.3 0.93 0.93 ANN_BR 0.29 26.0 0.93 0.93 

 

 885 

 

 

 

 

Table 3: Validation statists of all modeling gap-filling approaches and treatments. 890 

Approach MAE NRMSE NSE R2 

 

 

Approach MAE NRMSE NSE R2 

LL-cv n-d LL-cv d 

MDV 0.33 46.0 0.79 0.81 MDV 0.26 35.8 0.87 0.88 

LUT 0.74 69.8 0.51 0.51 LUT 0.72 70.0 0.51 0.51 

NLR 0.57 50.9 0.74 0.75 NLR 0.55 48.8 0.76 0.77 

SVM 0.34 33.7 0.89 0.89 SVM 0.31 32.1 0.90 0.90 

ANN_BR 0.35 32.2 0.90 0.90 ANN_BR 0.32 29.6 0.91 0.91 

LL-ng n-d LL-ng d 

MDV 0.31 32.1 0.90 0.90 MDV 0.31 33.3 0.89 0.89 

LUT 0.78 62.7 0.61 0.61 LUT 0.83 64.7 0.58 0.58 

NLR 0.54 41.7 0.83 0.83 NLR 0.55 41.5 0.83 0.84 

SVM 0.32 25.4 0.94 0.94 SVM 0.33 26.5 0.93 0.93 

ANN_BR 0.33 25.9 0.93 0.93 ANN_BR 0.34 26.6 0.93 0.93 

RG-ca n-d RG-ca d 

MDV 0.28 34.4 0.88 0.89 MDV 0.27 31.8 0.90 0.90 

LUT 0.79 71.8 0.48 0.49 LUT 0.69 65.9 0.57 0.57 

NLR 0.49 42.2 0.82 0.83 NLR 0.48 42.0 0.82 0.83 

SVM 0.29 28.1 0.92 0.92 SVM 0.26 26.2 0.93 0.93 

ANN_BR 0.33 29.9 0.91 0.91 ANN_BR 0.31 28.8 0.92 0.92 
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Figures: 
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 910 

Figure 1: (a) AgroFLUX research site in the CarboZALF-D experimental area with (b) the 110 x 16 m field where (dc) three different soil 

types (LV-cc: non-eroded calcic Luvisol, LV-ng: highly eroded nudiargic Luvisol, and RG-ca: extremely eroded calcaric Regosol) (c) 18 

measurement plots of (e) the FluxCrane operates on (c) 18 measurement plots of (e) three different soil types (LV-cc: non-eroded calcic 

Luvisol, LV-ng: highly eroded nudiargic Luvisol, and RG-ca: extremely eroded calcaric Regosol). Soil moisture and precipitation 

measurements were taken in the marked area (black circle, b). The separation of non-diluted (unframed green) and diluted (framed light 915 
green) plots can be seen in (c). 
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Figure 2: Environmental parameters during the measurement period with (a) daily mean 

temperatures (T; orange line; light gray = corresponding variation) and daily mean relative humidity 

(RH; black line; dotted lines = corresponding variation), (b) daily mean temperatures (T; orange 925 
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line; light gray = corresponding variation), (c) incoming photosynthetically active radiation (PAR; 

purple) and (cd) soil moisture (SM; blue line) and precipitation (PR; blue bars). 
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 930 

Figure 3: Measured and quality-screened (by soft and hard criteria) ET fluxes of the three soil types over the entire observation period 

(non-diluted treatments on the left, diluted treatments on the right). 
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 935 

Figure 4: Comparison of the measured (bottom) with theand predicted (left) ET fluxes and associated 

r-squared values (R2) of the calibration results of all modeling approaches. The black line represents 
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the 1/1 line. The different modeling treatments approaches are shown on top, the approaches treatments 

on the rightleft. 
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Figure 5: Comparison of the measured (bottom) with the predicted (left) ET fluxes and the associated 

r-squared values (R2) of the validation results of all modeling approaches. The black line represents the 

1/1 line. The different treatments modeling approaches are shown on top, the approaches treatments on 

the rightleft. 
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Figure 6: Diurnal cycles in ET fluxes during the cultivation season for one sample day per 

month (day with the most measurements) and corresponding mean error (ME; two digits 

rounded). Measured ET is shown in blue, predicted ET is shown in red. 
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 950 

Figure 67:   Daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET 

(ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Figure 78: Relationship between ET and temperature (T) [°C], relative humidity (RH) [%], photosynthetically active radiation (PAR) [μmol 955 
m-2 s-1], and ratio vegetation index (RVI) [mmol m-2 s-1], and associated regression lines. Statistical values (r² and p) for the relationship 

between ET and response variables (environmental parameters) are presented in the table. 
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 970 

Figure 89: Averaged seasonal cumulative ET (ETsum) [mm] (a), harvest in form of dry mass (DM) [kg] (b), and WUEagro of the different 

treatments and the associated standard deviation. 
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Appendix A: 

 975 

 

Figure A1: RVI fit (colored lines) of the different treatments with the standard deviation between replicates 

(light gray) and the corresponding averages of the daily measurements (points). 

 

 980 
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Figure A2: Schematic representation of the main steps of the presented data processing: raw data 985 
preparation was followed by a campaign-specific ET-flux calculation. Then, environmental 

parameters were used for gap fillingmodeling using five different approaches. After calibration and 

validation, the most accurate approach was used for gap fillingET flux modeling. 
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 990 
Figure A3:  LUT predicted daily mean ET sums (colored lines) of the different treatments and seasonal 

cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Figure A4:  MDV predicted daily mean ET sums (colored lines) of the different treatments and seasonal 

cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 995 
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Figure A5:  NLR predicted daily mean ET sums (colored lines) of the different treatments and seasonal 

cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Figure A6:  ANN_BR predicted daily mean ET sums (colored lines) of the different treatments and seasonal 1000 
cumulative ET (ETsum; dashed lines) with standard deviation between replicates (light and dark gray). 
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Appendix B: 

 

Table B1: Fertilization information for the field. 
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Table B2:   The number of measurements per treatment and 

the percentage of gap-fillingmodeling data. 

Plot  Measurements [n] 

gap-

filledmodelled 

[%] 

LV-cc n-d 1 990 85.63 

LV-cc n-d 2 624 90.94 

LV-cc n-d 3 996 85.54 

LV-cc d 1 624 90.94 

LV-cc d 2 735 89.33 

LV-cc d 3 989 85.64 

LV-ng n-d 1 1210 82.43 

LV-ng n-d 2 1210 82.43 

LV-ng n-d 3 705 89.76 

LV-ng d 1 718 89.58 

LV-ng d 2 1215 82.36 

LV-ng d 3 1205 82.51 

RG-ca n-d 1 657 90.46 

RG-ca n-d 2 772 88.79 

RG-ca n-d 3 669 90.29 

RG-ca d 1 669 90.29 

RG-ca d 2 1130 83.59 

RG-ca d 3 1129 83.61 
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Date Amount Details 

15.10.2020 161 kg P2O5 ha-1 applied on 6 plots of LL as TSP 

22.03.2020 77   kg P2O5 ha-1 as Triple Super Phosphate (TSP) 

22.03.2020 259 kg K2O ha-1 as 40% grain potash 

16.09.2020 30   kg N ha-1 10 m³ ha-1 digestate 

10.03.2021 91   kg N ha-1 30 m³ ha-1 digestate 

08.04.2021 45   kg N ha-1 12 m³ ha-1 digestate 
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            Table B3: Used R packages and associated sources. 1020 
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 1040 
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 1050 

 

 

package source 

Akima Akima & Gebhardt (2021) 

Andrews Myslivec (2012) 

Base R Core Team (2021) 

Boot Davison & Hinkley (1997) 

Caret Kuhn (2021) 

data.table Dowle & Srinivasan (2021) 

e1071 Meyer et al. (2021) 

FSA Ogle et al. (2022) 

ggplot2 Wickham (2016) 

gridExtra Auguie (2017) 

gt Iannone et al. (2022) 

hydroGOF Mauricio Zambrano-Bigiarini (2020) 

Kernlab Karatzoglou et al. (2004) 

Lattrice Sarkar (2008) 

Lmtest Zeileis & Hothorn (2002) 

lookupTable Jia & Maier (2015) 

Lubridate Grolemund & Wickham (2011) 

Neuralnet Fritsch et al. (2019) 

Nortest Gross & Ligges (2015) 

Plotrix J (2006) 

Plyr Wickham (2011) 

Reshape Wickham (2007) 

Shape Soetaert (2021) 

Tibble Müller & Wickham (2021) 

tidyr Wickham & Girlich (2022) 

Vioplot Adler & Kelly (2020) 

webshot Chang (2022) 

Zoo Zeileis & Grothendieck (2005) 
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Table B4: Calibration mean error (ME) for different 1055 

ranges of ET fluxes (less than 2, between 2 and 4 and 

greater than 4 mmol m-2 s-1) for all modeling 

approaches. 

Approach  < 2  2 - 4 > 4 

SVM -0.05 0.05 0.4 

MDV -0.03 0.06 0.29 

ANN_BR -0.03 0.08 0.33 

NLR -0.2 0.39 1.14 

LUT -0.01 0.01 0.12 
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