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Abstract. Despite high potential benefits, the development of seasonal forecasting tools in the water sector has been slower 

than in other sectors. Here we assess the skill of seasonal forecasting tools for lakes and reservoirs set up at four sites in 

Australia and Europe. These tools consist of coupled hydrological catchment and lake models forced with seasonal 20 

meteorological forecast ensembles to provide probabilistic predictions of seasonal anomalies in water discharge, temperature 

and ice-off. Successful implementation requires a rigorous assessment of the tools’ predictive skill and an apportionment of 

the predictability between legacy effects and input forcing data. To this end, models were forced with two meteorological 

datasets from the European Centre for Medium Range Weather Forecasts (ECMWF), the seasonal forecasts SEAS5 with three-

month lead times and the ERA5 reanalysis. Historical skill was assessed by comparing both model outputs, i.e., seasonal lake 25 

hindcasts (forced with SEAS5) and pseudo-observations (forced with ERA5). The skill of the seasonal lake hindcasts was 

generally low although higher than the reference hindcasts, i.e., pseudo-observations, at some sites for certain combinations 

of season and variable. The SEAS5 meteorological predictions showed less skill than the lake hindcasts. In fact, skillful lake 

hindcasts identified for selected seasons and variables were not always synchronous with skillful SEAS5 meteorological 

hindcasts, raising questions on the source of the predictability. A set of sensitivity analyses showed that most of the forecasting 30 

skill originates from legacy effects, although during winter and spring in Norway some skill was coming from SEAS5 over 

the three-month target season. When SEAS5 hindcasts were skillful, additional predictive skill originates from the interaction 

between legacy and SEAS5 skill. We conclude that lake forecasts forced with an ensemble of boundary conditions resampled 

from historical meteorology are currently likely to yield higher quality forecasts in most cases. 
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1. Introduction 35 

Freshwater provides essential services for food and energy production, manufacturing, cultural heritage, and natural habitats. 

However, it is threatened by more frequent extreme events (Jeppesen et al., 2021), climate change (Labrousse et al., 2020), 

anthropogenic water depletion (Yi et al., 2016) and agricultural pressures (Wuijts et al., 2021). Implementation of mitigation 

measures can help preserve freshwater resources, although they come with trade-offs between production from economic 

sectors with related social benefits, and availability of good quality freshwater. Hence, successful implementation of measures 40 

requires capacity at the local-regional level for cross-sectoral decision-making (Wuijts et al., 2021). Seasonal forecasting tools 

for water quality can help facilitate the decision-making process by informing optimal actions over the next season, e.g., 

magnitude and timing of reservoir drawdowns. Indeed, they can supply knowledge on the impacts of future climatic conditions 

on freshwater over a realistic time frame enabling implementation with reduced negative effects on economic activities. 

Nevertheless, the use and access to forecasting tools is still very limited for water managers (Lopez & Haines, 2017; Soares et 45 

al., 2018). The probabilistic nature of seasonal forecasts can be a key barrier coupled with the lack of reliability and credibility 

of these predictions in most regions outside the tropics. Hence, a better access to seasonal forecasting tools as well as increased 

comprehension and description of these tools are required prior to their successful implementation in the decision-making 

process within the water sector. 

Seasonal meteorological predictions provide a probabilistic description of the weather over the next few months, e.g., an 80% 50 

chance of the weather being wetter than normal. Seasonal climate predictability mainly originates from ocean–atmosphere 

interactions (Troccoli, 2010). In fact, the ocean inertia, given its volume and the heat capacity of liquid water, exerts an 

influence on the atmosphere on the scale of months which allows us to estimate its future effect on weather. Given that ocean–

atmosphere interactions are relatively strong in the equatorial region (Troccoli, 2010), seasonal meteorological predictions 

typically show stronger predictive skill, or prediction performance, around the tropics (Johnson et al., 2019; Manzanas et al., 55 

2014). Under higher latitudes, skills from seasonal meteorological predictions are patchy and less consistent among variables 

and seasons. Hence, the boundary conditions, e.g., seasonal air temperature forecasts used to force a hydrological model, are 

usually not the main source of predictability outside the tropics, at least for stream flow (Greuell et al., 2019; Harrigan et al., 

2018; Wood et al., 2016). Nevertheless, climate models producing seasonal meteorological forecasts are constantly improving 

and it is reasonable to expect that forecast opportunities will expand in the future (Mariotti et al., 2020). Developing seasonal 60 

forecasting workflows, quantifying the skill and investigating the source of predictability represent a necessary and essential 

step towards reliable water quality seasonal forecasting. 

While some of the first forecasting tools were originally developed for flood warnings (e.g., Pagano et al., 2014; Werner et al., 

2009), applications to other sectors are becoming more frequent. In the agricultural sector, for example, a recent study shows 

that flowering time can be reliably predicted from seasonal meteorological forecasts in central and eastern Europe, enabling 65 

early variety selection and planning of farm management (Ceglar & Toreti, 2021). Seasonal meteorological forecasts were also 

shown to provide useful information for the wind energy sector (Lledó et al., 2019), and to avoid significant economic losses 
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from hydropower generation during droughts (Portele et al., 2021). Nevertheless, the use of seasonal meteorological forecasts 

for water temperature in lakes and reservoirs has been limited so far, where the focus has been on water quantity (Arnal et al., 

2018; Giuliani et al., 2020; Greuell et al., 2019; Pechlivanidis et al., 2020). Studies forecasting water temperature, a 70 

fundamental water quality variable, are rare in the literature (though see Mercado-Bettin et al., 2021; Zhu et al., 2020; 

Baracchini et al., 2020), despite the diverse influence of this variable on lake ecosystem structure and functioning (Dokulil et 

al., 2021). Nevertheless, a simple lumped model (air2water; Piccolroaz et al., 2013), previously developed to estimate surface 

lake water temperature as a function of air temperature, has been applied to predict water temperature in thousands of lakes 

(Zhu et al., 2021). While this hybrid approach yielded skillful surface lake water temperature forecasts (Piccolroaz et al., 2018; 75 

Toffolon et al., 2014), it doesn’t allow forecasting other lake variables, such as bottom temperature.  

Research on seasonal forecasting in hydrology started more than a decade ago (Troin et al., 2021) and now represents a source 

of knowledge for other research fields. When forecasting river flow, for example, predictability can originate from two main 

sources: (i) initial conditions such as catchment water stores of initial soil moisture, groundwater, and snowpack, which are 

directly linked to the water residence time; and (ii) boundary conditions, i.e., meteorological forecasts used to force the 80 

hydrological model (Greuell et al., 2019). Throughout the many studies of river flow seasonal forecasting in Europe, it appears 

that initial conditions form the dominant source of skill in run-off (Greuell et al., 2019; Harrigan et al., 2018; Wood et al., 

2016) and predictability can be extended up to a year ahead in case of very low flow as antecedent groundwater level is the 

key driver (Staudinger & Seibert, 2014). When dealing with standing water bodies, antecedent conditions are also likely to 

provide significant predictability, given that the water storage in lakes and reservoirs is large compared to river channels, 85 

providing higher inertia. Water residence time is thus expected to exert a strong influence on discharge predictability. Water 

temperature, on the other hand, is influenced by multiple meteorological variables, e.g., wind, air temperature and radiation, 

in addition to water stores which can affect the source of its predictability.  

Here, we further investigate the performance and in particular the source of this prediction performance, also referred to as 

predictive or forecasting skill, of lake seasonal forecasting tools first described by Mercado-Bettin et al. (2021) and Jackson-90 

Blake et al. (2022). These tools integrate hydrological catchment and physical lake models forced with seasonal meteorological 

forecasts with three-month lead times at four case study sites in Europe and Australia (Fig. 1). The meteorological variables 

used to force the models  as well as output catchment and lake variables are a set of retrospective seasonal forecasts for past 

dates, hereafter referred to as hindcasts, that can be compared to historical records. The objective of this study is to assess 

whether seasonal meteorological hindcast ensembles with three-month lead time, used as inputs to catchment and lake process-95 

based models, provide some predictive skill to seasonal lake hindcasts. To this end, the forecasting skill of the tools was 

assessed for combinations of season and freshwater variables, i.e., discharge, water temperature or ice-off, and for each tercile. 

Ice-off is defined as the first ice-free day after an ice-covered period. In parallel, we quantified the forecasting skill of each 

meteorological variable of the seasonal meteorological prediction at each site. Both assessments were carried out following 

aggregation of model outputs from daily to seasonal temporal resolution, i.e., seasonal means or sums. When a hindcast was 100 

found to perform significantly better than a reference hindcast, e.g., climatology from pseudo-observations as defined in the 
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Methods, for a combination of a given season, variable and tercile, this latter combination was defined as a “window of 

opportunity”. This terminology is introduced to emphasize the fact that these forecasts can be used in the decision-making 

processes by water managers but only for a specific variable and season. A set of sensitivity analyses was performed to identify 

input-output relationships and to partition the source of the prediction skill for each window of opportunity among warm-up, 105 

first lead-month and seasonal meteorological predictions. The comparison between hindcasts, with the aim of isolating the 

contributions of different sources of skill, has been applied before on streamflow hindcasts (e.g., Arnal et al., 2018; Greuell et 

al., 2019). However this is, to our knowledge, the first study investigating the origin of seasonal hindcast ensemble skill on 

water discharge, temperature and ice-off in lakes and reservoirs. The implications for lake forecasting tools are discussed. 

 110 
Figure 1: Location of the four case studies in Europe and Australia along with climate type and coordinates. Map is modified from 

Jackson-Blake et al. (2022). Detailed catchment maps are given in Jackson-Blake  (2022).   
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2. Methods 

2.1 Description of the forecasting tools 

The forecasting tools consist of a coupled catchment runoff model to a one-dimensional water column lake model, forced by 115 

seasonal meteorological predictions, to simulate three output variables at daily resolution: inflow discharge, and lake surface 

and bottom temperature. For Lake Vansjø in Norway, the timing of ice melt (ice-off) was also included in the output variables 

in spring. The workflow consisted in running the catchment models first, providing inflow water discharge and water 

temperature to the lake models. 

2.1.1 Case study sites 120 

Lake forecasting tools were developed for four regulated water lakes/reservoirs in Europe and Australia which have been 

described earlier (Mercado-Bettin et al., 2021;Table 1; Fig. 1). Briefly, Sau (Spain) and Mount Bold (Australia) reservoirs 

large water supplies for the cities of Barcelona and Adelaide, respectively. Lake Vansjø (Norway), is a drinking water source 

for three municipalities and the Wupper reservoir (Germany) is used for flood control, environmental flows, and recreation. 

Table 1: Characteristics of the study sites. Mixing timing refers to boreal seasons only. 125 

Case study 

(Country) 

Catchment 

area (km2) Surface 

area (ha) 

Volume 

(hm3) 

Water 

retention time 

(yrs) 

Max. 

Depth (m) 
Mixing regime Mixing timing 

Sau (Spain) 1680 575 165 0.2 60 monomictic Winter 

Mt Bold 

(Australia) 
357 254 46.4 0.2-0.6 44.5 monomictic 

Summer 

Vansjø (Norway) 690 3600 252 1.1 19 dimictic 
Spring 

Fall 

Wupper 

(Germany) 
215 211 26 0.2 31 dimictic 

Spring 

Fall 

2.1.2 Meteorological input data 

We used two different meteorological datasets to force the catchment hydrological and lake physical models in our tools: a 

climate reanalysis (ERA5) and a seasonal forecasting product (SEAS5) which both offer a global spatial and continuous 

temporal coverages to ensure future transferability of our workflows and easy comparison between our case-studies (Johnson 

et al., 2019). ERA5 is the latest reanalysis at 0.25° spatial resolution (Hersbach et al., 2020) produced by the European Centre 130 

for Medium Range Weather Forecasts (ECMWF; https://www.ecmwf.int) within the Copernicus Climate Change Service 

(C3S, https://climate.copernicus.eu/). ERA5 data (1988-2016) were used (i) to correct for bias in the SEAS5 data using the 

quantile mapping technique as described below; (ii) to provide meteorological pseudo-observations for retrospective skill 

evaluation of SEAS5 hindcasts, (iii) to force catchment hydrological and lake physical models to produce pseudo-observations 

of the output variables, (iv) to force our catchment and lake models to produce antecedent/warm-up period data preceding 135 

https://www.ecmwf.int/
https://climate.copernicus.eu/
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seasonal hindcast periods (i.e., combined one lead-month and three-month target season). SEAS5 is the latest seasonal 

forecasting system from the ECMWF at 1° spatial resolution and provides operational seasonal forecasts and retrospective 

seasonal forecasts for past years (hindcasts). We used hindcasts (1994-2016) in this study. A hindcast with 25 members was 

considered for the period 1994-2016 for the three-month boreal seasons (spring: March through May; summer: June through 

August; autumn: September through November; winter: December through February), with one month as lead time. A 140 

dedicated R package (climate4R; Iturbide et al., 2019) was used for ERA5 and SEAS5 meteorological data pre-processing. 

SEAS5 members were pre-processed using the quantile mapping technique (Gutiérrez et al., 2019) to correct for systematic 

bias relative to pseudo-observations (ERA5 reanalysis). We used the empirical quantile mapping approach (EQM) due to its 

ability to deal with multivariate problems (Wilcke et al., 2013). EQM adjusts 99 percentiles and linearly interpolates inside 

this range every two consecutive percentiles; outside this range, a constant extrapolation (using the correction obtained for the 145 

1st or 99th percentile) is applied (Déqué, 2007). In the case of precipitation, we applied the wet-day frequency adaptation 

proposed by Themeßl et al. (2011). The resulting bias-corrected data were used for hydrologic and lake models meteorological 

forcing, noting that we implemented bias-correction using leave-one-(year)-out cross-validation. Therefore, for each year, 

seasonal climate hindcast member predictions were adjusted with the bias correction parameters derived from training with all 

other years; after which all bias-corrected data were appended to obtain a corrected (i.e., locally calibrated) time series of 150 

seasonal meteorological hindcasts for the full period for each case study. Finally, to use the bias-corrected data as 

meteorological forcing for hydrologic and lake models, we used bilinear interpolation (akima method), whereby we specified 

lake/reservoir coordinates from which seasonal meteorological hindcast data from surrounding pixels were interpolated. 

Meteorological datasets include daily average 2-meter air temperature, u and v components of wind, surface air pressure, 

relative humidity (or dew-point temperature), cloud cover, short-wave radiation, downwelling long-wave radiation and daily 155 

sum of precipitation.  

2.1.3 Observations 

Daily inflow discharge and daily to monthly lake water temperature observations (Table S1) were used for catchment and lake 

model calibration and validation, as well as quantification of forecasting skills. For Lake Vansjø, daily measurements of 

discharge over 1994‒2016 were taken from the gauging station at Høgfoss (Station 3.22.0.1000.1; Norwegian Water Resources 160 

and Energy Directorate). Lake temperature data were gathered from the Vansjø-Hobøl monitoring program dataset, conducted 

by the Norwegian Institute for Bioeconomy Research and by the Norwegian Institute for Water Research (Haande et al., 2016). 

These data are available freely on the Norwegian national database (https://vannmiljo.miljodirektoratet.no).  For Sau reservoir, 

daily measurements of discharge into Sau Reservoir were provided by the Catalan water agency (Agència Catalana de l’Aigua, 

ACA) while lake temperature and weather data are part of a long-term monitoring program (Marce et al., 2010). Discharge, 165 

water temperature and weather observations at the two other reservoir sites were collected from the water reservoir operators 

(Wupperverband for Wupper and SA Water for Mt Bold). Lake water temperature data are discontinuous and covered only 

part of the modelled time-period (1994‒2016) because of limited funding for monitoring programs. In addition, precipitation, 

https://vannmiljo.miljodirektoratet.no/
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temperature, short-wave radiation, humidity, and wind daily records at nearby meteorological stations were obtained for each 

case study from the local meteorological institutes. For Lake Vansjø, this included ice-off dates from the Norwegian 170 

Meteorological Institute station 1,715 (Rygge) located on the lake shore (59° 38′N, 10° 79′ E). 

2.1.4 Catchment-lake process-based model setup and calibration 

A catchment-lake process-based model chain was setup at each site to predict daily inflow discharge into the lake/reservoir 

and daily lake water temperature. Given the specificity of each catchment regarding flow dynamics and water management, 

different models were used at each site (Fig. 2). While this disparity prevents us from an in-depth comparison among case-175 

studies, the common methods and code established to manipulate input and output data enable us to quantify forecast 

performance and the source of the predictability at each site in a consistent and comparable way. 

Inflow water temperature and discharge for Sau and Vansjø was modelled with the mesoscale Hydrologic Model (mHM v5.9: 

http://www.ufz.de/mhm) and SimplyQ (hydrological module of SimplyP; Jackson‐Blake et al. 2017), respectively. Inflow 

water temperature and discharge for Wupper and Mt Bold was modelled with the Génie Rural (GR) suite of models 180 

implemented within the R package airGR (Coron et al., 2017), GR6J and GR4J, respectively. mHM and SimplyQ hydrologic 

models were forced with ERA5 daily precipitation and daily average surface air temperature, and the GR models were forced 

with daily precipitation and daily potential evapotranspiration (Hargreaves-Samani potential evapotranspiration, derived from 

daily minimum and maximum temperature,  implemented in drought4R; Iturbide et al., 2019). All hydrological models were 

calibrated and validated against local observations using the Nash–Sutcliffe efficiency coefficient (NSE) as the objective 185 

function. 

 

Figure 2: Description of the forecasting workflow—Calibrated hydrologic and lake models are used to produce seasonal lake 

hindcasts with 25 members 

The General Ocean Turbulence Model (GOTM, http://gotm.net) was used to simulate the water temperature profile of Sau 190 

Reservoir and Lake Vansjø. The General Lake Model (GLM, Hipsey et al., 2019) was used to simulate water temperature in 

http://www.ufz.de/mhm
http://gotm.net/
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the Mt. Bold and Wupper reservoirs. Lake models were forced with ERA5 surface air temperature, u and v wind components, 

surface air pressure, relative humidity (or dew-point temperature), cloud cover, short-wave radiation, precipitation and, in 

some cases, also downwelling long-wave radiation, and calibrated and validated against observations using the Root-Mean-

Square Error (RMSE) and NSE as objective functions.  195 

For Lake Vansjø, the water level was set to constant given that observed fluctuations are < 1 m which are not critical for the 

lake heat and water budgets. The three reservoirs, on the other hand, experience much larger water level fluctuations because 

of complex water pumping patterns and/or water scarcity. It was thus critical to allow for water level fluctuations and 

parametrize the outflows to avoid dry outs. For Wupper Reservoir, a statistical model was developed to calculate the reservoir’s 

outflow based on the inflow using the timeseries over the warm-up period for each discharge simulation of the catchment 200 

model. Such an approach allowed mimicking the outflow decision and approximately resembling the observed water-level to 

avoid the cases of dry-outs or exceedingly low volumes of water due to inflow/outflow misestimation. More details on the 

performance of the linear regression are given in the supplementary information. For Sau, historical observations of outflow 

and pumping volumes were used to force the model. For Mt. Bold Reservoir, an average annual cycle was calculated from 

historical observations and then replicated throughout the entire timeseries. While this assumption does not allow for inter-205 

annual variation, it allowed for simulation of water level fluctuation each year that represented the seasonal cycle apparent 

within Mt. Bold and avoided dry outs. 

The lake energy budget includes exchanges through the air-water interface, i.e., downward short-wave radiation, downward 

and upward long-wave radiation, latent and sensible heat fluxes, and by lateral fluxes of water, i.e., inflow and outflow of 

water (Schmid and Read 2022). The energy fluxes at the air-water interface are accounted for in the GLM or GOTM lake 210 

model, however, the lateral fluxes caused by throughflow (inflow-outflow balance) need to be parametrized through the 

addition of water temperature to the inflow provided by the catchment model. Inflow temperature was estimated based on the 

assumption that water temperatures follow the air temperatures closely with some time lag (Stefan & Preud'homme 1993; 

Ducharne 2008). Hence, water temperature was predicted with a linear model of the form A + B*AirTemperature where A 

and B were optimized against local observations when available. At Sau Reservoir, the values of A and B were 5.12 and 0.799, 215 

respectively, while for Mt Bold reservoir and Lake Vansjø, the values of A and B were 5 and 0.75, respectively. The validation 

of this model for Wupper Reservoir, as an example, is described in the supplementary information (SI). 

Most common verification statistics, e.g., Kling-Gupta efficiency (KGE), NSE and RMSE, for hydrological and lake modeling 

were calculated. Details on calibration and validation periods as well as statistics are shown in Table 4 and Table S2.  

2.1.5 Pseudo-observations (Lake_PO) 220 

Following calibration, lake and hydrologic models were forced with ERA5 over 1994-2016 to produce daily pseudo-

observations of river discharge, daily surface and bottom temperature, as well as presence or absence of ice (for Lake Vansjø 

only). The output of this simulation is hereafter referred to as lake pseudo-observations (Lake_PO). Theoretical prediction 

skill of seasonal forecasts is commonly evaluated against pseudo-observations (Greuell et al., 2019; Harrigan et al., 2018; 



9 

Wood et al., 2016). In contrast to lake real observations, Lake_PO have the advantages of being complete and allow to 225 

disregard changes in skill related to model errors or biases (Harrigan et al., 2018), and to focus on skill originating from initial 

and boundary conditions. In contrast to the theoretical prediction skill, the total prediction skill includes any error or bias 

introduced by the model. Here, the total prediction skill of seasonal lake hindcasts (discharge, water temperature and ice-off) 

was also evaluated against real observations, when those were available and covering a representative time period. 

2.1.6 Seasonal forecasts (Lake_F) 230 

For each of the 92 three-month hindcast seasons (11/1993 to 11/2016), we simulated ensemble predictions of daily river 

discharge, daily surface and bottom water temperature as well as presence or absence of ice (for Lake Vansjø only; Fig. 3). 

Catchment and lake models were forced with ERA5 data over the 1-year warm-up period followed by a set of 25 members of 

SEAS5 data covering the first lead month (M0) and the 3-month long target season (M1‒M3). The first lead month is defined 

in agreement with Greuell et al. (2019) as the month following the date on which the forecast would have been issued. Over 235 

the first lead month, the 25 members of SEAS5 progressively diverge from ERA5 to their respective SEAS5 member. Model 

outputs for the final 3 months, i.e., the target season, were aggregated into three month (M1‒M3) seasonal averages or sums 

(i.e., average surface and bottom water temperature and cumulative seasonal inflow discharge). The output of this simulation 

is hereafter referred to as lake forecasts (Lake_F). 

2.2 Assessment of modeling performance and source of forecasting skills 240 

2.2.1 Model and forecast verification 

A complete assessment of the modelling and forecasting performance of our workflow was performed through several 

verifications (Table 2). The first verification (Verification 1 in Table 2) consisted in evaluating the performance of the models 

forced with ERA5 by comparing model outputs (Lake_PO) to observations at daily temporal resolution, as described in section 

2.1.4. This verification step included the reporting of traditional verification statistics for modelling, i.e., NSE; KGE and 245 

RMSE. The second and third verifications (Verifications 2 and 3 in Table 2) consisted in quantifying the lake forecast (Lake_F) 

performance compared to climatology from pseudo-observations (Lake_PO) or from observations, respectively. These steps 

allowed to quantify the forecasting skill of a perfect model and the total forecasting skill, respectively. Forecast verification 2 

and 3 were performed using model output data at seasonal temporal resolution, i.e., daily model outputs over the target season 

(M1‒M3), were aggregated in seasonal averages or sums. For forecast verification 2 and 3, hindcast predictions are categorized 250 

into three terciles, where the upper tercile includes data points falling in the percentile range 66–100%, the middle tercile 

includes data in the range 33–66%, and lower tercile includes data in the range 0–33%. 
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Figure 3: Time series of the air temperature (a), precipitation (b), discharge (c), surface (d) and bottom (e) water temperature over 

the warm-up, first lead month (M0) and target season (M1‒M3) for Autumn 2000. The black lines indicate ERA5 (a and b) and 255 
Lake_PO (c–e) data, the light and dark blue lines are, respectively, the 25 members and the mean of SEAS5 (a and b) and Lake_F 

(c–e).  

 

Forecast performance was quantified with two skill scores: the Ranked Probability Skill Score (RPSS) and the Relative 

Operating Characteristic Skill Score (ROCSS). Skill scores are a measure of the relative improvement of the forecast compared 260 

to a reference forecast which here is the climatology based on either Lake_PO or observations. ROCSS values were calculated 

against climatology from real observations (𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 ), in addition to pseudo-observations (𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ), only when 

observations covered the whole season. Indeed, 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  was calculated only if there was at least one observation point 

in each month of the season and observations for at least 70% of the seasons. Observations that met these criteria only included 

inflow discharge at Vansjø, Sau and Wupper for all seasons, surface and bottom temperature at Vansjø in summer only, surface 265 

and bottom temperature at Wupper for all seasons, surface temperature at Sau for all seasons and ice-off at Vansjø. 
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RPSS and ROCSS are commonly used as evaluation measures of probabilistic forecasting skill (Jolliffe & Stephenson, 2012; 

Müller et al., 2005). The visualizeR package (Frías et al., 2018) was used to compute the RPSS and ROCSS for Lake_PO and 

Lake_F. Briefly, the RPSS provides a relative performance measure on how well the probabilistic ensemble is distributed over 

the lower, middle and upper terciles, while the ROCSS provides a relative measure of discriminative skill for each category. 270 

A RPSS > 0 is associated with a better forecast than the reference (1 being a perfect score), while RPSS ≤ 0 indicates no 

improvement compared to the reference. The ROCSS value ranges from -1 (perfectly bad forecast) to 1 (perfect forecast) and 

a zero value indicates no skill compared to the reference. The RPSS has been shown to be sensitive to the ensemble size, but 

this effect can be corrected for using the Fair (or unbiased) RPSS (Ferro et al., 2014). To allow for comparison with other 

forecasting systems, we have used the fair RPSS (FRPSS) forecast verification. In this study, the FRPSS is calculated for 275 

tercile events. The statistical significance of the FRPSS and ROCSS is computed based on the 95% confidence level from a 

one-tailed Z test. When a forecast for a given season, variable and tercile was associated with a ROCSS value that was 

statistically significant, we referred to it as a window of opportunity (i.e., a combination of season, variable and tercile for 

which forecast performance was significantly better than the reference). In our case, the threshold values above which a 

ROCSS was considered significant typically range between 0.47 and 0.55.  280 

 

Table 2: Comparison carried out to evaluate model and forecast performance 

Verification Outputs used Reference forecast 

data 

Purpose Statistics 

1 Lake_PO Observations Assess lake model skill KGE 

NSE 

RMSE 

2 Lake_F Lake_PO Assess the transfer of meteorological forecast skill 
through process-based models – Perfect model 

forecasting skill 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  

3 Lake_F Observations Assess total forecasting skill 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠  

2.2.2 Sensitivity analyses to initial conditions and meteorological forcing 

Several sensitivity analyses (SA), summarized in Table 3, were performed to identify the origin of the forecasting skill for a 

given window of opportunity, i.e., a combination of season, variable and tercile for which forecast performance was 285 

significantly better than the reference. Results of the SA are only reported for sites having a substantial number of windows of 

opportunity for conciseness. These SA allowed quantifying the sensitivity of hindcast performance to forcing data over specific 

periods: the target season (M1‒M3; SEAS5), the first lead month (M0) and the warm-up period (ERA5). It was thus possible 

to quantify the proportion of skills originating from each of these periods.  

The SA consisted of replacing the forcing data of interest, i.e., over the target season, the first lead month or the warm-up 290 

period, by data from an equivalent season/period but from a randomly selected year. For example, for the target season SA (S-
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SA), the SEAS5 forcing data covering the 3-month target season was replaced by SEAS5 data from a randomly selected 

equivalent season. Furthermore, the SA for the warm-up period (W-SA) consisted in replacing the ERA5 data covering the 

warm-up period by ERA5 data from a randomly selected equivalent time-period. The last SA covered warm-up and first lead 

month (W+M0-SA) and consisted in replacing ERA5 data over the warm-up, as in W-SA, but also SEAS5 data over the first 295 

lead month. To ensure that the randomly sampled forcing data are representative of the whole SEAS5 or ERA5 datasets, we 

introduce two levels of repetitions for all experiments. First, we randomly selected a year for each of the 25 members of 

SEAS5, meaning that the data selected to replace the original SEAS5 forcing data is extremely likely to be from a different 

year for each SEAS5 member. Second, we repeated the analysis 25 times, for each season. Sensitivity analyses were only 

carried out for Spain and Norway because of the low number of windows of opportunity at the two other sites and considering 300 

the resources needed to execute these hindcast experiments. 

The outputs of each of the sensitivity analysis were used to calculate ROCSS values against the climatology based on Lake_PO, 

as for Lake_F in the Verification 2 described above (Table 2). The ROCSS values obtained through this procedure were, 

respectively, 𝑅𝑂𝐶𝑆𝑆𝑆 , 𝑅𝑂𝐶𝑆𝑆𝑊  and 𝑅𝑂𝐶𝑆𝑆𝑤+𝑀0  for S-SA, W-SA, and W+M0-SA. The ROCSS values obtained for the 

various SAs were compared to the original Lake_F ROCSS values (𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) to investigate the sources of prediction 305 

skill. An estimation of the proportion of prediction skill originating from the SEAS5 data over the target season (𝑃𝑠𝑒𝑎𝑠𝑜𝑛) was 

expressed as follows: 

𝑃𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑅𝑂𝐶𝑆𝑆𝑆         (1) 

Similarly, the proportions of prediction skill originating from the ERA5 data over the warm-up (𝑃𝑤𝑎𝑟𝑚−𝑢𝑝) and from the 

SEAS5 data over the first lead month (𝑃𝑀0) can be respectively estimated as: 310 

𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 = 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑅𝑂𝐶𝑆𝑆𝑊         (2) 

𝑃𝑀0 = 𝑅𝑂𝐶𝑆𝑆𝑊 − 𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0         (3) 

In Eq. 1–3, prediction skill was assumed to linearly scale with ROCSS values and skill from any interaction effect was 

neglected. While we admit that Eqs. 1–3 are not necessarily statistically correct, they are useful to quantify the relative 

importance of the sources of skill. Hence, the values of 𝑃𝑠𝑒𝑎𝑠𝑜𝑛 , 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 and 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 should be interpreted with care. 315 

2.2.3 Sensitivity analyses to individual input variables 

To further investigate through which process forecasting skill is transferred from input to output variables, a one-at-a-time 

sensitivity analysis (OAT-SA) was performed for Lake_PO and the Pearson partial correlation coefficients (PPCC) between 

each variable of Lake_PO, i.e., surface temperature, bottom temperature, discharge, ice-off, and a set of relevant input variables 

were determined (Table 3). The OAT-SA consisted in replacing the data for a specific input meteorological variable by data 320 

from an equivalent target season but from a randomly selected year. The seasonal means of OAT-SA outputs were compared 

to default outputs (Lake_PO) with the square of the Pearson correlation coefficient (R2). Higher (1 − R2) values indicate more 

influence of input variables on Lake_PO.  
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PPCC allowed quantifying the sensitivity of model outputs to a given input variable while removing the effect of the remaining 

input variables. Note that PPCC were calculated on seasonally aggregated variables. To ensure that PPCC were statistically 325 

appropriate, i.e., only when a linear relationship exists between the seasonal means of input factors and those of the output 

(Pianosi et al., 2016), the linearity assumption was checked through visual inspection of scatter plots between each input and 

output variables. Partial correlation coefficients are a good alternative to ‘All-At-a-Time’ (or global) SA when the latter is not 

possible because of the lack of computing resources (Pianosi et al., 2016). To avoid misleading conclusions, correlation 

between input variables should be minimized (Marino et al., 2008). Hence, only the most relevant input variables were 330 

included. Precipitation and air temperature were retained for discharge, while air temperature, precipitation, wind speed (wind 

speed calculated from u and v components of wind) and short-wave radiation were retained for surface and bottom temperature. 

In fact, short-wave radiation was retained over relative humidity, cloud cover and air pressure because it was responsible for 

most of air-water heat fluxes (see SI). Wind was retained because of its impact on thermal stability (Blottiere, 2015). 

Table 3: List of sensitivity analyses (SA) performed 335 

SA 

Forcing data to be replaced Model output 

Purpose 
Sensitivity 

index 
Period Variable 

S-SA Target season (SEAS5) All Lake_F Quantifying the proportion of forecasting skill 

originating from SEAS5 data over the target 

season 
𝑅𝑂𝐶𝑆𝑆𝑆  

W-SA Warm-up period 
(ERA5) 

All Lake_F Quantifying the proportion of forecasting skill 
originating from ERA5 data over the warm-up 

season – initial conditions 
𝑅𝑂𝐶𝑆𝑆𝑊  

W+M0-

SA 

Warm-up period 

(ERA5) and first lead 
month (SEAS5) 

All Lake_F Quantifying the proportion of forecasting skill 

originating from SEAS5 data over the first lead 
month 

𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0 

OAT-

SA 

Target season (ERA5) One at a time Lake_PO Quantifying the sensitivity of Lake_PO to a 

specific forcing variable 1 – R2 

PPCC None None Lake_PO Quantifying the sensitivity of Lake_PO to a 
specific forcing variable while removing the 

effect of the remaining variables 
PPCC 

3.  Results 

3.1 Performance of the calibrated catchment and lake models (Lake_PO) 

Catchment and lake models calibrated against local observations performed reasonably well (Table 4). For river discharge, 

NSE and KGE both ranged between 0.51 and 0.85 over the calibration and validation periods. For surface water temperature, 
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RMSE ranged from 1.10 to 1.63 and NSE from 0.78 to 0.94 over the calibration and validation periods. Over each season, 340 

however, Lake_PO showed more heterogeneous performance (Table S2). Discharge simulations were usually worse in 

summer, except in Australia where performance was poor for most seasons. Surface water temperature modeling typically 

showed better performance during spring and fall than during summer or winter. There is no clear pattern for bottom water 

temperature, but overall, it seems more difficult to be accurately simulated compared to surface temperature. 

 345 
Table 4: Verification statistics of the catchment and lake model for each case study 

 Output 

variable 

Calibration Validation 

Time NSE KGE RMSE Time NSE KGE RMSE 

Norway Discharge 2005‒2010 0.51 0.56  2011‒2015 0.57 0.57  

Temperature 2005‒2010 0.92  1.12 2011‒2015 0.93  1.10 

Spain Discharge 1997‒2007 0.60 0.66  2008‒2018 0.54 0.63  

Temperature 1997‒2007 0.93  1.63 2008‒2018 0.94  1.45 

Germany Discharge 1991‒2011 0.71 0.85  2012‒2016 0.63 0.81  

Temperature 1993‒2010 0.93  1.31 2011‒2016 0.91  1.53 

Australia Discharge 2003‒2007 0.64‒

0.80 

0.70‒

0.84 

 2008‒2013 0.65‒

0.80 

0.54‒

0.75 

 

Temperature 2014‒2016 0.91  1.17 2016‒2018 0.78  1.50 

 

3.2 Skill of the seasonal meteorological (SEAS5) and Lake (Lake_F) hindcasts 

Table 5 displays the ROCSS values for each combination of Lake_F output variable, season and tercile while Table 6 

summarizes the windows of opportunity, i.e., a combination of season, variable and tercile for which forecast performance, or 350 

predictive skill, was significantly better than the reference, for SEAS seasonal meteorological hindcasts as well as for Lake_F 

hindcasts. These windows of opportunity typically had ROCSS values larger than 0.47 to 0.55 (see Methods section for details). 

For SEAS5 seasonal meteorological hindcasts, only 3 to 10 windows of opportunity were observed for each case study out of 

the 96 possibilities, i.e., 3 terciles of 8 variables over 4 seasons (Table 6). Regarding Lake_F, larger proportions of the 36–39 

possible variable-tercile-season combinations were associated with statistically significant ROCSS values (Table 6). Winter 355 

and Spring in Norway, as well as Summer and Autumn in Spain were the seasons associated with the most skillful Lake_F 

hindcasts. Lake Vansjø in Norway was the only case study where windows of opportunity for SEAS5 and Lake_F were 

consistently concentrated within the same seasons, i.e., mostly in Spring and to a lesser extent in Winter. For the other case 

studies, there were fewer windows of opportunity for SEAS5 and those were more randomly distributed over the year. FRPSS 

values were typically reported for surface water temperature in spring and autumn, except for autumn in Spain. Norway and 360 

Germany also showed significant fair RPSS for bottom water temperature in spring and autumn, and summer and autumn, 

respectively. Note that neither river discharge nor any of the SEAS5 variables had FRPSS values in any case study. Windows 
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of opportunity for bottom temperature represented more than half of the total for all case-studies and variables while those for 

surface temperature and discharge were more sporadic.  

The comparison of SEAS5 and Lake_F skillful hindcasts in Table 6 is already useful for identifying possible transfer of 365 

forecasting skill from the SEAS5 seasonal meteorological hindcasts to the catchment and lake models. SEAS5 meteorological 

hindcasts are skillful over only a very limited number of seasons, variables and terciles (Table 6). However, for Norway, there 

is a higher number of skillful meteorological and lake hindcasts in spring than in the other seasons. For the other case-studies, 

such a clear connection between SEAS5 meteorological hindcasts and catchment/lake model outputs is not as apparent. We 

can thus hypothesize that the skill of catchment and lake model hindcasts in Norway is more inherited from the SEAS5 data 370 

than at other case studies. In contrast, skill of the catchment and lake model hindcasts at the other case-studies is hypothesized 

to originate from the legacy of the warm-up period or from the parametrization of the inflow-outflow water balance. 

Verification statistics for Lake_PO seasonal means compared to observations (Table 7) show that the catchment and lake 

models performed well at the Norwegian and Spanish sites in capturing interannual variability. In Germany and Australia, 

performance was lower. Note that when observation coverage was below 50%, no statistics were calculated given the low 375 

number of seasons represented and the risk of bias when computing seasonal averages. The difference between 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 .(comparing Lake_F and Lake_PO) and 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠  (comparing Lake_F and lake observations) did not 

necessarily scale inversely with the verification statistics (Table 7). In fact, the 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 reported for the German site were 

slightly lower or even larger than their respective 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with differences lower than 0.23. Whereas, for the Spanish 

site, three 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠  values out of 4 were significantly lower than the 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  with a difference larger than 0.33. 380 

Nevertheless, several output variables, e.g., bottom temperature in Germany and ice-off in Norway, are associated with 

significant 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 .and 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 .which provides further confidence in model calibration and low model error. In 

contrast, even if the verification statistics for discharge were not worse than for the other variables, 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 values are all 

below the significance threshold pointing towards some limitations in predicting hydrology.  
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Table 5: 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  for each combination of season, variable and tercile of lake hindcasts (Lake_F). Color scale range from 385 

dark blue (ROCSS = -1, perfectly bad forecast) to dark red (ROCSS = 1, perfect forecast) with white in the middle (ROCSS = 0, no 

change compared to reference forecast). Windows of opportunity are highlighted by bold, black numbers, i.e., combination of 

season, variable and tercile associated with a statistically significant ROCSS value. 

  

Norway Spain Germany Australia 

Lower Middle Upper Lower Middle Upper Lower Middle Upper Lower Middle Upper 

Discharge Spring 0.58 0.18 0.54 0.37 -0.11 0.33 -0.34 -0.03 -0.47 0.01 -0.33 -0.64 

Summer -0.13 0.23 -0.41 0.73 -0.02 0.23 -0.59 -0.13 -0.34 -0.05 0.28 0.36 

Autumn 0.32 -0.24 0.27 0.17 0.46 0.47 -0.29 -0.33 0.03 0.48 -0.02 0.18 

Winter 0.21 -0.08 -0.1 0.4 0.52 0.08 -0.28 0.17 -0.34 0.16 -0.02 -0.22 

Surface  
Temperature 

Spring 0.75 0.14 0.53 0.2 0.18 0.19 0.2 -0.14 0.38 0.19 -0.27 0.26 

Summer 0.33 0.39 -0.13 0.42 -0.13 0.57 -0.25 -0.18 -0.22 0.16 -0.48 0.23 

Autumn -0.52 -0.24 -0.12 0.22 0.11 0.47 0.23 0.42 0.3 0.13 -0.34 -0.04 

Winter 0.48 -0.12 -0.17 0.32 -0.66 -0.15 -0.22 0.04 -0.09 0.13 -0.14 -0.1 

Bottom  
Temperature 

Spring 0.56 0.05 0.68 0.44 0.12 0.86 0.59 0.28 0.6 0.37 0.31 -0.16 

Summer -0.12 0.14 -0.35 0.53 0.36 0.72 0.48 0.21 0.71 0.6 -0.45 0.18 

Autumn -0.53 0.03 -0.26 0.5 0.55 0.64 0.27 0.26 0.15 0.28 0.4 0.38 

Winter 0.48 0.01 0.53 -0.02 0.54 0.27 -0.16 -0.3 0.27 0.63 -0.1 0.29 

Ice-off Spring 0.69 0.29 0.75   

 

Table 6: SEAS5 meteorological and Lake_F lake hindcasts associated with statistically significant FRPSS or ROCSS at each case-390 
study.  

S
it

e 

In
d

e
x

e
s 

Numbers of skillful hindcasts: windows of opportunity 

variable (tercile) 

Winter Spring Summer Autumn TOTAL 

SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F 

N
o

rw
ay

 FRPSS    ST; BT    ST; BT 0/32 4/12 

ROCSS 3 

cc (−) 
sw (+) 

lw (=) 

3 

ST (−) 
BT (−,+) 

7 

airP(=,+) 
airT (+) 

cc (=) 

hum (−) 
U (+) 

V (−) 

8 

Q (−,+) 
ST (−,+) 

BT (−,+) 

Ice-off 
(−,+) 

0 0 0 0 10/96 11/39 

A
u

st
ra

li
a FRPSS    ST    ST 0/32 2/12 

ROCSS 2 

airP (+) 
hum (+) 

1 

BT (−) 

1 

lw (+) 

 1 

cc (=) 

1 

BT (−) 

4 

airP (+) 
cc (+) 

airT (=) 

sw (+) 

1 

Q (−) 

8/96 3/36 

S
p

ai
n
 FRPSS    ST     0/32 1/12 

ROCSS 0 1 
Q (=) 

2 
cc (+) 

airP (+) 

1 
BT (+) 

2 
cc (+) 

hum (+) 

5 
Q (−) 

ST (+) 

BT (−,+) 

1  
cc (+) 

3 
Q (+) 

BT (−,+) 

5/96 9/36 

G
er

m
an

y
 FRPSS    ST  BT  ST; BT 0/32 4/12 

ROCSS 2 

lw (=) 

V (−) 

0 1 

hum (+) 

2 

BT (−,+) 

0 2 

BT (−,+) 

0 0 3/96 4/36 

Lake_F variable abbreviations: ST, BT and Q stand for surface-, bottom-temperature and discharge, respectively. SEAS5 meteorological variable 

abbreviations: airT, airP, cc, hum, sw, lw, U, V stand for surface air temperature, air pressure, cloud cover, relative humidity (or dew-point temperature), 

short-wave radiation, downwelling long-wave radiation, and u and v components of wind, respectively. -, + and = stands for lower, upper and middle terciles, 
respectively.  395 
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Table 7:  Verification statistics (NSE, R2, RMSE, RMSE/sd, bias) for Lake_PO seasonal means (comparing Lake_PO to 

observations), as well as comparison of the 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍.(comparing Lake_F and Lake_PO) and 𝑹𝑶𝑪𝑺𝑺𝑶𝒃𝒔 (comparing Lake_F 

and lake observations).  

S
it

e Variable 

S
e
a

so
n

 Obs coverage 

NSE R2 RMSE 
RMSE/ 

sd 
bias 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠  

S M D lower middle upper lower middle upper 

N
o

r
w

a
y

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

Discharge Spring 100 96 93 0.72 0.80 2.0 0.52 -1.0 0.58*  0.54* 0.36  0.34 

Surface  

Temperature 

Winter 0 0 0      0.48*   n.a   

Spring 48 58 5      0.75*  0.53* n.a  n.a 

Bottom  

Temperature 

Winter 0 0 0      0.48*  0.53* n.a  n.a 

Spring 43 52 4      0.56*  0.68* n.a  n.a 

Ice-on  100 - - 0.97 0.99 2.2 0.16 1.8 a 

Ice-off  100 - - 0.36 0.76 19.3 1.09 -14.7 0.69*  0.75* 0.55*  0.68* 

 

                

S
p

a
in

 

Discharge Winter 100 100 99 0.88 0.89 3.9 0.34 -0.6  0.52*   0.18  

Summer 100 100 98 0.51 0.62 3.5 0.69 -1.6 0.73*   0.40   

Autumn 100 100 98 0.73 0.74 4.0 0.51 -0.8   0.47*   0.40 

Surf. Temp. Summer 78 78 3 0.12 0.40 1.1 0.87 -0.6   0.57*   -0.08 

Bottom  

Temperature 

Spring 48 70 3        0.86*   n.a 

Summer 48 67 2      0.53*  0.72* n.a  n.a 

Autumn 35 58 3      0.50*  0.64* n.a  n.a 

 

                

G
er

. 

Bottom 

Temperature 

Spring 100 96 6 -5.01 0.49 1.2 2.40 1.0 0.59*  0.60* 0.41  0.46* 

Summer 100 100 7 -8.63 0.26 3.8 3.04 3.6 0.48*  0.71* 0.51*  0.49* 

 

                

A
u

st
r
a

li
a
 

Discharge Autumn 43 100 100 -0.67 0.41 1.61 1.23 -1.27 0.48*   n.a   

Bottom  

Temperature 

Winter 23 100 82 -0.70 0.32 1.98 1.17 1.51 0.63*   n.a   

Summer 17 75 46      0.60*   n.a   

Only output variables associated with statistically significant ROCSS_original are included. Statistically significant ROCSS are highlighted with an asterisk. 

“Obs coverage” is the percentage of seasons (S), months (M) and days (D) covered by observations. Spring is March to May, Summer is June to August, 400 

Autumn is September to November, and Winter is December to February. 

aIce-on typically occurs between November and December which is the autumn and winter boundary. Therefore, ROCSS values could not be calculated for 

ice-on. 

3.3 Sensitivity analyses to initial conditions and meteorological forcing 

The 𝑅𝑂𝐶𝑆𝑆𝑆 , 𝑅𝑂𝐶𝑆𝑆𝑊  and 𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0  values obtained for each run of S-SA, W-SA and W+M0-SA, respectively, are 405 

summarized in boxplots in Figure 4 together with the original ROCSS value for each window of opportunity at the Norwegian 

and Spanish sites. This set of sensitivity analyses (SA) were performed to identify the origin of the forecasting skill for a given 

window of opportunity and allowed quantifying the sensitivity of hindcasts performance to forcing data over specific periods: 

the target season (M1‒M3; SEAS5), the first lead month (M0) and the warm-up period (ERA5). In general, output variable 
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sensitivity to SEAS5 data over the target season (S-SA) is small relative to sensitivity to ERA5 data over the warm-up season 410 

and/or SEAS5 data over the first lead month. In fact, at Sau, replacing SEAS5 data over the target season with random data 

(S-SA) does not yield any significant change in the ROCSS values, except for the surface temperature upper tercile (Fig. 4 

panel l). However, significant changes in ROCSS values are seen for W-SA compared to 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  indicating high 

sensitivity to warm-up. The similar ranges in 𝑅𝑂𝐶𝑆𝑆𝑊 and 𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0 values suggest limited or no impact of the SEAS5 

data over the first lead month on output variable forecasts.  415 

At Vansjø in Norway, on the other hand, 8 out of 11 windows of opportunity show significant changes in 𝑅𝑂𝐶𝑆𝑆𝑆 values, 

indicating higher sensitivity to SEAS5 data over the target season than at Sau. Furthermore, 3 windows of opportunity are 

associated with 𝑅𝑂𝐶𝑆𝑆𝑆 that are lower than 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (Fig. 4b, f and g), i.e., suggesting SEAS5 is providing some skill, 

while 5 have 𝑅𝑂𝐶𝑆𝑆𝑆 that are higher than 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  (Fig. 4a, h–k), suggesting the use of SEAS5 is in fact reducing 

forecasting skill compared to a random forecast. Then, a progressive decrease in ROCSS values is typically observed for all 420 

windows of opportunity following W-SA and W+M0-SA, indicating a progressive loss of forecasting skill related to ERA5 

data over the warm-up and SEAS5 data over the first lead month. 

3.4 Sensitivity analyses to specific input variables 

Figure 5 and 6 summarizes the results from the two sensitivity analyses to specific input variables: OAT-SA and PPCC. 

Seasonal means of Lake_PO at Vansjø also showed higher sensitivity to specific input variables than Lake_PO at Sau (Fig. 5). 425 

In fact, surface temperature is highly sensitive to surface air temperature over the year while some other input variables have 

more specific influence. Bottom temperature is also highly sensitive to surface air temperature but wind also plays a large role, 

especially in summer which is consistent with its expected impact on lake thermal stability (Blottiere, 2015). Finally, as 

expected, discharge at Vansjø is highly sensitive to precipitation, and to a lesser degree to surface air temperature, except in 

winter where surface air temperature has a larger influence on discharge. 430 

The PPCC also show similar patterns regarding sensitivity (Fig. 6) where discharge is highly correlated with precipitation at 

the four sites and surface air temperature plays a secondary role for specific seasons. Once again, surface and bottom 

temperature at Sau stand out due to their limited sensitivity to input variables while at the three other sites, surface temperature, 

and to a lesser degree bottom temperature, are generally strongly positively correlated with surface air temperature. Others, 

like precipitation and short-wave radiation have more of an anecdotal influence on lake temperature, while wind shows a more 435 

consistent negative impact on surface temperature at Vansjø, Wupper and Mt Bold. Wind also shows some impact on bottom 

temperature, although less consistent. At Vansjø and Mt Bold following the coldest season, wind is positively correlated with 

bottom temperature, while at Wupper during the two coldest seasons, wind is negatively correlated with bottom temperature. 

Finally, ice-off date in Vansjø shows a strong negative correlation with surface air temperature (Fig. 6m) that can be linked 

back to the snow content and the intensity of snow melt in the catchment (Fig. 6n and o). 440 
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Figure 4: Box plots (n = 25) of 𝑹𝑶𝑪𝑺𝑺𝑺, 𝑹𝑶𝑪𝑺𝑺𝑾 and 𝑹𝑶𝑪𝑺𝑺𝑾+𝑴𝟎 from sensitivity analysis runs S-SA (replacing target season 

SEAS5 data with random data), W-SA (replacing warm-up ERA5 data with random data) and W+M0-SA (replacing warm-up 

period – ERA5 and first lead month – SEAS5 data with random data) for each window of opportunity at the Norwegian (a–k) and 445 
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Spanish (l–q) sites. 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 is given by the red line, so 𝑹𝑶𝑪𝑺𝑺𝑺, 𝑹𝑶𝑪𝑺𝑺𝑾 and 𝑹𝑶𝑪𝑺𝑺𝑾+𝑴𝟎 below the red line indicate a loss 

of skill and values above the line indicate higher skill than the original forecast. ***, ** and * indicate significant difference between 

a given group of 𝑹𝑶𝑪𝑺𝑺𝑺, 𝑹𝑶𝑪𝑺𝑺𝑾  and 𝑹𝑶𝑪𝑺𝑺𝑾+𝑴𝟎  values and 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 following Mann−Whitney Rank Sum test at a 

significance level of 0.001, 0.01 and 0.05, respectively. Note that the S-SA, W-SA and W+M0-SA were only performed for Sau 

Reservoir in Spain and Lake Vansjø in Norway because of the significant resources needed to perform this hindcast experiments. 450 

 

Figure 5: Relative sensitivity expressed as 1 – R2 of Lake_PO seasonal means to specific input variables estimated following the 

OAT-SA (see section 2.2.3 and Table 3 in the Methods section for details). Circle size represent relative sensitivity on a scale from 0 

to 1, e.g., larger circle sizes, i.e., higher (1 − R2) values, indicate more influence of input variables on Lake_PO. Meteorological 

variable abbreviations: airT, p, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover, 455 
relative humidity (or dew-point temperature) and short-wave radiation, respectively. Note that the relatively larger sensitivity of 

Lake_PO to specific input variables over the whole year can be larger compared to over a given season because of the strong seasonal 

cyclicity. Note that the OAT-SA was only performed for Sau Reservoir in Spain and Lake Vansjø in Norway. 
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Figure 6: Pearson partial correlation coefficients (PPCC) between Lake_PO seasonal means and seasonal means of selected input 460 
variables. Circle color and size represent PPCC value (from -1 to 1) and significance, respectively. Meteorological variable 

abbreviations: airT, P, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover, relative 

humidity (or dew-point temperature) and short-wave radiation, respectively. Only significance level at 0.1 or below were considered 

in the interpretation. 

 465 
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Next, we use SA outputs to better describe the origin of the prediction skill, considering inertia, time integration as well as 

variable interactions. Assuming that climate signals in the ERA5 and SEAS5 input data over the warm-up, first lead month 

and target periods are additive sources of prediction skill, we can use Eqs 1–3 to partition the prediction skill originating from 

those time periods, i.e., 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝, 𝑃𝑀0 and 𝑃𝑠𝑒𝑎𝑠𝑜𝑛, respectively. For Sau reservoir, this calculation yields 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 of 0.94 

to 1.0 leaving only an unsignificant fraction of prediction skill to the forcing data over the target season and the first lead 470 

month, as illustrated in Fig. 4. At this site, the output variables show in parallel very low sensitivity to input variables (Fig. 5 

and 7) which supports a strong role of inertia or long-term time integration in hindcast predictive skill. The fact that 5 out of 

the 6 windows of opportunity are for bottom water is also consistent with inertia as the main source of skill given the low 

circulation rate and inertia of hypolimnions. For Lake Vansjø, Eqs 1–3 yielded 𝑃𝑠𝑒𝑎𝑠𝑜𝑛  of 0.003 (range: -0.19 to 0.18), 𝑃𝑀0 of 

0.19 (0.04 to 0.37) and 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 of 0.29 (0.09 to 0.60). Hence, a significant fraction of prediction skill is originating from the 475 

SEAS5 boundary conditions although the largest source remains initial conditions through ERA5 data over the warm-up. 

Interestingly, the SEAS5 data over the first lead month is also a significant source of prediction skill. In fact, in decreasing 

order of importance, prediction skill originates from the warm-up, the first lead month and the target season. This progressive 

decrease in prediction skill is only observed at Lake Vansjø and suggests that across-variable integration of climate signals 

persists through the first lead month and, in some cases, the target season, but is progressively deteriorating as we move into 480 

the target season. Indeed, there is additional consistency between the SEAS5 input variables showing some forecasting skill 

and the output variables. In fact, surface, and bottom temperature in spring at Vansjø are sensitive to surface air temperature 

and wind (Fig. 6b and c), and surface aur temperature, wind u and v components are associated with some windows of 

opportunity in spring (Table 6). Similarly, ice-off is sensitive to surface air temperature, as are snow quantities and melt 

intensities in the catchment (Fig. 6m–o). Hence, in contrast to Sau reservoir where most of the prediction skill seems to 485 

originate from inertia, at Lake Vansjø, across-variable integration contributes to predictive skills. 

4 Discussion 

4.1 Sources of skill 

Our investigation into relationships between input and output variables and the sensitivity of predictive skill to meteorological 

data inputs over different time periods have yielded important insights into the sources of seasonal lake forecasting skill in our 490 

case study sites.  

A key finding is that predictive skill is mostly sensitive to meteorological inputs over the warm-up and first lead months (Fig. 

4, Section 3.4), although some specific windows of opportunity are also somewhat sensitive to the meteorological data over 

the target season. Hence, integration of the climate signal over time or across variables by catchment hydrologic and physical 

processes, e.g., snow accumulation (Harrigan et al., 2018) or heat accumulation in lakes, is likely a key source of predictive 495 

skill. In fact, Mercado-Bettin et al. (2021) already noted an increase in prediction skill when moving from weather to discharge 



23 

to lake temperature, i.e., in an increasing order of time and across variable integration of climate signals. Strong inertia is also 

a potential source of prediction skill.  

After accounting for forecasting skill from the forcing data over various periods (Section 3.3), a large proportion of the skill 

still remains unexplained, especially for some selected windows of opportunity at Lake Vansjø in Norway. Bottom water 500 

temperature at Lake Vansjø in spring shows the highest residual skill after removal of skill from warm-up and first lead month 

(Fig. 4e–f). Surface and bottom temperature show a different degree of coupling with air temperature. In fact, while surface 

temperature responds tightly to changes in air temperature (Butcher et al., 2015; Schmid et al., 2014), bottom temperature 

responds to a variety of complex interactions influenced by lake characteristics (e.g., fetch, surface area, depth, light 

penetration; Butcher et al., 2015). Indeed, bottom temperature in spring depends on preceding winter conditions but also on 505 

the intensity and length of the spring mixing event. To fully capture the intensity of this event, the model requires good initial 

water temperature inherited from previous winter but also skillful weather forcings, especially for surface air temperature and 

wind (Fig. 6c). In fact, for bottom temperature in spring to be higher than normal, it requires surface water to be heated up 

more than normal, mainly through heat exchange with air temperature, but also the lake to remain mixed for a longer time 

period than normal. The interaction between skill from legacy and from weather forcing might thus be another source of 510 

predictive skill. The fact that the proportion of forecasting skill progressively decreases from warm-up, through the first lead 

month and the target season at Vansjø suggests that the interactions between input variables, which are incorporated in the 

process representation within the models, provide some skill but progressively deteriorates as we move forward in time. At 

Sau reservoir in Spain, on the other hand, all skill is lost at the sharp boundary between the warm-up and the first lead month. 

This difference might be related to the presence of skill from the SEAS5 data at Vansjø (Table 6) and not at Sau. In other 515 

words, in the absence of skill in SEAS5 data, no additional skill can originate from interaction effects. 

Literature on streamflow hindcasts broadly shows that beyond the first lead month, hindcasts forced with an ensemble of 

boundary conditions resampled from historical meteorology are typically more skillful than hindcasts driven by seasonal 

meteorological predictions (Arnal et al., 2018; Bazile et al., 2017; Greuell et al., 2019). Hence, better lake forecasting skills 

could likely be achieved by simply forcing our models with climatology. Our results partly fit with these findings, as the skill 520 

of S-SA hindcasts for selected windows of opportunity were higher than the original hindcasts (Fig. 4a, h–k). These S-SA 

hindcasts are similar to climatology-driven hindcasts, although they are associated with higher uncertainty since they are driven 

by random SEAS5 data and should therefore be regarded as a minimum forecasting potential. For some windows of 

opportunity, however, SEAS5 was a significant source of predictive skill (Fig. 4b, f, g and l). In those cases, only an 

improvement in SEAS5 forecasting skill is likely to improve lake forecasts. Improvement for only selected variables in SEAS5 525 

would likely be enough to yield a significant increase in lake forecasting skill since most of the output variables presented here 

showed sensitivity to one or two input variables (Fig. 6). 
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4.2 Limitations and implications for seasonal lake forecasts 

One apparent limitation of our study is the use of reanalysis weather data and pseudo-observations as inputs and benchmark 

output variables. Using pseudo-observations for skill assessment is a common methodology in streamflow forecasting studies 530 

(Alfieri et al., 2014; Wood et al., 2016) and it offers the opportunity to investigate the relationship between forecasting skills, 

initial and boundary conditions, while putting less emphasis on model errors and biases (Harrigan et al., 2018). Working with 

reanalysis weather data generates a less site-specific workflow and removes difficulties associated with dealing with temporal 

and spatial heterogeneity in observed data. Nevertheless, here we also evaluate the forecasting skill against catchment and lake 

observations when possible (Table 7) and show that most of the windows of opportunity reported for water temperature held 535 

while those for discharge are no longer significant compared to observations. This discrepancy between discharge and water 

temperature can be related to the fact that discharge tends to be more variable than water temperature, with short-lived high 

peaks which are difficult to model. The catchment models therefore performed less well than the lake models. This further 

suggests that evaluation against observations is likely more important for discharge than for water temperature. 

The prediction skill of the seasonal lake forecasts can be influenced by multiple factors including the catchment and lake 540 

models used, the prediction skill of the forcing meteorological hindcasts, the quality and frequency of observations against 

which the models are calibrated, the nature of the system (e.g., potential for inertia), and the model calibration procedures. 

Given that we applied our workflow to only four case-study sites, unraveling the impact of all of the above-mentioned factors 

is out of the scope of this study and should be addressed through a more systematical application of our workflow to a larger 

number of sites. Our results rather highlight two opportunities for seasonal lake forecasting. First, prediction skill of the forcing 545 

meteorological SEAS5 hindcasts, expected to be stronger around the tropics, was the largest at the northernmost Norwegian 

site (Table 6) and effectively transferred from meteorological to lake hindcasts (Section 3.3). This highlights that, although the 

prediction skill of the meteorological forecasts is generally higher at the equator, there is not a monotonic decrease in skill 

with increasing latitude, rather there is high spatial variability in skill. Potentially useful seasonal meteorological and lake 

forecasts can therefore still be obtained at higher latitudes. Second, given that inertia and integration over time were the 550 

dominant sources of predictive skill at Sau reservoir and Lake Vansjø, useful hindcasts could already be issued without the 

use of SEAS5 data. In fact, our workflows show limited sensitivity to boundary conditions over the target season. Hence, 

future workflows should use selected climatology as forcing data over the target season, in addition to (or instead of) seasonal 

meteorological prediction. This benchmark forecasting workflow with climatology will likely yield similar or more skillful 

forecasts, as well as being less time-consuming to set up. Indeed, even with randomly selected years from the SEAS5 data, 555 

which can be seen as a highly uncertain climatology, some windows of opportunity are more skillful than with the correct 

SEAS5 data (Fig. 4). Nevertheless, if seasonal meteorological prediction products become more skillful, they will likely be a 

real asset for lake seasonal forecasting enabling additional skills through interactions over time. 

State-of-the-art modeling practices typically involve calibrating hydrologic and lake models against daily observations. 

Nevertheless, daily observations of water quality are often not available or only cover a fraction of the time of interest. Table 560 
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7 illustrates the challenges related to data coverage and model evaluation where many calibration and validation statistics could 

not be estimated because of the lack of observations. In addition, calibrating to daily data prioritizes model parameterizations 

which are able to capture daily variability, but not necessarily seasonal or interannual variability, which are more relevant for 

seasonal forecasting. Calibrating the hydrologic and lake models using seasonal means or medians, in combination with daily 

data, could solve the observation coverage issue while improving seasonal predictive skill, but is then hampered by a low 565 

number of observed data points for calibration. Nevertheless, one needs to ensure that the seasonal averages are calculated 

from representative and well-distributed datasets. For Lake Vansjø, this would not have solved the lack of observations in 

Spring for example, because observations only cover April and May. For Sau and Wupper reservoirs, on the other hand, this 

would have been possible and potentially improve predictive skills. In any case, having access to more complete, long-term 

and systematic observations on water temperature, inflow and outflow discharge, including abstraction and over- flows for 570 

reservoirs, would facilitate robust model calibration and validation, and likely model predictive skills. The skill of water quality 

forecasting tools heavily depends on observation availability. Hence, continued efforts should be put on ensuring that 

observational programs are suited to providing the information needed by our models (Robson, 2014). 

5 Conclusion 

Lake seasonal forecasts could provide valuable knowledge for water managers to help protect drinking water reserves, as well 575 

as ecological and recreational services under increasing pressures from water demand, anthropogenic pollution, and climate 

change. Nevertheless, their use is still limited in the water sector. Here we unravel the source of predictive skill of lake seasonal 

hindcasts at four case-studies across Europe and in Australia, including inflow discharge, surface and bottom water temperature 

as well as ice-off dates. Through sensitivity analyses, we contribute to the demystification of lake forecasting tools with the 

long-term objective of facilitating their utilization in the water sector. In Spain, where the seasonal meteorological predictions 580 

have negligible skill, the source of predictive skill is mainly catchment and lake inertia. In Norway, where some seasonal 

meteorological predictions are skillful, predictive skill is coming from, in decreasing order of importance, inertia, time- and 

across-variable integration of climate signals through catchment processes, and seasonal meteorological predictions over the 

target season (SEAS5). In Norway, skillful SEAS5 meteorological hindcasts over specific seasons likely contribute to 

sustaining the predictive skill from antecedent conditions through to the target season. 585 

Despite its central role in the probabilistic nature of the forecasting workflow, SEAS5 meteorological forcing data contributes 

little to the predictive skill, and often reduces the performance of the hindcasts. Hence, our findings suggest that using a 

probabilistic ensemble catchment-lake forecast without SEAS5 forcing data is currently likely to yield higher quality forecasts 

in most cases, as demonstrated by hindcasts driven with randomly selected SEAS5 data. Nevertheless, upon improvement in 

the skill of the seasonal meteorological forecasts, only a small step would be needed to provide more skillful lake forecasts for 590 

better water management. 
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Index of abbreviations (in order of appearance) 

SEAS5: seasonal meteorological forecast dataset from the European Centre for Medium Range Weather Forecasts. 

ERA5: meteorological reanalysis dataset from the European Centre for Medium Range Weather Forecasts. 

NSE: Nash–Sutcliffe efficiency coefficient 595 

KGE: Kling-Gupta efficiency coefficient 

RMSE: Root-mean squared error 

R2: square of the Pearson correlation coefficient 

Lake_PO: Lake pseudo-observations of water temperature, inflow discharge and ice-off produced with coupled catchment and 

lake models forced with ERA5 meteorological data. 600 

Lake_F: Seasonal lake hindcasts of water temperature, inflow discharge and ice-off produced with coupled catchment and lake 

models forced with SEAS5 meteorological data (25 members). 

M0: First lead month 

M1‒M3: Month 1 to month 3 of the lake forecast, i.e., target season of the lake forecasts. 

ROCSS: Relative Operating Characteristic Skill Score  605 

RPSS: Ranked Probability Skill Score 

FRPSS: Fair (or unbiased) RPSS 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙: ROCSS for Lake_F as compared to reference forecast based on climatology from Lake_PO. 

𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠: ROCSS for Lake_F as compared to reference forecast based on local observations. 

SA: Sensitivity analysis 610 

S-SA: Sensitivity analysis of Lake_F to boundary conditions over the target season (M1‒M3) 

W-SA: Sensitivity analysis of Lake_F to boundary conditions over the warm-up period 

W+M0-SA: Sensitivity analysis of Lake_F to boundary conditions over the period covering the warm-up and first lead month 

𝑅𝑂𝐶𝑆𝑆𝑆: ROCSS for Lake_F following S-SA as compared to reference forecast based on climatology from Lake_PO 

𝑅𝑂𝐶𝑆𝑆𝑊: ROCSS for Lake_F following W-SA as compared to reference forecast based on climatology from Lake_PO 615 

𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0 : ROCSS for Lake_F following W+M0-SA as compared to reference forecast based on climatology from 

Lake_PO 

OAT-SA: One at a time sensitivity analysis 

PPCC: Partial correlation coefficient 

airT: Surface air temperature 620 

airP: Surface air pressure 

cc: Cloud cover 

hum: Relative humidity (or dew-point temperature) 

sw: short-wave radiation 
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lw: downwelling long-wave radiation 625 

U: U-component of wind speed 

V: V-component of wind speed 

p: Precipitation 

 

Computer code and models 630 

You can find all the code and data files related to this manuscript at: 

https://github.com/NIVANorge/seasonal_forecasting_watexr 
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