

Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools

François Clayer¹, Leah Jackson-Blake¹, Daniel Mercado-Bettín^{2,3}, Muhammed Shikhani⁴, Andrew French^{5†}, Tadhg Moore^{6‡}, James Sample¹, Magnus Norling¹, Maria-Dolores Frias^{7§}, Sixto Herrera⁷,
5 Elvira de Eytó⁵, Eleanor Jennings⁶, Karsten Rinke⁴, Leon van der Linden^{8¶}, Rafael Marce^{2,3}.

¹Norwegian Institute for Water Research (NIVA), Oslo, Norway

²Catalan Institute for Water Research (ICRA), Girona, Spain

³Universitat de Girona, Girona, Spain

⁴Department of Lake Research, Helmholtz Centre for Environmental Research, Magdeburg, Germany

10 ⁵Foras na Mara - Marine Institute, Furnace, Newport, Co. Mayo, Ireland

⁶Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland

⁷Grupo de Meteorología. Depto. de Matemática Aplicada y Ciencias de la Computación (MACC). Universidad de Cantabria, Santander, Spain

⁸Grupo de Meteorología y Computación, Universidad de Cantabria, Unidad Asociada al CSIC, Santander (Spain)

15 [¶]SA Water, Adelaide SA 5000, Australia

Correspondence to: François Clayer (francois.clayer@niva.no)

†Present address: School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N63K, Ireland

‡ Present address: Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA

← Formatted: Space Before: 0 pt

Abstract. Despite high potential benefits, the development of seasonal forecasting tools in the water sector has been slower than in other sectors. Here we assess the skill of seasonal forecasting tools for lakes and reservoirs set up at four sites in Australia and Europe. These tools consist of coupled hydrological catchment and lake models forced with seasonal meteorological forecast ensembles to provide probabilistic predictions of seasonal anomalies in water discharge, temperature and ice-off. Successful implementation requires a rigorous assessment of the tools' predictive skill and an apportionment of the predictability between legacy effects and input forcing data. To this end, models were forced with two meteorological datasets from the European Centre for Medium Range Weather Forecasts (ECMWF), the seasonal forecasts SEAS5 with three-month lead times and the ERA5 reanalysis. Historical skill was assessed by comparing both model outputs, i.e., seasonal lake hindcasts (forced with SEAS5) and pseudo-observations (forced with ERA5). The skill of the seasonal lake hindcasts was generally low although higher than the reference hindcasts, i.e., pseudo-observations [at some sites for certain combinations of season and variable](#). In addition, [the](#) SEAS5 meteorological predictions showed less skill than the lake hindcasts. In fact, skillful lake hindcasts identified for selected seasons and variables were not always synchronous with skillful SEAS5 meteorological hindcasts, raising questions on the source of the predictability. A set of sensitivity analyses showed that most of the forecasting skill originates from legacy effects, although during winter and spring in Norway some skill was coming from SEAS5 over the three-month target season. When SEAS5 hindcasts were skillful, additional predictive skill originates from the interaction between legacy and SEAS5 skill. We conclude that [a lake forecasts forced with an ensemble of boundary](#)

35 conditions resampled from historical meteorology climatology driven forecast isare currently likely to yield higher quality forecasts in most cases.

1. Introduction

Freshwater provides essential services for food and energy production, manufacturing, cultural heritage, and natural habitats. However, it is threatened by more frequent extreme events (Jeppesen et al., 2021), climate change (Labrousse et al., 2020), 40 anthropogenic water depletion (Yi et al., 2016) and agricultural pressures (Wuijts et al., 2021). Implementation of mitigation measures can help preserve freshwater resources, although they come with trade-offs between production from economic sectors with related social benefits, and availability of good quality freshwater. Hence, successful implementation of measures requires capacity at the local-regional level for cross-sectoral decision-making (Wuijts et al., 2021). Seasonal forecasting tools for water quality can help facilitate the decision-making process by refininginforming optimal actions over the next season, 45 e.g., magnitude and timing of reservoir drawdowns. Indeed, they can supply knowledge on the impacts of future climatic conditions on freshwater over a realistic time frame enabling implementation with reduced negative effects on economic activities. Nevertheless, the use and access to forecasting tools is still very limited for water managers (Lopez & Haines, 2017; Soares et al., 2018). The probabilistic nature of seasonal forecasts can be a key barrier coupled with the lack of reliability and credibility of these predictions in most regions outside-of the tropics. Hence, a better access to seasonal forecasting tools as 50 well as increased comprehension and description of these tools are required prior to their successful implementation in the decision-making process within the water sector.

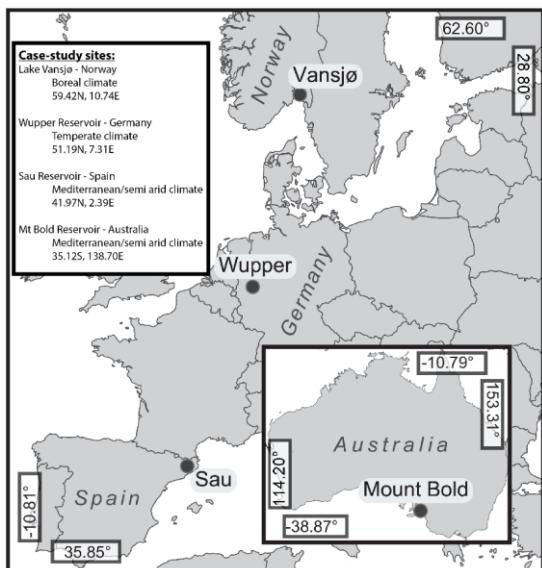
Seasonal meteorological predictions provide a probabilistic description of the weather over the next few months, e.g., an 80% chance of the weather being wetter than normal. Seasonal climate predictability mainly originates from ocean–atmosphere interactions (Troppoli, 2010). In fact, the ocean inertia, given its volume and the heat capacity of liquid water, exerts an 55 influence on the atmosphere on the scale of months which allows us to estimate its future effect on weather. Given that ocean–atmosphere interactions are relatively strong in the equatorial region (Troppoli, 2010), seasonal meteorological predictions typically show stronger predictive skill, or prediction performance, around the tropics (Johnson et al., 2019; Manzanas et al., 2014). Under higher latitudes, skills from seasonal meteorological predictions are patchy and less consistent among variables and seasons. Hence, the boundary conditions, e.g., seasonal air temperature forecasts used to force a hydrological model, isare 60 usually not the main source of predictability outside the tropics, at least for stream flow (Greuell et al., 2019; Harrigan et al., 2018; Wood et al., 2016). Nevertheless, climate models producing seasonal meteorological forecasts are constantly improving and it is reasonable to expect that forecast opportunities will expand in the future (Mariotti et al., 2020). Developing seasonal forecasting workflows, quantifying the skill and investigating the source of predictability represent a necessary and essential step towards reliable water quality seasonal forecasting. 65 While some of the first forecasting tools were originally developed for flood warnings (e.g., Pagano et al., 2014; Werner et al., 2009), applications to other sectors are becoming more frequent. In the agricultural sector, for example, a recent study shows

that flowering time can be reliably predicted from seasonal meteorological forecasts in central and eastern Europe, enabling early variety selection and planning of farm management (Ceglar & Toreti, 2021). Seasonal meteorological forecasts were also shown to provide useful information for the wind energy sector (Lledó et al., 2019), and to avoid significant economic losses 70 from hydropower generation during droughts (Portele et al., 2021). Nevertheless, the use of seasonal meteorological forecasts for water temperature in lakes and reservoirs has been limited so far, where the focus has been on water quantity (Arnal et al., 2018; Giuliani et al., 2020; Greuell et al., 2019; Pechlivanidis et al., 2020). Studies forecasting water temperature, a fundamental water quality variable, are rare in the literature (though see Mercado-Bettin et al., 2021; Zhu et al., 2020; Baracchini et al., 2020), despite the diverse influence of this variable on lake ecosystem structure and functioning (Dokulil et 75 al., 2021). Nevertheless, a simple lumped model (*air2water*; Piccolroaz et al., 2013), previously developed to estimate surface lake water temperature as a function of air temperature, has been applied to predict water temperature in thousands of lakes (Zhu et al., 2021). While this hybrid approach yielded skillful surface lake water temperature forecasts (Piccolroaz et al., 2018; Toffolon et al., 2014), it doesn't allow forecasting any other lake variables, such as bottom temperature or ice-off, i.e., the first ice-free day after a ice-covered period.

80 Research on seasonal forecasting in hydrology has started more than a decade ago (Troin et al., 2021) and now represents a source of knowledge for other research fields. When forecasting river flow, for example, predictability can originate from two main sources: (i) initial conditions such as catchment water stores of initial soil moisture, groundwater, and snowpack, which are directly linked to the water residence time; and (ii) boundary conditions, i.e., meteorological forecasts used to force the hydrological model (Greuell et al., 2019). Throughout the many studies of river flow seasonal forecasting in Europe, it appears 85 that initial conditions form the dominant source of skill in run-off (Greuell et al., 2019; Harrigan et al., 2018; Wood et al., 2016) and predictability can be extended up to a year ahead in case of very low flow as antecedent groundwater level is the key driver (Staudinger & Seibert, 2014). When dealing with standing water bodies, antecedent conditions are also likely to provide significant predictability, given that the water storage in lakes and reservoirs is large compared to river channels, providing higher inertia. Water residence time is thus expected to exert a strong influence on discharge predictability. Water 90 temperature, on the other hand, is influenced by multiple meteorological variables, e.g., wind, air temperature and radiation, in addition to water stores which can affect the source of its predictability.

Here, we further investigate the performance and in particular the source of this prediction performance, also referred to as predictive or forecasting skill, of lake seasonal forecasting tools first described by Mercado-Bettin et al. (2021) and Jackson-Blake et al. (2022). These tools integrate hydrological catchment and physical lake models forced with seasonal meteorological 95 forecasts with three-month lead times at four case study sites in Europe and Australia (Fig. 1). In fact, the meteorological variables used to force the models forcing meteorological variables as well as output catchment and lake variables are a set of retrospective seasonal forecasts for past dates, hereafter referred to as hindcasts, that can be compared to historical records. The objective of this study is to assess whether seasonal meteorological hindcast ensembles with three-month lead time, used as inputs to catchment and lake process-based models, provide some predictive skill to seasonal lake hindcasts. To this end, 100 the forecasting skill of the tools was assessed for combinations of season and freshwater variables, i.e., discharge, water

temperature or ice-off, and for each tercile. Ice-off is defined as the first ice-free day after an ice-covered period. In parallel, we quantified the forecasting skill of each meteorological variable of the seasonal meteorological prediction at each site. Both assessments were carried out following aggregation of model outputs from daily to seasonal temporal resolution, i.e., seasonal means or sums. When a hindcast was found to perform significantly better than a reference hindcast, e.g., climatology from 105 pseudo-observations as defined in the Methods, for a combination of a given season, variable and tercile, this latter combination was defined as a “window of opportunity”. This terminology is introduced to emphasize the fact that these forecasts can be used in the decision-making processes by water managers but only for a specific variable and season. A set of sensitivity analyses was performed to identify input-output relationships and to partition the source of the prediction skill for each window 110 of opportunity among warm-up, first lead-month and seasonal meteorological predictions. The comparison betweenin hindcasts, with the aim of isolating the contributions of different sources toof skill, has been applied before on streamflow hindcasts (e.g., Arnal et al., 2018; Greuell et al., 2019). However-but this is, to our knowledge, the first study investigating the origin of seasonal hindcast ensemble skills on water discharge, temperature and ice-off in lakes and reservoirs. The implications for lake forecasting tools are discussed.



115 **Figure 1:** Location of the four case studies in Europe and Australia along with climate type and coordinates. Map is modified from Jackson-Blake et al. (2022). Detailed catchment maps are given in Jackson-Blake et al. (2022).

2. Methods

← Formatted: Indent: Left: 0 cm, First line: 0 cm

2.1 Description of the forecasting tools

The forecasting tools consist of a coupled catchment runoff model to a one-dimensional water column lake model, forced by seasonal meteorological predictions, to simulate three output variables at daily resolution: inflow discharge, and lake surface and bottom temperature. For Lake Vansjø in Norway, the timing of ice melt (ice-off) was also included in the output variables in spring. The workflow consisted in running the catchment models first, providing inflow water discharge and water temperature to the lake models.

2.1.1 Case study sites

Lake forecasting tools were developed for four regulated water lakes/reservoirs in Europe and Australia which have been described earlier (Mercado-Bettin et al., 2021; Table 1; Fig. 1). Briefly, Sau (Spain) and Mount Bold (Australia) reservoirs large water supplies for the cities of Barcelona and Adelaide, respectively. Lake Vansjø (Norway), is a drinking water source for three municipalities and the Wupper reservoir (Germany) is used for flood control, environmental flows, and recreation.

Table 1: Characteristics of the study sites. Mixing timing refers to boreal seasons only.

Case study (Country)	Catchment area (km ²)	Surface area (ha)	Volume (hm ³)	Water retention time (yrs)	Max. Depth (m)	Mixing regime	Mixing timing
Sau (Spain)	1680	575	165	0.2	60	monomictic	Winter
Mt Bold (Australia)	357	254	46.4	0.2-0.6	44.5	monomictic	Summer
Vansjø (Norway)	690	3600	252	1.1	19	dimictic	Spring Fall
Wupper (Germany)	215	211	26	0.2	31	dimictic	Spring Fall

2.1.2 Meteorological input data

We used two different meteorological datasets to force the catchment hydrological and lake physical models in our tools: a climate reanalysis (ERA5) and a seasonal forecasting product (SEAS5) which both offer a global spatial and continuous temporal coverages to ensure future transferability of our workflows and easy comparison between our case-studies (Johnson et al., 2019). ERA5 is the latest reanalysis at 0.25° spatial resolution (Hersbach et al., 2020) produced by the European Centre for Medium Range Weather Forecasts (ECMWF; <https://www.ecmwf.int>) within the Copernicus Climate Change Service (C3S, <https://climate.copernicus.eu/>). ERA5 data (1988-2016) were used (i) to correct for bias in the SEAS5 data using the quantile mapping technique as described below; (ii) to provide meteorological pseudo-observations for retrospective skill evaluation of SEAS5 hindcasts, (iii) to force catchment hydrological and lake physical models to produce pseudo-observations of the output variables, (iv) to force our catchment and lake models to produce antecedent/warm-up period data preceding

140 seasonal hindcast periods (i.e., combined one lead-month and three-month target season). SEAS5 is the latest seasonal
forecasting system from the ECMWF at 1° spatial resolution and provides operational seasonal forecasts and retrospective
seasonal forecasts for past years (hindcasts). We used hindcasts (1994–2016) in this study. A hindcast with 25 members was
considered for the period 1994–2016 for the three-month boreal seasons (spring: March through May; summer: June through
August; autumn: September through November; winter: December through February), with one month as lead time. A
145 dedicated R package (climate4R; Iturbide et al., 2019) was used for ERA5 and SEAS5 meteorological data pre-processing.
SEAS5 members were pre-processed using the quantile mapping technique (Gutiérrez et al., 2019) to correct for systematic
bias relative to pseudo-observations (ERA5 reanalysis). We used the empirical quantile mapping approach (EQM) due to its
ability to deal with multivariate problems (Wilcke et al., 2013). EQM adjusts 99 percentiles and linearly interpolates inside
this range every two consecutive percentiles; outside this range, a constant extrapolation (using the correction obtained for the
150 1st or 99th percentile) is applied (Déqué, 2007). In the case of precipitation, we applied the wet-day frequency adaptation
proposed by Themeßl et al. (2011). The resulting bias-corrected data were used for hydrologic and lake models meteorological
forcing, noting that we implemented bias-correction using leave-one-(year)-out cross-validation. Therefore, for each year,
seasonal climate hindcast member predictions were adjusted with the bias correction parameters derived from training with all
other years; after which all bias-corrected data were appended to obtain a corrected (i.e., locally calibrated) time series of
155 seasonal meteorological hindcasts for the full period for each case study. Finally, to use the bias-corrected data as
meteorological forcing for hydrologic and lake models, we used bilinear interpolation (akima method), whereby we specified
lake/reservoir coordinates from which seasonal meteorological hindcast data from surrounding pixels were interpolated.
Meteorological datasets include daily average 2-meter air temperature, u and v components of wind, surface air pressure,
relative humidity (or dew-point temperature), cloud cover, short-wave radiation, downwelling long-wave radiation and daily
160 sum of precipitation.

2.1.3 Observations

Daily inflow discharge and daily to monthly lake water temperature observations (Table S1) were used for catchment and lake
model calibration and validation, as well as quantification of forecasting skills. For Lake Vansjø, daily measurements of
discharge over 1994–2016 were taken from the gauging station at Høgfoss (Station 3.22.0.1000.1; Norwegian Water Resources
165 and Energy Directorate). Lake temperature data were gathered from the Vansjø-Hobøl monitoring program dataset, conducted
by the Norwegian Institute for Bioeconomy Research and by the Norwegian Institute for Water Research (Haande et al., 2016).
These data are available freely on the Norwegian national database (<https://vannmiljo.miljodirektoratet.no>). For Sau reservoir,
daily measurements of discharge into Sau Reservoir were provided by the Catalan water agency (Agència Catalana de l'Aigua,
ACA) while lake temperature and weather data are part of a long-term monitoring program (Marce et al., 2010). Discharge,
170 water temperature and weather observations at the two other reservoir sites were collected from the water reservoir operators
(Wupperverband for Wupper and SA Water for Mt Bold). Lake water temperature data are discontinuous and covered only
part of the modelled time-period (1994–2016) because of limited funding for monitoring programs. In addition, precipitation,

temperature, short-wave radiation, humidity, and wind daily records at nearby meteorological stations were obtained for each case study from the local meteorological institutes. For Lake Vansjø, this included ice-off dates from the Norwegian Meteorological Institute station 1,715 (Rygge) located on the lake shore (59° 38'N, 10° 79' E).

2.1.4 Catchment-lake process-based model setup and calibration

A catchment-lake process-based model chain was setup at each site to predict daily inflow discharge into the lake/reservoir and daily lake water temperature. Given the specificity of each catchment regarding flow dynamics and water management, different models were used at each site (Fig. 2). While this disparity prevents us from an in-depth comparison among case-studies, the common methods and code established to manipulate input and output data enable us to quantify forecast performance and the source of the predictability at each site in a consistent and comparable way.

Inflow water temperature and discharge for Sau and Vansjø was modelled with the mesoscale Hydrologic Model (mHM v5.9: <http://www.ufz.de/mhm>) and SimplyQ (hydrological module of SimplyP; Jackson-Blake et al. 2017), respectively. Inflow water temperature and discharge for Wupper and Mt Bold was modelled with the *Génie Rural* (GR) suite of models implemented within the R package airGR (Coron et al., 2017), GR6J and GR4J, respectively. mHM and SimplyQ hydrologic models were forced with ERA5 daily precipitation and daily average surface air temperature, and the GR models were forced with daily precipitation and daily potential evapotranspiration (Hargreaves-Samani potential evapotranspiration, derived from daily minimum and maximum temperature, implemented in drought4R; Iturbide et al., 2019). All hydrological models were calibrated and validated against local observations using the Nash–Sutcliffe efficiency coefficient (NSE) as the objective function.

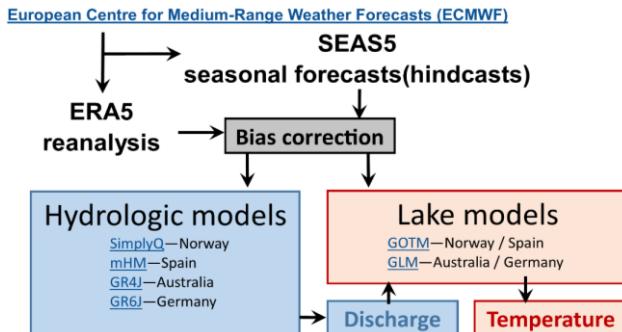


Figure 2: Description of the forecasting workflow—Calibrated hydrologic and lake models are used to produce seasonal lake hindcasts with 25 members

The General Ocean Turbulence Model (GOTM, <http://gotm.net>) was used to simulate the water temperature profile of Sau Reservoir and Lake Vansjø. The General Lake Model (GLM, Hipsey et al., 2019) was used to simulate water temperature in

the Mt. Bold and Wupper reservoirs. Lake models were forced with ERA5 surface air temperature, u and v wind components, surface air pressure, relative humidity (or dew-point temperature), cloud cover, short-wave radiation, precipitation and, in some cases, also downwelling long-wave radiation, and calibrated and validated against observations using the Root-Mean-Square Error (RMSE) and NSE as objective functions.

200 For Lake Vansjø, the water level was set to constant given that observed fluctuations are < 1 m which are not critical for the lake heat and water budgets. The three reservoirs, on the other hand, experience much larger water level fluctuations because of complex water pumping patterns and/or water scarcity. It was thus critical to allow for water level fluctuations and parametrize the outflows to avoid dry outs. For Wupper Reservoir, a statistical model was developed to calculate the reservoir's outflow based on the inflow using the timeseries over the warm-up period for each discharge simulation of the catchment
205 model. Such an approach allowed mimicking the outflow decision and approximately resembling the observed water-level to avoid the cases of dry-outs or exceedingly low volumes of water due to inflow/outflow misestimation. More details on the performance of the linear regression are given in the supplementary information. For Sau, historical observations of outflow and pumping volumes were used to force the model. For Mt. Bold Reservoir, an average annual cycle was calculated from historical observations and then replicated throughout the entire timeseries. While this assumption does not allow for inter-
210 annual variation, it allowed for simulation of water level fluctuation each year that represented the seasonal cycle apparent within Mt. Bold and avoided dry outs.

The lake energy budget includes exchanges through the air-water interface, i.e., downward short-wave radiation, downward and upward long-wave radiation, latent and sensible heat fluxes, and by lateral fluxes of water, i.e., inflow and outflow of water (Schmid and Read 2022). The energy fluxes at the air-water interface are accounted for in the GLM or GOTM lake
215 model, however, the lateral fluxes caused by throughflow (inflow-outflow balance) need to be parametrized through the addition of water temperature to the inflow provided by the catchment model. Inflow temperature was estimated based on the assumption that water temperatures follow the air temperatures closely with some time lag (Stefan & Preud'homme 1993; Ducharme 2008). Hence, water temperature was predicted with a linear model of the form $A + B \cdot \text{AirTemperature}$ where A and B were optimized against local observations when available. At Sau Reservoir, the values of A and B were 5.12 and 0.799,
220 respectively, while for Mt Bold reservoir and Lake Vansjø, the values of A and B were 5 and 0.75, respectively. The validation of this model for Wupper Reservoir, as an example, is described in the supplementary information (SI).

Most common verification statistics, e.g., Kling-Gupta efficiency (KGE), NSE and RMSE, for hydrological and lake modeling were calculated. Details on calibration and validation periods as well as statistics are shown in Table 4 and Table S2.

2.1.5 Pseudo-observations (Lake_PO)

225 Following calibration, lake and hydrologic models were forced with ERA5 over 1994-2016 to produce daily pseudo-observations of river discharge, daily surface and bottom temperature, as well as presence or absence of ice (for Lake Vansjø only). The output of this simulation is hereafter referred to as lake pseudo-observations (Lake_PO). Theoretical prediction skill of seasonal forecasts is commonly evaluated against pseudo-observations (Gruell et al., 2019; Harrigan et al., 2018;

Wood et al., 2016). In contrast to lake real observations, Lake_PO have the advantages of being complete and allow to
230 disregard changes in skill related to model errors or biases (Harrigan et al., 2018), and to focus on skill originating from initial
and boundary conditions. In contrast to the theoretical prediction skill, the total prediction skill includes any error or bias
introduced by the model. Here, the total prediction skill of seasonal lake hindcasts (discharge, water temperature and ice-off)
was also evaluated against real observations, when those were available and covering a representative time period.

2.1.6 Seasonal forecasts (Lake_F)

235 For each of the 92 three-month hindcast seasons (11/1993 to 11/2016), we simulated ensemble predictions of daily river
discharge, daily surface and bottom water temperature as well as presence or absence of ice (for Lake Vansjø only; Fig. 3).
Catchment and lake models were forced with ERA5 data over the 1-year warm-up period followed by a set of 25 members of
240 SEAS5 data covering ~~an~~the first lead month (M0) and the 3-month long target season (M1–M3). The first lead month is defined
in agreement with Greuell et al. (2019) as the month following the date on which the forecast would have been issued. Over
the first lead month, the 25 members of SEAS5 progressively diverge from ERA5 to their respective SEAS5 member. Model
outputs for the final 3 months, i.e., the target season, were aggregated into three month (M1–M3) seasonal averages or sums
(i.e., average surface and bottom water temperature and cumulative seasonal inflow discharge). The output of this simulation
is hereafter referred to as lake forecasts (Lake_F).

2 2.2 Assessment of modeling performance and source of forecasting skills

← Formatted: No bullets or numbering, Tab stops: Not at 0 cm

245 3 2.2.1 Model and forecast verification

A complete assessment of the modelling and forecasting performance of our workflow was performed through several
verifications (Table 2). The first verification (Verification 1 in Table 2) consisted in evaluating the performance of the models
forced with ERA5 by comparing model outputs (Lake_PO) to observations at daily temporal resolution, as described in section
2.1.4. This verification step included the reporting of traditional verification statistics for modelling, i.e., NSE; KGE and
250 RMSE. The second and third verifications (Verifications 2 and 3 in Table 2) consisted in quantifying the lake forecast (Lake_F)
performance compared to climatology from pseudo-observations (Lake_PO) or from observations, respectively. These steps
allowed to quantify the forecasting skill of a perfect model and the total forecasting skill, respectively. Forecast verification 2
and 3 were performed using model output data at seasonal temporal resolution, i.e., daily model outputs over the target season
(M1–M3), were aggregated in seasonal averages or sums. For forecast verification 2 and 3, hindcast predictions are categorized
255 into three terciles, where the upper tercile includes data points falling in the percentile range 66–100%, the middle tercile
includes data in the range 33–66%, and lower tercile includes data in the range 0–33%.

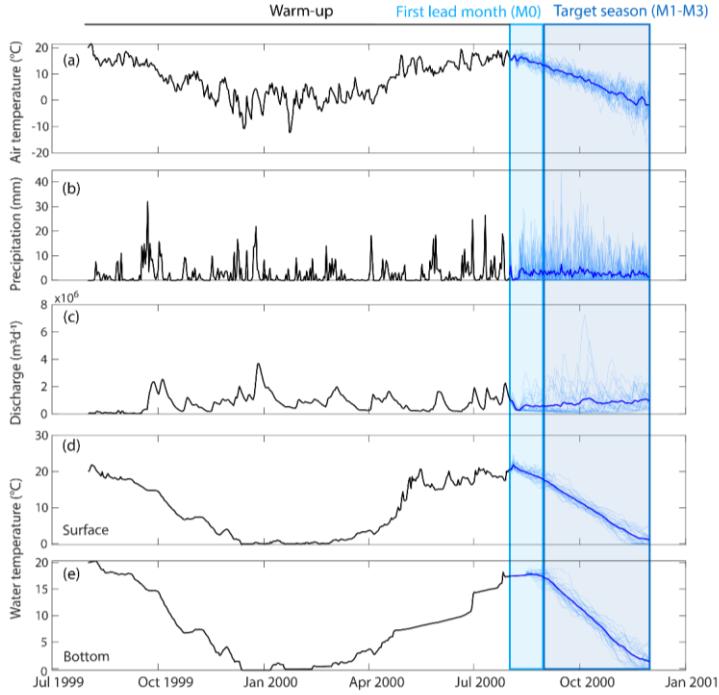


Figure 3: Time series of the air temperature (a), precipitation (b), discharge (c), surface (d) and bottom (e) water temperature over the warm-up, first lead month (M0) and target season (M1–M3) for Autumn 2000. The black lines indicate ERA5 (a and b) and Lake_PO (c–e) data, the light and dark blue lines are, respectively, the 25 members and the mean of SEAS5 (a and b) and Lake_F (c–e).

260

Forecast performance was quantified with two skill scores: the Ranked Probability Skill Score (RPSS) and the Relative Operating Characteristic Skill Score (ROCSS). Skill scores are a measure of the relative improvement of the forecast compared 265 to a reference forecast which here is the climatology based on either Lake_PO or observations. ROCSS values were calculated against climatology from real observations ($ROCSS_{obs}$), in addition to pseudo-observations ($ROCSS_{original}$), only when observations covered the whole season. Indeed, $ROCSS_{original}$ was calculated only if there was at least one observation point in each month of the season and observations for at least 70% of the seasons. Observations that met these criteria only included inflow discharge at Vansjø, Sau and Wupper for all seasons, surface and bottom temperature at Vansjø in summer only, surface 270 and bottom temperature at Wupper for all seasons, surface temperature at Sau for all seasons and ice-off at Vansjø.

RPSS and ROCSS are commonly used as evaluation measures of probabilistic forecasting skill (Jolliffe & Stephenson, 2012; Müller et al., 2005). The visualizeR package (Frías et al., 2018) was used to compute the RPSS and ROCSS for Lake_PO and Lake_F. Briefly, the RPSS provides a relative performance measure on how well the probabilistic ensemble is distributed over the lower, middle and upper terciles, while the ROCSS provides a relative measure of discriminative skill for each category.

275 A RPSS > 0 is associated with a better forecast than the reference (1 being a perfect score), while RPSS ≤ 0 indicates no improvement compared to the reference. The ROCSS value ranges from -1 (perfectly bad forecast) to 1 (perfect forecast) and a zero value indicates no skill compared to the reference. The RPSS has been shown to be sensitive to the ensemble size, but this effect can be corrected for using the Fair (or unbiased) RPSS (Ferro et al., 2014). To allow for comparison with other forecasting systems, we have used the fair RPSS (FRPSS) forecast verification. In this study, the FRPSS is calculated for

280 tercile events. The statistical significance of the FRPSS and ROCSS is computed based on the 95% confidence level from a one-tailed Z test. When a forecast for a given season, variable and tercile was associated with a ROCSS value that was statistically significant, we referred to it as a window of opportunity (i.e., a combination of season, variable and tercile for which forecast performance was significantly better than the reference). In our case, the threshold values above which a ROCSS was considered significant typically range between 0.47 and 0.55.

285

Table 2: Comparison carried out to evaluate model and forecast performance

Verification	Outputs used	Reference data	forecast	Purpose	Statistics
1	Lake_PO	Observations		Assess lake model skill	KGE NSE RMSE
2	Lake_F	Lake_PO		Assess the transfer of meteorological forecast skill through process-based models – Perfect model forecasting skill	$ROCSS_{original}$
3	Lake_F	Observations		Assess total forecasting skill	$ROCSS_{obs}$

Formatted Table

4 2.2.2 Sensitivity analyses to initial conditions and meteorological forcing

Formatted: No bullets or numbering, Tab stops: Not at 0 cm

Several sensitivity analyses (SA), summarized in Table 3, were performed to identify the origin of the forecasting skill for a given window of opportunity, i.e., a combination of season, variable and tercile for which forecast performance was 290 significantly better than the reference. Results of the SA are only reported for sites having a substantial number of windows of opportunity for conciseness. These SA allowed quantifying the sensitivity of hindcast performance to forcing data over specific periods: the target season (M1–M3; SEAS5), the first lead month (M0) and the warm-up period (ERA5). It was thus possible to quantify the proportion of skills originating from each of these periods.

The SA consisted of replacing the forcing data of interest, i.e., over the target season, the first lead month or the warm-up period, by data from an equivalent season/period but from a randomly selected year. For example, for the target season SA (S-SA), the SEAS5 forcing data covering the 3-month target season was replaced by SEAS5 data from a randomly selected equivalent season. Furthermore, the SA for the warm-up period (W-SA) consisted in replacing the ERA5 data covering the warm-up period by ERA5 data from a randomly selected equivalent time-period. The last SA covered warm-up and first lead month (W+M0-SA) and consisted in replacing ERA5 data over the warm-up, as in W-SA, but also SEAS5 data over the first lead month. To ensure that the randomly sampled forcing data are representative of the whole SEAS5 or ERA5 datasets, we introduce two levels of repetitions for all experiments. First, we randomly selected a year for each of the 25 members of SEAS5, meaning that the data selected to replace the original SEAS5 forcing data is extremely likely to be from a different year for each SEAS5 member. Second, we repeated the analysis 25 times, for each season. Sensitivity analyses were only carried out for Spain and Norway because of the low number of windows of opportunity at the two other sites and considering the resources needed to execute these hindcast experiments.

The outputs of each of the sensitivity analysis were used to calculate ROCSS values against the climatology based on Lake_PO, as for Lake_F in the Verification 2 described above (Table 2). The ROCSS values obtained through this procedure were, respectively, $ROCSS_S$, $ROCSS_W$ and $ROCSS_{W+M0}$ for S-SA, W-SA, and W+M0-SA. The ROCSS values obtained for the various SAs were compared to the original Lake_F ROCSS values ($ROCSS_{original}$) to investigate the sources of prediction skill. An estimation of the proportion of prediction skill originating from the SEAS5 data over the target season (P_{season}) was expressed as follows:

$$P_{season} = ROCSS_{original} - ROCSS_S \quad (1)$$

Similarly, the proportions of prediction skill originating from the ERA5 data over the warm-up ($P_{warm-up}$) and from the SEAS5 data over the first lead month (P_{M0}) can be respectively estimated as:

$$P_{warm-up} = ROCSS_{original} - ROCSS_W \quad (2)$$

$$P_{M0} = ROCSS_W - ROCSS_{W+M0} \quad (3)$$

In Eq. 1–3, prediction skill was assumed to linearly scale with ROCSS values and skill from any interaction effect was neglected. While we admit that Eqs. 1–3 are not necessarily statistically correct, they are useful to quantify the relative importance of the sources of skill. Hence, the values of P_{season} , $P_{warm-up}$ and $P_{transition}$ should be interpreted with care.

320 2.2.3 Sensitivity analyses to individual input variables

To further investigate through which process forecasting skill is transferred from input to output variables, a one-at-a-time sensitivity analysis (OAT-SA) was performed for Lake_PO and the Pearson partial correlation coefficients (PPCC) between each variable of Lake_PO, i.e., surface temperature, bottom temperature, discharge, ice-off, and a set of relevant input variables were determined (Table 3). The OAT-SA consisted in replacing the data for a specific input meteorological variable by data from an equivalent target season but from a randomly selected year. The seasonal means of OAT-SA outputs were compared

to default outputs (Lake_PO) with [the square of the Pearson correlation coefficient \(\$R^2\$ \)](#). Higher $(1 - R^2)$ values indicate more influence of input variables on Lake_PO.

PPCC allowed quantifying the sensitivity of model outputs to a given input variable while removing the effect of the remaining input variables. Note that PPCC were calculated on seasonally aggregated variables. To ensure that PPCC were statistically appropriate, i.e., only when a linear relationship exists between the seasonal means of input factors and those of the output (Pianosi et al., 2016), the linearity assumption was checked through visual inspection of scatter plots between each input and output variables. Partial correlation coefficients are a good alternative to ‘All-At-a-Time’ (or global) SA when the latter is not possible because of the lack of computing resources (Pianosi et al., 2016). To avoid misleading conclusions, correlation between input variables should be minimized (Marino et al., 2008). Hence, only the most relevant input variables were included. Precipitation and air temperature were retained for discharge, while air temperature, precipitation, wind speed (wind speed calculated from u and v components of wind) and short-wave radiation were retained for surface and bottom temperature. In fact, short-wave radiation was retained over relative humidity, cloud cover and air pressure because it was responsible for most of air-water heat fluxes (see SI). Wind was retained because of its impact on thermal stability (Blottiere, 2015).

Table 3: List of sensitivity analyses (SA) performed

SA	Forcing data to be replaced		Model output	Purpose	Sensitivity index
	Period	Variable			
S-SA	Target season (SEAS5)	All	Lake_F	Quantifying the proportion of forecasting skill originating from SEAS5 data over the target season	$ROCSS_S$
W-SA	Warm-up (ERA5) period	All	Lake_F	Quantifying the proportion of forecasting skill originating from ERA5 data over the warm-up season – initial conditions	$ROCSS_W$
W+M0-SA	Warm-up (ERA5) and first lead month (SEAS5)	All	Lake_F	Quantifying the proportion of forecasting skill originating from SEAS5 data over the first lead month	$ROCSS_{W+M0}$
OAT-SA	Target season (ERA5)	One at a time	Lake_PO	Quantifying the sensitivity of Lake_PO to a specific forcing variable	$1 - R^2$
PPCC	None	None	Lake_PO	Quantifying the sensitivity of Lake_PO to a specific forcing variable while removing the effect of the remaining variables	PPCC

340 3. Results

3.1 Performance of the calibrated catchment and lake models (Lake_PO)

Catchment and lake models calibrated against local observations performed reasonably well (Table 4). For river discharge, NSE and KGE both ranged between 0.51 and 0.85 over the calibration and validation periods. For surface water temperature, RMSE ranged from 1.10 to 1.63 and NSE from 0.78 to 0.94 over the calibration and validation periods. Over each season, 345 however, Lake_PO showed more heterogeneous performance (Table S2). Discharge simulations were usually worse in summer, except in Australia where performance was poor for most seasons. Surface water temperature modeling typically showed better performance during spring and fall than during summer or winter. There is no clear pattern for bottom water temperature, but overall, it seems more difficult to be accurately simulated compared to surface temperature.

350 **Table 4: Verification statistics of the catchment and lake model for each case study**

Output variable	Time	Calibration			Validation		
		NSE	KGE	RMSE	Time	NSE	KGE
Norway	Discharge	2005–2010	0.51	0.56	2011–2015	0.57	0.57
	Temperature	2005–2010	0.92			0.93	1.10
Spain	Discharge	1997–2007	0.60	0.66	2008–2018	0.54	0.63
	Temperature	1997–2007	0.93			0.94	1.45
Germany	Discharge	1991–2011	0.71	0.85	2012–2016	0.63	0.81
	Temperature	1993–2010	0.93			0.91	1.53
Australia	Discharge	2003–2007	0.64–	0.70–	2008–2013	0.65–	0.54–
			0.80	0.84		0.80	0.75
	Temperature	2014–2016	0.91		2016–2018	0.78	1.50

← Formatted Table

3.2 Skill of the seasonal meteorological (SEAS5) and Lake (Lake_F) hindcasts

Table 5 displays the ROCSS values for each combination of Lake_F output variable, season and tercile while Table 6 summarizes the windows of opportunity, i.e., a combination of season, variable and tercile for which forecast performance, or 355 predictive skill, was significantly better than the reference, for SEAS seasonal meteorological hindcasts as well as for Lake_F hindcasts. These windows of opportunity typically had ROCSS values larger than 0.47 to 0.55 (see Methods section for details). For SEAS5 seasonal meteorological hindcasts, only 3 to 10 windows of opportunity were observed for each case study out of the 96 possibilities, i.e., 3 terciles of 8 variables over 4 seasons (Table 6). Regarding Lake_F, larger proportions of the 36–39 possible variable-tercile-season combinations were associated with statistically significant ROCSS values (Table 6). Winter 360 and Spring in Norway, as well as Summer and Autumn in Spain were the seasons associated with the most skillful Lake_F hindcasts. Lake Vansjø in Norway was the only case study where windows of opportunity for SEAS5 and Lake_F were

consistently concentrated within the same seasons, i.e., mostly in Spring and to a lesser extent in Winter. For the other case studies, there were fewer windows of opportunity for SEAS5 and those were more randomly distributed over the year. FRPSS values were typically reported for surface water temperature in spring and autumn, except for autumn in Spain. Norway and

365 Germany also showed significant fair RPSS for bottom water temperature in spring and autumn, and summer and autumn, respectively. Note that neither river discharge nor any of the SEAS5 variables had FRPSS values in any case study. Windows of opportunity for bottom temperature represented more than half of the total for all case-studies and variables while those for surface temperature and discharge were more sporadic.

The comparison of SEAS5 and Lake_F skillful hindcasts in Table 6 is already useful for identifying possible transfer of

370 forecasting skill from the SEAS5 seasonal meteorological hindcasts to the catchment and lake models. SEAS5 meteorological hindcasts are skillful over only a very limited number of seasons, variables and terciles (Table 6). However, for Norway, there is a higher number of skillful meteorological and lake hindcasts in spring than in the other seasons. For the other case-studies, such a clear connection between SEAS5 meteorological hindcasts and catchment/lake model outputs is not as apparent. We can thus hypothesize that the skill of catchment and lake model hindcasts in Norway is more inherited from the SEAS5 data

375 than at other case studies. In contrast, skill of the catchment and lake model hindcasts at the other case-studies is hypothesized to originate from the legacy of the warm-up period or from the parametrization of the inflow-outflow water balance.

Verification statistics for Lake_PO seasonal means compared to observations (Table 7) show that the catchment and lake models performed well at the Norwegian and Spanish sites in capturing interannual variability. In Germany and Australia, performance was lower. Note that when observation coverage was below 50%, no statistics were calculated given the low

380 number of seasons represented and the risk of bias when computing seasonal averages. The difference between $ROCSS_{original}$ (comparing Lake_F and Lake_PO) and $ROCSS_{obs}$ (comparing Lake_F and lake observations) did not necessarily scale inversely with the verification statistics (Table 7). In fact, the $ROCSS_{obs}$ reported for the German site were slightly lower or even larger than their respective $ROCSS_{original}$ with differences lower than 0.23. Whereas, for the Spanish site, three $ROCSS_{obs}$ values out of 4 were significantly lower than the $ROCSS_{original}$ with a difference larger than 0.33.

385 Nevertheless, several output variables, e.g., bottom temperature in Germany and ice-off in Norway, are associated with significant $ROCSS_{original}$ and $ROCSS_{obs}$, which provides further confidence in model calibration and low model error. In contrast, even if the verification statistics for discharge were not worse than for the other variables, $ROCSS_{obs}$ values are all below the significance threshold pointing towards some limitations in predicting hydrology.

Table 5: $ROCSS_{original}$ for each combination of season, variable and tercile of lake hindcasts (Lake_F). Color scale range from dark blue ($ROCSS = -1$, perfectly bad forecast) to dark red ($ROCSS = 1$, perfect forecast) with white in the middle ($ROCSS = 0$, no change compared to reference forecast). Windows of opportunity are highlighted by bold, black numbers, i.e., combination of season, variable and tercile associated with a statistically significant $ROCSS$ value.

		Norway			Spain			Germany			Australia		
		Lower	Middle	Upper	Lower	Middle	Upper	Lower	Middle	Upper	Lower	Middle	Upper
Discharge	Spring	0.58	0.18	0.54	0.37	-0.11	0.33	-0.34	-0.03	-0.47	0.01	-0.33	0.64
	Summer	-0.13	0.23	0.41	0.73	-0.02	0.23	-0.59	-0.13	-0.34	-0.05	0.28	0.36
	Autumn	0.32	-0.24	0.27	0.17	0.46	0.47	-0.29	-0.33	0.03	0.48	-0.02	0.18
	Winter	0.21	-0.08	-0.1	0.4	0.52	0.08	-0.28	0.17	-0.34	0.16	-0.02	-0.22
Surface Temperature	Spring	0.75	0.14	0.53	0.2	0.18	0.19	0.2	-0.14	0.38	0.19	-0.27	0.26
	Summer	0.33	0.39	-0.13	0.42	-0.13	0.57	-0.25	-0.18	-0.22	0.16	-0.48	0.23
	Autumn	-0.52	-0.24	-0.12	0.22	0.11	0.47	0.23	0.42	0.3	0.13	-0.34	-0.04
	Winter	0.48	-0.12	-0.17	0.32	-0.66	-0.15	-0.22	0.04	-0.09	0.13	-0.14	-0.1
Bottom Temperature	Spring	0.56	0.05	0.68	0.44	0.12	0.86	0.59	0.28	0.6	0.37	0.31	-0.16
	Summer	-0.12	0.14	-0.35	0.53	0.36	0.72	0.48	0.21	0.71	0.6	-0.45	0.18
	Autumn	-0.53	0.03	-0.26	0.5	0.55	0.64	0.27	0.26	0.15	0.28	0.4	0.38
	Winter	0.48	0.01	0.53	-0.02	0.54	0.27	-0.16	-0.3	0.27	0.63	-0.1	0.29
Ice-off	Spring	0.69	0.29	0.75									

Table 6: SEAS5 meteorological and Lake_F lake hindcasts associated with statistically significant FRPSS or ROCSS at each case-study.

Site	Indexes	Numbers of skillful hindcasts: windows of opportunity variable (tercile)										
		Winter		Spring		Summer		Autumn		TOTAL		
		SEAS5	Lake_F	SEAS5	Lake_F	SEAS5	Lake_F	SEAS5	Lake_F	SEAS5	Lake_F	
Norway	FRPSS					ST; BT				ST; BT	0/32	4/12
Norway	ROCSS	3 cc (-) sw (+) lw (=)	3 ST (-) BT (-,+)	7 airP(=,+) airT (+)	8 Q (-,+)	0	0	0	0	10/96	11/39	
Australia	FRPSS				ST			ST	ST	0/32	2/12	
Australia	ROCSS	2 airP (+) hum (+)	1 BT (-)	1 lw (+)		1 cc (=)	1 BT (-)	4 airP (+) cc (+) airT (-) sw (+)	1 Q (-)	8/96	3/36	
Spain	FRPSS				ST					0/32	1/12	
Spain	ROCSS	0 Q (=)	1 cc (+)	2 airP (+)	1 BT (+)	2 cc (+)	5 Q (-) ST (+)	1 cc (+)	3 Q (+) BT (-,+)	5/96	9/36	
Germany	FRPSS				ST		BT		ST; BT	0/32	4/12	
Germany	ROCSS	2 lw (=) V (-)	0	1 hum (+)	2 BT (-,+)	0	2 BT (-,+)	0	0	3/96	4/36	

Lake_F variable abbreviations: ST, BT and Q stand for surface-, bottom-temperature and discharge, respectively. SEAS5 meteorological variable abbreviations: airT, airP, cc, hum, sw, lw, U, V stand for surface air temperature, air pressure, cloud cover, relative humidity (or dew-point temperature), short-wave radiation, downwelling long-wave radiation, and u and v components of wind, respectively. -, + and = stands for lower, upper and middle terciles, respectively.

Table 7: Verification statistics (NSE, R^2 , RMSE, RMSE/sd, bias) for Lake_PO seasonal means (comparing Lake PO to observations), as well as comparison of the $ROCSS_{original}$ (comparing Lake_F and Lake_PO) and $ROCSS_{obs}$ (comparing Lake_F and lake observations).

Site	Variable	Season	Obs coverage			RMSE/sd	bias	$ROCSS_{original}$			$ROCSS_{obs}$			
			S	M	D			lower	middle	upper	lower	middle	upper	
Norway	Discharge	Spring	100	96	93	0.72	0.80	2.0	0.52	-1.0	0.58*	0.54*	0.36	0.34
	Surface	Winter	0	0	0						0.48*		n.a	
	Temperature	Spring	48	58	5						0.75*	0.53*	n.a	n.a
	Bottom	Winter	0	0	0						0.48*	0.53*	n.a	n.a
	Temperature	Spring	43	52	4						0.56*	0.68*	n.a	n.a
	Ice-on		100	-	-	0.97	0.99	2.2	0.16	1.8			a	
Spain	Ice-off		100	-	-	0.36	0.76	19.3	1.09	-14.7	0.69*	0.75*	0.55*	0.68*
	Discharge	Winter	100	100	99	0.88	0.89	3.9	0.34	-0.6	0.52*		0.18	
		Summer	100	100	98	0.51	0.62	3.5	0.69	-1.6	0.73*		0.40	
		Autumn	100	100	98	0.73	0.74	4.0	0.51	-0.8		0.47*	0.40	
	Surf. Temp.	Summer	78	78	3	0.12	0.40	1.1	0.87	-0.6		0.57*		-0.08
	Bottom	Spring	48	70	3							0.86*		n.a
Ger.	Temperature	Summer	48	67	2						0.53*	0.72*	n.a	n.a
		Autumn	35	58	3						0.50*	0.64*	n.a	n.a
	Bottom	Spring	100	96	6	-5.01	0.49	1.2	2.40	1.0	0.59*	0.60*	0.41	0.46*
	Temperature	Summer	100	100	7	-8.63	0.26	3.8	3.04	3.6	0.48*	0.71*	0.51*	0.49*
	Discharge	Autumn	43	100	100	-0.67	0.41	1.61	1.23	-1.27	0.48*		n.a	
	Bottom	Winter	23	100	82	-0.70	0.32	1.98	1.17	1.51	0.63*		n.a	
Australia	Temperature	Summer	17	75	46						0.60*		n.a	

Only output variables associated with statistically significant $ROCSS_{original}$ are included. Statistically significant $ROCSS$ are highlighted with an asterisk.

405 “Obs coverage” is the percentage of seasons (S), months (M) and days (D) covered by observations. Spring is March to May, Summer is June to August,

Autumn is September to November, and Winter is December to February.

^aIce-on typically occurs between November and December which is the autumn and winter boundary. Therefore, $ROCSS$ values could not be calculated for ice-on.

3.3 Sensitivity analyses to initial conditions and meteorological forcing

410 The $ROCSS_S$, $ROCSS_W$ and $ROCSS_{W+M0}$ values obtained for each run of S-SA, W-SA and W+M0-SA, respectively, are summarized in boxplots in Figure 4 together with the original $ROCSS$ value for each window of opportunity at the Norwegian and Spanish sites. This set of sensitivity analyses (SA) were performed to identify the origin of the forecasting skill for a given window of opportunity and allowed quantifying the sensitivity of hindcasts performance to forcing data over specific periods: the target season (M1–M3; SEAS5), the first lead month (M0) and the warm-up period (ERA5). In general, output variable

415 sensitivity to SEAS5 data over the target season (S-SA) is small relative to sensitivity to ERA5 data over the warm-up season and/or SEAS5 data over the first lead month. In fact, at Sau, replacing SEAS5 data over the target season with random data (S-SA) does not yield any significant change in the ROCSS values, except for the surface temperature upper tercile (Fig. 4 panel 1). However, significant changes in ROCSS values are seen for W-SA compared to $ROCSS_{original}$ indicating high sensitivity to warm-up. The similar ranges in $ROCSS_W$ and $ROCSS_{W+M0}$ values suggest limited or no impact of the SEAS5

420 data over the first lead month on output variable forecasts.

At Vansjø in Norway, on the other hand, 8 out of 11 windows of opportunity show significant changes in $ROCSS_S$ values, indicating higher sensitivity to SEAS5 data over the target season than at Sau. Furthermore, 3 windows of opportunity are associated with $ROCSS_S$ that are lower than $ROCSS_{original}$ (Fig. 4b, f and g), i.e., suggesting SEAS5 is providing some skill, while 5 have $ROCSS_S$ that are higher than $ROCSS_{original}$ (Fig. 4a, h–k), suggesting the use of SEAS5 is in fact reducing

425 forecasting skill compared to a random forecast. Then, a progressive decrease in ROCSS values is typically observed for all windows of opportunity following W-SA and W+M0-SA, indicating a progressive loss of forecasting skill related to ERA5 data over the warm-up and SEAS5 data over the first lead month.

3.4 Sensitivity analyses to specific input variables

Figure 5 and 6 summarizes the results from the two sensitivity analyses to specific input variables: OAT-SA and PPCC.

430 Seasonal means of Lake_PO at Vansjø also showed higher sensitivity to specific input variables than Lake_PO at Sau (Fig. 5). In fact, surface temperature is highly sensitive to surface air temperature over the year while some other input variables have more specific influence. Bottom temperature is also highly sensitive to surface air temperature but wind also plays a large role, especially in summer which is consistent with its expected impact on lake thermal stability (Blottiere, 2015). Finally, as expected, discharge at Vansjø is highly sensitive to precipitation, and to a lesser degree to surface air temperature, except in

435 winter where surface air temperature has a larger influence on discharge.

The PPCC also show similar patterns regarding sensitivity (Fig. 6) where discharge is highly correlated with precipitation at the four sites and surface air temperature plays a secondary role for specific seasons. Once again, surface and bottom temperature at Sau stand out due to their limited sensitivity to input variables while at the three other sites, surface temperature, and to a lesser degree bottom temperature, are generally strongly positively correlated with surface air temperature. Others, 440 like precipitation and short-wave radiation have more of an anecdotal influence on lake temperature, while wind shows a more consistent negative impact on surface temperature at Vansjø, Wupper and Mt Bold. Wind also shows some impact on bottom temperature, although less consistent. At Vansjø and Mt Bold following the coldest season, wind is positively correlated with bottom temperature, while at Wupper during the two coldest seasons, wind is negatively correlated with bottom temperature. Finally, ice-off date in Vansjø shows a strong negative correlation with surface air temperature (Fig. 6m) that can be linked

445 back to the snow content and the intensity of snow melt in the catchment (Fig. 6n and o).

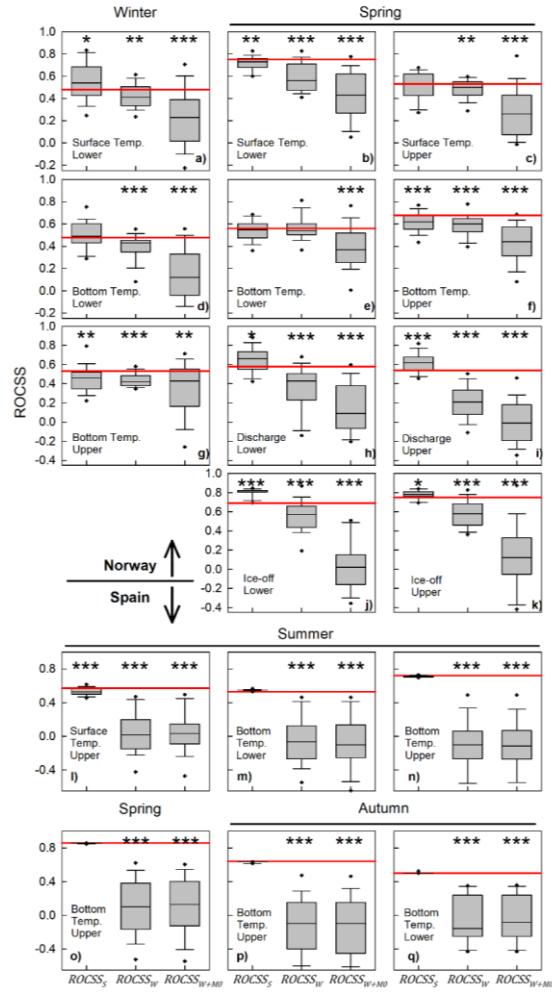


Figure 4: Box plots ($n = 25$) of $ROCSS_S$, $ROCSS_W$ and $ROCSS_{W+M0}$ from sensitivity analysis runs S-SA (replacing target season SEAS5 data with random data), W-SA (replacing warm-up ERA5 data with random data) and W+M0-SA (replacing warm-up period – ERA5 and first lead month – SEAS5 data with random data) for each window of opportunity at the Norwegian (a–k) and

Spanish (I-q) sites. $ROCSS_{original}$ is given by the red line, so $ROCSS_S$, $ROCSS_W$ and $ROCSS_{W+M0}$ below the red line indicate a loss of skill and values above the line indicate higher skill than the original forecast. ***, ** and * indicate significant difference between a given group of $ROCSS_S$, $ROCSS_W$ and $ROCSS_{W+M0}$ values and $ROCSS_{original}$ following Mann-Whitney Rank Sum test at a significance level of 0.001, 0.01 and 0.05, respectively. Note that the S-SA, W-SA and W+M0-SA were only performed for Sau Reservoir in Spain and Lake Vansjø in Norway because of the significant resources needed to perform this hindcast experiments.

455

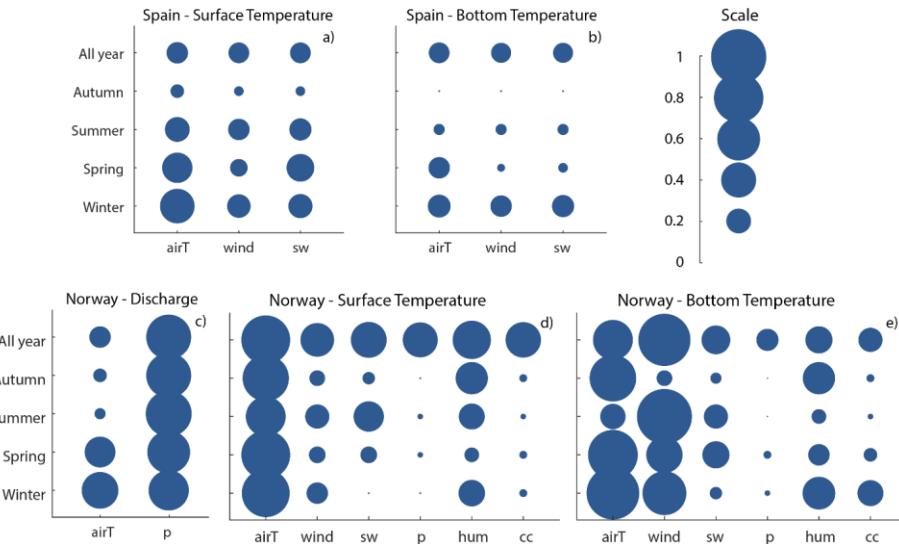
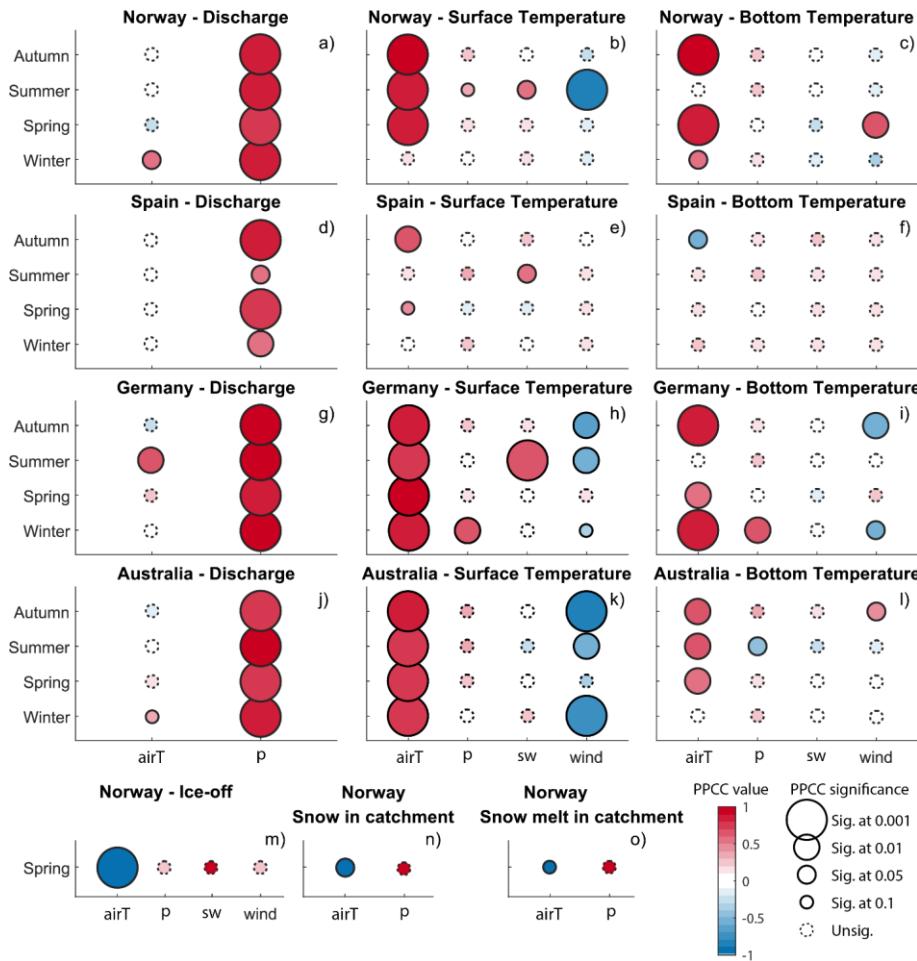


Figure 5: Relative sensitivity expressed as $1 - R^2$ of Lake.PO seasonal means to specific input variables estimated following the OAT-SA (see section 2.2.3 and Table 3 in the Methods section for details). Circle size represent relative sensitivity on a scale from 0 to 1, e.g., larger circle sizes, i.e., higher $(1 - R^2)$ values, indicate more influence of input variables on Lake.PO. Meteorological variable abbreviations: airT, p, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover, relative humidity (or dew-point temperature) and short-wave radiation, respectively. Note that the relatively larger sensitivity of Lake.PO to specific input variables over the whole year can be larger compared to over a given season because of the strong seasonal cyclicity. Note that the OAT-SA was only performed for Sau Reservoir in Spain and Lake Vansjø in Norway.

460



465 Figure 6: Pearson partial correlation coefficients (PPCC) between Lake PO seasonal means and seasonal means of selected input variables. Circle color and size represent PPCC value (from -1 to 1) and significance, respectively. Meteorological variable abbreviations: airT, P, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover, relative humidity (or dew-point temperature) and short-wave radiation, respectively. Only significance level at 0.1 or below were considered in the interpretation.

470

Next, we use SA outputs to better describe the origin of the prediction skill, considering inertia, time integration as well as variable interactions. Assuming that climate signals in the ERA5 and SEAS5 input data over the warm-up, first lead month and target periods are additive sources of prediction skill, we can use Eqs 1–3 to partition the prediction skill originating from those time periods, i.e., $P_{\text{warm-up}}$, P_{M0} and P_{season} , respectively. For Sau reservoir, this calculation yields $P_{\text{warm-up}}$ of 0.94

475 to 1.0 leaving only an unimportant fraction of prediction skill to the forcing data over the target season and the first lead month, as illustrated in Fig. 4. At this site, the output variables show in parallel very low sensitivity to input variables (Fig. 5 and 7) which supports a strong role of inertia or long-term time integration in hindcast predictive skill. The fact that 5 out of the 6 windows of opportunity are for bottom water is also consistent with inertia as the main source of skill given the low circulation rate and inertia of hypolimnions. For Lake Vansjø, Eqs 1–3 yielded P_{season} of 0.003 (range: -0.19 to 0.18), P_{M0} of 480 0.19 (0.04 to 0.37) and $P_{\text{warm-up}}$ of 0.29 (0.09 to 0.60). Hence, a significant fraction of prediction skill is originating from the SEAS5 boundary conditions although the largest source remains initial conditions through ERA5 data over the warm-up. Interestingly, the SEAS5 data over the first lead month is also a significant source of prediction skill. In fact, in decreasing order of importance, prediction skill originates from the warm-up, the first lead month and the target season. This progressive decrease in prediction skill is only observed at Lake Vansjø and suggests that across-variable integration of climate signals 485 persists through the first lead month and, in some cases, the target season, but is progressively deteriorating as we move into the target season. Indeed, there is additional consistency between the SEAS5 input variables showing some forecasting skill and the output variables. In fact, surface, and bottom temperature in spring at Vansjø are sensitive to surface air temperature and wind (Fig. 6b and c), and surface air temperature, wind u and v components are associated with some windows of opportunity in spring (Table 6). Similarly, ice-off is sensitive to surface air temperature, as are snow quantities and melt 490 intensities in the catchment (Fig. 6m–o). Hence, in contrast to Sau reservoir where most of the prediction skill seems to originate from inertia, at Lake Vansjø, across-variable integration contributes to predictive skills.

4 Discussion

4.1 Sources of skill

Our investigation into relationships between input and output variables and the sensitivity of predictive skill to meteorological 495 data inputs over different time periods have yielded important insights into the sources of seasonal lake forecasting skill in our case study sites.

A key finding is that predictive skill is mostly sensitive to meteorological inputs over the warm-up and first lead months (Fig. 4, Section 3.4), although some specific windows of opportunity are also somewhat sensitive to the meteorological data over the target season. Hence, integration of the climate signal over time or across variables by catchment hydrologic and physical 500 processes, e.g., snow accumulation (Harrigan et al., 2018) or heat accumulation in lakes, is likely a key source of predictive skill. In fact, Mercado-Bettin et al. (2021) already noted an increase in prediction skill when moving from weather to discharge

to lake temperature, i.e., in an increasing order of time and across variable integration of climate signals. Strong inertia is also a potential source of prediction skill.

After accounting for forecasting skill from the forcing data over various periods (Section 3.43), a large proportion of the skill 505 still remains unexplained, especially for some selected windows of opportunity at Lake Vansjø in Norway. Bottom water temperature at Lake Vansjø in spring shows the highest residual skill after removal of skill from warm-up and first lead month (Fig. 4e–f). Surface and bottom temperature show a different degree of coupling with air temperature. In fact, while surface temperature responds tightly to changes in air temperature (Butcher et al., 2015; Schmid et al., 2014), bottom temperature responds to a variety of complex interactions influenced by lake characteristics (e.g., fetch, surface area, depth, light 510 penetration; Butcher et al., 2015). Indeed, bottom temperature in spring depends on preceding winter conditions but also on the intensity and length of the spring mixing event. To fully capture the intensity of this event, the model requires good initial water temperature inherited from previous winter but also skillful weather forcings, especially for surface air temperature and wind (Fig. 6c). In fact, for bottom temperature in spring to be higher than normal, it requires surface water to be heated up more than normal, mainly through heat exchange with air temperature, but also the lake to remain mixed for a longer time 515 period than normal. The interaction between skill from legacy and from weather forcing might thus be another source of predictive skill. The fact that the proportion of forecasting skill progressively decreases from warm-up, through the first lead month and the target season at Vansjø suggests that the interactions between input variables, which are incorporated in the process representation within the models, provide some skill but progressively deteriorates as we move forward in time. At Sau reservoir in Spain, on the other hand, all skill is lost at the sharp boundary between the warm-up and the first lead month.

520 This difference might be related to the presence of skill from the SEAS5 data at Vansjø (Table 6) and not at Sau. In other words, in the absence of skill in SEAS5 data, no additional skill can originate from interaction effects.

Literature on streamflow hindcasts broadly shows that beyond the first lead month, hindcasts forced with an ensemble of 525 boundary conditions resampled from historical meteorology are typically more skillful than hindcasts driven by seasonal meteorological predictions (Arnal et al., 2018; Bazile et al., 2017; Greuell et al., 2019). Hence, better lake forecasting skills could likely be achieved by simply forcing our models with climatology. Our results partly fit with these findings, as the skill 530 of S-SA hindcasts for selected windows of opportunity were higher than the original hindcasts (Fig. 4a, h–k). These S-SA hindcasts are similar to climatology-driven hindcasts, although they are associated with higher uncertainty since they are driven by random SEAS5 data and should therefore be regarded as a minimum forecasting potential. For some windows of opportunity, however, SEAS5 was a significant source of predictive skill (Fig. 4b, f, g and l). In those cases, only an improvement in SEAS5 forecasting skill is likely to improve lake forecasts. Improvement for only selected variables in SEAS5 would likely be enough to yield a significant increase in lake forecasting skill since most of the output variables presented here showed sensitivity to one or two input variables (Fig. 6).

4.2 Limitations and implications for seasonal lake forecasts

One apparent limitation of our study is the use of reanalysis weather data and pseudo-observations as inputs and benchmark 535 output variables. Using pseudo-observations for skill assessment is a common methodology in streamflow forecasting studies (Alfieri et al., 2014; Wood et al., 2016) and it offers the opportunity to investigate the relationship between forecasting skills, initial and boundary conditions, while putting less emphasis on model errors and biases (Harrigan et al., 2018). Working with reanalysis weather data generates a less site-specific workflow and removes difficulties associated with dealing with temporal 540 and spatial heterogeneity in observed data. Nevertheless, here we also evaluate the forecasting skill against catchment and lake observations when possible (Table 7) and show that most of the windows of opportunity reported for water temperature held while those for discharge are no longer significant compared to observations. This discrepancy between discharge and water temperature can be related to the fact that discharge tends to be more variable than water temperature, with short-lived high peaks which are difficult to model. The catchment models therefore performed less well than the lake models. This further suggests that evaluation against observations is likely more important for discharge than for water temperature.

545 The prediction skill of the seasonal lake forecasts can be influenced by multiple factors including the catchment and lake models used, the prediction skill of the forcing meteorological hindcasts, the quality and frequency of observations against which the models are calibrated, the nature of the system (e.g., potential for inertia), and the model calibration procedures. Given that we applied our workflow to only four case-study sites, unraveling the impact of all of the above-mentioned factors is out of the scope of this study and should be addressed through a more systematical application of our workflow to a larger
550 number of sites. Our results rather highlight two opportunities for seasonal lake forecasting. First, prediction skill of the forcing meteorological SEAS5 hindcasts, expected to be stronger around the tropics, was the largest at the northernmost Norwegian site (Table 6) and effectively transferred from meteorological to lake hindcasts (Section 3.3). This highlights that, although the prediction skill of the meteorological forecasts is generally higher at the equator, there is not a monotonic decrease in skill with increasing latitude, rather there is high spatial variability in skill. Potentially useful seasonal meteorological and lake
555 forecasts can therefore still be obtained at higher latitudes. Second, g

Given that inertia and integration over time were the dominant sources of predictive skill at Sau reservoir and Lake Vansjø, useful hindcasts could already be issued without the use of SEAS5 data. In fact, our workflows show limited sensitivity to boundary conditions over the target season. Hence, future workflows should use selected climatology as forcing data over the target season, in addition to (or instead of) seasonal meteorological prediction. This benchmark forecasting workflow with 560 climatology will likely yield similar or more skillful forecasts, as well as being less time-consuming to set up. Indeed, even with randomly selected years from the selected-SEAS5 data, which can be seen as a highly uncertain climatology, some windows of opportunity are more skillful than with the correct SEAS5 data (Fig. 4). Nevertheless, if seasonal meteorological prediction products become more skillful, they will likely be a real asset for lake seasonal forecasting enabling additional skills through interactions over time.

565 State-of-the-art modeling practices typically involve calibrating hydrologic and lake models against daily observations. Nevertheless, daily observations of water quality are often not available or only cover a fraction of the time of interest. Table 7 illustrates the challenges related to data coverage and model evaluation where many calibration and validation statistics could not be estimated because of the lack of observations. In addition, calibrating to daily data prioritizes model parameterizations which are able to capture daily variability, but not necessarily seasonal or interannual variability, which are more relevant for
570 seasonal forecasting. Calibrating the hydrologic and lake models using seasonal means or medians, in combination with daily data, could solve the observation coverage issue while improving seasonal predictive skill, but is then hampered by a low number of observed data points for calibration. Nevertheless, one needs to ensure that the seasonal averages are calculated from representative and well-distributed datasets. For Lake Vansjø, this would not have solved the lack of observations in Spring for example, because observations only cover April and May. For Sau and Wupper reservoirs, on the other hand, this
575 would have been possible and potentially improve predictive skills. In any case, having access to more complete, long-term and systematic observations on water temperature, inflow and outflow discharge, including abstraction and over-flows for reservoirs, would facilitate robust model calibration and validation, and likely model predictive skills. The skill of water quality forecasting tools heavily depends on observation availability. Hence, continued efforts should be put on ensuring that observational programs are suited to providing the information needed by our models (Robson, 2014).

580 5 Conclusion

585 Lake seasonal forecasts could provide valuable knowledge for water managers to help protect preserve drinking water reserves, as well as ecological and recreational services under increasing pressures from water demand, anthropogenic pollution, and climate change. Nevertheless, their use is still limited in the water sector. Here we unravel the source of predictive skill of lake seasonal hindcasts at four case-studies across Europe and in Australia, including inflow discharge, surface and bottom water temperature as well as ice-off dates. Through sensitivity analyses, we contribute to the demystification of lake forecasting tools with the long-term objective of facilitating their utilization in the water sector. In Spain, where the seasonal meteorological predictions have negligible skill, the source of predictive skill is mainly catchment and lake inertia. In Norway, where some seasonal meteorological predictions are skillful, the predictive skill is coming from, in decreasing order of importance, inertia, time- and across-variable integration of climate signals through catchment processes, and seasonal meteorological predictions
590 over the target season (SEAS5). In Norway, skillful SEAS5 meteorological hindcasts over specific seasons likely contribute to sustaining the predictive skill from antecedent conditions through to the target season.

595 Despite its central role in the probabilistic nature of the forecasting workflow, SEAS5 meteorological forcing data contributes little to a limited extent to the predictive skill, and often reduces the performance of the hindcasts. Hence, our findings suggest that using a probabilistic ensemble catchment-lake forecast without SEAS5 forcing data is currently likely to yield higher quality forecasts in most cases, as demonstrated by hindcasts driven with randomly selected SEAS5 data. Nevertheless, upon

skill improvement [in the skill](#) of the seasonal meteorological forecasts, [only](#) a small step would be needed to provide more skillful lake forecasts for better water management.

Index of abbreviations (in order of appearance)

SEAS5: seasonal meteorological forecast dataset from the European Centre for Medium Range Weather Forecasts.

600 ERA5: meteorological reanalysis dataset from the European Centre for Medium Range Weather Forecasts.

NSE: Nash–Sutcliffe efficiency coefficient

KGE: Kling–Gupta efficiency coefficient

RMSE: Root-mean squared error

[R²: square of the Pearson correlation coefficient](#)

605 Lake_PO: Lake pseudo-observations of water temperature, inflow discharge and ice-off produced with coupled catchment and lake models forced with ERA5 meteorological data.

Lake_F: Seasonal lake hindcasts of water temperature, inflow discharge and ice-off produced with coupled catchment and lake models forced with SEAS5 meteorological data (25 members).

M0: First lead month

610 M1–M3: Month 1 to month 3 of the lake forecast, i.e., target season of the lake forecasts.

ROCSS: Relative Operating Characteristic Skill Score

RPSS: Ranked Probability Skill Score

FRPSS: Fair (or unbiased) RPSS

ROCSS_{original}: ROCSS for Lake_F as compared to reference forecast based on climatology from Lake_PO.

615 *ROCSS_{obs}*: ROCSS for Lake_F as compared to reference forecast based on local observations.

SA: Sensitivity analysis

S-SA: Sensitivity analysis of Lake_F to boundary conditions over the target season (M1–M3)

W-SA: Sensitivity analysis of Lake_F to boundary conditions over the warm-up period

W+M0-SA: Sensitivity analysis of Lake_F to boundary conditions over the period covering the warm-up and first lead month

620 *ROCSS_S*: ROCSS for Lake_F following S-SA as compared to reference forecast based on climatology from Lake_PO

ROCSS_W: ROCSS for Lake_F following W-SA as compared to reference forecast based on climatology from Lake_PO

ROCSS_{W+M0}: ROCSS for Lake_F following W+M0-SA as compared to reference forecast based on climatology from Lake_PO

OAT-SA: One at a time sensitivity analysis

625 PPCC: Partial correlation coefficient

airT: Surface air temperature

airP: Surface air pressure

cc: Cloud cover
hum: Relative humidity (or dew-point temperature)

630 sw: short-wave radiation
lw: downwelling long-wave radiation
U: U-component of wind speed
V: V-component of wind speed
p: Precipitation

635

Computer code and models

You can find all the code and data files related to this manuscript at:
https://github.com/NIVANorge/seasonal_forecasting_watexr

Formatted: Font color: Auto

Acknowledgments

640 This study ~~contributed to~~ was largely funded under the WATExR project
(https://nivanorge.github.io/seasonal_forecasting_watexr/), which is part of ERA4CS, an ERA-NET initiated by JPI Climate,
and funded by MINECO-AEI (ES), FORMAS (SE), BMBF (DE), EPA (IE), RCN (NO), and IFD (DK), with co-funding by
the European Union (Grant 690462). MINECO-AEI funded this research through projects PCIN-2017-062 and PCIN-2017-
092. We thank all water quality and quantity data providers: Ens d'Abastament d'Aigua Ter-Llobregat (ATL,
645 <https://www.atl.cat/es>), SA Water (<https://www.sawater.com.au>), Wupperverband (www.wupperverband.de), NIVA
(www.niva.no) and NVE (<https://www.nve.no/english/>). We acknowledge ECMWF for providing the SEAS5 and ERA5 data.

Author contributions

RM, LJ-B, EdE, EJ, KR, LdvL, M-DF, and SH designed the study and provided guidance on modelling and forecasting
approaches. FC, LJ-B, MNO, JS, DM, MS, AF, and TM contributed to the modelling, forcing data pre-processing and
650 forecasting. FC, DM, MS, AF performed the sensitivity analyses. FC drafted the manuscript. All authors edited the manuscript.

References

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., & Pappenberger, F. (2018). Skilful seasonal forecasts of streamflow over Europe? *Hydrology and Earth System Sciences*, 22(4), 2057–2072.
<https://doi.org/10.5194/hess-22-2057-2018>

655 Baracchini, T., Wüest, A., & Bouffard, D. (2020). Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics. *Water Research*, 172, 115529. <https://doi.org/10.1016/j.watres.2020.115529>

Bazile, R., Boucher, M.-A., Perreault, L., & Leconte, R. (2017). Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate. *Hydrology and Earth System Sciences*, 21(11), 5747–5762. <https://doi.org/10.5194/hess-21-5747-2017>

660 Blottiere, L. (2015). *The effects of wind-induced mixing on the structure and functioning of shallow freshwater lakes in a context of global change*. [Université Paris Saclay]. <https://tel.archives-ouvertes.fr/tel-01258843/document>

Butcher, J. B., Nover, D., Johnson, T. E., & Clark, C. M. (2015). Sensitivity of lake thermal and mixing dynamics to climate change. *Climatic Change*, 129(1), 295–305. <https://doi.org/10.1007/s10584-015-1326-1>

Ceglar, A., & Toreti, A. (2021). Seasonal climate forecast can inform the European agricultural sector well in advance of 665 harvesting. *Npj Climate and Atmospheric Science*, 4(1), 1–8. <https://doi.org/10.1038/s41612-021-00198-3>

Coron, L., Thirel, G., Delaigue, O., Perrin, C., & Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. *Environmental Modelling & Software*, 94, 166–171. <https://doi.org/10.1016/j.envsoft.2017.05.002>

Déqué, M. (2007). Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. *Global and Planetary Change*, 57(1), 16–26.

670 <https://doi.org/10.1016/j.gloplacha.2006.11.030>

Dokulil, M. T., de Etyo, E., Maberly, S. C., May, L., Weyhenmeyer, G. A., & Woolway, R. I. (2021). Increasing maximum lake surface temperature under climate change. *Climatic Change*, 165(3), 56. <https://doi.org/10.1007/s10584-021-03085-1>

Ducharne, A. (2008). Importance of stream temperature to climate change impact on water quality. *Hydrology and Earth System Sciences*, 12(3), 797–810. <https://doi.org/10.5194/hess-12-797-2008>

675 Ferro, C. a. T. (2014). Fair scores for ensemble forecasts. *Quarterly Journal of the Royal Meteorological Society*, 140(683), 1917–1923. <https://doi.org/10.1002/qj.2270>

Friás, M. D., Iturbide, M., Manzanas, R., Bedia, J., Fernández, J., Herrera, S., Cofiño, A. S., & Gutiérrez, J. M. (2018). An R package to visualize and communicate uncertainty in seasonal climate prediction. *Environmental Modelling & Software*, 99, 101–110. <https://doi.org/10.1016/j.envsoft.2017.09.008>

680 Giuliani, M., Crochemore, L., Pechlivanidis, I., & Castelletti, A. (2020). From skill to value: Isolating the influence of end user behavior on seasonal forecast assessment. *Hydrology and Earth System Sciences*, 24(12), 5891–5902. <https://doi.org/10.5194/hess-24-5891-2020>

Greuell, W., Franssen, W. H. P., & Hutjes, R. W. A. (2019). Seasonal streamflow forecasts for Europe – Part 2: Sources of skill. *Hydrology and Earth System Sciences*, 23(1), 371–391. <https://doi.org/10.5194/hess-23-371-2019>

685 Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martín, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, J., ... Pagé, C. (2019). An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from

the VALUE perfect predictor cross-validation experiment. *International Journal of Climatology*, 39(9), 3750–3785. <https://doi.org/10.1002/joc.5462>

690 Harrigan, S., Prudhomme, C., Parry, S., Smith, K., & Tanguy, M. (2018). Benchmarking ensemble streamflow prediction skill in the UK. *Hydrology and Earth System Sciences*, 22(3), 2023–2039. <https://doi.org/10.5194/hess-22-2023-2018>

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... Thépaut, J.-N. (2020). The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730), 1999–

695 2049. <https://doi.org/10.1002/qj.3803>

Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., Read, J. S., de Sousa, E., Weber, M., & Winslow, L. A. (2019). A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). *Geoscientific Model Development*, 12(1), 473–523. <https://doi.org/10.5194/gmd-12-473-2019>

700 Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J., Fernández, J., Frías, M. D., Manzanas, R., San-Martín, D., Cimadevilla, E., Cofiño, A. S., & Gutiérrez, J. M. (2019). The R-based climate4R open framework for reproducible climate data access and post-processing. *Environmental Modelling & Software*, 111, 42–54. <https://doi.org/10.1016/j.envsoft.2018.09.009>

Jackson-Blake, L. A., Clayer, F., de Eyto, E., French, A. S., Frías, M. D., Mercado-Bettín, D., Moore, T., Puértolas, L., Poole, R., Rinke, K., Shikhani, M., van der Linden, L., & Marcé, R. (2022). Opportunities for seasonal forecasting to support water

705 management outside the tropics. *Hydrology and Earth System Sciences*, 26(5), 1389–1406. <https://doi.org/10.5194/hess-26-1389-2022>

[Jackson-Blake, L. A. \(2022\). Opportunities for seasonal forecasting to support water management outside the tropics: Supplementary Material. \[Data set\]. Zenodo. https://doi.org/10.5281/zenodo.5906258](#)

Jackson-Blake, L. A., Sample, J. E., Wade, A. J., Helliwell, R. C., & Skeffington, R. A. (2017). Are our dynamic water quality

710 models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P. *Water Resources Research*, 53(7), 5382–5399. <https://doi.org/10.1002/2016WR020132>

Jeppesen, E., Pierson, D., & Jennings, E. (2021). Effect of Extreme Climate Events on Lake Ecosystems. *Water*, 13(3), 282. <https://doi.org/10.3390/w13030282>

Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietze, S., Decremer, D.,

715 Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., & Monge-Sanz, B. M. (2019). SEAS5: The new ECMWF seasonal forecast system. *Geoscientific Model Development*, 12(3), 1087–1117. <https://doi.org/10.5194/gmd-12-1087-2019>

Jolliffe, I. T., & Stephenson, D. B. (2012). *Forecast Verification: A Practitioner's Guide in Atmospheric Science*. John Wiley & Sons.

720 Labrousse, C., Ludwig, W., Pinel, S., Sadaoui, M., & Lacquement, G. (2020). Unravelling Climate and Anthropogenic Forcings on the Evolution of Surface Water Resources in Southern France. *Water*, 12(12), 3581. <https://doi.org/10.3390/w12123581>

Lledó, Ll., Torralba, V., Soret, A., Ramon, J., & Doblas-Reyes, F. J. (2019). Seasonal forecasts of wind power generation. *Renewable Energy*, 143, 91–100. <https://doi.org/10.1016/j.renene.2019.04.135>

725 Lopez, A., & Haines, S. (2017). Exploring the Usability of Probabilistic Weather Forecasts for Water Resources Decision-Making in the United Kingdom. *Weather, Climate, and Society*, 9(4), 701–715. <https://doi.org/10.1175/WCAS-D-16-0072.1>

Manzanas, R., Frías, M. D., Cofiño, A. S., & Gutiérrez, J. M. (2014). Validation of 40 year multimodel seasonal precipitation forecasts: The role of ENSO on the global skill. *Journal of Geophysical Research: Atmospheres*, 119(4), 1708–1719. <https://doi.org/10.1002/2013JD020680>

730 Marcé, R., Rodríguez-Arias, M. À., García, J. C., & Armengol, J. (2010). El Niño Southern Oscillation and climate trends impact reservoir water quality. *Global Change Biology*, 16(10), 2857–2865. <https://doi.org/10.1111/j.1365-2486.2010.02163.x>

Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A Methodology For Performing Global Uncertainty And Sensitivity Analysis In Systems Biology. *Journal of Theoretical Biology*, 254(1), 178–196. <https://doi.org/10.1016/j.jtbi.2008.04.011>

735 Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., Dirmeyer, P. A., Ferranti, L., Johnson, N. C., Jones, J., Kirtman, B. P., Lang, A. L., Molod, A., Newman, M., Robertson, A. W., Schubert, S., Waliser, D. E., & Albers, J. (2020). Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond. *Bulletin of the American Meteorological Society*, 101(5), E608–E625. <https://doi.org/10.1175/BAMS-D-18-0326.1>

740 Mercado-Bettin, D., Clayer, F., Shikhani, M., Moore, T. N., Frias, M. D., Jackson-Blake, L., Sample, J., Iturbide, M., Herrera, S., French, A. S., Norling, M. D., Rinke, K., & Marce, R. (2021). Forecasting water temperature in lakes and reservoirs using seasonal climate prediction. *Water Research*, 201, 117286. <https://doi.org/10.1016/j.watres.2021.117286>

Müller, W. A., Appenzeller, C., Doblas-Reyes, F. J., & Liniger, M. A. (2005). A Debiased Ranked Probability Skill Score to Evaluate Probabilistic Ensemble Forecasts with Small Ensemble Sizes. *Journal of Climate*, 18(10), 1513–1523. <https://doi.org/10.1175/JCLI3361.1>

Pagano, T. C., Wood, A. W., Ramos, M.-H., Cloke, H. L., Pappenberger, F., Clark, M. P., Cranston, M., Kavetski, D., Mathevret, T., Sorooshian, S., & Verkade, J. S. (2014). Challenges of Operational River Forecasting. *Journal of Hydrometeorology*, 15(4), 1692–1707. <https://doi.org/10.1175/JHM-D-13-0188.1>

745 Pechlivanidis, I. G., Crochemore, L., Rosberg, J., & Bosshard, T. (2020). What Are the Key Drivers Controlling the Quality of Seasonal Streamflow Forecasts? *Water Resources Research*, 56(6), e2019WR026987. <https://doi.org/10.1029/2019WR026987>

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. *Environmental Modelling & Software*, 79, 214–232. <https://doi.org/10.1016/j.envsoft.2016.02.008>

755 Piccolroaz, S., Healey, N. C., Lenters, J. D., Schladow, S. G., Hook, S. J., Sahoo, G. B., & Toffolon, M. (2018). On the predictability of lake surface temperature using air temperature in a changing climate: A case study for Lake Tahoe (U.S.A.). *Limnology and Oceanography*, 63(1), 243–261. <https://doi.org/10.1002/lno.10626>

Piccolroaz, S., Toffolon, M., & Majone, B. (2013). A simple lumped model to convert air temperature into surface water temperature in lakes. *Hydrology and Earth System Sciences*, 17(8), 3323–3338. <https://doi.org/10.5194/hess-17-3323-2013>

760 Portele, T. C., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., & Kunstmann, H. (2021). Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions. *Scientific Reports*, 11(1), 10581. <https://doi.org/10.1038/s41598-021-89564-y>

Robson, B. J. (2014). State of the art in modelling of phosphorus in aquatic systems: Review, criticisms and commentary. *Environmental Modelling & Software*, 61, 339–359. <https://doi.org/10.1016/j.envsoft.2014.01.012>

765 Schmid, M., & Read, J. (2022). Heat Budget of Lakes. In T. Mehner & K. Tockner (Eds.), *Encyclopedia of Inland Waters* (Second Edition) (pp. 467–473). Elsevier. <https://doi.org/10.1016/B978-0-12-819166-8.00011-6>

Schmid, M., Hunziker, S., & Wüest, A. (2014). Lake surface temperatures in a changing climate: A global sensitivity analysis. *Climatic Change*, 124(1), 301–315. <https://doi.org/10.1007/s10584-014-1087-2>

770 Soares, M. B., Daly, M., & Dessai, S. (2018). Assessing the value of seasonal climate forecasts for decision-making. *WIREs Climate Change*, 9(4), e523. <https://doi.org/10.1002/wcc.523>

Staudinger, M., & Seibert, J. (2014). Predictability of low flow – An assessment with simulation experiments. *Journal of Hydrology*, 519, 1383–1393. <https://doi.org/10.1016/j.jhydrol.2014.08.061>

Stefan, H. G., & Preud'homme, E. B. (1993). Stream Temperature Estimation from Air Temperature1. *JAWRA Journal of the American Water Resources Association*, 29(1), 27–45. <https://doi.org/10.1111/j.1752-1688.1993.tb01502.x>

775 Themeßl, M., Gobiet, A., & Leuprecht, A. (2011). Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. *International Journal of Climatology*, 31(10), 1530–1544. <https://doi.org/10.1002/joc.2168>

Toffolon, M., Piccolroaz, S., Majone, B., Soja, A.-M., Peeters, F., Schmid, M., & Wüest, A. (2014). Prediction of surface temperature in lakes with different morphology using air temperature. *Limnology and Oceanography*, 59(6), 2185–2202. <https://doi.org/10.4319/lo.2014.59.6.2185>

780 Troccoli, A. (2010). Seasonal climate forecasting. *Meteorological Applications*, 17(3), 251–268. <https://doi.org/10.1002/met.184>

Troin, M., Arsenault, R., Wood, A. W., Brissette, F., & Martel, J.-L. (2021). Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. *Water Resources Research*, 57(7), e2020WR028392. <https://doi.org/10.1029/2020WR028392>

785 Werner, M., Cranston, M., Harrison, T., Whitfield, D., & Schellekens, J. (2009). Recent developments in operational flood forecasting in England, Wales and Scotland. *Meteorological Applications*, 16(1), 13–22. <https://doi.org/10.1002/met.124>

Wilcke, R. A. I., Mendlik, T., & Gobiet, A. (2013). Multi-variable error correction of regional climate models. *Climatic Change*, 120(4), 871–887. <https://doi.org/10.1007/s10584-013-0845-x>

Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., & Clark, M. (2016). Quantifying Streamflow Forecast Skill

790 Elasticity to Initial Condition and Climate Prediction Skill. *Journal of Hydrometeorology*, 17(2), 651–668. <https://doi.org/10.1175/JHM-D-14-0213.1>

Wuijts, S., Claessens, J., Farrow, L., Doody, D. G., Klages, S., Christophoridis, C., Cvejić, R., Glavan, M., Nesheim, I., Platjouw, F., Wright, I., Rowbottom, J., Graversgaard, M., van den Brink, C., Leitão, I., Ferreira, A., & Boekhold, S. (2021). Protection of drinking water resources from agricultural pressures: Effectiveness of EU regulations in the context of local

795 realities. *Journal of Environmental Management*, 287, 112270. <https://doi.org/10.1016/j.jenvman.2021.112270>

Yi, S., Sun, W., Feng, W., & Chen, J. (2016). Anthropogenic and climate-driven water depletion in Asia. *Geophysical Research Letters*, 43(17), 9061–9069. <https://doi.org/10.1002/2016GL069985>

Zhu, S., Piotrowski, A. P., Ptak, M., Napiorkowski, J. J., Dai, J., & Ji, Q. (2021). How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures? *Journal of Hydrology*, 597, 126219.

800 <https://doi.org/10.1016/j.jhydrol.2021.126219>

Zhu, S., Ptak, M., Yaseen, Z. M., Dai, J., & Sivakumar, B. (2020). Forecasting surface water temperature in lakes: A comparison of approaches. *Journal of Hydrology*, 585, 124809. <https://doi.org/10.1016/j.jhydrol.2020.124809>