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Abstract. Despite high potential benefits, the development of seasonal forecasting tools in the water sector has been slower
than in other sectors. Here we assess the skill of seasonal forecasting tools for lakes and reservoirs set up at four sites in
Australia and Europe. These tools consist of coupled hydrological catchment and lake models forced with seasonal
meteorological forecast ensembles to provide probabilistic predictions of seasonal anomalies in water discharge, temperature
and ice-off. Successful implementation requires a rigorous assessment of the tools’ predictive skill and an apportionment of
the predictability between legacy effects and input forcing data. To this end, models were forced with two meteorological
datasets from the European Centre for Medium Range Weather Forecasts (ECMWF), the seasonal forecasts SEAS5 with three-
month lead times and the ERADS reanalysis. Historical skill was assessed by comparing both model outputs, i.e., seasonal lake
hindcasts (forced with SEAS5) and pseudo-observations (forced with ERA5). The skill of the seasonal lake hindcasts was
generally low although higher than the reference hindcasts, i.e., pseudo-observations, at some sites for certain combinations

of season and variable. +r-addition—tThe SEAS5 meteorological predictions showed less skill than the lake hindcasts. In fact,
skillful lake hindcasts identified for selected seasons and variables were not always synchronous with skillful SEAS5
meteorological hindcasts, raising questions on the source of the predictability. A set of sensitivity analyses showed that most
of the forecasting skill originates from legacy effects, although during winter and spring in Norway some skill was coming
from SEASS over the three-month target season. When SEAS5 hindcasts were skillful, additional predictive skill originates
from the interaction between legacy and SEASS5 skill. We conclude that a-lake forecasts forced with an ensemble of boundary
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conditions resampled from historical meteorology ehmatology-drivenforecast-isare currently likely to yield higher quality
forecasts in most cases.

1. Introduction

Freshwater provides essential services for food and energy production, manufacturing, cultural heritage, and natural habitats.
However, it is threatened by more frequent extreme events (Jeppesen et al., 2021), climate change (Labrousse et al., 2020),
anthropogenic water depletion (Yi et al., 2016) and agricultural pressures (Wuijts et al., 2021). Implementation of mitigation
measures can help preserve freshwater resources, although they come with trade-offs between production from economic
sectors with related social benefits, and availability of good quality freshwater. Hence, successful implementation of measures
requires capacity at the local-regional level for cross-sectoral decision-making (Wauijts et al., 2021). Seasonal forecasting tools
for water quality can help facilitate the decision-making process by refininginforming optimal actions over the next season,
e.g., magnitude and timing of reservoir drawdowns. Indeed, they can supply knowledge on the impacts of future climatic
conditions on freshwater over a realistic time frame enabling implementation with reduced negative effects on economic
activities. Nevertheless, the use and access to forecasting tools is still very limited for water managers (Lopez & Haines, 2017;
Soares et al., 2018). The probabilistic nature of seasonal forecasts can be a key barrier coupled with the lack of reliability and
credibility of these predictions in most regions outside-ef the tropics. Hence, a better access to seasonal forecasting tools as
well as increased comprehension and description of these tools are required prior to their successful implementation in the
decision-making process within the water sector.

Seasonal meteorological predictions provide a probabilistic description of the weather over the next few months, e.g., an 80%
chance of the weather being wetter than normal. Seasonal climate predictability mainly originates from ocean—atmosphere
interactions (Troccoli, 2010). In fact, the ocean inertia, given its volume and the heat capacity of liquid water, exerts an
influence on the atmosphere on the scale of months which allows us to estimate its future effect on weather. Given that ocean—
atmosphere interactions are relatively strong in the equatorial region (Troccoli, 2010), seasonal meteorological predictions
typically show stronger predictive skill, or prediction performance, around the tropics (Johnson et al., 2019; Manzanas et al.,
2014). Under higher latitudes, skills from seasonal meteorological predictions are patchy and less consistent among variables
and seasons. Hence, the boundary conditions, e.g., seasonal air temperature forecasts used to force a hydrological model, isare
usually not the main source of predictability outside the tropics, at least for stream flow (Greuell et al., 2019; Harrigan et al.,
2018; Wood et al., 2016). Nevertheless, climate models producing seasonal meteorological forecasts are constantly improving
and it is reasonable to expect that forecast opportunities will expand in the future (Mariotti et al., 2020). Developing seasonal
forecasting workflows, quantifying the skill and investigating the source of predictability represent a necessary and essential
step towards reliable water quality seasonal forecasting.

While some of the first forecasting tools were originally developed for flood warnings (e.g., Pagano et al., 2014; Werner et al.,

2009), applications to other sectors are becoming more frequent. In the agricultural sector, for example, a recent study shows
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that flowering time can be reliably predicted from seasonal meteorological forecasts in central and eastern Europe, enabling
early variety selection and planning of farm management (Ceglar & Toreti, 2021). Seasonal meteorological forecasts were also
shown to provide useful information for the wind energy sector (Lled6 et al., 2019), and to avoid significant economic losses
from hydropower generation during droughts (Portele et al., 2021). Nevertheless, the use of seasonal meteorological forecasts
for water temperature in lakes and reservoirs has been limited so far, where the focus has been on water quantity (Arnal et al.,
2018; Giuliani et al., 2020; Greuell et al., 2019; Pechlivanidis et al., 2020). Studies forecasting water temperature, a
fundamental water quality variable, are rare in the literature (though see Mercado-Bettin et al., 2021; Zhu et al., 2020;
Baracchini et al., 2020), despite the diverse influence of this variable on lake ecosystem structure and functioning (Dokulil et
al., 2021). Nevertheless, a simple lumped model (air2water; Piccolroaz et al., 2013), previously developed to estimate surface
lake water temperature as a function of air temperature, has been applied to predict water temperature in thousands of lakes
(Zhu etal., 2021). While this hybrid approach yielded skillful surface lake water temperature forecasts (Piccolroaz et al., 2018;
Toffolon et al., 2014), it doesn’t allow forecasting any-other lake variables, such as bottom temperature-er-ice-off-i.e-thefirst
Research on seasonal forecasting in hydrology has-started more than a decade ago (Troin et al., 2021) and now represents a
source of knowledge for other research fields. When forecasting river flow, for example, predictability can originate from two
main sources: (i) initial conditions such as catchment water stores of initial soil moisture, groundwater, and snowpack, which
are directly linked to the water residence time; and (ii) boundary conditions, i.e.,- meteorological forecasts used to force the
hydrological model (Greuell et al., 2019). Throughout the many studies of river flow seasonal forecasting in Europe, it appears
that initial conditions form the dominant source of skill in run-off (Greuell et al., 2019; Harrigan et al., 2018; Wood et al.,

2016) and predictability can be extended up to a year ahead in case of very low flow _as antecedent groundwater level is the

key driver (Staudinger & Seibert, 2014). When dealing with standing water bodies, antecedent conditions are also likely to
provide significant predictability, given that the water storage in lakes and reservoirs is large compared to river channels,
providing higher inertia. Water residence time is thus expected to exert a strong influence on discharge predictability. Water
temperature, on the other hand, is influenced by multiple meteorological variables, e.g., wind, air temperature and radiation,
in addition to water stores which can affect the source of its predictability.

Here, we further investigate the performance and in particular the source of this prediction performance, also referred to as
predictive or forecasting skill, of lake seasonal forecasting tools first described by Mercado-Bettin et al. (2021) and Jackson-
Blake et al. (2022). These tools integrate hydrological catchment and physical lake models forced with seasonal meteorological
forecasts with three-month lead times at four case study sites in Europe and Australia (Fig. 1). a-fact+tThe meteorological
variables used to force the models fercing-metesrelogical-variables as well as output catchment and lake variables are a set of
retrospective seasonal forecasts for past dates, hereafter referred to as hindcasts, that can be compared to historical records.

The objective of this study is to assess whether seasonal meteorological hindcast ensembles with three-month lead time, used
as inputs to catchment and lake process-based models, provide some predictive skill to seasonal lake hindcasts. To this end,

the forecasting skill of the tools was assessed for combinations of season and freshwater variables, i.e., discharge, water
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temperature or ice-off, and for each tercile._Ice-off is defined as the first ice-free day after an ice-covered period. In parallel,

we quantified the forecasting skill of each meteorological variable of the seasonal meteorological prediction at each site. Both
assessments were carried out following aggregation of model outputs from daily to seasonal temporal resolution, i.e., seasonal
means or sums. When a hindcast was found to perform significantly better than a reference hindcast, e.g., climatology from
pseudo-observations as defined in the Methods, for acombination of a given season, variable and tercile, this latter combination
was defined as a “window of opportunity”. This terminology is introduced to emphasize the fact that these forecasts can be
used in the decision-making processes by water managers but only for a specific variable and season. A set of sensitivity
analyses was performed to identify input-output relationships and to partition the source of the prediction skill for each window
of opportunity among warm-up, first lead-month and seasonal meteorological predictions. The comparison betweenin
hindcasts, with the aim of isolating the contributions of different sources te-of skill, has been applied before on streamflow
hindcasts (e.g., Arnal et al., 2018; Greuell et al., 2019);. However-but this is, to our knowledge, the first study investigating
the origin of seasonal hindcast ensemble skills on water discharge, temperature and ice-off in lakes and reservoirs. The
implications for lake forecasting tools are discussed.

§ 13

Case-study sites:
Lake Vansjo - Norwiay

Boreal climate

AN, 74|
59.42N, 10,74 :Zi >
Wupper Reservolf - Germany S
Temperate climate
5119N,731E

Sau Reservoir - Spain
Mediterranean/semi arid climate
41.97N,2.39E

Mt Bold Reservoir - Australia
Mediterranean/semi arid climate

35125, 138.70F ‘Wupper Q%
e 7 Cou 'Y O
J—— g
L o
-w £
i"'\”\“

AE'EGH

L)

v Australia

114.20°

“Mount Bold
‘.

P ~ i::ih M

Figure 1: Location of the four case studies in Europe and Australia along with climate type and coordinates. Map is modified from
Jackson-Blake et al. (2022). Detailed catchment maps are given in Jackson-Blake et-ak- (2022).
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2.1 Description of the forecasting tools

The forecasting tools consist of a coupled catchment runoff model to a one-dimensional water column lake model, forced by

120 seasonal meteorological predictions, to simulate three output variables at daily resolution: inflow discharge, and lake surface
and bottom temperature. For Lake Vansjg in Norway, the timing of ice melt (ice-off) was also included in the output variables
in spring. The workflow consisted in running the catchment models first, providing inflow water discharge and water
temperature to the lake models.

2.1.1  Case study sites

125 Lake forecasting tools were developed for four regulated water lakes/reservoirs in Europe and Australia which have been
described earlier (Mercado-Bettin et al., 2021;Table 1; Fig. 1). Briefly, Sau (Spain) and Mount Bold (Australia) reservoirs
large water supplies for the cities of Barcelona and Adelaide, respectively. Lake Vansjg (Norway), is a drinking water source
for three municipalities and the Wupper reservoir (Germany) is used for flood control, environmental flows, and recreation.

Table 1: Characteristics of the study sites. Mixing timing refers to boreal seasons only.

Catchment

Case study area (km)  Surface Volume retex\tliaot:rtime ax. Mixing regime Mixing timin:
(Country) area (ha) (hm3) rs) Depth (m) 9 reg 9 9
Sau (Spain) 1680 575 165 0.2 60 monomictic Winter

Mt Bold 357 254 46.4 02-06 445 monomictic Summer
(Australia)

Vansjg (Norway) 690 3600 252 11 19 dimictic Sggng
Wupper A Spring
(Germany) 215 211 26 0.2 31 dimictic Fall

130 2.1.2  Meteorological input data

We used two different meteorological datasets to force the catchment hydrological and lake physical models in our tools: a
climate reanalysis (ERAS5) and a seasonal forecasting product (SEAS5) which both offer a global spatial and continuous
temporal coverages to ensure future transferability of our workflows and easy comparison between our case-studies (Johnson
etal., 2019). ERAS is the latest reanalysis at 0.25° spatial resolution (Hersbach et al., 2020) produced by the European Centre
135 for Medium Range Weather Forecasts (ECMWF; https://www.ecmwf.int) within the Copernicus Climate Change Service
(C3S, https://climate.copernicus.eu/). ERA5 data (1988-2016) were used (i) to correct for bias in the SEAS5 data using the

quantile mapping technique as described below; (ii) to provide meteorological pseudo-observations for retrospective skill
evaluation of SEASS hindcasts, (iii) to force catchment hydrological and lake physical models to produce pseudo-observations
of the output variables, (iv) to force our catchment and lake models to produce antecedent/warm-up period data preceding
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seasonal hindcast periods (i.e., combined one lead-month and three-month target season). SEAS5 is the latest seasonal
forecasting system from the ECMWF at 1° spatial resolution and provides operational seasonal forecasts and retrospective
seasonal forecasts for past years (hindcasts). We used hindcasts (1994-2016) in this study. A hindcast with 25 members was
considered for the period 1994-2016 for the three-month boreal seasons (spring: March through May; summer: June through
August; autumn: September through November; winter: December through February), with one month as lead time. A
dedicated R package (climate4R; Iturbide et al., 2019) was used for ERA5 and SEAS5 meteorological data pre-processing.
SEAS5 members were pre-processed using the quantile mapping technique (Gutiérrez et al., 2019) to correct for systematic
bias relative to pseudo-observations (ERA5 reanalysis). We used the empirical quantile mapping approach (EQM) due to its
ability to deal with multivariate problems (Wilcke et al., 2013). EQM adjusts 99 percentiles and linearly interpolates inside
this range every two consecutive percentiles; outside this range, a constant extrapolation (using the correction obtained for the
1st or 99th percentile) is applied (Déqué, 2007). In the case of precipitation, we applied the wet-day frequency adaptation
proposed by ThemeRl et al. (2011). The resulting bias-corrected data were used for hydrologic and lake models meteorological
forcing, noting that we implemented bias-correction using leave-one-(year)-out cross-validation. Therefore, for each year,
seasonal climate hindcast member predictions were adjusted with the bias correction parameters derived from training with all
other years; after which all bias-corrected data were appended to obtain a corrected (i.e., locally calibrated) time series of
seasonal meteorological hindcasts for the full period for each case study. Finally, to use the bias-corrected data as
meteorological forcing for hydrologic and lake models, we used bilinear interpolation (akima method), whereby we specified
lake/reservoir coordinates from which seasonal meteorological hindcast data from surrounding pixels were interpolated.
Meteorological datasets include daily average 2-meter air temperature, u and v components of wind, surface air pressure,
relative humidity (or dew-point temperature), cloud cover, short-wave radiation, downwelling long-wave radiation and daily
sum of precipitation.

2.1.3  Observations

Daily inflow discharge and daily to monthly lake water temperature observations (Table S1) were used for catchment and lake
model calibration and validation, as well as quantification of forecasting skills. For Lake Vansjg, daily measurements of
discharge over 1994-2016 were taken from the gauging station at Hegfoss (Station 3.22.0.1000.1; Norwegian Water Resources
and Energy Directorate). Lake temperature data were gathered from the Vansjg-Hobgl monitoring program dataset, conducted
by the Norwegian Institute for Bioeconomy Research and by the Norwegian Institute for Water Research (Haande et al., 2016).
These data are available freely on the Norwegian national database (https://vannmiljo.miljodirektoratet.no). For Sau reservoir,

daily measurements of discharge into Sau Reservoir were provided by the Catalan water agency (Agencia Catalana de I’ Aigua,
ACA) while lake temperature and weather data are part of a long-term monitoring program (Marce et al., 2010). Discharge,
water temperature and weather observations at the two other reservoir sites were collected from the water reservoir operators
(Wupperverband for Wupper and SA Water for Mt Bold). Lake water temperature data are discontinuous and covered only

part of the modelled time-period (1994-2016) because of limited funding for monitoring programs. In addition, precipitation,
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temperature, short-wave radiation, humidity, and wind daily records at nearby meteorological stations were obtained for each
case study from the local meteorological institutes. For Lake Vansjg, this included ice-off dates from the Norwegian
Meteorological Institute station 1,715 (Rygge) located on the lake shore (59° 38'N, 10° 79" E).

2.1.4  Catchment-lake process-based model setup and calibration

A catchment-lake process-based model chain was setup at each site to predict daily inflow discharge into the lake/reservoir
and daily lake water temperature. Given the specificity of each catchment regarding flow dynamics and water management,
different models were used at each site (Fig. 2). While this disparity prevents us from an in-depth comparison among case-
studies, the common methods and code established to manipulate input and output data enable us to quantify forecast
performance and the source of the predictability at each site in a consistent and comparable way.

Inflow water temperature and discharge for Sau and Vansjg was modelled with the mesoscale Hydrologic Model (mHM v5.9:
http://www.ufz.de/mhm) and SimplyQ (hydrological module of SimplyP; Jackson-Blake et al. 2017), respectively. Inflow
water temperature and discharge for Wupper and Mt Bold was modelled with the Génie Rural (GR) suite of models
implemented within the R package airGR (Coron et al., 2017), GR6J and GR4J, respectively. mHM and SimplyQ hydrologic
models were forced with ERA5 daily precipitation and daily average surface air temperature, and the GR models were forced
with daily precipitation and daily potential evapotranspiration (Hargreaves-Samani potential evapotranspiration, derived from
daily minimum and maximum temperature, implemented in drought4R; Iturbide et al., 2019). All hydrological models were
calibrated and validated against local observations using the Nash—Sutcliffe efficiency coefficient (NSE) as the objective
function.

European Centre for Medium-Range Weather Forecasts (ECMWF)

SEASS
seasonal forecasts(hindcasts)

ERAS5

reanalysis

Hydrologic models Lake models
SimplyQ—Norway GOTM—Norway / Spain
mHM—Spain GLM—Australia / Germany
GR4J—Australia !
GRBJ—Germany

—>| Discharge I |Temperature|

Figure 2: Description of the forecasting workflow—Calibrated hydrologic and lake models are used to produce seasonal lake
hindcasts with 25 members

The General Ocean Turbulence Model (GOTM, http://gotm.net) was used to simulate the water temperature profile of Sau
Reservoir and Lake Vansjg. The General Lake Model (GLM, Hipsey et al., 2019) was used to simulate water temperature in
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the Mt. Bold and Wupper reservoirs. Lake models were forced with ERA5 surface air temperature, u and v wind components,
surface air pressure, relative humidity (or dew-point temperature), cloud cover, short-wave radiation, precipitation and, in
some cases, also downwelling long-wave radiation, and calibrated and validated against observations using the Root-Mean-
Square Error (RMSE) and NSE as objective functions.

For Lake Vansjg, the water level was set to constant given that observed fluctuations are < 1 m which are not critical for the
lake heat and water budgets. The three reservoirs, on the other hand, experience much larger water level fluctuations because
of complex water pumping patterns and/or water scarcity. It was thus critical to allow for water level fluctuations and
parametrize the outflows to avoid dry outs. For Wupper Reservoir, a statistical model was developed to calculate the reservoir’s
outflow based on the inflow using the timeseries over the warm-up period for each discharge simulation of the catchment
model. Such an approach allowed mimicking the outflow decision and approximately resembling the observed water-level to
avoid the cases of dry-outs or exceedingly low volumes of water due to inflow/outflow misestimation. More details on the
performance of the linear regression are given in the supplementary information. For Sau, historical observations of outflow
and pumping volumes were used to force the model. For Mt. Bold Reservoir, an average annual cycle was calculated from
historical observations and then replicated throughout the entire timeseries. While this assumption does not allow for inter-
annual variation, it allowed for simulation of water level fluctuation each year that represented the seasonal cycle apparent
within Mt. Bold and avoided dry outs.

The lake energy budget includes exchanges through the air-water interface, i.e., downward short-wave radiation, downward
and upward long-wave radiation, latent and sensible heat fluxes, and by lateral fluxes of water, i.e., inflow and outflow of
water (Schmid and Read 2022). The energy fluxes at the air-water interface are accounted for in the GLM or GOTM lake
model, however, the lateral fluxes caused by throughflow (inflow-outflow balance) need to be parametrized through the
addition of water temperature to the inflow provided by the catchment model. Inflow temperature was estimated based on the
assumption that water temperatures follow the air temperatures closely with some time lag (Stefan & Preud’homme 1993;
Ducharne 2008). Hence, water temperature was predicted with a linear model of the form A + B*AirTemperature where A
and B were optimized against local observations when available. At Sau Reservoir, the values of A and B were 5.12 and 0.799,
respectively, while for Mt Bold reservoir and Lake Vansjg, the values of A and B were 5 and 0.75, respectively. The validation
of this model for Wupper Reservoir, as an example, is described in the supplementary information (SI).

Most common verification statistics, e.g., Kling-Gupta efficiency (KGE), NSE and RMSE, for hydrological and lake modeling

were calculated. Details on calibration and validation periods as well as statistics are shown in Table 4 and Table S2.

2.1.5  Pseudo-observations (Lake_PO)

Following calibration, lake and hydrologic models were forced with ERA5 over 1994-2016 to produce daily pseudo-
observations of river discharge, daily surface and bottom temperature, as well as presence or absence of ice (for Lake Vansjg
only). The output of this simulation is hereafter referred to as lake pseudo-observations (Lake_PO). Theoretical prediction

skill of seasonal forecasts is commonly evaluated against pseudo-observations (Greuell et al., 2019; Harrigan et al., 2018;
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Wood et al., 2016). In contrast to lake real observations, Lake_PO have the advantages of being complete and allow to
disregard changes in skill related to model errors or biases (Harrigan et al., 2018), and to focus on skill originating from initial
and boundary conditions. In contrast to the theoretical prediction skill, the total prediction skill includes any error or bias
introduced by the model. Here, the total prediction skill of seasonal lake hindcasts (discharge, water temperature and ice -off)

was also evaluated against real observations, when those were available and covering a representative time period.

2.1.6  Seasonal forecasts (Lake_F)

For each of the 92 three-month hindcast seasons (11/1993 to 11/2016), we simulated ensemble predictions of daily river
discharge, daily surface and bottom water temperature as well as presence or absence of ice (for Lake Vansjg only; Fig. 3).
Catchment and lake models were forced with ERAS5 data over the 1-year warm-up period followed by a set of 25 members of
SEASS data covering anthe first lead month (M0) and the 3-month long target season (M1-M3). The first lead month is defined
in agreement with Greuell et al. (2019) as the month following the date on which the forecast would have been issued. Over
the first lead month, the 25 members of SEASS5 progressively diverge from ERAS to their respective SEAS5 member. Model
outputs for the final 3 months, i.e., the target season, were aggregated into three month (M1-M3) seasonal averages or sums
(i.e., average surface and bottom water temperature and cumulative seasonal inflow discharge). The output of this simulation

is hereafter referred to as lake forecasts (Lake_F).

2 2.2 Assessment of modeling performance and source of forecasting skills
3 2.2.1___ Model and forecast verification

A complete assessment of the modelling and forecasting performance of our workflow was performed through several
verifications (Table 2). The first verification (Verification 1 in Table 2) consisted in evaluating the performance of the models
forced with ERAS5 by comparing model outputs (Lake_PO) to observations at daily temporal resolution, as described in section
2.1.4. This verification step included the reporting of traditional verification statistics for modelling, i.e., NSE; KGE and
RMSE. The second and third verifications (Verifications 2 and 3 in Table 2) consisted in quantifying the lake forecast (Lake_F)
performance compared to climatology from pseudo-observations (Lake_PO) or from observations, respectively. These steps
allowed to quantify the forecasting skill of a perfect model and the total forecasting skill, respectively. Forecast verification 2
and 3 were performed using model output data at seasonal temporal resolution, i.e., daily model outputs over the target season

(M1-M3), were aggregated in seasonal averages or sums. For forecast verification 2 and 3, hindcast predictions are categorized

into three terciles, where the upper tercile includes data points falling in the percentile range 66-100%, the middle tercile

includes data in the range 33-66%, and lower tercile includes data in the range 0-33%.

Formatted: No bullets or numbering, Tab stops: Not at 0




260

265

270

Warm-up First lead month (M0) Target season (M1-M3)

@ =
10+
| \“\\,\

Precipitation {(mm) Air temperature ("C)

x10°
{c)

Discharge (m?d")
e

L
30
(d) ! !
20} il
o
v 10}
5
® Surface
T ol 1 | J
a
E 207 T T 1
& (e) ——
¥ 15
®
= 10}
5
Bottom )
ok I
Jul 1999 Oct 1999 Jan 2000 Apr 2000 Jul 2000 Oct 2000 Jan 2001

Figure 3: Time series of the air temperature (a), precipitation (b), discharge (c), surface (d) and bottom (e) water temperature over
the warm-up, first lead month (M0) and target season (M1-M3) for Autumn 2000. The black lines indicate ERAS5 (a and b) and
Lake_PO (c—e) data, the light and dark blue lines are, respectively, the 25 members and the mean of SEAS5 (a and b) and Lake_F
(c-e).

Forecast performance was quantified with two skill scores: the Ranked Probability Skill Score (RPSS) and the Relative
Operating Characteristic Skill Score (ROCSS). Skill scores are a measure of the relative improvement of the forecast compared
to a reference forecast which here is the climatology based on either Lake_PO or observations. ROCSS values were calculated
against climatology from real observations (ROCSSyy,), in addition to pseudo-observations (ROCSS,riginai), ONly when
observations covered the whole season. Indeed, ROCSS,,4inq Was calculated only if there was at least one observation point
in each month of the season and observations for at least 70% of the seasons. Observations that met these criteria only included
inflow discharge at VVansjg, Sau and Wupper for all seasons, surface and bottom temperature at Vansjg in summer only, surface
and bottom temperature at Wupper for all seasons, surface temperature at Sau for all seasons and ice-off at Vansjg.

10
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RPSS and ROCSS are commonly used as evaluation measures of probabilistic forecasting skill (Jolliffe & Stephenson, 2012;
Miiller et al., 2005). The visualizeR package (Frias et al., 2018) was used to compute the RPSS and ROCSS for Lake_PO and
Lake_F. Briefly, the RPSS provides a relative performance measure on how well the probabilistic ensemble is distributed over
the lower, middle and upper terciles, while the ROCSS provides a relative measure of discriminative skill for each category.
A RPSS > 0 is associated with a better forecast than the reference (1 being a perfect score), while RPSS < 0 indicates no
improvement compared to the reference. The ROCSS value ranges from -1 (perfectly bad forecast) to 1 (perfect forecast) and
a zero value indicates no skill compared to the reference. The RPSS has been shown to be sensitive to the ensemble size, but
this effect can be corrected for using the Fair (or unbiased) RPSS (Ferro et al., 2014). To allow for comparison with other
forecasting systems, we have used the fair RPSS (FRPSS) forecast verification. In this study, the FRPSS is calculated for
tercile events. The statistical significance of the FRPSS and ROCSS is computed based on the 95% confidence level from a
one-tailed Z test. When a forecast for a given season, variable and tercile was associated with a ROCSS value that was
statistically significant, we referred to it as a window of opportunity (i.e., a combination of season, variable and tercile for
which forecast performance was significantly better than the reference). In our case, the threshold values above which a

ROCSS was considered significant typically range between 0.47 and 0.55.

Table 2: Comparison carried out to evaluate model and forecast performance

Verification  Outputs used Reference forecast Purpose Statistics “«
data
1 Lake_PO Observations Assess lake model skill KGE
NSE
RMSE
2 Lake_F Lake_PO Assess the transfer of meteorological forecast skill ROCSSorigina

through process-based models — Perfect model
forecasting skill

3 Lake_F Observations Assess total forecasting skill ROCSSyps

4 2.2.2 _ Sensitivity analyses to initial conditions and meteorological forcing «

Several sensitivity analyses (SA), summarized in Table 3, were performed to identify the origin of the forecasting skill for a
given window of opportunity, i.e., a combination of season, variable and tercile for which forecast performance was
significantly better than the reference. Results of the SA are only reported for sites having a substantial number of windows of
opportunity for conciseness. These SA allowed quantifying the sensitivity of hindcast performance to forcing data over specific
periods: the target season (M1-M3; SEASS), the first lead month (M0) and the warm-up period (ERAS5). It was thus possible

to quantify the proportion of skills originating from each of these periods.

11

[ Formatted Table

Formatted: No bullets or numbering, Tab stops: Not at 0
cm




295

300

305

310

315

320

325

The SA consisted of replacing the forcing data of interest, i.e., over the target season, the first lead month or the warm-up
period, by data from an equivalent season/period but from a randomly selected year. For example, for the target season SA (S-
SA), the SEAS5 forcing data covering the 3-month target season was replaced by SEAS5 data from a randomly selected
equivalent season. Furthermore, the SA for the warm-up period (W-SA) consisted in replacing the ERAS data covering the
warm-up period by ERA5 data from a randomly selected equivalent time-period. The last SA covered warm-up and first lead
month (W+MO0-SA) and consisted in replacing ERA5 data over the warm-up, as in W-SA, but also SEAS5 data over the first
lead month. To ensure that the randomly sampled forcing data are representative of the whole SEAS5 or ERAS datasets, we
introduce two levels of repetitions for all experiments. First, we randomly selected a year for each of the 25 members of
SEASS5, meaning that the data selected to replace the original SEASS5 forcing data is extremely likely to be from a different
year for each SEAS5 member. Second, we repeated the analysis 25 times, for each season. Sensitivity analyses were only
carried out for Spain and Norway because of the low number of windows of opportunity at the two other sites and considering
the resources needed to execute these hindcast experiments.

The outputs of each of the sensitivity analysis were used to calculate ROCSS values against the climatology based on Lake_PO,
as for Lake_F in the Verification 2 described above (Table 2). The ROCSS values obtained through this procedure were,
respectively, ROCSSg, ROCSSy, and ROCSS,, yo for S-SA, W-SA, and W+MO0-SA. The ROCSS values obtained for the
various SAs were compared to the original Lake_F ROCSS values (ROCSS,,iginq:) to investigate the sources of prediction
skill. An estimation of the proportion of prediction skill originating from the SEASS data over the target season (Pseason) Was
expressed as follows:

Pseason = ROCSSoriginas — ROCSSs 1
Similarly, the proportions of prediction skill originating from the ERAS data over the warm-up (B, qrm—yp) and from the
SEASS data over the first lead month (P,,) can be respectively estimated as:

Puarm-up = ROCSSoriginat = ROCSSy @

Pyo = ROCSS,, — ROCSSys 1m0 3)

In Eq. 1-3, prediction skill was assumed to linearly scale with ROCSS values and skill from any interaction effect was
neglected. While we admit that Eqs. 1-3 are not necessarily statistically correct, they are useful to quantify the relative
importance of the sources of skill. Hence, the values of Pieqsons Pyarm-up @0 Prransicion Should be interpreted with care.

2.2.3 Sensitivity analyses to individual input variables

To further investigate through which process forecasting skill is transferred from input to output variables, a one-at-a-time
sensitivity analysis (OAT-SA) was performed for Lake_PO and the Pearson partial correlation coefficients (PPCC) between
each variable of Lake_PO, i.e., surface temperature, bottom temperature, discharge, ice-off, and a set of relevant input variables
were determined (Table 3). The OAT-SA consisted in replacing the data for a specific input meteorological variable by data
from an equivalent target season but from a randomly selected year. The seasonal means of OAT-SA outputs were compared
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to default outputs (Lake_PO) with the square of the Pearson correlation coefficient (R%). Higher (1 — R?) values indicate more

influence of input variables on Lake_PO.

PPCC allowed quantifying the sensitivity of model outputs to a given input variable while removing the effect of the remaining
input variables. Note that PPCC were calculated on seasonally aggregated variables. To ensure that PPCC were statistically
appropriate, i.e., only when a linear relationship exists between the seasonal means of input factors and those of the output
(Pianosi et al., 2016), the linearity assumption was checked through visual inspection of scatter plots between each input and
output variables. Partial correlation coefficients are a good alternative to ‘All-At-a-Time’ (or global) SA when the latter is not
possible because of the lack of computing resources (Pianosi et al., 2016). To avoid misleading conclusions, correlation
between input variables should be minimized (Marino et al., 2008). Hence, only the most relevant input variables were
included. Precipitation and air temperature were retained for discharge, while air temperature, precipitation, wind speed (wind
speed calculated from u and v components of wind) and short-wave radiation were retained for surface and bottom temperature.
In fact, short-wave radiation was retained over relative humidity, cloud cover and air pressure because it was responsible for
most of air-water heat fluxes (see SI). Wind was retained because of its impact on thermal stability (Blottiere, 2015).

Table 3: List of sensitivity analyses (SA) performed

Forcing data to be replaced Model output o
SA Purpose Se?r]s(;telxlty
Period Variable
S-SA Target season (SEAS5) All Lake_F Quantifying the proportion of forecasting skill
originating from SEAS5 data over the target ~ ROCSSg
season
W-SA  Warm-up period All Lake_F Quantifying the proportion of forecasting skill
(ERAS) originating from ERAS data over the warm-up ~ ROCSS),
season — initial conditions
W+MO0-  Warm-up period All Lake_F Quantifying the proportion of forecasting skill
SA (ERA5) and first lead originating from SEASS5 data over the first lead ROCSS,
month (SEAS5) month w+MO
OAT- Target season (ERA5)  One atatime Lake_PO Quantifying the sensitivity of Lake_PO to a
SA specific forcing variable 1_R?
PPCC None None Lake_PO Quantifying the sensitivity of Lake_PO to a

specific forcing variable while removing the PPCC
effect of the remaining variables
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3. Results
3.1 Performance of the calibrated catchment and lake models (Lake_PO)

Catchment and lake models calibrated against local observations performed reasonably well (Table 4). For river discharge,
NSE and KGE both ranged between 0.51 and 0.85 over the calibration and validation periods. For surface water temperature,
RMSE ranged from 1.10 to 1.63 and NSE from 0.78 to 0.94 over the calibration and validation periods. Over each season,
however, Lake_PO showed more heterogeneous performance (Table S2). Discharge simulations were usually worse in
summer, except in Australia where performance was poor for most seasons. Surface water temperature modeling typically
showed better performance during spring and fall than during summer or winter. There is no clear pattern for bottom water

temperature, but overall, it seems more difficult to be accurately simulated compared to surface temperature.

Table 4: Verification statistics of the catchment and lake model for each case study

Output Calibration Validation

variable Time NSE KGE RMSE Time NSE KGE RMSE
Norway Discharge 2005-2010 0.51 0.56 2011-2015 0.57 0.57

Temperature 2005-2010 0.92 1.12 2011-2015 0.93 1.10
Spain Discharge 1997-2007 0.60 0.66 2008-2018  0.54 0.63

Temperature 1997-2007 0.93 1.63 2008-2018 0.94 1.45
Germany Discharge 1991-2011 0.71 0.85 2012-2016 0.63 0.81

Temperature 1993-2010 0.93 1.31 2011-2016 0.91 1.53
Australia  Discharge 2003-2007 0.64- 0.70- 2008-2013  0.65- 0.54—

0.80 0.84 0.80 0.75
Temperature 2014-2016 0.91 1.17 2016-2018 0.78 1.50

3.2 Skill of the seasonal meteorological (SEAS5) and Lake (Lake_F) hindcasts

Table 5 displays the ROCSS values for each combination of Lake_F output variable, season and tercile while Table 6
summarizes the windows of opportunity, i.e., a combination of season, variable and tercile for which forecast performance, or
predictive skill, was significantly better than the reference, for SEAS seasonal meteorological hindcasts as well as for Lake_F
hindcasts. These windows of opportunity typically had ROCSS values larger than 0.47 to 0.55 (see Methods section for details).
For SEASS seasonal meteorological hindcasts, only 3 to 10 windows of opportunity were observed for each case study out of
the 96 possibilities, i.e., 3 terciles of 8 variables over 4 seasons (Table 6). Regarding Lake_F, larger proportions of the 36-39
possible variable-tercile-season combinations were associated with statistically significant ROCSS values (Table 6). Winter
and Spring in Norway, as well as Summer and Autumn in Spain were the seasons associated with the most skillful Lake_F

hindcasts. Lake Vansjg in Norway was the only case study where windows of opportunity for SEAS5 and Lake_F were
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consistently concentrated within the same seasons, i.e., mostly in Spring and to a lesser extent in Winter. For the other case
studies, there were fewer windows of opportunity for SEAS5 and those were more randomly distributed over the year. FRPSS
values were typically reported for surface water temperature in spring and autumn, except for autumn in Spain. Norway and
Germany also showed significant fair RPSS for bottom water temperature in spring and autumn, and summer and autumn,
respectively. Note that neither river discharge nor any of the SEASS5 variables had FRPSS values in any case study. Windows
of opportunity for bottom temperature represented more than half of the total for all case-studies and variables while those for
surface temperature and discharge were more sporadic.

The comparison of SEAS5 and Lake_F skillful hindcasts in Table 6 is already useful for identifying possible transfer of
forecasting skill from the SEAS5 seasonal meteorological hindcasts to the catchment and lake models. SEAS5 meteorological
hindcasts are skillful over only a very limited number of seasons, variables and terciles (Table 6). However, for Norway, there
is a higher number of skillful meteorological and lake hindcasts in spring than in the other seasons. For the other case-studies,
such a clear connection between SEAS5 meteorological hindcasts and catchment/lake model outputs is not as apparent. We
can thus hypothesize that the skill of catchment and lake model hindcasts in Norway is more inherited from the SEAS5 data
than at other case studies. In contrast, skill of the catchment and lake model hindcasts at the other case-studies is hypothesized
to originate from the legacy of the warm-up period or from the parametrization of the inflow-outflow water balance.
Verification statistics for Lake_PO seasonal means compared to observations (Table 7) show that the catchment and lake
models performed well at the Norwegian and Spanish sites in capturing interannual variability. In Germany and Australia,
performance was lower. Note that when observation coverage was below 50%, no statistics were calculated given the low
number of seasons represented and the risk of bias when computing seasonal averages. The difference between
ROCSSorigina: -(comparing Lake_F and Lake_PO) and ROCSS,,s (comparing Lake_F and lake observations) did not
necessarily scale inversely with the verification statistics (Table 7). In fact, the ROCSS,;,s reported for the German site were
slightly lower or even larger than their respective ROCSS,igina; With differences lower than 0.23. Whereas, for the Spanish
site, three ROCSS,,s values out of 4 were significantly lower than the ROCSS,,;ginq With a difference larger than 0.33.
Nevertheless, several output variables, e.g., bottom temperature in Germany and ice-off in Norway, are associated with
significant ROCSS,,iginai-@nd ROCSSop.Which provides further confidence in model calibration and low model error. In
contrast, even if the verification statistics for discharge were not worse than for the other variables, ROCSS,, values are all

below the significance threshold pointing towards some limitations in predicting hydrology.
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Table 5: ROCSS,yigina: for each combination of season, variable and tercile of lake hindcasts (Lake_F). Color scale range from
dark blue (ROCSS = -1, perfectly bad forecast) to dark red (ROCSS = 1, perfect forecast) with white in the middle (ROCSS =0, no
change compared to reference forecast). Windows of opportunity are highlighted by bold, black numbers, i.e., combination of
season, variable and tercile associated with a statistically significant ROCSS value.

Norway Spain Germany Australia
Middle | Upper | Lower | Middle | Upper | Lower | Middle | Upper | Lower | Middle | Upper
Discharge Spring 0.18 0.54 0.37 ).11 0.33 0.34 ( 0.47 )1 0.33 0.64
Summer 0.2 0.41 0.73 2 0.23 -0,59 0 0.34 ( 0.3¢
Autumn 24 0.1 0.46 0.47 0.29 0.33 0.0 0.18
Winter 21 08 1 .4 0.52 0.08 0.17 0.34
Surface Temperature [Spring 0.75 | 0.14 0.53 0.2 0.18 0.19 0.38
Summer 0.33 0.39 13 ).13 | 10.57 0.22 3
Autumn 0.52 24 0.11 0.47 0.3 )4
Winter 0.48 1 -0.66 0.1 0.09 1
Bottom Temperature |Spring 0.56 ( 0.68 0.44 0.12 0.86 0.6 0.1€
Summer 12 | « 0.35 | 053 | 036 |[N072 0.71 8
Autumn 053 0.26 0.5 0.55 0.64 6 0.1
Winter 0.48 ( 0.53 0.02 0.54 0.27 3 0.2 29
Ice-off Spring 0.69 0.29 0.75

395 Table 6: SEAS5 meteorological and Lake_F lake hindcasts associated with statistically significant FRPSS or ROCSS at each case-

400

study.
Numbers of skillful hindcasts: windows of opportunity
8 variable (tercile)
2 3
2] ° Winter Spring Summer Autumn TOTAL
SEAS5 Lake F SEAS5 Lake F SEAS5 Lake F SEAS5 Lake F SEAS5 Lake_F
> FRPSS ST, BT ST, BT 0/32 4/12
©
g ROCSS 3 3 7 8 0 0 0 0 10/96 11/39
=z ce () ST(-) airP(=+) Q(~+)
sw(+) BT(—+) airT(+) ST(-*%)
Iw (=) cc(® BT(H
hum (=)  lce-off
u) =)
V)
© FRPSS ST ST 0/32 2/12
% ROCSS 2 1 1 1 1 4 1 8/96 3/36
z airP (+) BT (-) Iw (+) cc (=) BT (-) airP(+) QM)
hum (+) cc (+)
airT (=)
sw (+)
= FRPSS ST 0/32 1712
'z
& ROCSS 0 1 1 5 1 3 5/96 9/36
QM) cc(+) BT  cc(+) Q() cc(+) QM)
airP (+) hum (+) ST (+) BT (—,+)
BT (—,+)
>. FRPSS ST BT ST; BT 0/32 4/12
2
g ROCSS 2 0 1 2 0 2 0 0 3/96 4/36
3 w (=) hum (+) BT (-+) BT (—,+)
V()

Lake_F variable abbreviations: ST, BT and Q stand for surface-, bottom-temperature and discharge, respectively. SEAS5 meteorological variable
abbreviations: airT, airP, cc, hum, sw, lw, U, V stand for surface air temperature, air pressure, cloud cover, relative humidity (or dew-point temperature),
short-wave radiation, downwelling long-wave radiation, and u and v components of wind, respectively. -, + and = stands for lower, upper and middle terciles,

respectively.
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Table 7: Verification statistics (NSE, R?, RMSE, RMSE/sd, bias) for Lake PO seasonal means_(comparing Lake PO to
observations), as well as comparison of the ROCSS oiginai-(cOMparing Lake_F and Lake_PO) and ROCSS s (comparing Lake_F
and lake observations).

- Obs coverage RMSE/ ROCSSoriginai ROCSSyps
% Variable % S M D NSE R? RMSE sd bias lower middle upper lower middle upper
T | Discharge Spring 100 96 93 0.72 0.80 20 0.52 -1.0 0.58* 0.54*  0.36 0.34
g Surface Winter 0 0 0 0.48* na
Temperature  Spring 48 58 5 0.75* 0.53* n.a n.a
Bottom Winter 0 0 0 0.48* 0.53* na na
Temperature  Spring 43 52 4 0.56* 0.68* na na
Ice-on 100 - - 0.97 0.99 22 0.16 18 2
Ice-off 100 - - 0.36 0.76 19.3 1.09 -14.7 0.69* 0.75*  0.55* 0.68*
-% Discharge Winter 100 100 99 0.88 0.89 39 0.34 -0.6 0.52* 0.18
& Summer 100 100 98 0.51 0.62 35 0.69 -1.6 0.73* 0.40
Autumn 100 100 98 0.73 0.74 4.0 0.51 -0.8 0.47* 0.40
Surf. Temp. Summer 78 78 3 0.12 0.40 11 0.87 -0.6 0.57* -0.08
Bottom Spring 48 70 3 0.86* n.a
Temperature Summer 48 67 2 0.53* 0.72* n.a na
Autumn 35 58 3 0.50* 064* na na
% | Bottom Spring 100 96 6 -5.01 0.49 1.2 2.40 1.0 0.59* 0.60* 041 0.46*
e Temperature  Summer 100 100 7 -8.63 0.26 3.8 3.04 3.6 0.48* 0.71*  0.51* 0.49*
% Discharge Autumn 43 100 100 -0.67 0.41 1.61 1.23 -1.27 0.48* na
§ Bottom Winter 23 100 82 -0.70 0.32 1.98 117 151 0.63* na
< Temperature Summer 17 75 46 0.60* na

405

410

Only output variables associated with statistically significant ROCSS_original are included. Statistically significant ROCSS are highlighted with an asterisk.
“Obs coverage” is the percentage of seasons (S), months (M) and days (D) covered by observations. Spring is March to May, Summer is June to August,
Autumn is September to November, and Winter is December to February.

2Ice-on typically occurs between November and December which is the autumn and winter boundary. Therefore, ROCSS values could not be calculated for

ice-on.

3.3 Sensitivity analyses to initial conditions and meteorological forcing

The ROCSSs, ROCSSy, and ROCSSy, ;o Values obtained for each run of S-SA, W-SA and W+MO-SA, respectively, are
summarized in boxplots in Figure 4 together with the original ROCSS value for each window of opportunity at the Norwegian
and Spanish sites. This set of sensitivity analyses (SA) were performed to identify the origin of the forecasting skill for a given
window of opportunity and allowed quantifying the sensitivity of hindcasts performance to forcing data over specific periods:
the target season (M1-M3; SEASS), the first lead month (MO0) and the warm-up period (ERA5). In general, output variable
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sensitivity to SEASS data over the target season (S-SA) is small relative to sensitivity to ERAS data over the warm-up season
and/or SEASS5 data over the first lead month. In fact, at Sau, replacing SEAS5 data over the target season with random data
(S-SA) does not yield any significant change in the ROCSS values, except for the surface temperature upper tercile (Fig. 4
panel I). However, significant changes in ROCSS values are seen for W-SA compared t0 ROCSS,,g4inq; indicating high
sensitivity to warm-up. The similar ranges in ROCSSy, and ROCSSy ,po Values suggest limited or no impact of the SEAS5
data over the first lead month on output variable forecasts.

At Vansjg in Norway, on the other hand, 8 out of 11 windows of opportunity show significant changes in ROCSS; values,
indicating higher sensitivity to SEAS5 data over the target season than at Sau. Furthermore, 3 windows of opportunity are
associated with ROCSS that are lower than ROCSS,yigina; (Fig. 4b, f and g), i.e., suggesting SEASS is providing some skill,
while 5 have ROCSS; that are higher than ROCSS,,igina (Fig. 4a, h-K), suggesting the use of SEASS is in fact reducing
forecasting skill compared to a random forecast. Then, a progressive decrease in ROCSS values is typically observed for all
windows of opportunity following W-SA and W+MO-SA, indicating a progressive loss of forecasting skill related to ERA5

data over the warm-up and SEASS5 data over the first lead month.

3.4 Sensitivity analyses to specific input variables

Figure 5 and 6 summarizes the results from the two sensitivity analyses to specific input variables: OAT-SA and PPCC.
Seasonal means of Lake_PO at Vansjg also showed higher sensitivity to specific input variables than Lake_PO at Sau (Fig. 5).
In fact, surface temperature is highly sensitive to surface air temperature over the year while some other input variables have
more specific influence. Bottom temperature is also highly sensitive to surface air temperature but wind also plays a large role,
especially in summer which is consistent with its expected impact on lake thermal stability (Blottiere, 2015). Finally, as
expected, discharge at Vansjg is highly sensitive to precipitation, and to a lesser degree to surface air temperature, except in
winter where surface air temperature has a larger influence on discharge.

The PPCC also show similar patterns regarding sensitivity (Fig. 6) where discharge is highly correlated with precipitation at
the four sites and surface air temperature plays a secondary role for specific seasons. Once again, surface and bottom
temperature at Sau stand out due to their limited sensitivity to input variables while at the three other sites, surface temperature,
and to a lesser degree bottom temperature, are generally strongly positively correlated with surface air temperature. Others,
like precipitation and short-wave radiation have more of an anecdotal influence on lake temperature, while wind shows a more
consistent negative impact on surface temperature at Vansjg, Wupper and Mt Bold. Wind also shows some impact on bottom
temperature, although less consistent. At Vansjg and Mt Bold following the coldest season, wind is positively correlated with
bottom temperature, while at Wupper during the two coldest seasons, wind is negatively correlated with bottom temperature.
Finally, ice-off date in Vansjg shows a strong negative correlation with surface air temperature (Fig. 6m) that can be linked

back to the snow content and the intensity of snow melt in the catchment (Fig. 6n and o).
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Figure 4:Box plots (n = 25) of ROCSSs, ROCSSy, and ROCSSy, . po from sensitivity analysis runs S-SA (replacing target season
SEASS data with random data), W-SA (replacing warm-up ERA5 data with random data) and W+MO-SA (replacing warm-up
450 period — ERAS5 and first lead month — SEASS data with random data) for each window of opportunity at the Norwegian (a—k) and
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Spanish (I-q) sites. ROCSS originar IS given by the red line, so ROCSSs, ROCSSy and ROCSSy 1o below the red line indicate a loss
of skill and values above the line indicate higher skill than the original forecast. ***, ** and * indicate significant difference between
a given group of ROCSSs, ROCSSy and ROCSSyy o values and ROCSS yrigina following Mann—Whitney Rank Sum test at a
significance level of 0.001, 0.01 and 0.05, respectively. Note that the S-SA, W-SA and W+MO0-SA were only performed for Sau
Reservoir in Spain and Lake Vansjg in Norway because of the significant resources needed to perform this hindcast experiments.
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Figure 5: Relative sensitivity expressed as 1 — R? of Lake_PO seasonal means to specific input variables estimated following the
OAT-SA (see section 2.2.3 and Table 3 in the Methods section for details). Circle size represent relative sensitivity on a scale from 0
to 1, e.q., larger circle sizes, i.e., higher (1 — R? values, indicate more influence of input variables on Lake PO. Meteorological
variable abbreviations: airT, p, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover,
relative humidity (or dew-point temperature) and short-wave radiation, respectively. Note that the relatively larger sensitivity of
Lake_PO to specific input variables over the whole year can be larger compared to over a given season because of the strong seasonal
cyclicity. Note that the OAT-SA was only performed for Sau Reservoir in Spain and Lake Vansjg in Norway.
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465  Figure 6: Pearson partial correlation coefficients (PPCC) between Lake_PO seasonal means and seasonal means of selected input
variables. Circle color and size represent PPCC value (from -1 to 1) and significance, respectively. Meteorological variable
abbreviations: airT, P, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover, relative
humidity (or dew-point temperature) and short-wave radiation, respectively. Only significance level at 0.1 or below were considered
in the interpretation.
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Next, we use SA outputs to better describe the origin of the prediction skill, considering inertia, time integration as well as
variable interactions. Assuming that climate signals in the ERA5 and SEASS input data over the warm-up, first lead month
and target periods are additive sources of prediction skill, we can use Eqs 1-3 to partition the prediction skill originating from
those time periods, i.e., Pyarm—up Puo @Nd Pyegson, respectively. For Sau reservoir, this calculation yields P, g —qy OF 0.94
to 1.0 leaving only an unsignificant fraction of prediction skill to the forcing data over the target season and the first lead
month, as illustrated in Fig. 4. At this site, the output variables show in parallel very low sensitivity to input variables (Fig. 5
and 7) which supports a strong role of inertia or long-term time integration in hindcast predictive skill. The fact that 5 out of
the 6 windows of opportunity are for bottom water is also consistent with inertia as the main source of skill given the low
circulation rate and inertia of hypolimnions. For Lake Vansjg, Eqs 1-3 yielded P;,4,, 0f 0.003 (range: -0.19 to 0.18), Py, of
0.19 (0.04 t0 0.37) and Pygrm—up 0f 0.29 (0.09 to 0.60). Hence, a significant fraction of prediction skill is originating from the
SEASS boundary conditions although the largest source remains initial conditions through ERA5 data over the warm-up.
Interestingly, the SEAS5 data over the first lead month is also a significant source of prediction skill. In fact, in decreasing
order of importance, prediction skill originates from the warm-up, the first lead month and the target season. This progressive
decrease in prediction skill is only observed at Lake Vansjg and suggests that across-variable integration of climate signals
persists through the first lead month and, in some cases, the target season, but is progressively deteriorating as we move into
the target season. Indeed, there is additional consistency between the SEAS5 input variables showing some forecasting skill
and the output variables. In fact, surface, and bottom temperature in spring at Vansjg are sensitive to surface air temperature
and wind (Fig. 6b and c), and surface aur temperature, wind u and v components are associated with some windows of
opportunity in spring (Table 6). Similarly, ice-off is sensitive to surface air temperature, as are snow quantities and melt
intensities in the catchment (Fig. 6m—0). Hence, in contrast to Sau reservoir where most of the prediction skill seems to

originate from inertia, at Lake Vansjg, across-variable integration contributes to predictive skills.

4 Discussion
4.1 Sources of skill

Our investigation into relationships between input and output variables and the sensitivity of predictive skill to meteorological
data inputs over different time periods have yielded important insights into the sources of seasonal lake forecasting skill in our
case study sites.

A key finding is that predictive skill is mostly sensitive to meteorological inputs over the warm-up and first lead months (Fig.
4, Section 3.4), although some specific windows of opportunity are also somewhat sensitive to the meteorological data over
the target season. Hence, integration of the climate signal over time or across variables by catchment hydrologic and physical
processes, e.g., snow accumulation (Harrigan et al., 2018) or heat accumulation in lakes, is likely a key source of predictive

skill. In fact, Mercado-Bettin et al. (2021) already noted an increase in prediction skill when moving from weather to discharge
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to lake temperature, i.e., in an increasing order of time and across variable integration of climate signals. Strong inertia is also
a potential source of prediction skill.

After accounting for forecasting skill from the forcing data over various periods (Section 3.43), a large proportion of the skill
still remains unexplained, especially for some selected windows of opportunity at Lake Vansjg in Norway. Bottom water
temperature at Lake Vansjg in spring shows the highest residual skill after removal of skill from warm-up and first lead month
(Fig. 4e—f). Surface and bottom temperature show a different degree of coupling with air temperature. In fact, while surface
temperature responds tightly to changes in air temperature (Butcher et al., 2015; Schmid et al., 2014), bottom temperature
responds to a variety of complex interactions influenced by lake characteristics (e.g., fetch, surface area, depth, light
penetration; Butcher et al., 2015). Indeed, bottom temperature in spring depends on preceding winter conditions but also on
the intensity and length of the spring mixing event. To fully capture the intensity of this event, the model requires good initial
water temperature inherited from previous winter but also skillful weather forcings, especially for surface air temperature and
wind (Fig. 6¢). In fact, for bottom temperature in spring to be higher than normal, it requires surface water to be heated up
more than normal, mainly through heat exchange with air temperature, but also the lake to remain mixed for a longer time
period than normal. The interaction between skill from legacy and from weather forcing might thus be another source of
predictive skill. The fact that the proportion of forecasting skill progressively decreases from warm-up, through the first lead
month and the target season at VVansjg suggests that the interactions between input variables, which are incorporated in the
process representation within the models, provide some skill but progressively deteriorates as we move forward in time. At
Sau reservoir in Spain, on the other hand, all skill is lost at the sharp boundary between the warm-up and the first lead month.
This difference might be related to the presence of skill from the SEAS5 data at Vansjg (Table 6) and not at Sau. In other
words, in the absence of skill in SEAS5 data, no additional skill can originate from interaction effects.

Literature on streamflow hindcasts broadly shows that beyond the first lead month, hindcasts forced with an ensemble of
boundary conditions resampled from historical meteorology are typically more skillful than hindcasts driven by seasonal
meteorological predictions (Arnal et al., 2018; Bazile et al., 2017; Greuell et al., 2019). Hence, better lake forecasting skills
could likely be achieved by simply forcing our models with climatology. Our results partly fit with these findings, as the skill
of S-SA hindcasts for selected windows of opportunity were higher than the original hindcasts (Fig. 4a, h—k). These S-SA
hindcasts are similar to climatology-driven hindcasts, although they are associated with higher uncertainty since they are driven
by random SEAS5 data and should therefore be regarded as a minimum forecasting potential. For some windows of
opportunity, however, SEAS5 was a significant source of predictive skill (Fig. 4b, f, g and 1). In those cases, only an
improvement in SEAS5 forecasting skill is likely to improve lake forecasts. Improvement for only selected variables in SEAS5
would likely be enough to yield a significant increase in lake forecasting skill since most of the output variables presented here
showed sensitivity to one or two input variables (Fig. 6).
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4.2 Limitations and implications for seasonal lake forecasts

One apparent limitation of our study is the use of reanalysis weather data and pseudo-observations as inputs and benchmark
output variables. Using pseudo-observations for skill assessment is a common methodology in streamflow forecasting studies
(Alfieri et al., 2014; Wood et al., 2016) and it offers the opportunity to investigate the relationship between forecasting skills,
initial and boundary conditions, while putting less emphasis on model errors and biases (Harrigan et al., 2018). Working with
reanalysis weather data generates a less site-specific workflow and removes difficulties associated with dealing with temporal
and spatial heterogeneity in observed data. Nevertheless, here we also evaluate the forecasting skill against catchment and lake
observations when possible (Table 7) and show that most of the windows of opportunity reported for water temperature held
while those for discharge are no longer significant compared to observations. This discrepancy between discharge and water
temperature can be related to the fact that discharge tends to be more variable than water temperature, with short-lived high
peaks which are difficult to model. The catchment models therefore performed less well than the lake models. This further
suggests that evaluation against observations is likely more important for discharge than for water temperature.

The prediction skill of the seasonal lake forecasts can be influenced by multiple factors including the catchment and lake

models used, the prediction skill of the forcing meteorological hindcasts, the quality and frequency of observations against

which the models are calibrated, the nature of the system (e.g., potential for inertia), and the model calibration procedures.

Given that we applied our workflow to only four case-study sites, unraveling the impact of all of the above-mentioned factors

is out of the scope of this study and should be addressed through a more systematical application of our workflow to a larger
number of sites. Our results rather highlight two opportunities for seasonal lake forecasting. First, prediction skill of the forcing

meteorological SEASS5 hindcasts, expected to be stronger around the tropics, was the largest at the northernmost Norwegian

site (Table 6) and effectively transferred from meteorological to lake hindcasts (Section 3.3). This highlights that, although the

prediction skill of the meteorological forecasts is generally higher at the equator, there is not a monotonic decrease in skill

with increasing latitude, rather there is high spatial variability in skill. Potentially useful seasonal meteorological and lake

forecasts can therefore still be obtained at higher latitudes. Second, g

Given that inertia and integration over time were the dominant sources of predictive skill at Sau reservoir and Lake Vansjg,
useful hindcasts could already be issued without the use of SEAS5 data. In fact, our workflows show limited sensitivity to
boundary conditions over the target season. Hence, future workflows should use selected climatology as forcing data over the
target season, in addition to (or instead of) seasonal meteorological prediction. This benchmark forecasting workflow with
climatology will likely yield similar or more skillful forecasts, as well as being less time-consuming to set up. Indeed, even
with randomly selected years from the selected-SEASS data, which can be seen as a highly uncertain climatology, some
windows of opportunity are more skillful than with the correct SEASS data (Fig. 4). Nevertheless, if seasonal meteorological
prediction products become more skillful, they will likely be a real asset for lake seasonal forecasting enabling additional skills

through interactions over time.
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State-of-the-art modeling practices typically involve calibrating hydrologic and lake models against daily observations.
Nevertheless, daily observations of water quality are often not available or only cover a fraction of the time of interest. Table
7 illustrates the challenges related to data coverage and model evaluation where many calibration and validation statistics could
not be estimated because of the lack of observations. In addition, calibrating to daily data prioritizes model parameterizations
which are able to capture daily variability, but not necessarily seasonal or interannual variability, which are more relevant for
seasonal forecasting. Calibrating the hydrologic and lake models using seasonal means or medians, in combination with daily
data, could solve the observation coverage issue while improving seasonal predictive skill, but is then hampered by a low

number of observed data points for calibration. Nevertheless, ones needs to ensure that the seasonal averages are calculated

from representative and well-distributed datasets. For Lake Vansjg, this would not have solved the lack of observations in
Spring for example, because observations only cover April and May. For Sau and Wupper reservoirs, on the other hand, this
would have been possible and potentially improve predictive skills. In any case, having access to more complete, long-term
and systematic observations on water temperature, inflow and outflow discharge, including abstraction and over- flows for
reservoirs, would facilitate robust model calibration and validation, and likely model predictive skills. The skill of water quality
forecasting tools heavily depends on observation availability. Hence, continued efforts should be put on ensuring that

observational programs are suited to providing the information needed by our models (Robson, 2014).

5 Conclusion

Lake seasonal forecasts could provide valuable knowledge for water managers to help protect preserve-drinking water reserves,

as well as ecological and recreational services under increasing pressures from water demand, anthropogenic pollution, and
climate change. Nevertheless, their use is still limited in the water sector. Here we unravel the source of predictive skill of lake
seasonal hindcasts at four case-studies across Europe and in Australia, including inflow discharge, surface and bottom water
temperature as well as ice-off dates. Through sensitivity analyses, we contribute to the demystification of lake forecasting tools
with the long-term objective of facilitating their utilization in the water sector. In Spain, where the seasonal meteorological
predictions have negligible skill, the source of predictive skill is mainly catchment and lake inertia. In Norway, where some
seasonal meteorological predictions are skillful, the-predictive skill is coming from, in decreasing order of importance, inertia,
time- and across-variable integration of climate signals through catchment processes, and seasonal meteorological predictions
over the target season (SEASS). In Norway, skillful SEAS5 meteorological hindcasts over specific seasons likely contribute
to sustaining the predictive skill from antecedent conditions through to the target season.

Despite its central role in the probabilistic nature of the forecasting workflow, SEAS5 meteorological forcing data contributes
littleto-a-Hmited-extent to the predictive skill, and often reduces the performance of the hindcasts. Hence, our findings suggest
that using a probabilistic ensemble catchment-lake forecast without SEASS5 forcing data is currently likely to yield higher
quality forecasts_in most cases, as demonstrated by hindcasts driven with randomly selected SEASS5 data. Nevertheless, upon
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skitk-improvement in the skill of the seasonal meteorological forecasts, only a small step would be needed to provide more
skillful lake forecasts for better water management.

Index of abbreviations (in order of appearance)

SEASS: seasonal meteorological forecast dataset from the European Centre for Medium Range Weather Forecasts.
ERAS: meteorological reanalysis dataset from the European Centre for Medium Range Weather Forecasts.

NSE: Nash—Sutcliffe efficiency coefficient

KGE: Kling-Gupta efficiency coefficient

RMSE: Root-mean squared error

R square of the Pearson correlation coefficient

Lake_PO: Lake pseudo-observations of water temperature, inflow discharge and ice-off produced with coupled catchment and
lake models forced with ERA5 meteorological data.

Lake_F: Seasonal lake hindcasts of water temperature, inflow discharge and ice-off produced with coupled catchment and lake
models forced with SEAS5 meteorological data (25 members).

MO: First lead month

MI1-M3: Month 1 to month 3 of the lake forecast, i.e., target season of the lake forecasts.

ROCSS: Relative Operating Characteristic Skill Score

RPSS: Ranked Probability Skill Score

FRPSS: Fair (or unbiased) RPSS

ROCSS,riginai- ROCSS for Lake_F as compared to reference forecast based on climatology from Lake_PO.

ROCSS,,s: ROCSS for Lake_F as compared to reference forecast based on local observations.

SA: Sensitivity analysis

S-SA: Sensitivity analysis of Lake F to boundary conditions over the target season (M1-M3)

W-SA: Sensitivity analysis of Lake_F to boundary conditions over the warm-up period

W+MO-SA: Sensitivity analysis of Lake_F to boundary conditions over the period covering the warm-up and first lead month
ROCSSs: ROCSS for Lake_F following S-SA as compared to reference forecast based on climatology from Lake_PO
ROCSSy,: ROCSS for Lake_F following W-SA as compared to reference forecast based on climatology from Lake_PO
ROCSSy,+pm0: ROCSS for Lake F following W+MO0-SA as compared to reference forecast based on climatology from
Lake PO

OAT-SA: One at a time sensitivity analysis

PPCC: Partial correlation coefficient

airT: Surface air temperature

airP: Surface air pressure

26



630

635

|640

645

650

cc: Cloud cover

hum: Relative humidity (or dew-point temperature)
sw: short-wave radiation

Iw: downwelling long-wave radiation

U: U-component of wind speed

V: V-component of wind speed

p: Precipitation

Computer code and models

You can find all the code and data files related to this manuscript at:

https://github.com/NIVANorge/seasonal_forecasting_watexry
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