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Abstract. Despite high potential benefits, the development of seasonal forecasting tools in the water sector has been slower 

than in other sectors. Here we assess the skill of seasonal forecasting tools for lake and reservoir set up at four sites in Australia 

and Europe. These tools, as previously presented, consist of coupled hydrological catchment and lake models forced with 

seasonal climate meteorological forecast ensembles to provide probabilistic predictions of seasonal anomalies in water 20 

discharge, temperature and ice-off. Successful implementation requires a rigorous assessment of the tools’ predictive skill and 

an apportionment of the predictability between legacy effects and input forcing data. To this end, models were forced with two 

meteorological datasets from the European Centre for Medium Range Weather Forecasts (ECMWF), the seasonal forecasts 

SEAS5 with three-month lead times and the ERA5 reanalysis. Historical skill was assessed by comparing both model outputs, 

i.e., seasonal lake hindcasts (forced with SEAS5) and pseudo-observations (forced with ERA5). The skill of the seasonal lake 25 

hindcasts was generally low although higher than the reference hindcasts, i.e., pseudo-observations. In addition, but higher 

than the SEAS5 climate hindcastsmeteorological predictions showed less skill than the lake hindcasts. NeverthelessIn fact, 

skilful lake and SEAS5hindcasts  windows of opportunity were identified for selected seasons and variables, although they 

were not always synchronous with skilful SEAS5 meteorological hindcasts, raising questions on the source of the 

predictability. A set of sensitivity analyses showed that most of the forecasting skill originates from legacy effects, although 30 

during winter and spring in Norway some skill was coming from SEAS5 over the three-month target season. When SEAS5 

hindcasts were skillful, additional predictability predictive skill originates from the interaction between legacy and SEAS5 

skill. We conclude that a climatology driven forecast is currently likely to yield higher quality forecasts. 
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1. Introduction 

Freshwater provides essential services for food and energy production, manufacturing, cultural heritage, and natural habitats. 35 

However, it is threatened by more frequent extreme events (Jeppesen et al., 2021), climate change (Labrousse et al., 2020), 

anthropogenic water depletion (Yi et al., 2016) and agricultural pressures (Wuijts et al., 2021). Implementation of mitigation 

measures can help preserve freshwater resources, although they come with trade-offs between production from economic 

sectors with related social benefits, and availability of good quality freshwater. Hence, successful implementation of measures 

requires capacity at the local-regional level for cross-sectoral decision-making (Wuijts et al., 2021). Seasonal forecasting tools 40 

for water quality can help facilitate the decision-making process by refining optimal actions over the next season, e.g., 

magnitude and timing of reservoir drawdowns. Indeed, they can supply knowledge on the impacts of future climatic conditions 

on freshwater over a realistic time frame enabling implementation with reduced negative effects on economic activities. 

Nevertheless, the use and access to forecasting tools is still very limited for water managers (Lopez & Haines, 2017; Soares et 

al., 2018). The probabilistic nature of seasonal forecasts can be a key barrier coupled with the lack of reliability and credibility 45 

of these predictions in most regions out of tropics. Hence, a better access to seasonal forecasting tools as well as increased 

comprehension and description of these tools are required prior to their successful implementation in the decision-making 

process within the water sector. 

Seasonal climate meteorological predictions provide a probabilistic description of the weather over the next few months, e.g., 

an 80% chance of the weather being wetter than normal. Seasonal climate predictability mainly originates from ocean–50 

atmosphere interactions (Troccoli, 2010). In fact, the ocean inertia, given its volume and the heat capacity of liquid water, 

exerts an influence on the atmosphere on the scale of months which allows us to estimate its future effect on weather. Given 

that ocean–atmosphere interactions are relatively strong in the equatorial region (Troccoli, 2010), seasonal 

meteorologicalclimate predictions typically show stronger predictive skill, or prediction performance, around the tropics 

(Johnson et al., 2019; Manzanas et al., 2014). Under higher latitudes, skills from seasonal meteorologicalclimate predictions 55 

are patchy and less consistent among variables and seasons. Hence, seasonal climate the boundary conditions, e.g., seasonal 

air temperature forecasts used to force a hydrological model, forecasts are is usually not the main source of predictability 

outside the tropics, at least for stream flow (Greuell et al., 2019; Harrigan et al., 2018; Wood et al., 2016). Nevertheless, climate 

models producing seasonal meteorologicalclimate forecasts are constantly improving and it is reasonable to expect that forecast 

opportunities will expand in the future (Mariotti et al., 2020). Developing seasonal forecasting workflows, quantifying the skill 60 

and investigating the source of predictability represent a necessary and essential step towards reliable water quality seasonal 

forecasting. 

While some of the first forecasting tools were originally developed for flood warnings (e.g., Pagano et al., 2014; Werner et al., 

2009), applications to other sectors are becoming more frequent. In the agricultural sector, for example, a recent study shows 

that flowering time can be reliably predicted from seasonal meteorologicalclimate forecasts in central and eastern Europe, 65 

enabling early variety selection and planning of farm management (Ceglar & Toreti, 2021). Seasonal meteorologicalclimate 
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forecasts were also shown to provide useful information for the wind energy sector (Lledó et al., 2019), and to avoid significant 

economic losses from hydropower generation during droughts (Portele et al., 2021). Nevertheless, the use of seasonal 

meteorologicalclimate forecasts for water quality temperature in lakes and reservoirs has been limited so far, where the focus 

has been on water quantity (Arnal et al., 2018; Giuliani et al., 2020; Greuell et al., 2019; Pechlivanidis et al., 2020). Studies 70 

forecasting water temperature, a fundamental water quality variable, are rare in the literature (Mercado-Bettin et al., 2021; Zhu 

et al., 2020; Baracchini et al., 2020), despite the diverse influence of this variable on lake ecosystem structure and functioning 

(Dokulil et al., 2021). Nevertheless, a simple lumped model (air2water; Piccolroaz et al., 2013), previously developed to 

estimate surface lake water temperature as a function of air temperature, has been applied to predict water temperature in 

thousands of lakes (Zhu et al., 2021). While this hybrid approach yielded skillful surface lake water temperature predictions 75 

and forecasts (Piccolroaz et al., 2018; Toffolon et al., 2014), it doesn’t take seasonal climate forecast ensembles as inputs, i.e., 

climate data products specifically designed for seasonal forecasting, and it doesn’t allow forecasting any other lake variable, 

such as bottom temperature or ice-off, i.e., the first ice-free day after a ice-covered period.  

Research on seasonal forecasting in hydrology has started more than a decade ago (Troin et al., 2021) and now represents a 

source of knowledge for other research fields. When forecasting river flow, for example, predictability can originate from two 80 

main sources: (i) initial conditions such as catchment water stores of initial soil moisture, groundwater, and snowpack, which 

are directly linked to the water residence time; and (ii) boundary conditions, i.e.,  seasonal climate predictionmeteorological 

forecasts used to force the hydrological model (Greuell et al., 2019). Throughout the many studies of river flow seasonal 

forecasting in Europe, it appears that initial conditions form the dominant source of skill in run-off (Greuell et al., 2019; 

Harrigan et al., 2018; Wood et al., 2016) and predictability can be extended up to a year ahead in case of very low flow 85 

(Staudinger & Seibert, 2014). When dealing with standing water bodies, antecedent conditions are also likely to provide 

significant predictability, given that the water storage in lakes and reservoirs is large compared to river channels, providing 

higher inertia. Water residence time is thus expected to exert a strong influence on water flowdischarge predictability. Water 

temperature, on the other hand, is influenced by multiple meteorological variables, e.g., wind, air temperature and radiation, 

in addition to water stores which can affect the source of its predictability.  90 

Here, we further investigate the performance and in particular the source of this prediction performance, also referred to as 

predictive or forecasting skill, of lake water quality seasonal forecasting tools first described by Mercado-Bettin et al. (2021) 

and Jackson-Blake et al. (2022). These tools integrate seasonal climate predictions and water impact hydrological catchment 

and physical lake models forced with seasonal meteorological forecasts with three-month lead times at four case study sites in 

Europe and Australia (Fig. 1). In fact, the model forcing meteorological variables as well as output catchment and lake variables 95 

are a set of retrospective seasonal forecasts for past dates, hereafter referred to as hindcasts, that can be compared to historical 

records. The objective of this study is to assess whether seasonal climate meteorological forecast hindcast ensembles with 

three-month lead time used as inputs to catchment and lake process-based models provide some predictive skill to seasonal 

lake forehindcasts. To this end, the forecasting skill of the tools was assessed for combinations of season and freshwater 

variables, i.e., discharge, water temperature or ice-off, and for each tercile. In parallel, we quantified the forecasting skill of 100 
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each meteorological variable of the seasonal meteorologicalclimate prediction at each site. Both assessments were carried out 

following aggregation of model outputs from daily to seasonal temporal resolution, i.e., seasonal means or sums. When a 

hindcast was found to perform significantly better than a reference hindcast, e.g., climatology from pseudo-observations as 

defined in the Methods, for a combination of a given season, variable and tercile, this latter combination was defined as a 

“window of opportunity”. This terminology is introduced to emphasize the fact that these forecasts can be used in the decision-105 

making processes by water managers but only for specific variable and season. A set of sensitivity analyses was performed to 

identify input-output relationships and to partition the source of the predictability prediction skill for each window of 

opportunity among warm-up, (transition)first lead-month and seasonal meteorologicalclimate predictions. The comparison in 

hindcasts with the aim of isolating the contributions of different sources to skill has been applied before on streamflow 

hindcasts (e.g., Arnal et al., 2018; Greuell et al., 2019), but this is, to our knowledge, the first study investigating the origin of 110 

seasonal hindcast ensemble skills on water discharge, temperature and ice-off in lakes and reservoirs. The implications for 

water qualitylake forecasting tools are discussed. 

 
Figure 1: Location of the four case studies in Europe and Australia along with climate type and coordinates. Map is modified from 

Jackson-Blake et al. (2022). Detailed catchment maps are given in Jackson-Blake et al. (2022).   115 
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2. Methods 

2.1 Description of the forecasting tools 

The forecasting tools consist of a coupled catchment runoff model to a one-dimensional water column lake model, forced by 

seasonal meteorologicalclimate predictions, to simulate three impact output variables at daily resolution: inflow discharge, and 

lake surface and bottom temperature. For Lake Vansjø in Norway, the timing of ice melt (ice-off) was also included in the 120 

impact output variables in spring. The workflow consisted in running the catchment models first, providing inflow water 

discharge and water temperature to the lake models. 

2.1.1 Case study sites 

Water qualityLake forecasting tools were developed for four regulated water lakes/reservoirs in Europe and Australia which 

have been described earlier (Mercado-Bettin et al., 2021;Table 1; Fig. 1). Briefly, Sau (Spain) and Mount Bold (Australia) 125 

reservoirs large water supplies for the cities of Barcelona and Adelaide, respectively. Lake Vansjø (Norway), is a drinking 

water source for three municipalities and the Wupper reservoir (Germany) is used for flood control, environmental flows, and 

recreation. 

Table 1: Characteristics of the study sites. Mixing timing refers to boreal seasons only. 

Case study 

(Country) 

Catchment 

area (km2) Surface 

area (ha) 

Volume 

(hm3) 

Water 

retention time 

(yrs) 

Max. 

Depth (m) 
Mixing regime Mixing timing 

Sau (Spain) 1680 575 165 0.2 60 monomictic Winter 

Mt Bold 

(Australia) 
357 254 46.4 0.2-0.6 44.5 monomictic 

Summer 

Vansjø (Norway) 690 3600 252 1.1 19 dimictic 
Spring 

Fall 

Wupper 

(Germany) 
215 211 26 0.2 31 dimictic 

Spring 

Fall 

2.1.2 Climate Meteorological input data 130 

We used two different climate meteorological datasets to force the catchment hydrological and lake physicalimpact models 

(catchment and lake models) in our tools: a climate reanalysis (ERA5) and a seasonal climate forecasting product (SEAS5) 

which both offer a global spatial and continuous a relatively homogeneous spatial and temporal coverages to ensure future 

transferability of our workflows and easy comparison between our case-studies (Johnson et al., 2019). ERA5 is the latest 

reanalysis at 0.25° spatial resolution (Hersbach et al., 2020) produced by the European Centre for Medium Range Weather 135 

Forecasts (ECMWF; https://www.ecmwf.int) within the Copernicus Climate Change Service (C3S, 

https://climate.copernicus.eu/). ERA5 data (1988-2016) were used (i) to correct for bias in the SEAS5 data using the quantile 

mapping technique as described  belowby Mercado-Bettin et al. (2021); (ii) to provide climate meteorological pseudo-

https://www.ecmwf.int/
https://climate.copernicus.eu/
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observations for retrospective skill evaluation of SEAS5 hindcasts, (iii) to force impact catchment hydrological and lake 

physical models to produce pseudo-observations of the impact output variables, (iv) to force our impact catchment and lake 140 

models to produce antecedent/warm-up period data preceding seasonal forecast hindcast periods (i.e., combined one lead-

month and three-month target season) . SEAS5 is the latest seasonal forecasting system from the ECMWF at 1° spatial 

resolution and provides operational seasonal forecasts and retrospective seasonal forecasts for past years (hindcasts). We used 

hindcasts (1994-2016) in this study. A hindcast with 25 members was considered for the period 19943-2016 for the three-

month boreal seasons (spring: March through May; summer: June through August; autumn: September through November; 145 

winter: December through February), with one month as lead time. Climate data were downloaded, down-scaled and bias-

corrected with aA dedicated R package (climate4R; Iturbide et al., 2019) was used for ERA5 and SEAS5 meteorological data 

pre-processing. SEAS5 members were pre-processed using the quantile mapping technique (Gutiérrez et al., 2019) to correct 

for systematic bias relative to climate (pseudo-)observations (ERA5 reanalysis). We used the empirical quantile mapping 

approach (EQM) due to its ability to deal with multivariate problems (Wilcke et al., 2013). More details about bias-correction 150 

are given in Mercado-Bettin et al. (2021).EQM adjusts 99 percentiles and linearly interpolates inside this range every two 

consecutive percentiles; outside this range, a constant extrapolation (using the correction obtained for the 1st or 99th percentile) 

is applied (Déqué, 2007). In the case of precipitation, we applied the wet-day frequency adaptation proposed by Themeßl et 

al. (2011). The resulting bias-corrected data were used for hydrologic and lake models meteorological forcing, noting that we 

implemented bias-correction using leave-one-(year)-out cross-validation. Therefore, for each year, seasonal climate hindcast 155 

member predictions were adjusted with the bias correction parameters derived from training with all other years; after which 

all bias-corrected data were appended to obtain a corrected (i.e., locally calibrated) time series of seasonal meteorological 

hindcasts for the full period for each case study. Finally, to use the bias-corrected data as meteorological forcing for hydrologic 

and lake models, we used bilinear interpolation (akima method), whereby we specified lake/reservoir coordinates from which 

seasonal meteorological hindcast data from surrounding pixels were interpolated. 160 

Climate Meteorological datasets include daily average 2-meter air temperature (tas), wind speed (u and v components of wind; 

uas and vas), surface air pressure (psl), relative humidity (or dew-point temperature) (tdps), cloud cover (tcc), solarshort-wave 

radiation (rsds), downwelling long-wave radiation and  daily sum of precipitation(tp).  

2.1.3 Observations 

Daily inflow discharge and daily to monthly lake water temperature observations (Table S1) were used for catchment and lake 165 

model calibration and validation, as well as quantification of forecasting skills. For Lake Vansjø, daily measurements of 

discharge over 1994‒2016 were taken from the gauging station at Høgfoss (Station 3.22.0.1000.1; Norwegian Water Resources 

and Energy Directorate). Lake temperature data were gathered from the Vansjø-Hobøl monitoring program dataset, conducted 

by the Norwegian Institute for Bioeconomy Research and by the Norwegian Institute for Water Research (Haande et al., 2016). 

These data are available freely on the Norwegian national database (https://vannmiljo.miljodirektoratet.no).  For Sau reservoir, 170 

daily measurements of discharge into Sau Reservoir were provided by the Catalan water agency (Agència Catalana de l’Aigua, 

Formatted: Not Highlight
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ACA) while lake temperature and weather data are part of a long-term monitoring program (Marce et al., 2010). Discharge, 

water temperature and weather observations at the two other reservoir sites were collected from the water reservoir operators 

(Wupperverband for Wupper and SA Water for Mt Bold). Lake water temperature data are discontinuous and covered only 

part of the modelled time-period (1994‒2016) because of limited funding for monitoring programs. In addition, precipitation, 175 

temperature, short-wave radiation, humidity, and wind daily records at nearby meteorological stations were obtained for each 

case study from the local meteorological institutes. For Lake Vansjø, this included ice-off dates from the Norwegian 

Meteorological Institute station 1,715 (Rygge) located on the lake shore (59° 38′N, 10° 79′ E). 

2.1.4 Catchment-lake process-based model setup and calibration 

A catchment-lake process-based model chain was setup at each site to predict daily inflow discharge into the lake/reservoir 180 

and daily lake water temperature. Given the specificity of each catchment regarding flow dynamics and water management, 

different models were used at each site (Fig. 12). While this disparity prevents us from an in-depth comparison among case-

studies, the common methods and code established to manipulate input and output data enable us to quantify forecast 

performance and the source of the predictability at each site in a consistent and comparable way. 

Inflow water temperature and discharge for Sau and Vansjø was modelled with the mesoscale Hydrologic Model (mHM v5.9: 185 

http://www.ufz.de/mhm) and SimplyQ (hydrological module of SimplyP; Jackson‐Blake et al. (2017), respectively. Inflow 

water temperature and discharge for Wupper and Mt Bold was modelled with the Génie Rural (GR) suite of models 

implemented within the R package airGR (Coron et al., 2017), GR6J and GR4J, respectively. mHM and SimplyQ hydrologic 

models were forced with ERA5 daily precipitationtp and tasdaily average surface air temperature, and the GR models were 

forced with daily precipitationtp and daily potential evapotranspirationpetH (Hargreaves-Samani potential evapotranspiration, 190 

derived from tmin daily minimum and maximum temperature, and tmax and implemented in drought4R; Iturbide et al., 2019). 

All hydrological models were calibrated and validated against local observations using the Nash–Sutcliffe efficiency 

coefficient (NSE) as the objective function.. 

 

http://www.ufz.de/mhm
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Figure 21: Description of the forecasting workflow—Calibrated hydrologic and lake models are used to produce seasonal lake 195 
hindforecasts of water quality with 25 climate seasonal members 

The General Ocean Turbulence Model (GOTM, http://gotm.net) was used to simulate the water temperature profile of Sau 

Reservoir and Lake Vansjø. The General Lake Model (GLM, Hipsey et al., 2019) was used to simulate water temperature in 

the Mt. Bold and Wupper reservoirs. Lake models were forced with ERA5 tassurface air temperature, uas, vasu and v wind 

components, surface air pressurepsl, relative humidity (or dew-point temperature), cloud cover, short-wave radiation, 200 

precipitation and, in some cases, also downwelling long-wave radiationtdps tcc, rsds and tp, and calibrated and validated 

against observations using the Root-Mean-Square Error (RMSE) and NSE as objective functions.  

For Lake Vansjø, the water level was set to constant given that observed fluctuations are < 1 m which are not critical for the 

lake heat and water budgets. The three reservoirs, on the other hand, experience much larger water level fluctuations because 

of complex water pumping patterns and/or water scarcity. It was thus critical to allow for water level fluctuations and 205 

parametrize the outflows to avoid dry outs. We opted for a simple linear regression between observed inflow and outflow to 

predict the outflow in the absence of observations.For Wupper Reservoir, a statistical model was developed to calculate the 

reservoir’s outflow based on the inflow using the timeseries over the warm-up period for each discharge simulation of the 

catchment model. Such an approach allowed mimicking the outflow decision and approximately resembling the observed 

water-level to avoid the cases of dry-outs or exceedingly low volumes of water due to inflow/outflow misestimation. More 210 

details on the performance of the linear regression are given in the supplementary information. For Sau, historical observations 

of outflow and pumping volumes were used to force the model. For Mt. Bold Reservoir, an average annual cycle was calculated 

from historical observations and then replicated throughout the entire timeseries. While this assumption does not allow for 

inter-annual variation, it allowed for simulation of water level fluctuation each year that represented the seasonal cycle apparent  

within Mt. Bold and avoided dry outs. 215 

The lake energy budget includes exchanges through the air-water interface, i.e., downward short-wave radiation, downward 

and upward long-wave radiation, latent and sensible heat fluxes, and by lateral fluxes of water, i.e., inflow and outflow of 

water (Schmid and Read 2021). The energy fluxes at the air-water interface are accounted for in the GLM or GOTM lake 

model, however, the lateral fluxes caused by throughflow (inflow-outflow balance) needs to be parametrized through the 

addition of water temperature to the inflow provided by the catchment model. Inflow temperature was estimated based on the 220 

assumption that water temperatures follow the air temperatures closely with some time lag (Stefan & Preud'homme 1993; 

Ducharne 2008). Hence, water temperature was predicted with a linear model of the form A + B*AirTemperature where A 

and B were optimized against local observations when available. At Sau Reservoir, the values of A and B were 5.12 and 0.799, 

respectively, while for Mt Bold reservoir and Lake Vansjø, the values of A and B were 5 and 0.75, respectively. The validation 

of this model for Wupper Reservoir, as an example, is described in the supplementary material. 225 

Most common verification statistical goodness-of-fit parameters, e.g., Kling-Gupta efficiency (KGE), NSE and RMSE, for 

hydrological and lake modeling were calculated. Details on calibration and validation periods as well as statistics are shown 

in Table 4 and Table S2.  

http://gotm.net/
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2.1.5 Pseudo-observations (Lake_PO) 

Following calibration, lake and hydrologic models were forced with ERA5 over 19934-2016 to produce daily pseudo-230 

observations of river discharge, daily surface and bottom temperature, as well as presence or absence of ice (for Lake Vansjø 

only). The output of this simulation is hereafter referred to as lake pseudo-observations (Lake_PO). Theoretical prediction 

skill of seasonal forecasts is commonly evaluated against pseudo-observations (Greuell et al., 2019; Harrigan et al., 2018; 

Wood et al., 2016). In contrast to lake real observations, Lake_PO have the advantages of being complete and allow to 

disregard changes in skill related to model errors or biases (Harrigan et al., 2018), and to focus on skill originating from initial 235 

and boundary conditions. In contrast to the theoretical prediction skill, Tthe total prediction skill includes any error or bias 

introduced by the model. Here, the total prediction skill of seasonal lake forecastshindcasts (discharge, water temperature and 

ice-off) was also evaluated against real observations, when those were available and covering a representative time period. 

2.1.6 Seasonal forecasts (Lake_F) 

For each of the 92 three-month hindcast seasons (11/1993 to 11/2016), we simulated ensemble predictions of daily river 240 

discharge, daily surface and bottom water temperature as well as presence or absence of ice (for Lake Vansjø only; Fig. 23). 

Impact Catchment and lake models were forced with ERA5 data over the 1-year warm-up period followed by a set of 25 

members of SEAS5 data covering an initialization first lead month (M0) and the 3-month long target season (M1‒M3). The 

first lead month is defined in agreement with Greuell et al. (2019) as the month following the date on which the forecast would 

have been issued. Over the initialization first lead month, the 25 members of SEAS5 progressively diverge from ERA5 to their 245 

respective SEAS5 member. Model outputs for the final 3 months, i.e., the target season, were selected and used to calculate 

the probabilistic forecasts of seasonal summary statisticsaggregated into three month (M1‒M3) seasonal averages or sums 

(i.e., mean average surface and bottom water temperature and cumulative seasonal inflow discharge). The output of this 

simulation is hereafter referred to as lake forecasts (Lake_F). 
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 250 

Figure 23: Time series of the air temperature (a), precipitation (b), discharge (c), surface (d) and bottom (e) water temperature over 

the warm-up, transition monthfirst lead month (M0) and target season (M1‒M3) for Autumn 2000. The black lines indicate ERA5 

(a and b) and Lake_PO (c–e) data, the light and dark blue lines are, respectively, the 25 members and the mean of SEAS5 (a and b) 

and Lake_F (c–e).  

2.2 Assessment of modeling performance and source of forecasting skills 255 

2.2.1 Assessment of model performanceModel and forecast verification 

A complete assessment of the modelling and forecasting performance of our workflow was performed through several 

verifications (Table 2). The first verification (Verification 1 in Table 2) consisted in evaluating the performance of the models 

forced with ERA5 by comparing model outputs (Lake_PO) to observations a daily temporal resolution, as described in section 

2.1.4. This verification step included the reporting of traditional verification statistics for modelling, i.e., NSE; KGE and 260 

RMSE. The second and third verifications (Verifications 2 and 3 in Table 2) consisted in quantifying the lake forecast (Lake_F) 

performance compared to climatology from pseudo-observations (Lake_PO) or from observations, respectively. These steps 
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allowed to quantify the forecasting skill of a perfect model and the total forecasting skill, respectively. Forecast verification 2 

and 3 were performed using model output data at seasonal temporal resolution, i.e., daily model outputs over the target season 

(M1‒M3), were aggregated in seasonal averages or sums. and Lake_F were compared to one another and to observations, 265 

when available, to evaluate the performance of different components of the model chain (Table 2).  

Forecast performance was quantified with two skill scores: the Ranked Probability Skill Score (RPSS) and the Relative 

Operating Characteristic Skill Score (ROCSS). Skill scores are a measure of the relative improvement of the forecast compared 

to a reference forecast which here is the climatology based on either Lake_PO or observations. When possible, ROCSS values 

were calculated against climatology from real observations (𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠), in addition to pseudo-observations (𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙), 270 

only when observations covered the whole season. Indeed, 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  was calculated only if there was at least one 

observation point in each month of the season and observations for at least 70% of the seasons. Observations that met these 

criteria only included inflow discharge at Vansjø, Sau and Wupper for all seasons, surface and bottom temperature at Vansjø 

in summer only, surface and bottom temperature at Wupper for all seasons, surface temperature at Sau for all seasons and ice-

off at Vansjø.. 275 

RPSS and ROCSS are commonly used as evaluation measures of probabilistic forecasting skill (Jolliffe & Stephenson, 2012; 

Müller et al., 2005). The visualizeR package (Frías et al., 2018) was used to compute the RPSS and ROCSS for Lake_PO and 

Lake_F. Briefly, the RPSS provides a relative performance measure on how well the probabilistic ensemble is distributed over 

the lower, middle and upper terciles, while the ROCSS provides a relative measure of discriminative skill for each category. 

Both skill scores are expressed as relative to a reference forecast, i.e., climatology. A RPSS > 0 is associated with a better 280 

forecast than the reference (1 being a perfect score), while RPSS ≤ 0 indicates no improvement compared to the reference. The  

ROCSS value ranges from -1 (perfectly bad forecast) to 1 (perfect forecast) and a zero value indicates no skill compared to the 

reference. The RPSS has been shown to be sensitive to the ensemble size, but this effect can be corrected for using the Fair (or 

unbiased) RPSS (Ferro et al., 2014). To allow for comparison with other forecasting systems, we have used the fair RPSS 

(FRPSS) forecast verification. In this study, the FRPSS is calculated for tercile events. The statistical significance of the FRPSS 285 

and ROCSS is computed based on the 95% confidence level from a one-tailed Z test. Threshold RPSS andWhen a forecast for 

a given season, variable and tercile was associated with a ROCSS value that was statistically significant, we referred to it as a 

s above which RPSS and ROCSS are significant at 95% confidence are calculated by built-in VisualizeR functions and were 

used to identify windows of opportunity (i.e., a combinations of seasons, variables and terciles for which forecast performance 

was significantly better than the reference). In our case, these thresholds values above which a ROCSS was considered 290 

significant typically range between 0.47 and 0.55. When possible, ROCSS values were calculated against climatology from 

real observations (𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠), in addition to pseudo-observations (𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙). 

 

Table 2: Comparison carried out to evaluate model and forecast performance 
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ExptVerification Outputs used Evaluation 

dataReference 

forecast data 

Purpose Statistics 

1 Lake_F Lake_PO Assess the transfer of climate model forecast 

skill through process-based models – Perfect 
model forecasting skill 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  

1 Lake_PO Observations Assess lake model skill KGE 

NSE 

RMSE 

2 Lake_FLake_PO Lake_POObservations Assess the transfer of meteorological forecast 
skill through process-based models – Perfect 

model forecasting skillAssess lake model skill 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙KGE 

NSE 

RMSE 

3 Lake_F Observations Assess total forecasting skill 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 

2.2.2 Sensitivity analyses to initial conditions and meteorological forcingto explore inheritance of 295 

forecasting skill 

A set ofSeveral sensitivity analyses (SA), summarized in; Table 3,) were performed to identify the origin of the forecasting 

skill for a given window of opportunity, i.e., a combination of season, variable and tercile for which forecast performance was 

significantly better than the reference. Results of the SA are only reported for sites having a substantial number of windows of 

opportunity for conciseness. These SA allowed quantifying the sensitivity of hindcasts performance to forcing data over 300 

specific periods: the target season (M1‒M3; SEAS5), the first lead month (M0) and the warm-up period (ERA5). It was thus 

possible to quantify the proportion of skills originating from each of these periodsthe forcing data over the 3-month target 

season (SEAS5 data), the transition lead-month, or the warm-up period (ERA5 data).  

The SA consisted of replacing the forcing data of interest, i.e., over the target season, the first lead month or the warm-up 

period, by data from an equivalent season/period but from a randomly selected year. For example, for the target season SA (S-305 

SA), the SEAS5 forcing data covering the 3-month target season was replaced by SEAS5 data from a randomly selected 

equivalent season. Furthermore, Tthe SA for the warm-up period (W-SA) consisted in replacing the ERA5 data covering the 

warm-up period by ERA5 data from a randomly selected equivalent time-period. The last SA covered warm-up and transition 

first lead month (W+M0T-SA) and consisted in replacing ERA5 data over the warm-up, as in W-SA, but also SEAS5 data 

over the transition first lead month. To ensure that the randomly sampled forcing data are representative of the whole SEAS5 310 

or ERA5 datasets, we introduce two levels of repetitions for all experiments. First, we randomly selected a year for each of the 

25 members of SEAS5, meaning that the data selected to replace the original SEAS5 forcing data is extremely likely to be 

from a different year for each SEAS5 member. Second, we repeated the analysis 25 times, for each season. Sensitivity analyses 

were only carried out for Spain and Norway because of the low number of windows of opportunity at the two other sites and 

considering the resources needed to execute these hindcast experiments. 315 

The outputs of each of the sensitivity analysisS-SA, W-SA, and W+T-SA were used to produce tercile plots and calculate 

ROCSS values against the climatology based on Lake_PO, as for Lake_F in the Verification 2 described above (Table 2). The 
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ROCSS values obtained through this procedure were, respectively, 𝑅𝑂𝐶𝑆𝑆𝑆, 𝑅𝑂𝐶𝑆𝑆𝑊 and 𝑅𝑂𝐶𝑆𝑆𝑤+𝑀0 for S-SA, W-SA, and 

W+M0-SA. The comparison of the ROCSS values (𝑅𝑂𝐶𝑆𝑆𝑖) obtained for the various SAs were compared to the original 

Lake_F ROCSS values (𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ) to investigate the sources of predictabilityprediction skill. An estimation of the 320 

proportion of prediction skillpredictability originating from the SEAS5 data over the target season (𝑃𝑠𝑒𝑎𝑠𝑜𝑛) was expressed as 

follows: 

𝑃𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑅𝑂𝐶𝑆𝑆𝑆         (1) 

Similarly, the proportions of predictability prediction skill originating from the ERA5 data over the warm-up (𝑃𝑤𝑎𝑟𝑚−𝑢𝑝) and 

from the SEAS5 data over the transition first lead month (𝑃𝑀0𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) can be respectively estimated as: 325 

𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 = 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑅𝑂𝐶𝑆𝑆𝑊          (2) 

𝑃𝑀0𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑅𝑂𝐶𝑆𝑆𝑊 − 𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0𝑇         (3) 

In Eq. 1–3, predictability prediction skill was assumed to linearly scale with ROCSS values and predictability skill from any 

interaction effect was neglected. While we admit that Eq. 1–3 are not necessarily statistically correct, they are useful to quantify 

the relative importance of the sources of skill. Hence, the values of 𝑃𝑠𝑒𝑎𝑠𝑜𝑛 , 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 and 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛  should be interpreted 330 

with care. 

2.1.1 2.2.3 Sensitivity analyses to trace forecasting skill from input to impactindividual input variables 

To further investigate through which process forecasting skill is transferred from input to impact output variables, a one-at-a-

time sensitivity analysis (OAT-SA) was performed for Lake_PO and the Pearson partial correlation coefficients (PPCC) 

between each variable of Lake_PO, i.e., surface temperature, bottom temperature, discharge, ice-off, variables and a set of 335 

relevant input variables were determined (Table 3). The OAT-SA consisted in replacing the data for a specific input 

meteorologicalclimate variable by data from an equivalent target season but from a randomly selected year. The seasonal 

means of OAT-SA outputs were compared to default outputs (Lake_PO) with R2. Higher (1 − R2) values indicate more 

influence of input variables on Lake_PO.  

PPCC allowed quantifying the sensitivity of model outputs to a given input variable while removing the effect of the remaining 340 

input variables. Note that PPCC were calculated on seasonally aggregated variables. To ensure that PPCC were statistically 

appropriate, i.e., only when a linear relationship exists between the seasonal means of input factors and those of the output 

(Pianosi et al., 2016), the linearity assumption was checked through visual inspection of scatter plots between each input and 

output variables. Partial correlation coefficients are a good alternative to ‘All-At-a-Time’ (or global) SA when the latter is not 

possible because of the lack of computing resources (Pianosi et al., 2016). To avoid misleading conclusions, correlation 345 

between input variables should be minimized (Marino et al., 2008). Hence, only the most relevant input variables were 

included. Precipitation and air temperature were retained for discharge, while air temperature, precipitation, wind speed (net 

wind speed calculated from uas and vas) and solar short-wave radiation were retained for surface and bottom temperature. In 

fact, solar short-wave radiation was retained over relative humidity, cloud cover and air pressure because it was responsible 
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for over 50%most of all air-water heat fluxes (see SI). Wind was retained because of its impact on thermal stability (Blottiere, 350 

2015). 

Table 3: List of sensitivity analyses (SA) performed 

SA 

Forcing data to be replaced Model output 

Purpose 
Sensitivity 

index 
Period Variable 

S-SA Target season (SEAS5) All Lake_F Quantifying the proportion of forecasting skill 
originating from SEAS5 data over the target 

season 

𝑅𝑂𝐶𝑆𝑆𝑆 

W-SA Warm-up period 

(ERA5) 

All Lake_F Quantifying the proportion of forecasting skill 

originating from ERA5 data over the warm-up 
season – initial conditions 

𝑅𝑂𝐶𝑆𝑆𝑊 

W+M0T-

SA 

Warm-up period 

(ERA5) and transition 

first lead month 

(SEAS5) 

All Lake_F Quantifying the proportion of forecasting skill 

originating from SEAS5 data over the transition 

first lead month 
𝑅𝑂𝐶𝑆𝑆𝑊+𝑇𝑀0 

OAT-SA Target season (ERA5) One at a time Lake_PO Quantifying the sensitivity of Lake_PO to a 

specific forcing variable 1 – R2 

PPCC None None Lake_PO Quantifying the sensitivity of Lake_PO to a 

specific forcing variable while removing the 

effect of the remaining variables 
PPCC 

3 Results 

3.1 Performance of the calibrated impact catchment and lake models (Lake_PO) 

Catchment and lake models calibrated against local observations performed reasonably well (Table 4). For river discharge, 355 

NSE and KGE both ranged between 0.51 and 0.85 over the calibration and validation periods. For surface water temperature, 

RMSE ranged from 1.10 to 1.63 and NSE from 0.78 to 0.94 over the calibration and validation periods. Over each season, 

however, Lake_PO showed more heterogeneous performance (Table S2). Discharge simulations were usually worse in 

summer, except in Australia where performance was poor for most seasons. Surface water temperature modeling typically 

showed better performance during spring and fall than during summer or winter. There is no clear pattern for bottom water 360 

temperature, but overall, it seems more difficult to be accurately simulated compared to surface temperature. 
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Table 4: Verification statistics of the catchment and lake model for each case study 

 Output 

variable 

Calibration Validation 

Time NSE KGE RMSE Time NSE KGE RMSE 

Norway Discharge 2005‒2010 0.51 0.56  2011‒2015 0.57 0.57  

Temperature 2005‒2010 0.92  1.12 2011‒2015 0.93  1.10 

Spain Discharge 1997‒2007 0.60 0.66  2008‒2018 0.54 0.63  

Temperature 1997‒2007 0.93  1.63 2008‒2018 0.94  1.45 

Germany Discharge 1991‒2011 0.71 0.85  2012‒2016 0.63 0.81  

Temperature 1993‒2010 0.93  1.31 2011‒2016 0.91  1.53 

Australia Discharge 2003‒2007 0.64‒0.80 0.70‒0.84  2008‒2013 0.65‒0.80 0.54‒0.75  

Temperature 2014‒2016 0.91  1.17 2016‒2018 0.78  1.50 

 

3.2 Skill of the seasonal meteorologicalclimate (SEAS5) and water qualityLake (Lake_F) hindcasts 365 

Table 5 displays the ROCSS values for each combination of Lake_F output variable, season and tercile while Table 6 

summarizes the windows of opportunity, i.e., a combination of season, variable and tercile for which forecast performance, or 

predictive skill, was significantly better than the reference, for SEAS seasonal meteorological hindcasts as well as for Lake_F 

hindcasts. These windows of opportunity typically had ROCSS values larger than 0.47 to 0.55 (see Methods section for details). 

For SEAS5 seasonal climate meteorological hindcasts, only 3 to 10 windows of opportunity were observed for each case study 370 

out of the 96 possibilities, i.e., 3 terciles of 8 variables over 4 seasons (Table 46). Regarding Lake_F, larger proportions of the 

36–39 possible variable-tercile-season combinations were associated with statistically significant ROCSS values (Table 6). 

Winter and Spring in Norway, as well as Summer and Autumn in Spain were the seasons associated with the most skillful 

Lake_F hindcasts. Lake Vansjø in Norway was the only case study where windows of opportunity for SEAS5 and Lake_F 

were consistently concentrated within the same seasons, i.e., mostly in Spring and to a lesser extent in Winter. For the other 375 

case studies, there were fewer windows of opportunity for SEAS5 and those were more randomly distributed over the year. 

Significant fair FRPSS values were typically reported for surface water temperature in spring and autumn, except for autumn 

in Spain. Norway and Germany also showed significant fair RPSS for bottom water temperature in spring and autumn, and 

summer and autumn, respectively. Note that neither river discharge nor any of the SEAS5 variables had significant fairF RPSS 

values in any case study. Windows of opportunity for bottom temperature represented more than half of the total for all case-380 

studies and variables while those for surface temperature and discharge were more sporadic.  

The comparison of SEAS5 and Lake_F skillful hindcasts in Table 46 is already useful for identifying possible transfer of 

forecasting skill from the SEAS5 seasonal meteorologicalclimate hindcasts to the impact catchment and lake models. Only 0 

to 10% of the SEAS5 climate meteorological hindcasts are skillful, on average over only a very limited number of seasons, 

variables and terciles (Table 6). However, for Norway, there is a higher number of skillful climate meteorological and water-385 
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qualitylake hindcasts in spring than in the other seasons. For the other case-studies, such a clear connection between SEAS5 

climate meteorological hindcasts and impact catchment/lake model outputs is not as apparent. We can thus hypothesize that 

the skill of impact catchment and lake model hindcasts in Norway is more inherited from the SEAS5 data than at other case 

studies. In contrast, skill of the impact catchment and lake model hindcasts at the other case-studies is hypothesized to originate 

from the legacy of the warm-up period or from the parametrization of the inflow-outflow water balance. 390 

Goodness of fitVerification statistics for Lake_PO seasonal means compared to observations (Table 75) show that the impact 

catchment and lake models performed well at the Norwegian and Spanish sites in capturing interannual variability. In Germany 

and Australia, performance was lower. Note that when observation coverage was below 50%, no statistics were calculated 

given the low number of seasons represented and the risk of bias when computing seasonal averages. The difference between 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 .(comparing Lake_F and Lake_PO) and 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠  (comparing Lake_F and lake observations) did not 395 

necessarily scale inversely with the goodness of fitverification statistics (Table 75). In fact, the 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 reported for the 

German site were slightly lower or even larger than their respective 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  with differences lower than 0.23. Whereas, 

for the Spanish site, three 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 values out of 4 were significantly lower than the 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with a difference larger 

than 0.33. These results highlight the point that the goodness of fit statistics apply to the full data distribution while ROCSS 

are specific to a tercile. Hence, even if the model captures the interannual variability over the whole data distribution relatively 400 

well, predictions within a given tercile may be poor, and vice versa. Nevertheless, several impact output variables, e.g., bottom 

temperature in Germany and ice-off in Norway, are associated with significant 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.and 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠.which provides 

further confidence in model calibration and low model error. In contrast, even if the goodness of fit verification statistics for 

discharge were not worse than for the other variables, 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 values are all below the significance threshold pointing 

towards some limitations in predicting hydrology. 405 

Table 5: 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 for each combination of season, variable and tercile of lake hindcasts (Lake_F). Color scale range from dark 

blue (ROCSS = -1, perfectly bad forecast) to dark red (ROCSS = 1, perfect forecast) with white in the middle (ROCSS = 0, no change 

compared to reference forecast). Windows of opportunity are highlighted by bold, black numbers, i.e., combination of season, 

variable and tercile associated with a statistically significant ROCSS value. 

  410 
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Table 64: SEAS5 meteorologicalclimate and Lake_F water qualitylake hindcasts associated with statistically significant 

FRPSS or ROCSS at each case-study. ST, BT and Q stand for surface-, bottom-temperature and discharge, respectively. -, + and = 

stands for lower, upper and middle terciles, respectively. 

S
it

e 

In
d

e
x

e
s 

Numbers of skillful hindcasts: windows of opportunity 

variable (tercile) 

Winter Spring Summer Autumn TOTAL 

SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F 

N
o

rw
ay

 FRPSS    ST; BT    ST; BT 0/32 4/12 

ROCSS 3 
tcc (−) 

rsds sw 

(+) 

rlds lw 

(=) 

3 
ST (−) 

BT (−,+) 

7 
pslairP(=,

+) 

airTtas 

(+) 

tcc (=) 

tdpshum 

(−) 

Uuas (+) 
Vvas (−) 

8 
Q (−,+) 

ST (−,+) 

BT (−,+) 

Ice-off 

(−,+) 

0 0 0 0 10/96 11/39 

A
u

st
ra

li
a FRPSS    ST    ST 0/32 2/12 

ROCSS 2 

psl airP 

(+) 

tdps hum 

(+) 

1 

BT (−) 

1 

rlds lw 

(+) 

 1 

tcc (=) 

1 

BT (−) 

4 

airPpsl 

(+) 

tcc (+) 

airTtas 

(=) 
swrsds 

(+) 

1 

Q (−) 

8/96 3/36 

S
p

ai
n
 FRPSS    ST     0/32 1/12 

ROCSS 0 1 

Q (=) 

2 

tcccc (+) 

airPpsl 

(+) 

1 

BT (+) 

2 

tcc (+) 

tdpshum 

(+) 

5 

Q (−) 

ST (+) 

BT (−,+) 

1  

tcc (+) 

3 

Q (+) 

BT (−,+) 

5/96 9/36 

G
er

m
an

y
 FRPSS    ST  BT  ST; BT 0/32 4/12 

ROCSS 2 

rlds lw 

(=) 

Vvas (−) 

0 1 

tdps hum 

(+) 

2 

BT (−,+) 

0 2 

BT (−,+) 

0 0 3/96 4/36 

Lake_F variable abbreviations: ST, BT and Q stand for surface-, bottom-temperature and discharge, respectively. SEAS5 meteorological variable 415 
abbreviations: airT, airP, cc, hum, sw, lw, U, V stand for surface air temperature, air pressure, cloud cover, relative humidity (or dew-point temperature), 

short-wave radiation, downwelling long-wave radiation, and u and v components of wind, respectively. -, + and = stands for lower, upper and middle terciles, 
respectively.  
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Table 57:  Goodness of fitVerification statistics (NSE, R2, RMSE, RMSE/sd, bias) for Lake_PO seasonal means, as well as 

comparison of the 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍.(comparing Lake_F and Lake_PO) and 𝑹𝑶𝑪𝑺𝑺𝑶𝒃𝒔 (comparing Lake_F and lake observations). 420 

Only impact variables associated with significant 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 are included. Significant ROCSS are highlighted with an asterisk. 

“Obs coverage” is the percentage of seasons (S), months (M) and days (D) covered by observations. 

S
it

e 

Variable 

S
e
a

so
n

 Obs coverage 

NSE R2 RMSE 
RMSE/ 

sd 
bias 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠 

S M D lower middle upper lower middle upper 

N
o

r
w

a
y

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

Discharge SPpring 100 96 93 0.72 0.80 2.0 0.52 -1.0 0.58*  0.54* 0.36  0.34 

Surface  

Temperature 

WIWint

er 

0 0 0      0.48*   n.a   

SpringP 48 58 5      0.75*  0.53* n.a  n.a 

Bottom  

Temperature 

WinterI 0 0 0      0.48*  0.53* n.a  n.a 

SPpring 43 52 4      0.56*  0.68* n.a  n.a 

Ice-on  100 - - 0.97 0.99 2.2 0.16 1.8 a 

Ice-off  100 - - 0.36 0.76 19.3 1.09 -14.7 0.69*  0.75* 0.55*  0.68* 

 

                

S
p

a
in

 

Discharge WinterI 100 100 99 0.88 0.89 3.9 0.34 -0.6  0.52*   0.18  

Summer

U 

100 100 98 0.51 0.62 3.5 0.69 -1.6 0.73*   0.40   

Autumn

U 

100 100 98 0.73 0.74 4.0 0.51 -0.8   0.47*   0.40 

Surf. Temp. Summer

U 

78 78 3 0.12 0.40 1.1 0.87 -0.6   0.57*   -0.08 

Bottom  

Temperature 

SpringP 48 70 3        0.86*   n.a 

Summer

U 

48 67 2      0.53*  0.72* n.a  n.a 

Autumn

U 

35 58 3      0.50*  0.64* n.a  n.a 

 

                

G
e
r
. 

Bottom 

Temperature 

SpringP 100 96 6 -5.01 0.49 1.2 2.40 1.0 0.59*  0.60* 0.41  0.46* 

Summer

U 

100 100 7 -8.63 0.26 3.8 3.04 3.6 0.48*  0.71* 0.51*  0.49* 

 

                

A
u

st
r
a

li
a
 

Discharge Autumn

U 

43 100 100 

-0.67 0.41 1.61 1.23 -1.27 

0.48*   n.a   

Bottom  

Temperature 

WinterI 23 100 82 -0.70 0.32 1.98 1.17 1.51 0.63*   n.a   

Summer

U 

17 75 46      0.60*   n.a   

Only output variables associated with statistically significant ROCSS_original are included. Statistically significant ROCSS are highlighted with an asterisk. 

“Obs coverage” is the percentage of seasons (S), months (M) and days (D) covered by observations. Spring is March to May, Summer is June to August, 

Autumn is September to November, and Winter is December to February. 425 

aIce-on typically occurs between November and December which is the autumn and winter boundary. Therefore, ROCSS values could not be calculated for 

ice-on. 

3.3 Sensitivity analyses to initial conditions and meteorological forcing 

The 𝑅𝑂𝐶𝑆𝑆𝑆, 𝑅𝑂𝐶𝑆𝑆𝑊 and 𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0ROCSS values obtained for each run of S-SA, W-SA and W+TM0-SA, respectively, 

are summarized in boxplots in Figure 43 together with the original ROCSS value for each window of opportunity at the 430 

Norwegian and Spanish sites. This set of sensitivity analyses (SA) were performed to identify the origin of the forecasting skill 
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for a given window of opportunity and allowed quantifying the sensitivity of hindcasts performance to forcing data over 

specific periods: the target season (M1‒M3; SEAS5), the first lead month (M0) and the warm-up period (ERA5). In general, 

impact output variable sensitivity to SEAS5 data over the target season (S-SA) is small relative to sensitivity to ERA5 data 

over the warm-up season and/or SEAS5 data over the transition first lead month. In fact, at Sau, replacing SEAS5 data over 435 

the target season with random data (S-SA) does not yield any significant change in the ROCSS values, except for the surface 

temperature upper tercile (Fig. 43 panel l). However, significant changes in ROCSS values are seen for W-SA compared to 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  indicating high sensitivity to warm-up. The similar ranges in 𝑅𝑂𝐶𝑆𝑆𝑊  and 𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0𝑇  values suggest 

limited or no impact of the SEAS5 data over the transition first lead month on impact output variable forecasts. 
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 440 

Figure 43: Box plots (n = 25) of 𝑹𝑶𝑪𝑺𝑺𝑺, 𝑹𝑶𝑪𝑺𝑺𝑾 and 𝑹𝑶𝑪𝑺𝑺𝑾+𝑻𝑴𝟎 from sensitivity analysis runs S-SA (replacing target 

season SEAS5 data with random data), W-SA (replacing warm-up ERA5 data with random data) and W+M0T-SA (replacing warm-
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up period – ERA5 and transition first lead month – SEAS5 data with random data) for each window of opportunity at the Norwegian 

(a–k) and Spanish (l–q) sites. 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 is given by the red line, so 𝑹𝑶𝑪𝑺𝑺𝒊 𝑹𝑶𝑪𝑺𝑺𝑺, 𝑹𝑶𝑪𝑺𝑺𝑾 and 𝑹𝑶𝑪𝑺𝑺𝑾+𝑴𝟎 below the red 

line indicate a loss of skill and values above the line indicate higher skill than the original forecast. ***, ** and * indicate significant 445 
difference between a given group of 𝑹𝑶𝑪𝑺𝑺𝑺 , 𝑹𝑶𝑪𝑺𝑺𝑾  and 𝑹𝑶𝑪𝑺𝑺𝑾+𝑴𝟎𝑹𝑶𝑪𝑺𝑺𝒊  values and 𝑹𝑶𝑪𝑺𝑺𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍  following 

Mann−Whitney Rank Sum test at a significance level of 0.001, 0.01 and 0.05, respectively. Note that the S-SA, W-SA and W+M0-SA 

were only performed for Sau Reservoir in Spain and Lake Vansjø in Norway because of the significant resources needed to 

performed this hindcast experiments. 

At Vansjø in Norway, on the other hand, 8 out of 11 windows of opportunity show significant changes in 𝑅𝑂𝐶𝑆𝑆𝑆 values, 450 

indicating higher sensitivity to SEAS5 data over the target season than at Sau. Furthermore, 3 windows of opportunity are 

associated with 𝑅𝑂𝐶𝑆𝑆𝑆 that are lower than 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (Fig. 3b4b, f and g), i.e., suggesting SEAS5 is providing some 

skill, while 5 have 𝑅𝑂𝐶𝑆𝑆𝑆  that are higher than 𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  (Fig. 3a4a, h–k), suggesting the use of SEAS5 is in fact 

reducing forecasting skill compared to a random forecast. Then, a progressive decrease in ROCSS values is typically observed 

for all windows of opportunity following W-SA and W+TM0-SA, indicating a progressive loss of forecasting skill related to 455 

ERA5 data over the warm-up and SEAS5 data over the transition first lead month. 

3.4 Tracing of forecasting skillSensitivity analyses to specific input variables 

Figure 5 and 6 summarizes the results from the two sensitivity analyses to specific input variables: OAT-SA and PPCC. 

Seasonal means of Lake_PO at Vansjø also showed higher sensitivity to specific input variables than Lake_PO at Sau (Fig. 

45). In fact, surface temperature is highly sensitive to tas surface air temperature over the year while some other input variables 460 

have more specific influence. Bottom temperature is also highly sensitive to surface air temperaturetas but wind also plays a 

large role, especially in summer which is consistent with its expected impact on lake thermal stability (Blottiere, 2015). Finally, 

as expected, discharge at Vansjø is highly sensitive to precipitationtp, and to a lesser degree to tassurface air temperature, 

except in winter where surface air temperaturetas has a larger influence on discharge. 

The PPCC also show similar patterns regarding sensitivity (Fig. 56) where discharge is highly correlated with precipitationtp 465 

at the four sites and tas surface air temperature plays a secondary role for specific seasons. Once again, surface and bottom 

temperature at Sau stand out due to their limited sensitivity to input variables while at the three other sites, surface temperature, 

and to a lesser degree bottom temperature, are generally strongly positively correlated with tassurface air temperature. Others, 

like precipitationtp and rsdsshort-wave radiation have more of an anecdotal influence on lake temperature, while wind shows 

a more consistent negative impact on surface temperature at Vansjø, Wupper and Mt Bold. Wind also shows some impact on 470 

bottom temperature, although less consistent. At Vansjø and Mt Bold following the coldest season, wind is positively correlated 

with bottom temperature, while at Wupper during the two coldest seasons, wind is negatively correlated with bottom 

temperature. Finally, ice-off date in Vansjø shows a strong negative correlation with surface air temperaturetas (Fig. 65m) that 

can be linked back to the snow content and the intensity of snow melt in the catchment (Fig. 65n and o). 

Next, we use SA outputs to better describe the origin of the prediction skillpredictability, considering inertia, time integration 475 

as well as variable interactions. Assuming that climate signals in the ERA5 and SEAS5 input data over the warm-up, transition 

first lead month and target periods are additive sources of prediction skillpredictability, we can use Eqs 1–3 to partition the 
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predictability prediction skill originating from those time periods, i.e., 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝, 𝑃𝑀0𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛  and 𝑃𝑠𝑒𝑎𝑠𝑜𝑛 , respectively. For 

Sau reservoir, this calculation yields 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝  of 0.94 to 1.0 leaving only an unsignificant fraction of prediction 

skillpredictability to the forcing data over the target season and the transition first lead month, as illustrated in Fig. 34. At this 480 

site, the impact output variables show in parallel very low sensitivity to input variables (Fig. 54 and 56) which supports a 

strong role of inertia or long-term time integration in hindcast predictabilitypredictive skill. The fact that 5 out of the 6 windows 

of opportunity are for bottom water is also consistent with inertia as the main source of skill given the low circulation rate and 

inertia of hypolimnions. For Lake Vansjø, Eqs 1–3 yielded 𝑃𝑠𝑒𝑎𝑠𝑜𝑛 of 0.003 (range: -0.19 to 0.18), 𝑃𝑀0𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛  of 0.19 (0.04 

to 0.37) and 𝑃𝑤𝑎𝑟𝑚−𝑢𝑝 of 0.29 (0.09 to 0.60). Hence, a significant fraction of prediction skillpredictability is originating from 485 

the SEAS5 boundary conditions dataset although the largest source remains initial conditions through ERA5 data over the 

warm-up. Interestingly, the SEAS5 data over the transition first lead month is also a significant source of prediction skillability. 

In fact, in decreasing order of importance, prediction skillpredictability originates from the warm-up, the first leadtransition 

month and the target season. This progressive decrease in prediction skillpredictability is only observed at Lake Vansjø and 

suggests that across-variable integration of climate signals persists through the first leadtransition month and, in some cases, 490 

the target season, but is progressively deteriorating as we move into the target season. Indeed, there is additional consistency 

between the SEAS5 input variables showing some forecasting skill and the impact output variables. In fact, surface, and bottom 

temperature in spring at Vansjø are sensitive to surface air temperaturetas and wind (Fig. 5 6 b and c), and tassurface aur 

temperature, uas and vaswind u and v components are associated with some windows of opportunity in spring (Table 46). 

Similarly, ice-off is sensitive to surface air temperaturetas, as are snow quantities and melt intensities in the catchment (Fig. 495 

5m6m–o). Hence, in contrast to Sau reservoir where most of the predictability prediction skill seems to originate from inertia, 

at Lake Vansjø, across-variable integration contributes to predictive skills. 
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Figure 54: Relative sensitivity (see methods for details)expressed as 1 – R2 of Lake_PO seasonal means to specific input variables 

estimated following the OAT-SA (see section 2.2.3 and Table 3 in the Methods section for details). Circle color and size both represent 500 
relative sensitivity on a scale from 0 to 1. Meteorological variable abbreviations: airT, p, wind, cc, hum, and sw stand for surface air 

temperature, precipitation, wind speed, cloud cover, relative humidity (or dew-point temperature) and short-wave radiation, 

respectively. Note that the relatively larger sensitivity of Lake_PO to specific input variables over the whole year can be larger 

compared to over a given season because of the strong seasonal cyclicity. Note that the OAT-SA was only performed for Sau 

Reservoir in Spain and Lake Vansjø in Norway. 505 
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Figure 65: Pearson partial correlation coefficients (PPCC) between Lake_PO seasonal means and seasonal means of selected input 

variables. Circle color and size represent PPCC value (from -1 to 1) and significance, respectively. Meteorological variable 

abbreviations: airT, P, wind, cc, hum, and sw stand for surface air temperature, precipitation, wind speed, cloud cover, relative 

humidity (or dew-point temperature) and short-wave radiation, respectively. Only significance level at 0.1 or below were considered 510 
in the interpretation. 
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4 Discussion 

4.1 Sources of skill 

Our investigation into relationships between input and output variables and the sensitivity of predictive skill to meteorological 

data inputs over different time periods have yielded important insights into the sources of seasonal water qualitylake forecasting 515 

skill in our case study sites.  

A key finding is that predictive skill is mostly sensitive to meteorological inputs over the warm-up and first leadtransition 

months (Fig. 34, Section 3.4), although some specific windows of opportunity are also somewhat sensitive to the 

meteorological data over the target season. Hence, integration of the climate signal over time or across variables by catchment 

hydrologic and physical processes, e.g., snow accumulation (Harrigan et al., 2018) or heat accumulation in lakes, is likely a 520 

key source of predictive skill. In fact, Mercado-Bettin et al. (2021) already noted an increase in predictability prediction skill 

when moving from climate weather to discharge to lake temperature, i.e., in an increasing order of time and across variable 

integration of climate signals. Strong inertia is also a potential source of predictabilityprediction skill.  

After accounting for forecasting skill from the forcing data over various periods (Section 3.4), a large proportion of the skill 

still remains unexplained, especially for some selected windows of opportunity at Lake Vansjø in Norway. Bottom water 525 

temperature at Lake Vansjø in spring shows the highest residual skill after removal of skill from warm-up and first lead  

transition-month (Fig. 43e–f). Surface and bottom temperature show a different degree of coupling with air temperature. In 

fact, while surface temperature responds tightly to changes in air temperature (Butcher et al., 2015; Schmid et al., 2014), 

bottom temperature responds to a variety of complex interactions influenced by lake characteristics (e.g., fetch, surface area, 

depth, light penetration; Butcher et al., 2015). Indeed, bottom temperature in spring depends on preceding winter conditions 530 

but also on the intensity and length of the spring mixing event. To fully capture the intensity of this event, the model requires 

good initial water temperature inherited from previous winter but also skillful weather forcings, especially for surface air 

temperaturetas and wind (Fig. 65c). In fact, for bottom temperature in spring to be higher than normal, it requires surface water 

to be heated up more than normal, mainly through heat exchange with air temperature, but also the lake to remain mixed for a 

longer time period than normal. The interaction between skill from legacy and from weather forcing might thus be another 535 

source of predictabilitypredictive skill. The fact that the proportion of forecasting skill progressively decreases from warm-up, 

through the first lead transition-month and the target season at Vansjø suggests that the interactions between input variables, 

which are incorporated in the process representation within the models, provide some skill but progressively deteriorates as 

we move forward in time. At Sau reservoir in Spain, on the other hand, all skill is lost at the sharp boundary between the warm-

up and the first lead transition month. This difference might be related to the presence of skill from the SEAS5 data at Vansjø 540 

(Table 46) and not at Sau. In other words, in the absence of skill in SEAS5 data, no additional skill can originate from 

interaction effects. 

Literature on streamflow hindcasts broadly shows that beyond the first leadtransition month, climatology-driven hindcasts 

forced with an ensemble of boundary conditions resampled from historical meteorology are typically more skillful than 
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hindcasts driven by seasonal climate meteorological predictions (Arnal et al., 2018; Bazile et al., 2017; Greuell et al., 2019). 545 

Hence, better water qualitylake forecasting skills could likely be achieved by simply forcing our models with climatology. Our 

results partly fit with these findings, as the skill of S-SA hindcasts for selected windows of opportunity were higher than the 

original hindcasts (Fig. 43a, h–k). These S-SA hindcasts are similar to climatology-driven hindcasts, although they are 

associated with higher uncertainty since they are driven by random SEAS5 data and should therefore be regarded as a minimum 

forecasting potential. For some windows of opportunity, however, SEAS5 was a significant source of predictability predictive 550 

skill (Fig. 43b, f, g and l). In those cases, only an improvement in SEAS5 forecasting skill is likely to improve water qualitylake 

forecasts. Improvement for only selected variables in SEAS5 would likely be enough to yield a significant increase in water 

qualitylake forecasting skill since most of the output variables presented here showed sensitivity to one or two input variables 

(Fig. 65). 

4.2 Limitations and implications for seasonal water qualitylake forecasts 555 

One apparent limitation of our study is the use of reanalysis weather data and pseudo-observations as inputs and benchmark 

impact output variables. Using pseudo-observations for skill assessment is a common methodology in streamflow forecasting 

studies (Alfieri et al., 2014; Wood et al., 2016) and it offers the opportunity to investigate the relationship between forecasting 

skills, initial and boundary conditions, while putting less emphasis on model errors and biases (Harrigan et al., 2018). Working 

with reanalysis weather data generates a less site-specific workflow and removes difficulties associated with dealing with 560 

temporal and spatial heterogeneity in observed data. Nevertheless, here we also evaluate the forecasting skill against catchment 

and lake observations when possible (Table 75) and show that most of the windows of opportunity reported for water 

temperature held while those for discharge are no longer significant compared to observations. This discrepancy between 

discharge and water temperature can be related to the fact that discharge tends to be more variable than water temperature, 

with short-lived high peaks which are difficult to model. The catchment models therefore performed less well than the lake 565 

models. This further suggests that evaluation against observations is likely more important for discharge than for water 

temperature. 

Given that inertia and integration over time were the dominant sources of predictability predictive skill at Sau reservoir and 

Lake Vansjø, useful hindcasts could already be issued without the use of SEAS5 data. In fact, our workflows show limited 

sensitivity to boundary conditions over the target season. Hence, future workflows should use selected climatology as forcing 570 

data over the target season, in addition to (or instead of) seasonal meteorologicalclimate prediction. This benchmark forecasting 

workflow with climatology will likely yield similar or more skillful forecasts, as well as being less time-consuming to set up. 

Indeed, even with randomly years from the selected SEAS5 data, which can be seen as a highly uncertain climatology, some 

windows of opportunity are more skillful than with the correct SEAS5 data (Fig. 43). Nevertheless, if seasonal 

meteorologicalclimate prediction products become more skillful, they will likely be a real asset for water qualitylake seasonal 575 

forecasting enabling additional skills through interactions over time. 
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State-of-the-art modeling practices typically involve calibrating hydrologic and lake models against daily observations. 

Nevertheless, daily observations of water quality are often not available or only cover a fraction of the time of interest. Table 

75 illustrates the challenges related to data coverage and model evaluation where many calibration and validation statistics 

could not be estimated because of the lack of observations. In addition, calibrating to daily data prioritizes model 580 

parameterizations which are able to capture daily variability, but not necessarily seasonal or interannual variability, which are 

more relevant for seasonal forecasting. Calibrating the hydrologic and lake models using seasonal means or medians, in 

combination with daily data, could solve the observation coverage issue while improving seasonal predictive skill. 

Nevertheless, ones need to ensure that the seasonal averages are calculated from representative and well-distributed datasets. 

For Lake Vansjø, this would not have solved the lack of observations in Spring for example, because observations only cover 585 

April and May. For Sau and Wupper reservoirs, on the other hand, this would have been possible and potentially improve 

predictive skills. In any case, having access to more complete, long-term and systematic observations on water temperature, 

inflow and outflow discharge, including abstraction and over- flows for reservoirs, would facilitate robust model calibration 

and validation, and likely model predictive skills. The skill of water quality forecasting tools heavily depends on observation 

availability. Hence, continued efforts should be put on ensuring that observational programs are suited to providing the 590 

information needed by our models (Robson, 2014). 

5 Conclusion 

Water qualityLake seasonal forecasts could provide valuable knowledge for water managers to preserve drinking water 

reserves, as well as ecological and recreational services under increasing pressures from water demand and climate change. 

Nevertheless, their use is still limited in the water sector. Here we unravel the source of predictability predictive skill of water 595 

qualitylake seasonal hindcasts at four case-studies across Europe and in Australia, including inflow discharge, surface and 

bottom water temperature as well as ice-off dates. Through sensitivity analyses, we contribute to the demystification of water 

qualitylake forecasting tools with the long-term objective of facilitating their utilization in the water sector. In Spain, where 

the seasonal climate meteorological predictions have negligible skill, the source of predictability predictive skill is mainly 

catchment and lake inertia. In Norway, where some seasonal meteorologicalclimate predictions are skillful, the predictability 600 

predictive skill is partitioned coming from, in decreasing order of importance, between inertia, time- and across-variable 

integration of climate signals through catchment processes, and seasonal climate meteorological predictions over the target 

season (SEAS5). In Norway, skillful SEAS5 meteorological forecasts hindcasts over some targetspecific seasons likely 

contribute to sustaining the predictability predictive skill from interaction effects from antecedent conditions through to the 

target season. 605 

Despite its central role in the probabilistic nature of the forecasting workflow, SEAS5 meteorological forcing data contributes 

to a limited extent to the predictabilitypredictive skill, and often reduces the performance of the hindcasts. Hence, our findings 

suggest that using a climatology probabilistic ensemble catchment-lake driven forecast without SEAS5 forcing data is currently 
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likely to yield higher quality forecasts, as demonstrated by hindcasts driven with randomly selected SEAS5 data. Nevertheless, 

upon skill improvement of the seasonal climate meteorological forecasts, a small step would be needed to provide more skillful 610 

water qualitylake forecasts for better water management. 

Index of abbreviations (in order of appearance) 

SEAS5: seasonal meteorological forecast dataset from the European Centre for Medium Range Weather Forecasts. 

ERA5: meteorological reanalysis dataset from the European Centre for Medium Range Weather Forecasts. 

NSE: Nash–Sutcliffe efficiency coefficient 615 

KGE: Kling-Gupta efficiency coefficient 

RMSE: Root-mean squared error 

Lake_PO: Lake pseudo-observations of water temperature, inflow discharge and ice-off produced with coupled catchment and 

lake models forced with ERA5 meteorological data. 

Lake_F: Seasonal lake hindcasts of water temperature, inflow discharge and ice-off produced with coupled catchment and lake 620 

models forced with SEAS5 meteorological data (25 members). 

M0: First lead month 

M1‒M3: Month 1 to month 3 of the lake forecast, i.e., target season of the lake forecasts. 

ROCSS: Relative Operating Characteristic Skill Score  

RPSS: Ranked Probability Skill Score 625 

FRPSS: Fair (or unbiased) RPSS 

𝑅𝑂𝐶𝑆𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 : ROCSS for Lake_F as compared to reference forecast based on climatology from Lake_PO. 

𝑅𝑂𝐶𝑆𝑆𝑂𝑏𝑠: ROCSS for Lake_F as compared to reference forecast based on local observations. 

SA: Sensitivity analysis 

S-SA: Sensitivity analysis of Lake_F to boundary conditions over the target season (M1‒M3) 630 

W-SA: Sensitivity analysis of Lake_F to boundary conditions over the warm-up period 

W+M0-SA: Sensitivity analysis of Lake_F to boundary conditions over the period covering the warm-up and first lead month 

𝑅𝑂𝐶𝑆𝑆𝑆: ROCSS for Lake_F following S-SA as compared to reference forecast based on climatology from Lake_PO 

𝑅𝑂𝐶𝑆𝑆𝑊: ROCSS for Lake_F following W-SA as compared to reference forecast based on climatology from Lake_PO 

𝑅𝑂𝐶𝑆𝑆𝑊+𝑀0 : ROCSS for Lake_F following W+M0-SA as compared to reference forecast based on climatology from 635 

Lake_PO 

OAT-SA: One at a time sensitivity analysis 

PPCC: Partial correlation coefficient 

airT: Surface air temperature 

airP: Surface air pressure 640 
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cc: Cloud cover 

hum: Relative humidity (or dew-point temperature) 

sw: short-wave radiation 

lw: downwelling long-wave radiation 

U: U-component of wind speed 645 

V: V-component of wind speed 

p: Precipitation 

 

Computer code and models 

Computer models used in this study are open-source and links to original resources are described here: 650 

https://nivanorge.github.io/seasonal_forecasting_watexr/. All codes for running the models, processing input and output data, 

as well as the input and output data files are available here: https://github.com/NIVANorge/seasonal_forecasting_watexr. 
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