An analytical generalization of Budyko framework with physical accounts of climate seasonality and water storage capacity

Xu Zhang 1, Jinbao Li 1, Qianjin Dong 2, Ross A. Woods 3

1 Department of Geography, University of Hong Kong, Hong Kong SAR, China
2 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
3 Department of Civil Engineering, University of Bristol, Bristol, UK

Correspondence to: Xu Zhang (zhangxu_hku@connect.hku.hk)

Abstract. The Budyko framework is an effective and widely used method for describing long-term water balance in large catchments. However, it only considers the limits of water and energy in evaporation (E), and ignores the impacts of climate seasonality and water storage capacity (S_c), resulting in errors for Mediterranean climate and catchments with small S_c. Here we combined the Ponce-Shetty model with Budyko hypothesis, and analytically generalized Budyko framework with physical accounts of climate seasonality and S_c. Precipitation (P), potential evaporation (PE), and S_c are used to represent the limits of water, energy, and space for E, respectively. Our results show that previous Budyko-type equations can be treated as special cases of generalized Budyko-type equations with uniform P and PE and infinite S_c. The new generalized equations capture the observed decrease in E due to asynchronous P and PE and small S_c, and perform better than the Budyko-type equations with varying parameters in the contiguous United States with fewer parameters. Overall, our generalization of Budyko framework improves the robustness and accuracy for estimating mean annual E with the aid of physical interpretation, and will facilitate water balance assessment at regional to global scales.

1 Introduction

Accurate description of the balance between precipitation (P), evaporation (E), and runoff (R) is a key issue in climatology, hydrology, ecology, and many related fields (Milly et al., 2005; Vörösmarty et al., 2010; Oki and Kanae, 2006). A large number of theories and models have been devised to simulate water cycles for different climates at various timescales (Arnold et al., 1998; Henley et al., 2011; Lan et al., 2018; Martinez and Gupta, 2010; Westra et al., 2014; Zhang et al., 2020). However, due to the complexity and spatial variety in global catchments, hydrological models generally require some parameters and observational data for calibration, which are valid only in certain regions and hamper their applications at a global scale (Beven, 1993; Moretti and Montanari, 2007; Arnold et al., 1998).

Among the water balance models, the Budyko framework is unique in that it has a very simple structure with minimal data inputs but achieves good performance worldwide (Mianabadi et al., 2020; Berghuijs et al., 2020). In this framework, only water and energy limits of E are assumed over the long-term period for large catchments (Mianabadi et al., 2020;...
Budyko, 1974; Fu, 1981; Wang and Tang, 2014). With available water measured by P and energy represented by potential evaporation (PE), the boundary conditions of E can be derived in extreme wet and dry climates, which underpin various derivations of Budyko-type equations (Budyko, 1974; Fu, 1981; Yang et al., 2008; Wang and Tang, 2014; Zhang et al., 2004). Besides that, Zhou et al. (2015b) proposed a function $g(\emptyset)$ that can systematically unify the theoretical derivations of Budyko-type equations from the boundary conditions. Till now, the Budyko-type equations have been widely employed in the studies of climate sensitivity (Gudmundsson et al., 2016; Wu et al., 2017; Berghuijs et al., 2017; Liu et al., 2020; Zhou et al., 2015a), runoff simulation (Zhang et al., 2008; Zhang et al., 2020; Gao et al., 2020), decomposition of runoff change (Wang and Hejazi, 2011; Zhang et al., 2019b), land-runoff interaction (Yang et al., 2007; Yang et al., 2009; Istanbulluoglu et al., 2012; Ning et al., 2019), among others (Greve et al., 2020; Berghuijs et al., 2014).

Despite the wide applications of Budyko-type equations, the departure of the simulated E from observations is still hard to explain (Wu et al., 2018b; Mianabadi et al., 2020). Many studies attribute the departure to the synthesized parameter (ω or n) in one-parameter Budyko-type equations, assuming that the synthesized parameter represents all catchment properties except for aridity index ($\frac{PE}{P}$) (Gudmundsson et al., 2016; Zhang et al., 2019a; Berghuijs et al., 2017; Istanbulluoglu et al., 2012). Factors like soil properties, vegetation cover, precipitation seasonality, human water consumption are regressed to the synthesized parameter (Jiang et al., 2015; Zhang et al., 2019a; Zhang et al., 2019b; Yang et al., 2007; Yang et al., 2009; Li et al., 2013). However, no consensus has been achieved on the controlling factors of ω (Greve et al., 2015; Zhou et al., 2015b; Mianabadi et al., 2020), suggesting that a synthesized parameter may not be capable of representing all the catchment properties due to its unclear physical interpretation (Reaver et al., 2022).

Compared to hydrological models operating on daily or monthly timescales, the Budyko-type equations do not consider climate seasonality and underlying surface conditions. Previous studies find that mean annual E in the catchments with synchronous (asynchronous) P and PE is systematically underestimated (overestimated) by Budyko-type equations (Berghuijs et al., 2020; De Lavenne and Andréassian, 2018; Potter et al., 2005). Water storage capacity plays a significant role in long-term hydrological balance from analytical derivation and may control the errors in Budyko framework (Milly, 1994; Woods, 2003; Daly et al., 2019; Rodriguez-Iturbe et al., 1999; Sivapalan et al., 2011; Milly, 1993; Bondy et al., 2021; Wu et al., 2018a). As documented by Rodriguez-Iturbe et al. (1999) and Daly et al. (2019), if a catchment has a very small water storage capacity or asynchronous P and PE, the R will be generated and flow out of the catchment soon after precipitation falls onto land surface. Under this circumstance, there is not much space and time for evaporation, and the E will be close to 0 regardless of P or PE. Therefore, Budyko-type equations, which only use mean annual aridity index ($\frac{PE}{P}$) as an explanatory variable, may induce large errors, and are available only for very large catchments having similar climate seasonality and water storage capacity. A theoretical improvement to Budyko framework with physical accounts of climate seasonality and water storage capacity is imperative.

The main objective of this study is to analytically generalize the Budyko framework in order to physically incorporate climate seasonality and water storage capacity. A new variable that is measured from soil properties will be included in E
estimation to represent water storage capacity. Hydrological processes are simulated at a sub-annual timescale to consider climate seasonality. The new generalized Budyko-type equations will be tested against 471 catchments in the contiguous United States (CONUS) to assess their physical interpretation and performance. The results are expected to improve our physical understanding of water cycles and the interplay between hydrological and climatic conditions.

2 Analytical generalization of Budyko framework

The analytical generalization of Budyko framework is achieved through the conceptualization of E, Ponce-Shetty model, and its formulation using Budyko-type equations. In the following, conceptualization of mean annual E generation is first introduced to present timescales and some assumptions in runoff generation (Section 2.1). The two partitioning stages in Ponce-Shetty model are then provided to give the relationships and boundary conditions between hydrological variables (Section 2.2). The Budyko-type equations are used as tools for formulating E in Ponce-Shetty model (Section 2.3). Lastly, the generalized Budyko-type equations are derived from the outputs of two stages (Section 2.4).

2.1 Conceptualization of mean annual E generation

In the conceptualization of E generation, inter-annual variations between hydrological variables are assumed to be zero as the derivations of previous long-term water balance equations (Wang and Tang, 2014; Yang et al., 2008; Fu, 1981). The main objective of generalized Budyko equation is to depict the spatial variability of mean annual E for multiple catchments. Despite the negligible inter-annual variations, intra-annual variations in P and PE are necessary to be included given the essential role of climate seasonality in controlling errors in Budyko framework (Berghuijs et al., 2020; De Lavenne and Andréassian, 2018). Thus, hydrological year (starting from 1st, Oct.) used in this study is divided into three time intervals with a length of 4 months, and E in each 4-month time interval is modeled using Ponce-Shetty model. Water storage is assumed to be depleted at the end of each time interval following previous analytical derivation (Rodriguez-Iturbe et al., 1999; Porporato et al., 2004; Daly et al., 2019; Sankarasubramanian and Vogel, 2002). The assumption of 4-month timescale is based on the rising-recession-depletion period in hydrograph and baseflow recession curves, which ranges from 90 to 150 days (Yang et al., 2018; Vitvar et al., 2002; Dunn et al., 2007; Katsuyama et al., 2010). Thus, rainfall may need approximately 4 months to generate surface runoff, infiltrate in the soil, pass the aquifer, and reach catchment outlet before catchment water storage is negligible, indicating a complete rainfall-runoff event may take 4 months. Meanwhile, Ponce-Shetty model only assumes one complete rainfall-runoff event with zero water storage change for E estimation (Ponce and Shetty, 1995; L’Vovich, 1979), and therefore was applied at the 4-month timescale.

To sum up, mean annual hydrological processes are assumed to consist of three complete rainfall-runoff events. Each event lasts for four months, and is modeled by Ponce-Shetty model. Other timescales are further examined and discussed in Section 5. Herein, mean 4-month variables are denoted by subscript j ($j = 1$ for Oct.-Jan., $j = 2$ for Feb.- May, $j = 3$ for Jun.- Sep.), and mean annual values are denoted by subscript a. Mean 4-month and mean annual P, PE, and E are the
products of mean water fluxes and associated timescales (i.e., 4 months or one year), and share a unit of millimeter (mm) in this study.

2.2 Ponce-Shetty model

Ponce-Shetty model is a water balance model with numerous applications worldwide (Gnann et al., 2019; Sivapalan et al., 2011), and is used here to formulate E_j in each 4-month time interval. Two partitioning stages are assumed for fast flow and baseflow, respectively (Wang et al., 2015; Zhao et al., 2016; Ponce and Shetty, 1995; L'Vovich, 1979), and boundary relationships are introduced as follows.

2.2.1 The first partitioning stage

The first stage in the Ponce-Shetty model describes the partitioning of P_j into fast flow ($Q_{f,j}$) and wetting (W_j) as follows (Figure 1a)

$$P_j = Q_{f,j} + W_j$$

$$1 = \frac{Q_{f,j}}{P_j} + \frac{W_j}{P_j}$$

where W_j represents the amount of water stored in the catchment for second partitioning stage. W_j is limited by two factors. The first is P_j, which measures available atmospheric input water. The second is water storage capacity (S_c), which represents the maximum volume of water that can be saved in the catchment, and is measured from observed soil porosity and soil depth in this study.

The boundary conditions of W_j are derived from the catchments with extreme P_j and S_c. For the catchments with infinite atmospheric input water ($P_j \to +\infty$) or infinitesimal storage capacity ($S_c \to 0$), atmospheric input water is much greater than the space that can be used for storing water ($\frac{S_c}{P_j} \to 0$). Thus, nearly all spaces that can be used for storing water, measured as S_c, are filled up, while P_j is still large enough to provide sufficient atmospheric input water much greater than S_c (Figure 1b). Under this circumstance, S_c mainly limits W_j, and W_j approach to S_c.

$$W_j \to S_c, \text{ as } \frac{S_c}{P_j} \to 0$$

Furthermore, we can derive that $\frac{W_j}{P_j} \to 0$ because $W_j < S_c$ and $\frac{W_j}{P_j} < \frac{S_c}{P_j} \to 0$. Combined it with Eq. (2), we can obtain that $\frac{Q_{f,j}}{P_j}$ approaches 1.

$$\frac{Q_{f,j}}{P_j} = 1 - \frac{W_j}{P_j} \to 1, \text{ as } \frac{S_c}{P_j} \to 0$$

(4)
For the catchments with infinitesimal input water (\(P_j \to 0\)) or infinite storage capacity (\(S_c \to +\infty\)), atmospheric input water is much less than the space that can be used for storing water (\(\frac{S_c}{P_j} \to +\infty\)). Nearly all \(P_j\) will be stored in the catchments, and \(S_c\) is still large enough to store much more water (Figure 1c). Thus, \(P_j\) mainly limits \(W_j\), and \(W_j\) approach to \(P_j\).

\[
W_j \to P_j \text{ as } \frac{S_c}{P_j} \to +\infty
\]

(5)

We can obtain that \(\frac{W_j}{P_j} \to 1\) based on \(W_j \to P_j\) in the above equation. Thus, \(\frac{Q_{f,j}}{P_j}\) approaches 0 in the combination with Eq. (2).

\[
\frac{Q_{f,j}}{P_j} = 1 - \frac{W_j}{P_j} \to 0, \text{ as } \frac{S_c}{P_j} \to +\infty
\]

(6)

2.2.2 The second partitioning stage

In the second stage, \(W_j\) is further partitioned into baseflow (\(Q_{b,j}\)) and evaporation (\(E_j\)) (Figure 1d).

\[
W_j = Q_{b,j} + E_j
\]

(7)

\[
1 = \frac{Q_{b,j}}{W_j} + \frac{E_j}{W_j}
\]

(8)

The \(E_j\) is also limited by two factors. The first is \(W_j\), which measures the amount of water that is stored in the catchment after the first partitioning stage and represents available water to be evaporated. The second limiting factor is the \(PE_j\), which measures the atmospheric demand and represents available energy that can transform liquid water into water vapor.

Similarly, the boundary conditions of the second partitioning stage can be derived from the catchments with extreme \(PE_j\) and \(W_j\). For the catchments with infinite atmospheric demand (\(PE_j \to +\infty\)) or infinitesimal water storage (\(W_j \to 0\)), atmospheric demand is much greater than the water that is stored in the catchment (\(\frac{PE_j}{W_j} \to +\infty\)). Thus, nearly all available water stored in the catchments, measured as \(W_j\), will be evaporated into the atmosphere, while \(PE_j\) is still large enough to evaporate much more water than \(W_j\) (Figure 1e). The \(W_j\) mainly limits \(E_j\), and \(E_j\) approach to \(W_j\).

\[
E_j \to W_j, \text{ as } \frac{PE_j}{W_j} \to +\infty
\]

(9)

It can be obtained that \(\frac{E_j}{W_j} \to 1\) based on \(E_j \to W_j\) in the above equation. Thus, \(\frac{Q_{b,j}}{W_j}\) approaches to 0 from Eq. (8).
\[
\frac{Q_{b,j}}{W_j} = 1 - \frac{E_j}{W_j} \rightarrow 0, \text{ as } \frac{PE_j}{W_j} \rightarrow +\infty
\]
(10)

For the catchments with infinitesimal atmospheric demand \((PE_j \rightarrow 0)\) or infinite water storage \((W_j \rightarrow +\infty)\), atmospheric demand is much less than the water that is stored in the catchment \((\frac{PE_j}{W_j} \rightarrow 0)\). Thus, atmospheric demand, measured as \(PE_j\), can be easily fulfilled, and \(W_j\) is still sufficient to supply much more water than \(PE_j\) (Figure 1f). The \(PE_j\) mainly limits \(E_j\), and \(E_j\) approach to \(PE_j\).

\[
E_j \rightarrow PE_j, \text{ as } \frac{PE_j}{W_j} \rightarrow 0
\]
(11)

It can be obtained that \(\frac{E_j}{W_j} \rightarrow 0\) because \(E_j < PE_j\) and \(\frac{E_j}{W_j} < \frac{PE_j}{W_j} \rightarrow 0\). The \(\frac{Q_{b,j}}{W_j}\) approaches 1 from Eq. (8)

\[
\frac{Q_{b,j}}{W_j} = 1 - \frac{E_j}{W_j} \rightarrow 1, \text{ as } \frac{PE_j}{W_j} \rightarrow 0
\]
(12)

In summary, two partitioning stages were assumed for \(E_j\) from the Ponce-Shetty model, and the boundary conditions are analytically derived. Eqs. (3) to (6) are the boundary conditions for the first partitioning under \(\frac{W_p}{P_j} \rightarrow 0\) or \(\frac{W_p}{P_j} \rightarrow +\infty\). Eqs. (9) to (12) are the boundary conditions of the second partitioning when \(\frac{PE_j}{W_j} \rightarrow 0\) or \(\frac{PE_j}{W_j} \rightarrow +\infty\).

Figure 1 Schematic of the Ponce-Shetty model. (a-c) The first partitioning stage (a) and its related boundary conditions (b and c). (d-f) The second partitioning stage (d) and its related boundary conditions (e and f).
2.3 Modeling of the two partitioning stages using Budyko framework

The two partitioning stages in the Ponce-Shetty model were originally modeled using proportionality hypothesis with four parameters (Ponce and Shetty, 1995; L’Vovich, 1979). Recent studies have shown that proportionality hypothesis shares the same boundary conditions as the Budyko-type equations (Zhang et al., 2020; Wang and Tang, 2014; Wang et al., 2015; Zhao et al., 2016), indicating that Budyko-type equations are capable of modeling variables in Ponce-Shetty model. We introduce the capability of Budyko-type equations in Section 2.3.1, and then replace the proportionality hypothesis with Budyko hypothesis to model two partitioning stage in Section 2.3.2.

2.3.1 Capability of Budyko-type equations

Budyko-type equations are derived based on the supply and demand limits, and are capable of modeling the variables with following relationships (Zhou et al., 2015b)

\[Z = X + Y \]
\[X \rightarrow X_{\text{max}}, as \frac{X_{\text{max}}}{Z} \rightarrow 0 \]
\[X \rightarrow Z, as \frac{X_{\text{max}}}{Z} \rightarrow +\infty \]

where \(X_{\text{max}} \) is the potential maximum value of \(X \) due to external factors. Quantities \(Z \) and \(X_{\text{max}} \) are derived from observations, and \(X \) can be simulated using Budyko-type equations as

\[X = B(Z, X_{\text{max}}, n) \]

where \(B(\cdot) \) is a one-parameter Budyko-type equation. The inclusion of a synthesized parameter \(n \) provides the flexibility for capturing other factors apart from \(Z \) and \(X_{\text{max}} \). Here, two analytically-derived one-parameter Budyko-type equations, including the Yang equation (Yang et al., 2008) and Fu equation (Fu, 1981; Zhang et al., 2004), are provided for \(B(\cdot) \) and listed in Table 1.

2.3.2 Modeling of two partitioning stages

By comparing the boundary conditions in the first partitioning stage (i.e., Eqs (3) to (6)) with Eqs. (13) to (15), we find that \(P_j, W_j, Q_{f,j}, \) and \(S_c \) share the same boundary conditions as \(Z, X, Y, \) and \(X_{\text{max}} \). Thus, the one-parameter Budyko-type equations can be used to model the first partitioning as

\[W_j = B_1(P_j, S_c, n_1) \]

where \(B_1(\cdot) \) is a Budyko-type equation that models the first partitioning stage, and \(n_1 \) is a synthesized parameter controlling the first partitioning except \(P_j \) and \(S_c \).
Similarly, the boundary conditions of $W_j, E_j, Q_{b,j},$ and PE_j in the second partitioning stage (i.e., Eqs (9) to (12)) share the same forms as $Z, X, Y,$ and X_{max} (i.e., Eqs. (13) to (15)). Thus, the second partitioning can also be modeled using Budyko-type equations

$$E_j = B_2(W_j, PE_j, n_2)$$

(18)

where $B_2(\cdot)$ is a Budyko-type equation for the second partitioning stage, n_2 is the second synthesized parameter controlling the second partitioning except PE_j and W_j.

2.4 Generalized Budyko-type equations for E_a

After the modeling of two partitioning stages, E_j can be obtained by replacing W_j in Eq. (18) with Eq. (17).

$$E_j = B_2(B_1(P_j, S_c, n_1), PE_j, n_2)$$

(19)

Mean annual evaporation (E_a) can be expressed as the sum of E_j in three 4-month time intervals during a hydrological year.

$$E_a = \sum_{j=1}^{3} E_j = \sum_{j=1}^{3} B_2(B_1(P_j, S_c, n_1), PE_j, n_2)$$

(20)

Eq. (20) is the generalized Budyko-type equation and is rewritten as follows for visualization

$$E_a = \sum_{j=1}^{3} f_k(P, PE, S, n_1, n_2)$$

(21)

In the generalized equations, E_a is jointly controlled by three explanatory variables, including $P_j, PE_j,$ and S_c, representing the limits of water, energy, and space, respectively. Two parameters, n_1 and n_2, are incorporated to control two stages. The sum of 4-month E_j allows the generalized equations to incorporate climate seasonality at a 4-month resolution.

The combination of two Budyko-type equations, including Fu and Yang equations, generates four generalized Budyko-type equations (Table 1).

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budyko-type</td>
<td>Yang equation</td>
<td>$X = (Z^{-n} + X_{\text{max}}^{-n})^{-\frac{1}{n}}, n > 0$</td>
</tr>
<tr>
<td></td>
<td>Fu equation</td>
<td>$X = Z + X_{\text{max}} - (Z^n + X_{\text{max}}^n)^\frac{1}{n}, n > 1$</td>
</tr>
<tr>
<td>Generalized</td>
<td>Yang -Yang</td>
<td>$E_a = \sum_{j=1}^{3} \left(((P_j^{n_1} + S_c^{n_1})^{-\frac{1}{n_2}} + PE_j^{n_2})^{-\frac{1}{n_2}} \right)$</td>
</tr>
<tr>
<td>Budyko-type</td>
<td>Yang -Fu</td>
<td>$E = \sum_{j=1}^{3} \left((P_j^{n_1} + S_c^{n_1})^{-\frac{1}{n_2}} + PE_j^{-\frac{1}{n_2}} \right)$</td>
</tr>
</tbody>
</table>
Fu - Yang

\[E_a = \sum_{j=1}^{3} \left((P_j + S_c - (P_j^{n_1} + S_c^{n_1})^{\frac{1}{n_1}} + P E_j^{n_2}) \right)^{\frac{1}{n_2}} \]

Fu - Fu

\[E_a = \sum_{j=1}^{3} P_j + S_c - (P_j^{n_1} + S_c^{n_1})^{\frac{1}{n_1}} + P E_j - \left((P_j + S_c - (P_j^{n_1} + S_c^{n_1})^{\frac{1}{n_1}} + P E_j^{n_2}) \right)^{\frac{1}{n_2}} \]

3 Properties of the generalized Budyko-type equations

3.1 Proportional relationship

The generalized Budyko-type equations in Table 1 follow a proportional relationship, that is, \(E \) will experience a proportional change with a rate of \(\alpha \) when \(P_j \), \(PE_j \), and \(S_c \) experience the same change rate

\[\alpha E_a = \alpha \sum_{j=1}^{3} f_g(P_j, PE_j, S_c, n_1, n_2) = \sum_{j=1}^{3} f_g(\alpha P_j, \alpha PE_j, \alpha S_c, n_1, n_2) \]

(22)

Substituting \(\frac{1}{P_a} \), \(\frac{1}{PE_a} \), and \(\frac{1}{WP} \) for \(\alpha \), we will obtain generalized Budyko equations in three dimensionless spaces, like the Buckingham-\(\pi \) theorem (Daly et al., 2019; Barenblatt et al., 1996).

\[\frac{E_a}{P_a} = \sum_{j=1}^{3} f_g(P_j, PE_j, S_c, n_1, n_2) \]

(23)

\[\frac{E_a}{PE_a} = \sum_{j=1}^{3} f_g(P_j, PE_j, S_c, n_1, n_2) \]

(24)

\[\frac{E_a}{S_c} = \sum_{j=1}^{3} f_g(P_j, PE_j, S_c, n_1, n_2) \]

(25)

Eqs. (23) to (25) are scaled by \(P_a \), \(PE_a \), and \(WP \), respectively. Yang-Yang equation is taken as an example to show the proportional relationship. The Yang-Yang equation is expressed as follows

\[E_a = \sum_{j=1}^{3} ((P_j^{n_1} + S_c^{n_1})^{\frac{1}{n_1}} + P E_j^{n_2})^{-\frac{1}{n_2}} \]

(26)

Multiplying both sides by \(\alpha \), we obtain the proportional relationship

\[\alpha E_a = \sum_{j=1}^{3} (((\alpha P_j)^{n_1} + (\alpha S_c)^{n_1})^{\frac{1}{n_1}} + (\alpha P E_j)^{n_2})^{-\frac{1}{n_2}} \]

(27)

3.2 Linkage to Budyko-type equation

Budyko-type equations are the foundations for generalization, and can be viewed as the special cases of generalized Budyko equations under uniform distribution of \(P \) and \(PE \) throughout the year and infinite \(S_c \). Let us assume that

\[P_j = \frac{1}{3} P_a, \ PE_j = \frac{1}{3} PE_a, j = 1, 2, \text{and} \ 3 \]

(28)
Based on uniform distribution of \(P \) and \(PE \), we can rewrite \(E_a \) as 3 times of \(E_j \)

\[
E_a = 3E_j = 3B_2(B_1(P_j, S_c, n_1), PE_j, n_2) = 3B_2(B_1(\frac{1}{3}P_a, S_c, n_1), \frac{1}{3}PE_a, n_2)
\]

(30)

The proportional relationship further simplifies Eq. (30) as

\[
E_a = B_2(B_1(P_a, 3S_c, n_1), PE_a, n_2)
\]

(31)

Eq. (31) gives the form of generalized Budyko-type equations with the incorporation of storage limit \(S_c \) under uniform \(P \) and \(PE \). The \(3S_c \) in the right side of Eq. (31) is due to our assumption of three complete rainfall-runoff events in a hydrological year. If \(S_c \) tends to be infinite, the boundary condition in Budyko-type equations determines that \(B_1(P_a, 3S_c, n_1) = P_a \) from Eq. (15) as \(\frac{3S_c}{P_a} \to \infty \). Replacing \(B_1(P_a, 3S_c, n_1) \) with \(P_a \) in Eq (31) gives that

\[
E_a = B_2(P_a, PE_a, n_2)
\]

(32)

Thus, generalized equation is simplified to the Budyko equation (i.e., Eq. (32)) with uniform distribution of \(P \) and \(PE \) and infinite \(S_c \). Here, Yang-Yang equation is used as an example to explain this simplification. The expression of Yang-Yang equation is

\[
E_a = \sum_{j=1}^{3}((P_j^{-n_1} + S_c^{-n_1})^{-\frac{1}{n_1}} - n_2 + PE_j^{-n_2})^{-\frac{1}{n_2}}
\]

(33)

The uniform distribution of \(P \) and \(PE \) determines that

\[
E_a = ((P_a^{-n_1} + (3S_c)^{-n_1})^{-\frac{1}{n_1}} - n_2 + PE_a^{-n_2})^{-\frac{1}{n_2}}
\]

(34)

If \(S_c \to \infty \), The value \((3S_c)^{-n_1} \) approaches 0 and \(((P_a^{-n_1} + (3S_c)^{-n_1})^{-\frac{1}{n_1}} \to P_a \). As a result, Yang-Yang equation is simplified as

\[
E_a = (P_a^{-n_2} + PE_a^{-n_2})^{-\frac{1}{n_2}}
\]

(35)

Eq. (35) is the same as Yang equation and \(n_2 \) corresponds to the parameter \(n \) in Yang equation (Yang et al., 2008). The simplification of other forms of generalized Budyko-type equations can be similarly derived following the above routine.

3.3 Values of \(\frac{E_a}{P_a} \) in the generalized Budyko-type equations

The relationship between \(\frac{E_a}{P_a} \) and \(\frac{PE_a}{P_a} \) under different \(\frac{S_c}{P_a} \), climate seasonality, and parameters \(n_1 \) and \(n_2 \) using Yang-Yang equation are shown in Figure 2. The results using Yang-Fu, Fu-Yang, and Fu-Fu equations are provided in Figure S1 to S3. In general, \(E_a \) is similarly simulated in all four generalized Budyko-type equations, because Fu equation and Yang...
equation perform very similarly (Zhang et al., 2020; Zhou et al., 2015b; Andréassian and Sari, 2019). Here, Yang-Yang equation is used as an example for analysis.

The Figure 2a indicates that \(\frac{E_a}{P_a} \) is positively correlated with \(\frac{S_c}{P_a} \). Catchments with small water storage capacity (e.g., \(\frac{S_c}{P_a} = 0.2 \)) cannot make \(\frac{E_a}{P_a} \) approach to 1 despite infinite \(\frac{PE_a}{P_a} \), and such a limit from \(S_c \) is ignored in Budyko-type equations. When \(S_c \) approaches to infinite (e.g., \(\frac{S_c}{P_a} = 5 \)), the curve using Yang-Yang equation is the nearly same as Yang equation, and verify the simplification from generalized equations to Budyko-type equations with uniform climate and infinite \(S_c \) (black dashed lines in Figure 2a and c-f). The impacts of climate seasonality were demonstrated by the comparison of \(\frac{E_a}{P_a} \) under uniform, in-phase, semi-uniform, and out-of-phase climates (Figure 2b). The temporal distribution of \(P_a \) to \(PE_a \) in these four climates are shown in Figure S4. Uniform climate refers to uniform \(P_a \) to \(PE_a \), while semi-uniform climate has uniform \(P_a \) and seasonally changing \(PE_a \). In-phase (out-of-phase) climate refers to synchronous (asynchronous) \(P_a \) and \(PE_a \). Theoretical simulations suggest \(\frac{E_a}{P_a} \) decreases from uniform, in-phase, semi-uniform, to out-of-phase climates under the same \(\frac{PE_a}{P_a} \) and \(\frac{S_c}{P_a} \) (Figure 2b). The simulated impacts of climate seasonality on \(\frac{E_a}{P_a} \) are consistent with previous observations (Berghuijs et al., 2020; De Lavenne and Andréassian, 2018).

Two parameters (\(n_1 \) and \(n_2 \)) mainly control the runoff yielding processes in two partitioning stages. Larger \(n_1 \) and \(n_2 \) lead to larger \(E_a \), and thus \(n_1 \) and \(n_2 \) are positively correlated to \(\frac{E_a}{P_a} \) in the generalized equations (Figure 2c-f). The comparison between Figure 2c and d shows that \(n_1 \) mainly determines the impacts of \(\frac{S_c}{P_a} \) on \(\frac{E_a}{P_a} \), and it is due to \(n_1 \) controls the first partitioning stage that include water storage. Similarly, \(n_2 \) determines the upper boundary condition when \(\frac{S_c}{P_a} \) is large from the comparison between Figure 2c and e. In summary, \(S_c \) and climate seasonality, two factors that cause systematic errors in Budyko framework, are theoretically captured in our generalized Budyko-type equations. The simplifications of generalized equations to Budyko-type equation have been verified from simulated \(\frac{E_a}{P_a} \) under uniform climate and infinite \(S_c \) (Figure 2a and c-f). The shape of generalized equations can be adjusted through two parameters to include other hydroclimatic attributes.
Figure 2 The $\frac{E}{P_a}$ versus $\frac{PE_a}{P_a}$ using Yang-Yang equation under different water storage capacity ($\frac{S_c}{P_a}$; a), climate seasonality (b), and parameters (n_1 and n_2; c-f). The values of parameters and climate seasonality are shown in titles. The black dashed lines represent simulated $\frac{E}{P_a}$ from Yang equation with its parameter equal to n_2.
4 Applications to the CONUS

4.1 Data

Our generalized Budyko-type equations were applied to the CONUS to demonstrate their necessity, physical interpretation, and performance. The \(P, PE, E, \) and \(S_c \) data in 671 catchments across the CONUS were collected from the catchment attributes and meteorology for large-sample studies (CAMELS) dataset (Addor et al., 2017; Newman et al., 2015). The mean 4-month \(P \) data were collected from the observations in Daymet dataset (Thornton et al., 2014), and mean 4-month \(PE \) data were estimated by the Priestly–Taylor method (Priestley and Taylor, 1972). \(R \) data were collected from the USGS National Water Information System server. Mean annual \(E \) is calculated as the difference between mean annual \(P \) and \(R \) based on water balance principles at the catchment scale in a long-term period. \(S_c \) is estimated as the product of soil depth and soil porosity in the unit of millimeter. The soil depth is collected from the P16 dataset as the depth of the permeable layers above bedrock (Pelletier et al., 2016). The soil porosity is computed from the sand and clay fractions from the State Soil Geographic Database (STATSGO), and is weighted by top nine soil layers and averaged over catchment scale (Miller and White, 1998; Addor et al., 2017).

Some catchments were eliminated in this study. First, the catchments where mean annual \(E \) is greater than \(P \) were not selected because it indicates the violation of water balance principle and model assumptions in this study. Second, the catchments with snow fraction >0.2 were not included in that snowmelt shows different hydrological properties from rainfall (Berghuijs et al., 2020; Berghuijs et al., 2014; Gnann et al., 2019), and models in this study do not consider snow dynamics. Finally, 471 catchments in the CONUS were selected to verify the generalized Budyko equations.

4.2 Necessity of incorporating water storage capacity and climate seasonality in Budyko framework

Apart from the theoretical and previously published evidence in the introduction part, here we used the hydrological data in CONUS to empirically demonstrate the necessity of incorporating climate seasonality and \(S_c \) in estimating \(E_a \). Climate seasonality index (SI) in the CAMELS dataset is used to represent climate seasonality. SI is calculated from Eq. (14) in Woods (2009), and positive (negative) value indicates that \(P \) and \(PE \) are synchronous (asynchronous). Yang and Fu equations were applied to CONUS, and parameter \(n \) was estimated with the minimum squared errors between the observed and simulated \(E_a \). The evaluation metrics are shown in Table 2, and Yang equation is used as an example (Figure 3). Similar to previous works (Berghuijs et al., 2020; De Lavenne and Andréassian, 2018; Potter et al., 2005), Budyko-type equations generally overestimate \(E_a/P_a \) for catchments with out-of-phase climate and small \(S_c \), and underestimate \(E_a/P_a \) for in-phase climate and large \(S_c \) (Figure 3a, b). \(E_a \) and \(E_a/P_a \) in some catchments are likely to be largely overestimated by Yang equation due to the loss of limits from water storage capacity and climate seasonality (Figure 3c-d). The errors in \(E_a \), which are the difference between observed and simulated \(E_a \), also show significantly negative correlation with SI and \(S_c \), indicating their significance in controlling errors in Budyko framework (Figure 4). The results from Fu equation are very similar to those of Yang.
equation (Figure S5). Thus, physically incorporating climate seasonality and S_c into Budyko framework is necessary for future improvement. The negative impacts of SI and S_c to $\frac{E_a}{P_a}$ in observations are also consistent with the simulated results in generalized equations (Section 3.3), and validate our generalization.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Parameters</th>
<th>Evaluation Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>r (E_a)</td>
</tr>
<tr>
<td>Budyko-type equation</td>
<td>Yang</td>
<td>$n = 2.102$</td>
<td>0.787</td>
</tr>
<tr>
<td></td>
<td>Fu</td>
<td>$n = 2.802$</td>
<td>0.789</td>
</tr>
<tr>
<td>Generalized Budyko-type equation</td>
<td>Yang -Yang</td>
<td>$n_1 = 7.288; n_2 = 3.709$</td>
<td>0.855</td>
</tr>
<tr>
<td></td>
<td>Yang -Fu</td>
<td>$n_1 = 7.274; n_2 = 4.422$</td>
<td>0.854</td>
</tr>
<tr>
<td></td>
<td>Fu - Yang</td>
<td>$n_1 = 7.990; n_2 = 3.709$</td>
<td>0.855</td>
</tr>
<tr>
<td></td>
<td>Fu - Fu</td>
<td>$n_1 = 7.975; n_2 = 4.423$</td>
<td>0.854</td>
</tr>
<tr>
<td>Varying Budyko equations</td>
<td>Varying Yang</td>
<td>$\alpha_0 = 2.153; \alpha_1 = 0.206; \alpha_2 = 0.414$</td>
<td>0.842</td>
</tr>
<tr>
<td></td>
<td>Varying Fu</td>
<td>$\alpha_0 = 2.857; \alpha_1 = 0.205; \alpha_2 = 0.409$</td>
<td>0.844</td>
</tr>
</tbody>
</table>
Figure 3 Applications of Yang equation to CONUS. (a-b) The observed pairs ($\frac{PE_a}{P_a}$ versus $\frac{E_a}{P_a}$; points) and their relationship to climate seasonality index (SI; a) and water storage capacity ($\frac{S_a}{P_a}$; b). Black lines are fitted Yang equations. (c-d) The comparison between simulated and observed E_a (c) and $\frac{E_a}{P_a}$ (d) using Yang equation. The black dashed lines are 1:1 lines with an intercept of 0.
Figure 4 Relationships between the errors in E_a using Yang equation and climate seasonality index (SI; a) and water storage capacity (S_c; b). The Pearson correlation coefficient (r) and p-value are shown at bottom right. Blue lines are estimated from linear regression.

4.3 Performance of generalized Budyko-type equations

Four generalized Budyko-type equations were applied in the 471 catchments of CONUS to simulate E_a and $\frac{E_a}{P_a}$ and two parameters (n_1 and n_2) were estimated through the “L-BFGS-B” method (Byrd et al., 1995) with the minimum squared errors between the observed and simulated E_a. Estimated parameters (n_1 and n_2) and performance of generalized equations are shown in Table 2. All four equations achieve very similar performance, and we take Yang-Yang equation for an example. The r^2 for E_a and $\frac{E_a}{P_a}$ using Yang-Yang equation are 0.730 and 0.823, an improvement over Yang equation ($r^2 = 0.616$ and 0.771 in Table 2). The comparison between simulated and observed $\frac{E_a}{P_a}$ and E_a shows that no systematic overestimation or underestimation exists in our simulation (Figure 5a, b). The simulated $\frac{E_a}{P_a}$ are positively correlated to SI and S_c (Figure 5c, d), and are in accord with the observation (Figure 3a, b). The errors in simulated E_a from Yang-Yang equation do not show significant correlation with SI and S_c (Figure 6), indicating that the systematic errors of E_a in Budyko-type equations due to climate seasonality and water storage capacity have been physically corrected by our generalization. Yang-Yang equation mainly decrease the errors in simulated E_a and $\frac{E_a}{P_a}$ for some catchments in the western and southeastern CONUS (Figure 7). These catchments have either asynchronous climate seasonality or shallow soil depth (Addor et al., 2017), showing that our generalized equations are able to be applied in the Mediterranean climate and catchments with small
However, Yang-Yang equation increases the errors of simulated E_a and $\frac{E_a}{P_a}$ in Florida and some midwestern regions (Figure 7). The reason may be that soil depth and soil properties in the P16 and STATSGO dataset only consider the top 50m and 1.5m, which may not be accurate in these areas and induce errors for simulations. Meanwhile, our generalized equations bear errors for $\frac{E_a}{P_a}$ when $SI = -1$ (Figure 6c). Our generalization assumes that water storage change between 4-month intervals is zero, which ignore water inputs from antecedent soil moisture and may result in errors for catchments with asynchronous climate seasonality.

Figure 5 The performance of Yang-Yang equation in CONUS. (a-b) Comparison between simulated and observed E_a (a) and $\frac{E_a}{P_a}$ (b) from Yang-Yang equation. The black dashed lines are 1:1 lines with an intercept of 0. (c-d) The simulated $\frac{E_a}{P_a}$ versus observed $\frac{PE_a}{P_a}$ under different SI (c) and S_c/P_a (d).
Figure 6 Relationship between the errors in simulated E_a using Yang-Yang equation and climate seasonality index (SI; a) and water storage capacity (S_c; b). The Pearson correlation coefficient (r) and related p-value are shown at bottom right. Blue lines are estimated from linear regression.

Figure 7 Difference of the errors in simulated E_a (a) and E_a/P_a (b) between Yang-Yang equation and Yang equation
4.4 Comparison with varying Budyko equation

Varying Budyko equation is a popular method to incorporate factors apart from P_a and PE_a in Budyko framework, where parameter n is linearly regressed to catchment properties (Zhang et al., 2019a; Zhang et al., 2019b; De Lavenne and Andréassian, 2018; Jiang et al., 2015). Here, normalized $S_c (x_{1,i})$ and SI $(x_{2,i})$, two factors that are incorporated in the generalized equations, were also used to explain the synthesized parameter (n_i) in varying Budyko equations

$$n_i = \alpha_0 + \alpha_1 x_{1,i} + \alpha_2 x_{2,i}$$ (36)

where n_i is the synthesized parameter in ith catchment; α_0, α_1, and α_2 are three regression parameters. The “L-BFGS-B” method is also used for parameters estimation with the minimum of squared errors between the observed and simulated E_a (Byrd et al., 1995).

The varying Yang equation and varying Fu equation were applied to CONUS, and achieve very similar performance as shown in Table 2. Take varying Yang equation as an example, the systematic overestimation is corrected and outliers in Budyko framework are captured by changing parameter n (Figure 8). However, the r^2 and r of varying Budyko equations are worse than those of generalized Budyko-type equations (Table 2), and varying Budyko equation has one more parameter than generalized Budyko-type equations. Meanwhile, three regression parameters (i.e., α_0, α_1, and α_2) in varying Budyko equation lack physical interpretation, and linear relationship deserves further examination. As a result, our generalized equations improve the accuracy and robustness for estimating long-term E with fewer parameters and provides additional physical interpretation compared with varying Budyko equations.
5 Discussion

A generalized Budyko-type framework was proposed in this study to physically incorporate the impacts of climate seasonality and water storage in estimating E_a. The S_c is used as a new limiting variable that represents the maximum volume of water that can be saved in the catchment. Climate seasonality is included by modeling hydrological processes at a 4-month timescale. Thus, four factors (P, PE, S_c, and climate seasonality) were included in our generalized equations, and
...each plays a distinct role. \(P \) measures available liquid water for evaporation; \(PE \) measures atmospheric demand and represents available energy to transform liquid water into water vapor; \(S_c \) measures the space where evaporation can occur; climate seasonality indicates the temporal coupling between climatic variables. Two parameters, \(n_1 \) and \(n_2 \), control the fast flow and baseflow separately. The shape and upper bound of the generalized equations can be adjusted with varying \(n_1 \) and \(n_2 \). The clear physical interpretation may make generalized equations more robust and physically interpretable than previous Budyko equations with either constant or varying parameters. Meanwhile, previous Budyko-type equations can be viewed as special cases of generalized Budyko equations under uniform \(P \) and \(PE \) and infinite water storage capacity.

The applications in the CONUS show that our generalized Budyko-type equations not only have one fewer parameter than varying Budyko equations, but also achieve higher correlation (\(r \)) and explained variance (\(r^2 \)) for \(E_a \) and \(\frac{E_a}{P_a} \). The simulated impacts of climate seasonality and water storage on \(\frac{E_a}{P_a} \) from generalized equations are in accord with observations in CONUS, which highlight the necessity and validity of our generalization. In addition, previous studies statistically regress parameter \(n \) to climate index or hydrological characteristics, which usually assume a linear relationship between \(n \) and explanatory variables (Zhang et al., 2019a; Zhang et al., 2019b; De Lavenne and Andréassian, 2018; Jiang et al., 2015). This assumption deserves physical examination, and is not able to fully represent climatic conditions. For example, SI is equal to 0 in both uniform and semi-uniform climates (Woods, 2009), while these two climates have different \(E_a \) and \(\frac{E_a}{P_a} \) based on our simulations (Figure 2 and 3). Physical accounts of these factors are more appropriate for future applications with intensifying human activities and climate change.

The generalization in this study assumes that annual hydrological processes consist of three 4-month rainfall-runoff events, and Ponce-Shetty is applied at each time interval. Apart from the rising-recession-depletion period in hydrograph, this assumption is based on previous applications of Ponce-Shetty model, in which the wetting potential, representing maximum values for annual \(W \), is approximately three to four times greater than \(S_c \) in CONUS (Gnann et al., 2019; Sivapalan et al., 2011). Other timescales were also examined for generalized Budyko-type equations in Figure 9, and \(r^2 \) for \(E_a \) at 3-month, 2-month, and 1-month timescales are still better than those of Budyko equations. The generalized Budyko-type equation at the 1-month timescale assumes that annual hydrological processes consist of 12 independent monthly rainfall-runoff events. However, the groundwater and baseflow may not be close to zero at the end of each month, and carrying water storage between time intervals cannot be ignored (Zhang et al., 2020). The generalized equation at the 12-month timescale assumes one complete rainfall-runoff event in a hydrological year, while water storage may be used several times by multiple rainfall events in a hydrological year. Thus, modeling long-term water balance at the 4-month timescale is the most suitable choice for generalized Budyko-type equations in CONUS, and achieves the best performance.

This study estimates \(S_c \) from observed soil depth and porosity, and does not require any calibration (Miller and White, 1998; Addor et al., 2017; Pelletier et al., 2016). Thus, the generalized equations provide an independent limit of \(E \) from a hydrological perspective, and increase the potential for predicting \(E_a \) at ungauged catchments. However, current
observations of soil properties include certain uncertainty due to low information about deep soil layers, scale inadequacy, limited depth, and among others (Addor et al., 2017). For example, soil depth estimated from STATSGO dataset (Miller and White, 1998) and P16 dataset (Pelletier et al., 2016) differ a lot for catchments with soil depth >1.5 m. Storage capacity data estimated from ground observations and remote sensing are inconsistent globally, which largely influence hydrological simulations (Mao and Liu, 2019). Accurately estimating soil properties is the key for improving the performance of generalized equations and facilitating their global applications in the future.

The generalized Budyko framework has great potentials in the areas where the Budyko-type equations have been successfully used, such as elasticity analysis, attribution of runoff change, groundwater analysis, hydrological shift, and model calibration (Istanbulluoglu et al., 2012; Wang et al., 2016; Wang and Zhou, 2016; Chen and Sivapalan, 2020; Gao et al., 2020; Greve et al., 2020; Zhang et al., 2019a; Wang and Hejazi, 2011; Chen et al., 2013). The better performance of the generalized framework in the CONUS indicates that it can provide more accurate results than previous Budyko-type equations. Proposing new methods that decompose the impacts of aridity index, climate seasonality, and storage capacity on E_a based on generalized equations may help us better detect and quantify the impacts of human activities and climate change on water resources.
Figure 9 Comparison between simulated and observed E_a using Yang-Yang equation at various timescales. The numbers at bottom right are the coefficients of determination (r^2) for E_a.

6 Conclusions

In this study, a generalized Budyko framework was analytically proposed with physical accounts of climate seasonality and water storage capacity for simulating mean annual E. The S_c is introduced as a new explanatory variable to represent water storage capacity, and Ponce-Shetty model is used to model hydrological processes at a 4-month timescale. Previous Budyko-type equations can be treated as special cases with uniform climate and infinite S_c. The applications to the CONUS show that the incorporation of climate seasonality and water storage capacity is necessary in estimating E_a, and our generalized equations theoretically capture the observed impacts of these two factors. Meanwhile, the generalized equations perform better than previous varying Budyko equations and include one fewer parameter. Overall, the new framework represents an improvement over previous Budyko-type equations in terms of physical interpretation and accuracy. Further applications of the new framework in long-term water balance analysis are highly desirable.
Data availability

The hydrometeorological datasets and catchment attributes in the contiguous United States are provided by Newman et al. (2015) and Addor et al. (2017), and are available at https://ral.ucar.edu/solutions/products/camels.

Author contributions

XZ and RW conceived the original idea. XZ designed the overall study and wrote the first draft. JL and QD interpreted the results and supervised the progress. All authors contribute to the discussion and revision of manuscript.

Competing interests

The contact author has declared that none of the authors has any competing interests.

Acknowledgments

This research was supported by Hong Kong Research Grants Council (No. 17303017) and National Natural Science Foundation of China (No. 51979198).

References

Martinez, G. F. and Gupta, H. V.: Toward improved identification of hydrological models: A diagnostic evaluation of...

Vitvar, T., Burns, D. A., Lawrence, G. B., McDonnell, J. J., and Wolock, D. M.: Estimation of baseflow residence times in watersheds from the runoff hydrograph recession: method and application in the Neversink watershed, Catskill Mountains,

