
1 

 

The precision of satellite-based net irrigation quantification in the 

Indus and Ganges basins 

Søren J. Kragh1, Rasmus Fensholt2, Simon Stisen1, Julian Koch1 

1Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, 1350, Denmark 
2Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, 1350, Denmark 5 

 

Correspondence to: Søren Julsgaard Kragh (sjk@geus.dk) 

 

Abstract. Even though irrigation is the largest direct anthropogenic interference with the natural terrestrial water cycle, limited 

knowledge of the amount of water applied for irrigation exists. Quantification of irrigation via evapotranspiration (ET) or soil 10 

moisture residuals between remote sensing models and hydrological models, with the latter acting as baselines without the 

influence of irrigation, have successfully been applied in various regions. Here, we implement a novel ensemble methodology 

to estimate the precision of ET-based net irrigation quantification by combining different ET and precipitation products in the 

Indus and Ganges basins. A multi-model calibration of 15 models independently calibrated to simulate rainfed ET was 

conducted before the irrigation quantification. Based on the ensemble average, the 2003-2013 net irrigation amounts to 233 15 

mm/year (74 km3/year) and 101 mm/year (67 km3/year) in the Indus and Ganges basin, respectively. Net irrigation in the Indus 

basin is evenly split between dry and wet periods, whereas 70% of net irrigation occurs during the dry period in the Ganges 

basin. We found that although annual ET from remote sensing models varied by 91.5 mm/year, net irrigation precision was 

within 25 mm/season during the dry period for the entire study area, which emphasizes the robustness of the applied multi-

model calibration approach. Net irrigation variance was found to decrease as ET uncertainty decreased, which is related to the 20 

climatic conditions, i.e. high uncertainty under arid conditions. A variance decomposition analysis showed that ET uncertainty 

accounted for 73% of the overall net irrigation variance and that the influence of precipitation uncertainty was seasonally 

dependent, i.e. with an increase during the monsoon season. The results underline the robustness of the framework to support 

large-scale sustainable water resource management of irrigated land. 

1 Introduction 25 

40% of global irrigated cropland is sustained by groundwater abstraction (Siebert et al., 2010), which has made regional 

groundwater levels decline as abstraction rates have exceeded the annual recharge (Ahmad et al., 2021; Malakar et al., 2021; 

Mujumdar, 2013; Rodell et al., 2009; Shekhar et al., 2020). By 2050, global food production will have to increase by 60%  to 

meet global food demand and 90% of this increase in food production is projected to take place in developing countries 

(Alexandratos and Bruinsma, 2012). Water scarcity is thus likely to intensify and threaten the livelihood millions of people 30 

living in the affected areas as well as global food security (Jain et al., 2021; Mujumdar, 2013).  
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Despite this, our knowledge of the extent of irrigated areas and irrigated water use is limited. In recent years, mapping 

of irrigated areas from microwave or/and optical satellite data have advanced (Bazzi et al., 2021; Dari et al., 2021; Lawston et 

al., 2017; Sharma et al., 2021) and scientific advances have aimed at estimating the irrigation water use by isolating satellite-

based ET or soil moisture as a non-precipitation source (Brocca et al., 2018; Jalilvand et al., 2019, 2021; Koch et al., 2020; 35 

Zaussinger et al., 2019; Zohaib and Choi, 2020). Knowledge of irrigated water use is important for correct modeling of the 

water balance (Shah et al., 2021, 2019b, 2019a; Soni and Syed, 2021) and modeling of regional climate, which can significantly 

be modulated by irrigation (Mishra et al., 2020; Thiery et al., 2020). Ultimately, such improved knowledge will support 

policymakers to make valid and timely decisions on water management (Schwartz et al., 2020). 

Soil moisture-based irrigation estimates have been found to yield irrigation estimates with satisfactory accuracy 40 

(Brocca et al., 2018; Dari et al., 2020; Zaussinger et al., 2019). However, the advantages of using ET over soil moisture are: 

1) ET is directly linked to plant transpiration reacting to irrigation whereas soil moisture produces an indirect estimate, 

especially since many remote sensing systems only penetrate the topsoil (few cm), 2) the spatial resolution is higher of readily 

available ET datasets (e.g. derived from optical and thermal MODIS data). The disadvantage of using ET to estimate irrigation 

is that the magnitude of the rainfed component of the products can vary substantially, which can in theory lead to diverging 45 

irrigation estimates when comparing across ET products. Also, cloud cover is a limitation as it can affect the temporal 

resolution of the ET-based approach, which we addressed by aggregating the original datasets to monthly scale.   Similar to 

Koch et al. (2020), we used a hydrological model calibrated for rainfed conditions to simulate a rainfed baseline and thus 

accommodate for the differences between ET products. 

Less attention has been given to quantifying the uncertainty of ET-based irrigation estimates. Uncertainties can be 50 

expressed twofold, i.e. accuracy and precision. Accuracy captures how close the estimates are to observations, whereas 

precision investigates how close or dispersed estimates are to each other. The accuracy of irrigation estimates can only be 

assessed by observations, which are commonly absent on a larger scale. In this study, we focus on precision, which can be 

addressed using an ensemble approach, utilizing multiple models, i.e. with different hydro-meteorological datasets.  

Although remote sensing-based hydro-meteorological data have the advantage of high spatial coverage, the inherent 55 

uncertainty in ET and precipitation products may arise from a variety of potential errors (e.g. different revisit times from 

satellite sensors and model approach). Evaluation of evapotranspiration products by the water balance ET and Budyko ET 

approach in Africa and Europe have shown that ET remote sensing products may differ substantially when comparing 

magnitude and/or spatial patterns (Stisen et al., 2021; Weerasinghe et al., 2020). Evaluation of precipitation products has, 

analogous to the ET products, show that large differences in magnitude and spatial patterns are evident. For example, Yang 60 

and Luo (2014) evaluated the performance of three precipitation products over an arid region in China and found that 

corrections were necessary as the products yielded very different magnitudes and spatial patterns. Logah et al. (2021) found 

that the precipitation products generally performed better during the dry period and that the products had difficulties simulating 

high-intensity rainfall in the Black Volta Basin.  
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The current study area covers the Indus and Ganges basins, shared between more than a billion people in India, 65 

Pakistan, Nepal, Bangladesh, China, and Afghanistan. Large government investments in India in the 1960s lead the region and 

mainly the state of Punjab to be the largest area heavily equipped for irrigation at a global scale, through the construction of 

the Indus Basin and Bhakra irrigation systems, providing food security beyond its borders (Sharma et al., 2010). A rapidly 

growing population, combined with a decreasing investment in irrigation infrastructure has increased unsustainable 

groundwater use and resulted in a regional decline in groundwater level (Rodell et al., 2009). A regional survey indicated that 70 

irrigation from groundwater was more widespread than first assumed as only 5% of surveyed villages consider their agricultural 

practice as totally rainfed (Shah et al., 2006). 

This study applies, for the first time, an ensemble approach to investigate the robustness of ET-based estimates of 

irrigation at a regional scale for a global hotspot of irrigation-induced groundwater overexploitation. In this way, previous 

work (Koch et al., 2020; Romaguera et al., 2014), is expanded by using different ET and precipitation products to quantify 75 

irrigation water use and precision of an ET-based framework. The three main objectives of this paper are 1) the selection and 

analysis of suitable global ET and precipitation dataset for the irrigation quantification over Indus and Ganges basins, 2) 

building a hydrological model to simulate rainfed ET at 5 km spatial resolution via a state-of-the-art calibration tool and 3) 

evaluate the precision and influence of ET and precipitation uncertainties in the estimation of irrigation. 

2 Study area 80 

The Indus and Ganges basins extend over an area of 2.2 million km2 (Figure 1). The region can be subdivided into four 

geographical regions: 1) The Himalayan mountains along the northern boundary, 2) The Indo-Gangetic outwash plain, 3) The 

Thar desert separating the two basins; and 4) The peninsular plateau south of the Indo-Gangetic plain, characterized by 

highlands, valleys and rounded hills. The climate is monsoon dominated and varies from a tropical humid zone in the eastern 

Ganges basin and along the mountain range, to an arid climate in the lower Indus basin (see Figure 1). Most precipitation 85 

occurs from July to September during the monsoon season and varies on average between 200-1200 mm/year (2000-2019) 

across the basins.  

Agriculture accounts for 70% of land cover in the basins. Summer rice and winter wheat rotation is the most common 

cropping system in the Indo-Gangetic plain, mixed with cotton and sugarcane outside the plain (Cai et al., 2010). Summer rice 

water requirements are overall met by precipitation during the wet period (May – November), except in the lower Indus basin 90 

with precipitation rates less than 50 mm/month, where extensive irrigation takes place also during the monsoon months. 

However, winter wheat heavily depends on irrigation in the entire region as the average precipitation rate is less than 25 

mm/month during the dry period (December-April). 
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3 Method and data 

3.1 Hydrological model 95 

This study applies the grid-based mesoscale Hydrological Model (mHM, Kumar et al., 2013; Samaniego et al., 2010; Thober 

et al., 2019) version 5.11.0 (Samaniego et al., 2021). mHM uses a multiscale parameter regionalization technique that links 

spatial distributions of model parameters at an intermediate scale, representing hydrological processes, to finer scale variability 

in soil texture, topography, and vegetation via nonlinear transfer functions. The transfer functions have a limited number of 

global parameters that enable efficient calibration (Samaniego et al., 2021, 2017). The hydrological models set up for this 100 

study used 10 km gridded metrological forcing and 1 km morphological data and were calibrated and executed at 5 km spatial 

resolution to simulate rainfed ET baselines, i.e. representing a purely rainfed hydrological system without the presence of 

irrigation.  

For our model setup, actual ET is calculated by reducing potential ET by Fedde’s soil water stress factor (Feddes et 

al., 1976) in combination with a root fraction distribution over the defined number of soil layers. mHM offers an option for 105 

dynamic downscaling of potential ET from metrological- to model resolution by incorporating vegetation dynamics from a 

monthly leaf area index (LAI) climatology (Demirel et al., 2018). To setup mHM to simulate rainfed ET, Koch et al., (2020) 

modified the LAI climatologies by removing the imprint of irrigation on vegetation dynamics by substituting the original LAI 

climatologies in irrigated areas with a mean LAI climatology from rainfed areas to simulate the rainfed ET baseline as a natural 

scenario. In this study, we used the original LAI climatologies without modifications to simulate the rainfed ET baselines 110 

under a managed scenario, as modification of LAI climatologies to natural conditions potentially overestimates net irrigation 

by underestimating rainfed ET over irrigated areas.  

 In this study, different precipitation products were used as forcing (described in section 3.3), the daily average air 

temperature was acquired from ERA‐Land, and potential ET was calculated by using FAO-56 Penman-Monteith equation with 

ERA5-Land variables (Muñoz Sabater, 2019). We chose the FAO-56 Penman-Monteith equation based on its documented 115 

ability to estimate potential ET used in irrigation management and comparative studies evaluating FAO-56 PM against other 

potential ET estimation methods (Allen et al., 1989; Jensen and Allen, 2016; Martin et al., 1993)  The DEM was obtained from 

NASA's Shuttle Radar Topography Mission data (Jarvis et al., 2016). Soil texture information was processed for six horizons 

from the SoilGridTM database (ISRIC, 2020) and resampled to 1 km using the mean function. LAI and land cover data were 

collected from MODIS MCD15A2H.v006 and MCD12Q1.v006, respectively. 120 

3.2 Calibration and validation strategy 

The calibration framework is designed to obtain hydrological models that simulate baselines of rainfed ET. The hydrological 

models used in this study were calibrated using the Pareto Archived Dynamically Dimensioned Search (PADDS) algorithm 

(Asadzadeh and Tolson, 2009) implemented in the Optimization Software Toolkit – OSTRICH (Matott, 2017). The calibration 

was performed with 600 iterations and a perturbation size of 0.2. We calibrated 12 parameters that were identified based on a 125 
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prior sensitivity analysis perturbing one parameter at a time and recording the change in the objective function. The OSTRICH 

algorithm provides the modeler with a Pareto front of dominant solutions, which enables the modeler to select the solutions 

that mark the most acceptable tradeoff between multiple objective functions.  

OSTRICH was used to minimize two objective functions that address the magnitude and seasonal spatial pattern of 

ET over rainfed cropland and naturally vegetated areas for the calibration period 2003 – 2007. First, the monthly mean absolute 130 

error (MAE) is used to target the magnitude of ET over rainfed cropland. 

𝑀𝐴𝐸 =
∑ |𝑥𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
 ,           (1) 

Where 𝑥𝑖 and 𝑦
𝑖
 represent observed and simulated ET at cell i, and n is the number of cells. MAE has an optimal value of 0 

and varies from 0 to positive infinity. Second, optimization of the spatial ET pattern was targeted by applying the spatial 

efficiency (SPAEF) metric on ET in rainfed cropland and naturally vegetated areas for the mean dry and wet periods. SPAEF 135 

is a multi-component bias-insensitive spatial pattern metric, evaluating the ability of the model to simulate the observed 

correlation, variance, and histogram. (Demirel et al., 2018; Koch et al., 2018) 

𝑆𝑃𝐴𝐸𝐹 = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 ,        (2) 

𝛼 =  𝜌(𝑥, 𝑦)   and   𝛽 = (
𝜎𝑥

𝜇𝑥
) / (

𝜎𝑦

𝜇𝑦
)   and   𝛾 =  

∑ min (𝐾𝑗,𝐿𝑗)𝑛
𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

 

Where x and y denote observed and simulated data. α is the Person’s correlation coefficient, β is the spatial variability, 140 

calculated as a fraction of observed and simulated coefficient of variation and γ is the agreement between the observed (K) and 

simulated (L) histograms with n bins. SPAEF has an optimal value of 1 and varies from 1 to negative infinity. For OSTRICH 

to minimize the SPAEF objective function, we calculated the sum of squared residuals for dry and wet periods. Model 

validation is split into a temporal validation for each model based on observations from 2008 – 2012 and a spatial validation 

by transferring parameters calibrated against rainfed areas to irrigated areas by using an observational dataset that does not 145 

incorporate irrigation. 

To select the best parametrizations after having obtained the full Pareto front from OSTRICH, we normalized each 

dominant solution in the Pareto front by the best performance for MAE and SPAEF. The solution with the lowest sum was 

then selected for each pareto front as the best parametrization. Because the ranges in MAE are larger than the ranges for 

SPAEF, the MAE dimension was truncated by minimum dominating MAE plus 1 mm/month. 150 

 

3.3 Evapotranspiration and precipitation data 

We compared seasonal and annual differences and normalized spatial patterns among ten ET products and eight precipitation 

products to identify the most suitable datasets for our modeling study. The precipitation data were used as forcing to the 

developed hydrological models and the ET data were used twofold, first as a calibration target over the rainfed areas and 155 
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second as a reference in the subsequent irrigation quantification. An initial comparison revealed large differences across the 

ET products, which to a large degree were coinciding with climate zones. In contrast, differences were small among 

precipitation products. The final selection of ET product was based on two criteria: 1) capturing dry-period irrigation resulting 

in high ET during the months (December-April) and 2) realistic annual estimates (no references several orders of magnitude 

higher or lower than annual precipitation) with reasonable inter-annual variations (no sudden changes in mean annual ET, can 160 

happen if the reference is a composite of other references). As relative differences among precipitation products were small, 

the sole criterion for selection was the spatial resolution, i.e. high-resolution products were favored (<0.25°). After the initial 

comparison of datasets, three ET and five precipitation products (Table 1) were selected for building 15 hydrological models, 

each calibrated based on a unique combination of the selected products.  

The five selected precipitation inputs are CHIRPS, ERA5-Land, MSWEP, PERSIANN-CDR, and TRMM (Table 1):  165 

CHIRPS uses reanalysis and satellite infrared data to estimate precipitation and gauge observations for correction (Funk et al., 

2015). ERA5-Land is a high spatial resolution land component of the global ERA5 climate reanalyses system; a product driven 

by a large amount of satellite and gauge data (Muñoz Sabater, 2019). MSWEP is a synthesis of different precipitation products 

that are merged using gauge observations (Beck et al., 2019). PERSIANN-CDR is a machine-learning product that uses 

satellite infrared data and gauge observations for bias correction (Ashouri et al., 2015). TRMM uses infrared and microwave 170 

satellite data to estimate precipitation and gauge observations for subsequent correction (Huffman et al., 2007). Precipitation 

products are very similar when comparing seasonal and annual variations and showed one distinct peak during the summer 

monsoon (Figure 2C and D). However, relative differences of up to 40% were found between the annual precipitation rates in 

the arid climate zone in the lower Indus Basin.  

The three selected ET products are FLUXCOM, NTSG, and PML (Table 1): FLUXCOM is a machine-learning 175 

product that combines energy balance observations at flux towers with satellite data (Jung et al., 2019). NTSG is a satellite 

and reanalysis-driven product that combines the Penman-Monteith and Priestley-Taylor models (Zhang et al., 2010). PML is 

a satellite and reanalysis-driven product that is based on the Penman-Monteith and Leuning models (Zhang et al., 2019). All 

three products have in common that they to a large degree utilize thermal and optical data from MODIS. The ET products were 

rather different concerning their seasonal and annual variations but were overall characterized by two distinct peaks, the first 180 

in March and the second between July-September (Figure 2A and B). The seasonal pattern is dominated by the summer 

monsoon and influenced by extensive irrigation during the dry period (December-April). The ET products were more similar 

during the dry period compared to the wet period and relative differences were observed in annual ET across the basins in the 

humid (20%) and arid (50%) climate zones. Besides seasonal patterns, annual estimates suggest that ET and precipitation have 

increased since 2001 (Figure 2B and 2D) which agrees with other studies (Jin and Wang, 2017; Katzenberger et al., 2021). 185 

The selected products (Table 1) include different temporal and spatial resolutions and all have been pre-processed to 

the same spatiotemporal dimensions before modeling.  ET and precipitation products have been aggregated by summation to 

monthly and daily scales, respectively. Further, all ET products have been up or downscaled to 5 km, and precipitation data 

were resampled to 10 km spatial resolution by bilinear interpolation. 
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 190 

Table 1: Characteristics of selected ET and precipitation products.  

Abbreviations: ECMWF Reanalysis 5th Generation – enhanced resolution (ERA5-Land), Numerical Terradynamic Simulation Group 

(NTSG), Penman-Monteith-Leuning v.2 (PML), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), Multi-Source 

Weighted Ensemble Precipitation v.2 (MSWEP), Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks - climate data record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis v.7 195 
(TRMM). 

 
Dataset 

Spatial Spatial Temporal Temporal 
Reference 

 resolution coverage resolution coverage 
       

Ev
ap

o
tr

an
s-

 

p
ir

at
io

n
 

ERA5-Land1 0.1° global daily 1981 - now (Muñoz Sabater, 2019) 

FLUXCOM 0.083° global 8-day 2001 - 2015 (Jung et al., 2019) 

NTSG 0.083° global daily 1982 - 2013 (Zhang et al., 2010) 

PML V2 0.005° global 8-day 2002 - 2019 (Zhang et al., 2019) 
       
       

P
re

ci
p

it
at

io
n
 CHIRPS 0.05° 50°N-50°S daily 1981 - now (Funk et al., 2015) 

ERA5-Land 0.1° global daily 1981 - now (Muñoz Sabater, 2019) 

MSWEP 0.1° global 3-hourly 1979 - 2017 (Beck et al., 2019) 

PERSIANN-CDR 0.25° 60°N-60°S 3-hourly 1983 - now (Ashouri et al., 2015) 

TRMM 0.25° 50°N-50°S 3-hourly 1998 - now (Huffman et al., 2007) 
 

      

1 ERA5-Land ET is only used for validation of concept. 

3.4 Rainfed map 

To calibrate the hydrological model against rainfed conditions (cropland that are not under irrigation), we created a map 

differentiating rainfed and irrigated cropland. The classification of cropland into rainfed and irrigated was based on MODIS 200 

land cover and NDVI products (MODIS MCD12Q1.v006 and MOD13Q1.v006). We found inspiration from Dari et al. (2021), 

who used results from a temporal stability analysis of satellite and modeled soil moisture, in an unsupervised K-means analysis 

to detect and map irrigated areas. In our adopted approach, we used mean dry period NDVI climatologies (i.e. five months, 

December-April) in a temporal stability analysis. More precisely, we used the standard deviation of the spatial anomalies  and 

the temporal anomalies in a 2-dimensional unsupervised K-means classification to identify three clusters representing rainfed 205 

cropland, irrigated cropland and mixed – more information about the temporal analysis components can be found in (Dari et 

al., 2021). The assumption is that NDVI of rainfed cropland can be characterized by a high temporal stability and a low 

temporal anomaly in the five selected months, and vice versa for irrigated cropland. The classification was performed at the 

original MODIS resolution of 500 m and then the classification was upscaled to model resolution, i.e. 5 km. A threshold of 

95% was used to identify primarily rainfed and irrigated pixels (to avoid a mixed rainfed and irrigated signal in the calibration), 210 

thus a third class was added to represent pixels that were mixed. The classification was evaluated against the FAO GIMA v5.0 

dataset (Siebert et al., 2013) on global areas equipped for irrigation (Figure 1) and showed overall consistency. During the wet 

period, cropland classified as ‘humid’ according to the dryland classification by the Joint Research Center of the European 
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Commission (Spinoni, 2015) was assumed to be rainfed cropland (Figure 6E). The dry and wet period rainfed maps (Figure 

3) were used to correct the rainfed grids in the LAI climatologies, as described in section 3.1. 215 

3.5 Net irrigation estimation 

Net irrigation is the amount of supplied irrigation that is lost through ET and thus does not account for return flows of irrigation 

water that drain to nearby rivers or recharge to groundwater. With that said, in complex irrigation systems like Indus, studies 

indicate that the irrigation system is adapted to extensively reuse drainage water from irrigation (Simons et al., 2020). We 

assume that net irrigation can be quantified as the difference between an ET reference (ET references refer to different satellite 220 

products), obtained from e.g. remote sensing, and a hydrological model acting as a rainfed baseline (Koch et al., 2020). Net 

irrigation is quantified on a monthly timescale and at 5 km spatial resolution for the 15 ensemble members, which are based 

on combinations of three ET and five precipitation products. We further assumed that by calibrating the 15 hydrological models 

against rainfed ET we can simulate rainfed baselines for the entire model area that match the unique combination of ET and 

precipitation product. Our assumption is supported by the strong parameter regionalization schemes incorporated in mHM, 225 

which link model parameters to fully distributed catchment characteristics. This will yield physically meaningful parameter 

fields, which we believe are the foundation to make robust predictions of a rainfed baseline ET, also over irrigated areas. The 

magnitude of the ET products varies substantially (Figure 2) and we hypothesize that calibration will enable the hydrological 

model to accommodate this; resulting in hydrological models with different magnitudes of rainfed ET to match the differences 

in the reference ET products. Uncertainties can be expressed as precision and accuracy. Precision investigates the ensemble 230 

dispersion whereas accuracy is the closeness between estimates and observations. Thus, in absence of observations, the 

accuracy of our net irrigation estimate cannot be quantified. Nevertheless, we believe that analyzing the precision of irrigation 

estimates is a valuable and novel contribution. We define net irrigation as the difference between ET as obtained from the 

reference products and the rainfed hydrological baseline model: 

𝑛𝑒𝑡 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −  𝐸𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒         (3) 235 

For rainfed areas, it is assumed that 𝐸𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is equal to the 𝐸𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , thus for irrigated areas 𝐸𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is expected to 

exceed the 𝐸𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  resulting in positive residuals (net irrigation). Negative residuals are a sign of an overestimation of the 

rainfed hydrological model and are treated as zero irrigation. If occurring, negative residuals can be related to uncertainties in 

the precipitation forcing, the ET product used as reference, or the hydrological baseline model itself.  

3.6 Variance decomposition analysis  240 

The model ensemble yielded 15 different net irrigation estimates and we applied a variance decomposition analysis to 

investigate the sources of uncertainties in more detail. The uncertainty contribution from the two investigated sources, 

namely ET reference, and precipitation on net irrigation was analyzed following the approach of Déqué et al. (2007). This 

analysis quantifies the magnitude of net irrigation variance caused by the two uncertainty sources, thus ranking the influence 
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of ET and precipitation. The procedure of the method is: 1) calculate the variance contribution from both uncertainty sources 245 

and contribution from interactions between sources, thus the total variance is the sum of all three variance contributions, 2) 

for each uncertainty source calculate the variance term, as a percentage of the total variance, by summing the individual 

source variance and contributions from interactions and then dividing by the total variance. The sum of the two variance 

terms is more than the total variance as the latter includes both the individual source variance and contributions from 

interactions between sources, but the magnitudes of the two variance terms indicate the individual role of each uncertainty 250 

source on the total variance (Déqué et al., 2007). The analysis was applied to monthly net irrigation estimates for each 

climate zone. The variance decomposition analysis has successfully been applied in a range of hydrological applications, for 

example, to study the uncertainty contributions of the climate model and hydrological model structure on climate change 

impact simulations (Karlsson et al., 2016). We acknowledge that this does not represent a complete uncertainty analysis, but 

we believe that the precipitation input and ET reference are the most important components for irrigation quantification. 255 

4 Results and Discussion 

4.1 Baseline models 

The Pareto fronts based on the 15 calibrations conducted (Figure 4) show the tradeoff between the two applied objective 

functions for rainfed ET, namely MAE addressing the magnitude of ET and SPAEF addressing the spatial pattern performance. 

We tested different numbers of iterations and perturbation sizes before the calibration and based on our findings we expect a 260 

higher number of iterations (more than 600) to only marginally improve the tradeoff around the optimal solution, but primarily 

extend the tails of the Pareto fronts. In general, the range in MAE of the Pareto fronts is larger than for SPAEF because we 

assume that model parameters can easily change the ET magnitude, but the simulated bias insensitive spatial patterns are as a 

starting point more realistic. This is because the simulated spatial patterns are to a large degree linked to the spatial parameter 

fields which again are tied to fully distributed catchment characteristics, such as soil and vegetation variability. This will limit 265 

the range of SPAEF and rule out very poor pattern performance. 

Based on the Pareto fronts, the tradeoff between the two applied objective functions can be studied and we selected 

a single optimal parametrization for each of the 15 baseline models using the approach described in section 3.2. The MAE of 

the 15 selected runs lies within a range of 13-17 mm/month and the SPAEF varies between 0.44-0.76 during the dry period 

and between 0.60-0.85 during the wet period. The baseline models calibrated against NTSG ET reference vary from the 270 

remaining models by having a SPAEF that ranges between 0.44-0.63 during the dry period and between 0.70-0.74 during the 

wet period thereby showing the poorest spatial pattern performance. This shortcoming relates to the homogeneous pattern in 

satellite-based ET reference during the pre-monsoon period in April-May, which the baseline models cannot simulate. A list 

of calibration parameters and parameter bounds can be found in supplementary materials (Table S1).  The baseline model 

calibrated against ERA5-Land reference and uses ERA5-Land precipitation is plotted as a 16th Pareto front in Figure 4. For 275 

this calibration, climate input and calibration target are obtained from the same modeling system and are therefore in good 
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agreement. ERA5-Land does not directly incorporate irrigation and has therefore been used to validate the spatial parameter 

transfer between rainfed and irrigated areas. We calculated an MAE of 8.8 mm/month and a SPAEF of 0.83 for ERA5-Land 

over irrigated areas with parameters calibrated over rainfed conditions. We consider the high performance over irrigated areas 

as a proof of concept that our calibration approach can reproduce a rainfed hydrological model. Rainfed ET bias time series 280 

and maps for ERA5-Land can be seen in Figure S1.  

The ensemble ET baselines vary about 200 mm/year and vary between 265-461 mm/year for the Indus and 473-674 

mm/year for Ganges basins, respectively, which is the same total variability that is found across the ET references that the 

baselines were calibrated against. This implies that the ensemble baseline of rainfed ET is just as uncertain as the ET references, 

but the aim is not to simulate the actual rainfed ET but to finetune each baseline hydrological model to their satellite-based ET 285 

reference and hereby enable a subtraction of rainfed ET from irrigated areas. A large range in ensemble baseline thus indicates 

that the calibration has served its purpose. Kushwaha et al. (2021) used an ensemble of hydrological models and applied the 

Budyko approach to estimate ET across the Indian sub-continental river basins and found ET in Indus and Ganges in the range 

of 246-369 mm/year and 511-622 mm/year, respectively.  

The spatial patterns of the ET baselines are characterized by high ET along the Himalayan mountains and a regional 290 

East-West gradient matching the climatic zones (Figure 5A and C). This emphasizes that the baselines simulate rainfed ET 

according to precipitation patterns (Figure 5C and D). It becomes obvious that the ERA5-Land reference (Figure 5B) does not 

consider the effect of irrigation on ET in the Indus and Ganges and we found that only minor parts of the cropland are classified 

as irrigated in the ERA5 reanalysis model (ECMWF, 2018). Since irrigation does not affect ERA5-Land, the spatial patterns 

of the ERA5-Land baseline (simulated by mHM) and ERA5-Land ET reference (Figure 5A and B) are expected to match also 295 

for irrigated areas. We calculated SPAEF between ERA5-Land baseline and reference ET for rainfed and irrigated cropland 

and found SPAEF for rainfed cropland to be 0.79 and irrigated to be 0.88, which means that baseline and reference ET match 

well in both rainfed and irrigated areas. We found that the ERA5-Land baseline was able to reproduce the natural precipitation-

induced ET patterns in the irrigated areas but have minor elevated ET in the desert due to model uncertainty.  

This underpins the validity of the method, i.e. that a hydrological model can be calibrated to reproduce rainfed ET 300 

originating from an alternative reference. By comparing the FLUXCOM baseline and reference (Figure 5C and D), the ET 

baseline magnitude is similar to the ET reference for rainfed areas and the spatial pattern resembles precipitation patterns. 

Thus, the hydrological model can simulate a realistic rainfed ET baseline. As ERA5-Land does not account for irrigation, the 

product is not used in the ensemble estimates described in section 4.2. 

4.2 Net irrigation ensemble estimates and precision  305 

The analysis is based on an ensemble of 15 independent net irrigation estimates (from now on referred to as ensemble 

estimates). The main finding of the analysis is that the standard deviation of the ensemble estimates is low in most of the study 

area (Figure 6B). Although the ensemble baselines, i.e. the simulated rainfed ET of the 15 models, differ by about 91.5 
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mm/year, the net irrigation precision is 44.7 mm/year for the entire region. This indicates that the magnitude of ET variation 

induced by irrigation within each ET reference yields net irrigation estimates of comparable magnitudes. 310 

The ensemble estimates of the dry period (Figure 6A) show high net irrigation across the Indo-Gangetic plain. Net 

irrigation is largest in the northern Punjab region as expected (Sharma et al., 2010), and a decrease from West to East following 

the transition from arid to humid climatic zones (Figure 6E) can be observed. Dry period ensemble estimate precision is evenly 

distributed across all four climate zones (Figure 6B), illustrating the importance of calibration to obtain comparable net 

irrigation magnitudes from references with different ET magnitudes. The wet period ensemble estimate (Figure 6C) shows 315 

high net irrigation in the arid zone, which we did not expect. The precision is highly correlated in space during the wet period 

expressed by a cluster of low precision, i.e. high standard deviation, in the arid zone (Figure 6D). Based on further analysis, 

we relate this effect to the apparent overestimation of FLUXCOM and PML ET references. During the wet season, these 

products show very limited spatial variation in ET within the entire arid zone and are thus characterized by having a very high, 

uniform ET rate. Contrarily, NTSG and the hydrological models show distinct spatial variations within the arid zone that relate 320 

to variability in vegetation and soil texture. Therefore, the ensemble precision is low in the arid zone. 

The temporal variation of the ensemble estimates and their precision (Figure 7) show that net irrigation estimates 

peak during February-March in the entire region and that precision is well defined at a monthly scale, except in the arid zone 

during the wet period (Figure 7A). The mean ensemble estimate and precision in Indus are estimated to be 233.4±80.5 mm/year 

(74.4±25.7 km3/year) and the mean ensemble estimate and precision in the Ganges are estimated to be 101.4±27.2 mm/year 325 

(66.7±17.9 km3/year) (Table 2). This underlines the higher intensity of irrigation in the Indus basin as the total irrigation water 

use is about the same as the Ganges basin despite the substantially smaller cropland area (Indus 796.8 million ha, Ganges 

1643.4 million ha). Aggregated seasonal ensemble estimates indicate that net irrigation in the Indus basin is evenly split 

between the dry and wet periods (51 and 49% respectively), whereas 70% of net irrigation in the Ganges basin occurs during 

the dry period. The mean ensemble estimate and precision aggregated for both, Indus and Ganges basins is estimated to be 330 

144.4±44.7 mm/year (141.0±43.6 km3/year), thus a precision of 31% of the total irrigated water use. By comparing basin and 

regional ensemble estimates, the regional estimate is influenced by the lower precision in the Indus basin during the wet period. 

Therefore, we want to highlight a precision of 18% (25.3 mm/season) in both basins during the dry period (Table 2).  

 

Table 2. Overview of ensemble net irrigation estimates and precision for Indus and Ganges basins separately and aggregated as a 335 
region. The wet period net irrigation and precision are calculated according to dry period irrigated cropland. 

 

 

Unit 

Total 

irrigation 

(mm/year) 

Total 

irrigation 

(km3/year) 

Wet period 

irrigation 

(mm) 

Dry period 

irrigation 

(mm) 

Yearly 

precision  

(mm/year) 

Yearly 

precision  

(km3/year) 

Wet period 

precision 

(mm) 

Dry period 

precision  

(mm) 

         

Indus 233.4 74.4 114.4 119.0 80.5 25.7 61.6 29.1 

Ganges 101.4 66.7 30.6 70.8 27.2 17.9 12.1 23.5 
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Indus & Ganges 144.4 141.0 57.9 86.5 44.7 43.6 28.2 25.3 

 

The mean monthly standard deviation was found to depend on the climatic zones and decreased from 8 to 4 mm/month 

during the dry period and from 12 to 5 mm/month during the wet period as the aridity index increases, i.e. going from arid to 

humid climate. This overall increase in precision across the four climate zones (Figure 7A to D) coincides with a decrease in 340 

ET reference uncertainty. Estimating ET can be very difficult under extreme climatic conditions such as arid zones and is 

strongly dependent on the modeling approach (Jung et al., 2019; Zhang et al., 2019). This is also evident in our initial analysis 

of ten different reference models. Comparing seasonal coefficients of variation show that the standard deviation is 37% of the 

mean net irrigation during the wet period and 27% during the dry period, which is consistent in both basins. Lower precision 

during the wet period has been reported for irrigation quantifications using alternative soil moisture-based approaches 345 

(Jalilvand et al., 2019; Zohaib and Choi, 2020) and result from less irrigation being used to supplement precipitation during 

the wet period, whereas irrigation largely replaces precipitation during the dry period. Therefore, it can be difficult to isolate 

the net irrigation signal from ET affected primarily by precipitation during the wet period. 

The uncertainty of the rainfed ensemble baselines is evaluated based on ET residuals over rainfed cropland that have 

a mean error of 32.5 mm/year, which correspond to a 5.2% error. This low bias implies that the baseline models were able to 350 

reliably simulate rainfed ET that matches the ET references and can be understood as a measure of accuracy under the 

assumption that the simulation bias over rainfed cropland can be transferred to irrigated cropland. For irrigation quantification 

of the North China Plain, Koch et al. (2020) found that the accuracy was highest during the monsoon season due to energy-

limiting conditions. We found the accuracy to be equally high in both wet and dry periods. We assume that this is due to the 

skewed weight on wet-period rainfed cropland during the calibration, as this area is much larger than dry-period rainfed 355 

cropland (Figure 3). The precision of the ensemble estimates (44.7 mm/year) can be attributed to ET and precipitation 

uncertainties and the accuracy (32.5 mm/year) can be attributed to uncertainties originating from the hydrological model, ET 

references as well as precipitation uncertainties. This implies that the precision and accuracy are not independent in our case 

and that the total variance is not simply the sum of the two.  

Comparison of irrigation estimates can be challenging as notions might cover different aspects like irrigation water 360 

withdrawal, irrigation water requirement, or net irrigation as the ET loss to the atmosphere. Simons et al. (2020) used remote 

sensing data and the Budyko framework to quantify irrigation water use and found consumed fractions to be 0.71 – 0.93 in the 

Indus Basin irrigation system of Pakistan due to the substantial reuse of non-consumed water. Our estimates could therefore 

potentially underestimate irrigation water use by 10 – 30% within Pakistan. The consumed fractions were based on actual ET 

estimates from the operational Simplified Surface Energy Balance (SSEBop) v4 model that we had to reject due to a 365 

significantly higher yearly actual ET. Our pre-analysis of SSEBop could potentially explain why our irrigation estimates are 

several hundred millimeters lower than the 707 mm/year. Overestimation of actual ET and potential ET within the Budyko 

framework could yield higher irrigation water use and underestimate the consumed fractions. However, we acknowledge that 

our framework cannot account for the total irrigated water use. Karimi et al. (2013) used a water accounting framework (WA+) 
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to track water within the Indus basin for the year 2007 and found ET from utilized water flows to amount to 157 km3, which 370 

is higher than our estimate of 74.4±25.7 km3/year. In Karimi et al. (2013) the yearly actual ET is also several hundreds of 

millimeters higher than the three ET references used in our study. Water statistics from the AQUASTAT database estimated a 

yearly irrigation water requirement in Pakistan (126 km3/year) and India (370 km3/year). The estimates are based on climatic 

conditions and crop physiological processes and encompass all water to meet crop water requirements, water for flooding of 

paddy fields, water for land preparation, etc. (Frenken and Gillet, 2012). Based on the assumption that the yearly irrigation 375 

water requirement estimated by AQUASTAT is true, our net irrigation estimates suggest that about 31% of the total irrigation 

water requirement for the entire Indian sub-continent is lost through ET in the Indus and Ganges basins.  

 We found the difference, due to irrigation in cropland, between baseline and reference ET to be 55% and 14% in 

Indus and Ganges, respectively. However, a 55% increase might be an overestimation that arises from the FLUXCOM and 

PML references. If only considering the NTSG baseline and reference ET the change in Indus is found to be 37%, which seems 380 

to be more appropriate. Shah et al., 2019b  used a soil moisture deficit approach and estimated a percent change in ET between 

a natural and irrigated scenario modeled with the Variable Infiltration Capacity model. They found annual ET from 1951-2012 

to increase by 47% and 12% in Indus and Ganges because of irrigation activities, respectively. The mismatch to our reported 

figures could result from their irrigation timing being off and hereby allowing irrigation to occur in between harvest and sowing 

when the fields are fallow, but overall a good match of results. Shah et al. (2019a) incorporated reservoirs and irrigation water 385 

demand into the model framework from Shah et al. (2019b) and found ET to increase by about 16.1% and 15.7% in Indus and 

Ganges, respectively. Our results compare well with this estimate for the Ganges. In both studies (Shah et al., 2019b, 2019a), 

the natural model seems to be calibrated against data that potentially could be influenced by irrigation like irrigation water 

demand – only (Shah et al., 2019a) – and streamflow, which could underestimate ET in a managed scenario. 

4.3 Influence on ensemble precision  390 

The main finding of our variance decomposition analysis is a strong control of ensemble estimate variance by ET. ET account 

for 73% of ensemble estimate precision across the basins and the influence of precipitation is observed to increase in more 

humid climate zones (Figure 7, blue and yellow bars). However, the contribution of precipitation becomes more prominent in 

the monsoon season from July-September and around March (Figure 7) and thus tends to follow the precipitation climatology 

(Figure 2C). 395 

The ET reference and any related uncertainties affect the baseline ET estimates through the calibration and the net 

irrigation estimation as the baseline ET are subtracted from the reference ET. On the other hand, precipitation uncertainty only 

affects the baseline ET models. Thereby reference ET directly affects the net irrigation estimates whereas precipitation 

uncertainty acts indirectly as it is propagated through the hydrological model to impact the baseline ET. Furthermore, 

precipitation uncertainty between irrigated and rainfed cropland is likely similar, whereas uncertainty between irrigated and 400 

rainfed ET may vary in the reference ET products.  
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Thus, it is difficult to conclude whether the influence of precipitation increases because of the uncertainty or increases 

because the ET uncertainty decreases. The fact that the influence of precipitation tends to follow the seasonal variation in 

precipitation emphasizes that ET residuals are more difficult to extract during high precipitation (Koch et al., 2020). In the arid 

zone, the influence of ET is higher during the wet period, which is due to the high ET uncertainty and potential errors in 405 

FLUXCOM and PML. The ET uncertainty seems to overrule the high precipitation uncertainty in the arid zone even though 

ERA5-Land and MSWEP precipitation inputs are about 40% lower than the other precipitation inputs. 

6 Conclusion 

This study focuses on an ET-based approach to estimate irrigation water use for the Indus and Ganges basins, a global hotspot 

of unsustainable irrigation practices. We investigated the influence of different ET reference models and precipitation inputs 410 

on the precision of irrigation estimates by analyzing an ensemble of 15 net irrigation estimates. We showed that isolating the 

irrigation component through ET residuals of rainfed ET baselines and reference ET models yields high precision estimates of 

net irrigation. 

 

• We estimated net irrigation of the Indus and Ganges basins to be 144.4±44.7 mm/year (141.0±43.6 km3/year), of 415 

which about half of the irrigation takes place in the Indus basin despite accounting for only 35% of the irrigated 

cropland areas.  

• We found that even though ET varied by 91.5 mm/year between reference ET products, the precision of net irrigation 

was just 25.3 mm/season during the dry period. 

• We found that net irrigation precision increased as reference ET uncertainty decreased, which was related to the 420 

climatic conditions of the area.  

• We found that ET accounted for 73% of net irrigation variance and that the influence of precipitation uncertainty was 

highest during the monsoon season from July-September. 

 

We emphasize the strength of model calibration to compensate for ET biases to create robust net irrigation estimates. 425 

As large differences in seasonal and annual rainfed ET may be evident between reference models, the magnitude of ET 

variation induced by irrigation within each ET reference yields net irrigation estimates of comparable magnitudes. Therefore, 

it is essential to calibrate and finetune each baseline model to a reference rainfed baseline to extract net irrigation.  

Data availability 

Ensemble means net irrigation and standard deviation estimates are available from http://doi.org/10.22008/FK2/TCIJMI. 430 

Model code available upon personal request (sjk@geus.dk). 
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Figure 1: Map of climate zones, by the Joint Research Center of the European Commission (Spinoni, 2015) and area equipped for 

irrigation as a percentage of area (Siebert et al., 2013). The overview figure, in the top-right panel, shows the location of the Indus 

and Ganges basins and rivers.    
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 760 

Figure 2 Regional climatologies and annual estimates of three evapotranspiration references (A) and (B), and five precipitation 

inputs (C) and (D) for the entire study area. Climatologies are based on available data from 2000-2020. 
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Figure 3: Map showing the classification of rainfed cropland applied in the evapotranspiration calibration during the dry (red) and 765 
wet (red and green) periods. Light gray signature delineates the Indus and Ganges basins whereas the dark gray signature shows 

irrigated cropland in both dry and wet periods. Green indicates cropland that is only irrigated in the dry period.  
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Figure 4: Calibration results for the 15 baseline models regarding the two defined objective functions: MAE and SPAEF. The lines 770 
represent the Pareto fronts, containing the dominant solutions, and the points of the selected parametrizations with the optimal 

trade-off between objective functions. Point colors represent the three reference models and line colours represent the five 

precipitation inputs. The color scheme is consistent with the legends in Figure 2. 
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Figure 5: Average modeled baseline (left panel) and reference evapotranspiration (right panel) for February 2004. Both baseline 775 
models use ERA5-Land precipitation input. 
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Figure 6: Mean ensemble net irrigation estimates (left panel) and ensemble standard deviation (right panel) for the dry period (upper 

panel) and wet period (lower panel). E: Dryland classification by the Joint Research Center of the European Commission (Spinoni, 

2015), red: arid, orange: semi-arid, yellow: dry, green: humid, climate data can be seen in Figure 1. 780 
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Figure 7: Temporal ensemble net irrigation estimates and precision for each climate zone, A: arid, B: semi-arid, C: dry, and D: 

humid. The solid line indicates the mean monthly net irrigation whereas the shaded envelope the precision as +/- 1 standard 

deviation. Lower bar charts illustrate results from the variance decomposition analysis and show to what degree evapotranspiration 785 
(ET, yellow) and precipitation uncertainty (P, blue) explain the ensemble variance. 


