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Abstract. Accurate flood events simulation and prediction, enabled by effective models and reliable data, 

are critical for mitigating the potential risk of flood disaster. This study aims to investigate the impacts 

of spatio-temporal resolutions of precipitation on flood events simulation in a large-scale catchment of 15 
China. We use the high spatio-temporal resolutions Integrated Multi-satellite Retrievals for Global 

Precipitation Measurement (IMERG) products and a gauge-based product as precipitation forcing for 

hydrologic simulation. Three hydrological models (HBV, SWAT, and DHSVM) and a data-driven model 

(Long Short-Term Memory (LSTM) network) are utilized for flood events simulation. Two calibration 

strategies are carried out, one of which targets at matching the flood events with peak discharge 20 
exceeding 8600 m3/s between January 2015 and December 2017, and the other one is the conventional 

strategy to match the entire streamflow time series. The results indicate that the event-based calibration 

strategy improves the performance of flood events simulation, compared with conventional calibration 

strategy, except for DHSVM. Both hydrological models and LSTM yield better flood events simulation 

at finer temporal resolution, especially in flood peaks simulation. Furthermore, SWAT and DHSVM are 25 
less sensitive to the spatial resolutions of IMERG, while the performance of LSTM obtains improvement 

when degrading the spatial resolution of IMERG-L. Generally, the LSTM outperforms the hydrological 

models in most flood events, which implies the usefulness of the deep learning algorithms for flood event 

simulation. 

1 Introduction 30 
The global climate change increases the risk of floods, which brings heavy casualties and losses of 

property (Hirabayashi et al., 2013). In China, the flood events seem to become more frequent over the 

mid to lower reaches of the Yangtze River due to the increasing intensity and frequency of rainfall 

extremes (Piao et al., 2010). In June 2017, large-scale flood events induced by heavy rainfall in Hunan 

province, located in the southern China, affected more than ten million people and caused economic 35 
losses of more than 40 billion Chinese Yuan. Reliable flood events simulation and prediction are the key 

to minimize the losses and impacts caused by flood events. 

Numerous models are applied to simulate the flood events, most of which are conceptual/physically 

based hydrologic models (Dutta et al., 2000; Koutroulis and Tsanis, 2010; Nikolopoulos et al., 2013; Wu 
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et al., 2014; Mei et al., 2016; Yang et al., 2017; Yu et al., 2018; Grimaldi et al., 2019), and others are 40 
based on artificial neural networks (Shrestha et al., 2005; Badrzadeh et al., 2015). Owing to the 

continuous development of artificial neural networks, deep learning (DL) is emerged as a dominant tool, 

which impacts various scientific disciplines in recent years (Akbari Asanjan et al., 2018; Shen, 2018; 

Shen et al., 2018; Zhang et al., 2018). Among various DL methods, the Long Short-Term Memory 

(LSTM) network is appropriate for capturing the relationship between rainfall and runoff, because of its 45 
ability to learn long-term dependencies and delays between the input and output, and shows extraordinary 

potential in hydrological simulation (Hu et al., 2018; Liao et al., 2019; Fan et al., 2020; Kao et al., 2020; 

Ni et al., 2020; Zhu et al., 2020b). Both hydrological models and deep-learning based models require 

multi-sources inputs, particularly precipitation, which is the key forcing variable in hydrological process 

to simulate/predict flood events.  50 
Traditionally, in-situ precipitation is utilized for hydrological simulation. However, because of the 

uneven distribution of in-situ observations and its unavailability in less developed regions, satellite-based 

precipitation products have been widely used as an alternative precipitation source, and further applied 

for flood events simulation (Maggioni and Massari, 2018). Among them, the Integrated Multi-satellite 

Retrievals for Global Precipitation Measurement (IMERG) (Huffman et al., 2015) is a high spatio-55 
temporal resolution satellite-based precipitation product released by National Aeronautics and Space 

Administration (Rafieeinasab et al.), whose accuracy and hydrological utility have been evaluated from 

multiple aspects, such as with different temporal scales (e.g., daily and sub-daily) (Tang et al., 2016; 

Yuan et al., 2018; Su et al., 2020), and on basins with different climate conditions (O et al., 2017; Wang 

et al., 2017; Zubieta et al., 2017; Fang et al., 2019; Jiang and Bauer-Gottwein, 2019). Many studies show 60 
that the performance of IMERG varies across different climate regions and terrain. In addition, most of 

the IMERG-related studies are conducted to assess its performance at a specific spatio-temporal 

resolution, a few of which consider the impacts of different spatio-temporal resolutions on its accuracy. 

Among limited studies, Tang et al. (2016) evaluated the IMERG products at hourly, 3-hourly and daily 

scales, and they revealed that the statistical indices of IMERG increase with coarser temporal resolutions. 65 
Su et al. (2020) assessed the IMERG products at multiple spatial and temporal resolutions by upscaling, 

and they summarized that degrading the spatio-temporal resolution improves the accuracy of IMERG 

products. However, these two studies just evaluated the accuracy of IMERG products at multiple spatio-

temporal scales, rather than the effects of spatio-temporal resolutions of IMERG products on their 

hydrological applications (e.g., flood simulation). 70 
As proved by Huang et al. (2019), the spatio-temporal resolutions affect the accuracy of precipitation 

estimates, and the effects can be propagated to the flood events simulation through the hydrological 

processes. However, the impact of precipitation with different spatio-temporal resolutions on 

hydrological simulation has not yet been determined, which is related to many different factors, such as 

the structure of hydrological models (Arnaud et al., 2011; Yu et al., 2014), the scale of catchment and 75 
event characteristics (Lobligeois et al., 2014; Ficchì et al., 2016). Most studies investigated the sensitivity 

of hydrological models to spatio-temporal resolution based on one model structure with in-situ 

precipitation, and they concluded that the accuracy of hydrological simulation is not always higher with 

shorter time steps or higher spatial resolutions (Liang et al., 2004; Arnaud et al., 2011; Lobligeois et al., 

2014; Yu et al., 2014; Rafieeinasab et al., 2015; Ficchì et al., 2016; Melsen et al., 2016; Buitink et al., 80 
2019; Huang et al., 2019). For instance, some studies present better hydrological simulation forced by 
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in-situ precipitation with lower spatio-temporal resolutions to some extent (Liu et al., 2012; Apip et al., 

2012; Lobligeois et al., 2014; Ficchì et al., 2016). As we all know, high spatio-temporal resolution is one 

of the advantages of satellite-based precipitation products, however, there are also studies pointing out 

that degrading the spatio-temporal resolution can improve the accuracy of precipitation (Su et al., 2020). 85 
But rare studies have been conducted to probe the effects of spatio-temporal of satellite-based 

precipitation on flood simulation, not to mention its impact on flood simulation with models based on 

DL methods (e.g., LSTM). What’s more important, to our best knowledge, the sensitivity of models with 

different structures, such as lumped hydrological model, semi-distributed/distributed hydrological model, 

and data-driven model, to the spatio-temporal resolutions of precipitation has not been investigated. 90 
Therefore, three widely used and typical conceptual/physically based models (lumped HBV model, semi-

distributed SWAT model, and distributed DHSVM model), and one data-driven model (LSTM) which 

shows good performance in hydrological simulation, are employed to probe the impacts of spatio-

temporal resolutions of precipitation on flood events simulation. 

Apart from the factors mentioned above, the rationality of calibration is another important factor to affect 95 
the accuracy of hydrological simulation. Many studies investigate the influences of the choice of 

objective function and calibration method on hydrological simulation, but most of them use the 

calibration strategy based on entire streamflow time series instead of flood events (Moussa and Chahinian, 

2009; Noilhan et al., 2010; Nikolopoulos et al., 2013; Badrzadeh et al., 2015; Yoshimoto and Amarnath, 

2017; Spellman et al., 2018). However, some studies prove that the event-based calibration can improve 100 
the performance of streamflow simulation. For instance, Yu et al. (2018) developed the sub-daily SWAT-

EVENT model for event-based flood simulation, which particularly improved the performance of flood 

events simulation, especially the accuracies of the flood peaks. And Xie et al. (2019) compared the 

continuous modelling and event-based modelling based on the generalized likelihood uncertainty 

estimation (GLUE), and found the event-based simulation showed better overall performance. However, 105 
studies about event-based calibration are still quite limited, particularly for LSTM. Therefore, in this 

study, we conduct different calibration strategies aimed at obtaining the best possible flood events 

simulation. 

The main objectives of this study are: (1) to investigate the impact of spatio-temporal resolutions of 

satellite-based precipitation estimates derived from IMERG on streamflow simulation, particularly flood 110 
events simulation, over a watershed of 82,375 km2; (2) to explore and compare the performance of 

hydrological models with different structures and LSTM on flood events simulation based on gauge-

based and satellite-based precipitation products; (3) to study the potential benefits of the calibration 

strategy based on flood events. The remaining sections of the paper are organized as follows: the 

descriptions of the study area and data are presented in Section 2; the methodology is introduced in 115 
Section 3; Section 4 provides the results; the discussion is stated in Section 5; and conclusions are 

summarized in Section 6. 

2 Study area and data 

2.1 Study area  

The Xiang River basin is a humid region, located in the middle reach of the Yangtze River, within 120 
110.50°E-114.25°E, 24.50°N-28.25°N in the southern China, which covers an area of about 82,375 km2 

above the Xiangtan hydrological station (Fig. 1). Together with the impact of diverse topographic types 

and a dominant subtropical monsoon climate, the precipitation is characterized with strong temporal and 



4 
 

spatial variability (Zhu et al., 2017). The average annual temperature of the basin is around 17℃, and 

the mean annual total precipitation is around 1,400-1,700 mm, most of which falls from April to 125 
September.  

Concentrated storm events during the flood season cause frequent floods throughout the basin. Since the 

Xiang River basin is the most densely populated and economically developed area in Hunan Province 

(Zhu et al. 2020a), it is critical to accurately simulate and predict flood events in the region for effective 

flood risk management. 130 

 
Fig. 1. The spatial distribution of meteorological stations, the outlet of the study area, and precipitation from 

IMERG and CMA. 

2.2 Data description 

IMERG V05B is a widely used satellite-based precipitation product with a spatio-temporal resolution of 135 
0.1° and 30-min released by NASA, which consists of multiple rainfall retrieval algorithms and combines 

various precipitation-relevant remote sensing data sources obtained from the GPM sensors (Huffman et 

al., 2015). The IMERG system is firstly run twice to produce IMERG Early Run and IMERG Late Run 

(hereafter IMERG-E and IMERG-L) with a latency of 4 hours and 12 hours in near real-time (NRT). 

And then through the bias adjustment with monthly Global Precipitation Climatology Centre (GPCC) 140 
gauge observations, IMERG Final Run (hereafter IMERG-F) is generated with 2.5 months latency. 

A precipitation product released by China Meteorological Administration (hereafter CMA), which 

merges rain gauge data from more than 30,000 automatic weather stations (AWSs) in China with the 

Climate Prediction Center morphing technique (CMORPH) precipitation product by an improved 

probability density function-optimal interpolation method (PDF-OI), is used as the reference 145 
precipitation dataset in this study (Shen et al., 2014). CMA provides precipitation estimates in a spatial 

resolution of 0.1° and a temporal resolution of 1-hour, which is proved to be a reliable precipitation 

product as a result of high density of the AWSs and rigorous quality control of the source data. Therefore, 

CMA has already been applied as the benchmark in some studies (Wang et al., 2017; Tang et al., 2017; 

Su et al., 2020).  150 
Daily gauge meteorological variables (maximum and minimum temperature, relative humidity, wind 

speed and solar radiation) at 27 meteorological stations over the Xiang River basin are obtained from 

CMA. The available hourly streamflow observation at Xiangtan Station is provided by Hunan 
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Hydrological Bureau of China. Fig. 2 shows the time series of the hourly streamflow and corresponding 

gauge-based precipitation between 2015 and 2017, where eleven historical flood events are selected with 155 
in this study. The flood events are the streamflow time series with one-month span whose peak flow 

exceeded 8600 m3/s, corresponding to 97th approximately the quantile level(Zhu et al., 2020a). The period 

of the time series containing the selected flood events is from April 2014 to December 2017. The DEM 

(digital elevation model) with 90m resolution is derived from NASA Shuttle Radar Topographic Mission 

(SRTM) (Farr et al., 2007). Land cover and soil data with a resolution of 1km are obtained from Global 160 
Land Cover 2000 and Environmental and Ecological Science Data Center for West China, National 

Natural Science Foundation of China, respectively. 

 

 
Fig. 2. Time series of observed hourly streamflow in Xiangtan station and basin-average precipitation from 165 
CMA, with eleven selected flood events covered by shaded areas. 

3. Methodology  

In this study, the IMERG precipitation products (IMERG-E, IMERG-L and IMERG-F) are assessed 

against the reference precipitation, namely CMA, under different spatio-temporal resolutions. As 

mentioned above, three widely used and typical conceptual/physically based models (lumped HBV 170 
model, semi-distributed SWAT model, and distributed DHSVM model), and one data-driven model 

(LSTM), are employed to probe the impacts of spatio-temporal resolutions of precipitation on flood 

events simulation. To investigate the impacts of spatial resolutions of precipitation on flood simulation, 

precipitation estimates with different spatial resolutions, which is obtained by inverse distance 

interpolation (Franke, 1982), are used to force the selected models, which are SWAT and DHSVM, as 175 
well as LSTM. To study the influence of temporal resolutions of precipitation on flood simulation, HBV, 

DHSVM and LSTM are utilized, which are forced by precipitation with different temporal resolutions. 

These four models are calibrated with two calibration strategies to investigate the potential benefits of 

the calibration strategy based on flood events. Finally, the performance of flood events simulation under 

different scenarios are compared and discussed. The designed framework for this study is shown in a 180 
flowchart in Fig. 3. 
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Fig. 3. Methodological flowchart adopted in this study. 

3.1 Hydrological models and LSTM 

3.1.1 The HBV model 185 
The conceptual HBV model is originally developed by the Swedish Meteorological and Hydrological 

Institute (SMHI) (Bergström and Forsman, 1973). Various versions of the HBV model have been 

developed and widely used in hydrological simulation and flood forecasting due to its simplicity and 

effectivity (Alfredsen and Hailegeorgis, 2015; Grimaldi et al., 2019; Huang et al., 2019). A lumped 

version of HBV model (Aghakouchak et al., 2013) is used in this study, which is operated at hourly and 190 
daily time steps with the inputs of precipitation, temperature and potential evapotranspiration. The 

potential evapotranspiration is calculated with the Penman-Monteith equation (Beven, 1979) based on 

gauge meteorological data, and all the inputs are averaged over the basin with the Thiessen polygon 

method. Three main modules (soil moisture routine, response routine, and transformation routine) are 

contained in HBV model, while the module of snow routine is not included in this case because of the 195 
temperature above 0℃ perennially over the Xiang River basin.  

3.1.2 The SWAT model 

The SWAT model is a semi-distributed hydrological model developed by the Agricultural Research 

Center of the United States Department of Agriculture (USDA) (Arnold et al., 1998). The SWAT 2012 

is used in this study, which is operated on daily time step with the inputs of geographical data (DEM, 200 
land use and soil) (Figure 4), precipitation and other meteorological variables mentioned above. The 

SWAT model divides the watershed into sub-basins according to DEM, and then segregates them into 

multiple hydrological response units (HRUs) as the basic computational unit based on different types of 

soil, land use, and slope. The Xiang River Basin is divided into 25 sub-basins and 495 HRUs in this study. 

Forest-evergreen is the dominant land cover category with coverage of 62%, and Ferralsols is the main 205 
soil type with coverage of 58%, as shown in Fig. 4. The hydrologic cycle simulated by SWAT is based 

on the water balance equation, which mainly includes surface runoff, evapotranspiration, soil moisture 

and groundwater. 
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Fig. 4. The (a) sub-basin divisions, (b) soil types, and (c) land use of Xiang River Basin used in SWAT model. 210 
3.1.3 The DHSVM model 

The DHSVM model is a fully distributed, physics-based hydrological model developed by the Pacific 

Northwest National Laboratory (PNNL) and the University of Washington (Wigmosta et al., 1994). 

DHSVM uses near-surface meteorology including air temperature, wind speed, humidity, precipitation, 

as well as incoming short- and long-wave radiation as hydro-climate inputs to solve energy and water 215 
balance. The model represents a dynamic watershed process at specific spatial scales considered the 

effect of topography, soil, and vegetation. The DHSVM model mainly consists of seven modules, 

including evapotranspiration module, surface snow melting module, canopy snow melting module, 

unsaturated soil moisture module, saturated soil flow module, surface runoff module and flow routing 

module. The version used in this study is DHSVM 3.1.2 with the grid resolution of 3,000 m. Six soil 220 
types and eight vegetation classes are derived, and the spatial distributions of them are shown in Fig.5. 

 
Fig. 5. The (a) river network divisions, (b) soil types, and (c) vegetation types of Xiang River Basin used in 

DHSVM model. 

3.1.4 The Long Short-Term Memory network  225 
The LSTM is a type of recurrent neural network (RNN), which is first proposed by Hochreiter and 

Schmidhuber (1997). LSTM is designed to overcome the error backflow problems with exploding and 

vanishing gradients by introducing three gates, namely forget, input, and output gates, into the repeating 

modules of neural network. The forget gate decides the information removed from the previous cell state. 

The input gate determines information updated to the present cell state, and the output gate controls 230 
which part of the cell state output to the new hidden state. Therefore, LSTM can learn long-term 

dependencies between input and output features, which makes it appropriate for rainfall-runoff modelling. 

In this study, LSTM is developed using the deep learning framework PyTorch (Paszke et al., 2019), 

which has 100 hidden states and a single fully connected layer with a dropout rate of 0.5 (Srivastava et 

al., 2014). Precipitation and temperature are selected as the inputs of LSTM, and the output of LSTM is 235 
streamflow. The inputs for the complete sequence 𝑥 =  [𝑥ଵ, … , 𝑥௡], where 𝑥௧ is a vector containing 

the input features of time t, and the dimension of the 𝑥௧  corresponds to the number of grids of the 
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precipitation data. The outputs for the complete sequence 𝑦 =  [𝑦ଵ , … ,  𝑦௡] , where 𝑦௧  is the 

streamflow of time t. 

3.2 Two strategies for parameter calibration 240 
3.2.1 Calibration Strategy I 

As stated above, almost all the parameter calibration for hydrological modes is based on entire 

streamflow time series, which is defined as Calibration Strategy I in this study. It is a conventional 

calibration method to optimize the parameters of hydrological model. For the HBV model, the whole 

period is divided into three periods: warm-up period (April 2014 to December 2014), calibration period 245 
(January 2015 to December 2016) and validation period (January 2017 to December 2017). The 

calibration is conducted by maximizing the Nash–Sutcliffe efficiency coefficient (NSE) of the 

streamflow simulated during calibration period via the SCE-UA algorithm (Duan et al., 1994). 

For the SWAT model, the whole period is also divided into three periods, and they are the same as HBV. 

The calibration is accomplished with a separate tool named SWAT Calibration and Uncertainty Program 250 
(SWAT-CUP) (Abbaspour et al., 2007). Parallel Sequential Uncertainty Fitting Version 2 (SUFI-2) is 

stable and always converging, and it is well appropriate for global optimization (Abbaspour et al. 2007), 

which is the reason why it is adopted in this study for parameter calibration. The objective function is 

also to reach the maximum value of NSE for the streamflow simulated in the calibration period. 

The warm-up, calibration, and validation periods of DHSVM are the same as HBV and SWAT, as well 255 
as the objective function. The parameter calibration of DHSVM is executed by an auto-calibration 

module based on ε-dominance non-dominated sorted genetic algorithm II (ε-NSGAII) (Pan et al., 2018). 

Parallel computing with a message passing interface (MPI) program is applied in this study. 

Regarding the training of LSTM, the learnable parameters of the network are updated depending on a 

given loss function. Same as the selected hydrological models, the NSE is chosen as the objective 260 
criterion for the LSTM (Kratzert et al., 2019), and adaptive moment estimation (Adam) (Kingma and Ba, 

2014) with the learning rate of 0.0001 is used as the optimization algorithm. The data set is divided into 

three parts generally, namely training, validation, and test data. The first two parts are used to determine 

the parameters of the networks, and the last one is used to evaluate the performance of actual application. 

In this study, the whole data set is divided into training set (October 2015 to December 2017) and 265 
validation set (April 2014 to September 2015). The absence of test set is because of the limited available 

period of the data, while the selection of training period will be discussed in detail in section 5.3. Each 

LSTM network is trained with three different random initial seeds for 1,500 epochs to account for the 

stochasticity in the network initialization. Among total 4,500 trained models, the best model is selected 

through comprehensive consideration of both calibration and validation NSE of the streamflow 270 
simulation.  

3.2.2 Calibration Strategy II 

Calibration Strategy II is designed in this study particularly for flood events, which conducts the 

calibration based on the performance of flood event simulation. Eleven historical flood events occurred 

between January 2015 and December 2017 are selected to conduct the flood events simulation (Fig. 2). 275 
The calibration is conducted by maximizing the mean NSE of the flood events simulated during 

calibration period for the HBV model. For the SWAT and DHSVM models, numerous sets of parameters 

(the number is 1,000 in this study) are obtained through optimization algorithm, and the best fitted 

parameters set is selected with the largest NSE for the flood events simulation. Considering the LSTM, 
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among total 4,500 trained models, the best model is also selected by maximizing the mean NSE of the 280 
flood events simulation (4 flood events during calibration and 4 flood events during validation).  

3.3 Diagnostic statistics 

To quantitatively evaluate the performance of streamflow and flood events simulation, three evaluation 

indices are selected in this study, namely NSE, BIAS-P and KGE. The formulas of these indices are listed 

as follows:  285 
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Where 

o
tQ  and t

sQ  are the values of the observed and simulated flood events at time 𝑡; p
oQ  and p

sQ  

are the observed and simulated flood peaks of the flood events; 𝑟 is the linear correlation between 290 
observations and simulations, 𝛼 a measure of the flow variability error, and 𝛽 a bias term. 

4. Results 

4.1 The performance of flood events simulation based on two different calibration strategies 

Fig. 6 shows the distributions of NSE and BIAS-P values, which are used to evaluate the performance of 

four precipitation sources on flood events with two different calibration strategies at daily scale.  295 

 
Fig. 6. The NSE and BIAS-P of flood events simulation forced by (a, e) CMA, (b, f) IMERG-E, (c, g) IMERG-

L and (d, h) IMERG-F using two calibration strategies (White box is based on calibration strategy I; red box 

is based on calibration strategy II). The box plots show the 25th, 50th, and 75th percentiles, and the mean value 

is given and shown by a square. The cross represents the NSE of simulated streamflow during calibration, 300 
and the triangle represents the NSE of simulated streamflow during validation. 

For the performance of HBV, it can be seen that flood events simulation with calibration strategy II 

shows better performance, for the mean NSE values of CMA, IMERG-E, IMERG-L, IMERG-F increase 

from 0.78, 0.54, 0.54, 0.72 with calibration strategy I to 0.79, 0.62, 0.67, 0.75 with calibration strategy 

II, respectively (Fig. 6). And the corresponding mean BIAS-P values decrease from 12.0%, 27.0%, 29.0%, 305 
14.6% to 11.4%, 21.2%, 16.7%, 13.1%. Meanwhile, the uncertainty of NSE and BIAS-P values of flood 

events simulation is reduced, with less occurrences of poor flood events simulation. The flood events 

simulated by the CMA have the highest NSE among all precipitation sources, ranging from 0.61 to 0.95, 
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and its averaged value is 0.79. It proves the capability of HBV in flood events simulation. When 

comparing the performance of IMERG precipitation estimates, the IMERG-F performs the best with both 310 
calibration strategies.  

In terms of the streamflow and flood events simulation based on SWAT, Fig. 6 shows that the 

performance of the two calibration strategies with CMA is comparable, while for IMERG precipitation 

estimates, the strategy II outperforms the other one. Specifically, for streamflow simulation, the NSE 

values in the validation period of IMERG-E, IMERG-L, IMERG-F show a significant increase from 0.70, 315 
0.58, 0.63 with the strategy I to 0.75, 0.78, 0.73 with the strategy II, respectively. For flood events 

simulation, the mean NSE values based on the strategy II are 0.57, 0.58, 0.63 forced with IMERG-E, 

IMERG-L, IMERG-F, which are 0.53, 0.44, 0.57 based on the strategy I. The corresponding mean BIAS-

P values are reduced from 29.8%, 28.4%, 26.1% to 23.9%, 28.0%, 13.2%. Compared to HBV and SWAT, 

the two calibration strategies present little difference in streamflow and flood events simulation based on 320 
DHSVM, which indicates the performance of DHSVM is stable when using different calibration 

strategies. 

For the LSTM, the NSE values of flood events simulation also show higher mean values and smaller 

uncertainty based on the strategy II for all precipitation products. The flood events simulation based on 

IMERG-L shows the most significant improvement with the mean NSE value increasing from 0.62 with 325 
the strategy I to 0.77 with the strategy II. The flood events simulation based on CMA and IMERG-E 

show lightly lower medium NSE values of 0.94, 0.88 with the strategy II than 0.95, 0.99 with strategy I. 

But they show higher 25th NSE with strategy II, especially LSTM driven by IMERG-E, which increase 

from 0.58 with strategy I to 0.66 with strategy II. Therefore, although strategy II has a lower median 

performance than strategy I in individual cases, it still significantly improves the performance of LSTM, 330 
particularly in terms of uncertainty.  

According to the above results, it can be concluded that the calibration strategy II outperforms than the 

strategy I. Therefore, the following parts are based on the calibration strategy II. 

4.2 Impact of spatial resolutions of precipitation on flood events simulation  

To investigate the impact of spatial resolutions of precipitation on flood events simulation, the IMERG-335 
E, IMERG-L, IMERG-F, and CMA are adopted to force the SWAT model, the DHSVM model and the 

LSTM model under 0.1°, 0.25° and 0.5°, respectively. 

Fig. 7 shows the distributions of statistical indices, namely NSE, BIAS-P and KGE, which are used to 

evaluate the performance of different precipitation sources with different spatial resolutions on flood 

events simulation. From the BIAS-P of flood events simulated with SWAT, it can be seen that spatial 340 
resolution significantly affects the performance of precipitation on flood events simulation. For instance, 

CMA performs the best at 0.25° with the mean BIAS-P of 26.5%, while IMERG-E, IMERG-L and 

IMERG-F display the best performance at 0.5° with the mean BIAS-P of 23.7%, 22.9% and 13.8%, 

respectively. Similar to its performance in BIAS-P, in terms of mean NSE, CMA also performs the best 

under 0.25° with the mean NSE of 0.66.  IMERG-E presents little difference at different spatial 345 
resolutions, while IMERG-L performs slightly better at 0.5° with the mean NSE of 0.61and the middle 

NSE of 0.76. The performance of IMERG-F gets worse as the resolution is coarser, regardless of the 

NSE or BIAS-P values. According to the KGE values, the performances based on CMA, IMERG-E and 

IMERG-L show improvement at coarser spatial resolutions. Except for IMERG-F, whose KGE values 

are stable at 0.71. 350 
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Fig. 7. The performance of flood events simulation based on (a) SWAT, (b) DHSVM, and (c) LSTM forced by 

precipitation with different spatial resolutions. The box plots show the 25th, 50th, and 75th percentiles, and the 

mean value is given and shown by a square. 

Compared to SWAT, DHSVM shows different performance forced by precipitation with different spatial 355 
resolutions. The mean NSE of flood events simulated with CMA declines from 0.68 to 0.45 when the 

spatial resolution of precipitation changes from 0.1° to 0.5°, the mean KGE declines from 0.77 to 0.66, 

and the mean BIAS-P increases from 13.9% to 19.3%. By contrast, the difference of flood events 

simulated with IMERG forcing at different spatial resolutions is smaller, for instance, the mean NSE 

values decrease from 0.29 to 0.27 for IMERG-E ,E, 0.30 to 0.29 for IMERG-L, and 0.58 to 0.53 for 360 
IMERG-F. However, the uncertainty of NSE, KGE and BIAS-P values of flood events simulated with 

IMERG decreases as the spatial resolution is finer. Among 11 flood events simulation, the performance 

of 4 flood events simulation get better as the spatial resolution gets coarser. And the difference among 

the three IMERG precipitation estimates is illustrated clearly in Fig. 7(b): the distribution of NSE, KGE 

and BIAS-P of simulated flood events forced with IMERG-E is more scattered than the others, while the 365 
uncertainty of IMGER-F is the smallest.  

Similar to DHSVM, LSTM shows different performance forced by precipitation with different spatial 

resolutions. CMA and IMERG-F performs the best at 0.1° with the mean BIAS-P of 18.64%, 15.55% 

and mean NSE of 0.78,0.78. based on LSTM. The 25th NSE of flood events simulated with CMA 

increases from 0.52 to 0.72, the 75th NSE increases from 0.78 to 0.83 while the spatial resolution is finer. 370 
The KGE show the same pattern to NSE for CMA and IMERG-F. By contrast, IMERG-E performs the 

best at 0.5° with the mean NSE of 0.69 and medium NSE of 0.68 while IMERG-L performs the best at 
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0.25° with the mean NSE of 0.80 and the medium NSE of 0.81. In the light of BIAS, IMERG-E and 

IMERG-L achieve the best performance on flood events simulation at 0.5°, the mean values of which are 

24.55%, and 18.27%, 0.77. In contrast of BIAS-P, LSTM driven by IMERG-L shows the best KGE at 375 
0.25° with the mean KGE of 0.76 and the smallest uncertainty, which is the same as NSE. 

Compared with the SWAT and DHSVM, the LSTM shows better performance on flood events simulation. 

The mean NSEs of LSTM are higher than 0.7 in most cases, while the mean NSEs of SWAT is around 

0.6, and the largest mean NSE of DHSVM is 0.68. The 25th NSE of LSTM are higher than 0.5 in most 

cases, while the 25th NSE of DHSVM is around 0.15. The smallest 75th NSE of LSTM is 0.78, while the 380 
75th NSE of DHSVM are around 0.6. The mean KGEs of SWAT and LSTM are similarly around 0.7, 

which are around 0.6 for DHSVM. In addition, LSTM also shows a relatively lower BIAS-P (the mean 

values less than 25%). 

4.3 Impact of temporal resolutions of precipitation on flood events simulation  

To investigate the impact of temporal resolutions on flood events simulation, HBV, DHSVM and LSTM 385 
are adopted to be forced by the selected four precipitation sources at hourly and daily time scales. To 

compare the influences of temporal resolutions, the flood events simulated at hourly scale are aggregated 

into daily time series. 

The performance of different precipitation datasets with different temporal resolutions on flood events 

simulation is shown in Fig. 8. In HBV-based simulation, the mean NSE of the flood events simulation at 390 
the hourly scale is about 0.03 higher than that at the daily scale for all precipitation products. The mean 

KGE of the flood events simulation at the hourly scale is also higher than that at the daily scale for 

IMERG forcing, while the mean KGE of flood events simulated with CMA shows a decrease of about 

0.03 at the hourly scale. In terms of BIAS-P, compared with the small difference between the 

performance of flood events simulated with CMA at hourly and daily scales, the performance of IMERG-395 
E, IMERG-L and IMERG-F on flood events simulation at hourly scale is much better than that at daily 

scale (mean BIAS-P values of 15.1% vs 21.2%, 13.7% vs 16.7% and 11.1% vs 13.1% for IMERG-E, 

IMERG-L and IMERG-F, respectively).  
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Fig. 8 The performance of flood events simulation based on (a) HBV, (b) DHSVM, and (c) LSTM forced by 400 
precipitation with temporal resolution. The box plots show the 25th, 50th, and 75th percentiles, and the mean 

value is given and shown by a square. 

Similar performance is also presented in DHSVM-based simulation. According to the NSE and KGE 

values, the performances based on all precipitation products show improvement at the hourly scale. More 

obvious improvement is shown in terms of BIAS-P, which is dropped by 5% at the hourly scale for 405 
IMERG products.  

The performance based on LSTM is also shown in Fig. 8. Consistent with the results obtained by the 

HBV and DHSVM, all precipitation sources also have relatively better performance at the hourly scale. 

For example, the mean BIAS-P of CMA is reduced from 18.64% at the daily scale to 16.7% at the hourly 

scale. And IMERG-E, IMERG-L and IMERG-F obtain better performance at the hourly scale with the 410 
mean NSE of 0.65, 0.73 and 0.78, the mean KGE of 0.78, 0.77 and 0.82, respectively.  

Compared with the HBV and DHSVM, the LSTM shows higher mean NSE values of flood events 

simulation, except for the simulation based on IMERG-L, while the HBV forced by CMA and IMERG-

F presents smaller uncertainty. In terms of BIAS-P, two models show comparable performance with the 

mean values around 15%. The performance on flood events simulation of HBV is more stable but slightly 415 
poorer than LSTM in general. 

5. Discussion 

5.1 Comparison of two different calibration strategies 

Two different calibration strategies are used to simulate flood events in this study. Compared with the 

conventional method choosing the fit parameter set based on entire streamflow time series (Calibration 420 
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Strategy I), selecting the parameter set that results in the best flood events simulation (Calibration 

Strategy II) shows better performance on flood event simulation (Fig. 6). However, the CMA shows the 

similar results under two different calibration strategies in SWAT-based flood events simulation, so as 

the DHSVM-based simulation. Furthermore, the CMA shows little difference with other precipitation 

forcing. Although we targeted in difference ofbetween the two strategies in flood events simulation, their 425 
performances in the whole streamflow simulation time series are also compared, which is presented in 

Table 1 (The mean value is the average NSE of the four precipitation products with the same calibration 

strategy). According to the mean NSE values, calibration strategy II outperforms calibration strategy I. 

To be specific, for HBV, SWAT, DHSVM and LSTM models, among the four precipitation products, 

there are two, three, three and three NSE values larger with calibration strategy II than that with 430 
calibration strategy I. These findings indicate that both precipitation accuracy and calibration strategy 

used in hydrological models are important uncertainty sources for flood simulation. From lumped model 

to distributed model, precipitation accuracy becomes the major source of uncertainty to streamflow/flood 

events simulation instead of hydrological model, the reason of which is that hydrological models describe 

the hydrological process more and more comprehensively. In the application of LSTM for flood events 435 
simulation, a large number of equivalent simulations with different parameter sets are generated, which 

is similar to the parameter equifinality in hydrological simulation. When comparing the two calibration 

strategies, the calibration strategy II is an effective way to train the LSTM model to obtain the best flood 

events simulation. 

Table. 1 The NSE values of the whole  streamflow simulation time series forced by CMA, IMERG-E, 440 
IMERG-L, IMERG-F 

Model Strategies CMA IMERG-E IMERG-L IMERG-F Mean 

HBV Strategies I 0.77 0.77 0.72 0.88 0.79 

Strategies II 0.73 0.81 0.82 0.86 0.80 

SWAT Strategies I 0.83 0.75 0.76 0.73 0.77 

Strategies II 0.83 0.84 0.82 0.70 0.80 

DHSVM Strategies I 0.86 0.75 0.75 0.85 0.80 

Strategies II 0.82 0.87 0.86 0.87 0.86 

LSTM Strategies I 0.92 0.89 0.87 0.85 0.88 

Strategies II 0.93 0.91 0.86 0.85 0.89 

 

5.2 Comparison of the performance of precipitation products on flood events simulation at 

different spatio-temporal resolutions 

As illustrated in Fig.7 and Fig.8, the performance of precipitation products on flood events simulation is 445 
affected by both the spatial and temporal resolutions. Impacts of spatial resolution on flood events 

simulation behave differently among different models and precipitation sources. For the study area, under 

0.25° spatial resolution, the CMA obtains the best flood events simulation based on SWAT. The impact 

of spatial resolution on the capture of precipitation variability during flood event periods can propagate 

to the flood events simulation. The best results are obtained under 0.25° spatial resolution, the possible 450 
reason can be that finer spatial resolution (0.1°) increases the uncertainty of precipitation sets, 

nevertheless coarser spatial resolution (0.5°) decreases the sufficiency of datasets. For SWAT driven by 

CMA, it shows the best 75th NSE and the worst 25th NSE at 0.5° while the DHSVM driven by CMA 
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shows the same pattern at 0.5°, which proves that coarser spatial resolution decreases the sufficiency of 

datasets. But the DHSVM driven by CMA shows the best performance at 0.1°, which proves that the 455 
effects of increasing and decreasing spatial resolution are simultaneous and affect different models 

differently. It indicates the choice of the dataset is influenced by the resolution range, which must be 

adapted to the model definition, for thethat proper spatial resolution is essential to both minimize the 

uncertainty and assure the sufficiency(Grusson et al., 2017).  

The SWAT and DHSVM model driven by IMERG perform similarly under different spatial resolutions, 460 
which is consistent with previous research (Lobligeois et al., 2014; Huang et al., 2019), where 

insignificant improvement was reported with higher spatial resolution of observed rainfall in a large 

catchment area. It probably dues to the large catchment area and only the outlet station is used for 

calibration. Liang et al. (2004) found a critical resolution (1/8° for the VIC model) for a watershed with 

1,233 km2, beyond which the spatial resolution shows limited impact on model performance. For our 465 
study area (82,375 km2), when the spatial resolution of precipitation changes from 0.1° to 0.5°, a small 

variation is shown in the performance of flood events simulation, which indicates the critical resolution 

may be larger for a large watershed. For data-driven model, CMA and IMERG-F show better 

performance under 0.1° spatial resolution in the LSTM-based simulation, which indicates that a higher 

spatial resolution, namely a larger dataset, can improve the performance of flood events simulation. 470 
Similar conclusion is drawn from previous study conducted by Sun et al. (2017), which also found that 

a deep learning model performs better with larger datasets. In addition, the simulation with IMERG-L 

and IMERG-E at 0.1° spatial resolution is not satisfactory, which may be related to the choice of 

hyperparameters and the limited data. However, after upscaling, the performance of LSTM in flood 

events simulation is greatly improved when the IMERG-L data is applied with 0.25° spatial resolution, 475 
which implies that scale transformation can be regarded as an approach of data enhancement in 

hydrological simulation based on deep learning. 

In order to compare the performance of different models on flood events simulation in the same spatial 

resolutions, some results presented in Fig.7 are illustrated in Fig.9. Overall, the LSTM shows better 

performance in most cases, for instance, in Fig. 9 (a) and Fig. 9 (c), LSTM is better than other models 480 
with the largest mean NSE and the smallest range between 25th and 75th percentile. There is also exception, 

for example, in Fig. 9 (b), the range of NSE between 25th and 75th percentile of SWAT with CMA is 

smaller than that of LSTM, but its mean and medium values of NSE are lower. Therefore, it can be 

summarized that the performance of LSTM has a higher likelihood of success than the other models. For 

KGE at 0.1° (Fig.9 (d)), LSTM also show better performance than the other models expect that simulated 485 
with CMA, with which DHSVM is better than LSTM, and they show similar results with 0.5° (Fig. 9 

(e)).  
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Fig. 9. The NSE and KGE of flood events simulation forced by CMA, IMERG-E, IMERG-L and IMERG-F 

with different spatial resolutions. The box plots show the 25th, 50th, and 75th percentiles, and the mean value 490 
is given and shown by a square. 

The influence of spatio-temporal resolution on flood events simulation is affected by model structure. 

For instance, based on NSE, the SWAT shows the best performance at 0.25° with CMA forcing, but the 

LSTM shows the best performance at 0.1°. Similarly, based on KGE, the SWAT performs the best at 0.5° 

with CMA forcing, but the LSTM has the best performance at 0.1°. On one hand, the difference in 495 
performance between NSE and KGE is due to their different statistical focus, with NSE giving larger 

weights to high values, especially flood peaks, which leads to different performance with different 

statistical metrics. On the other hand, the difference between SWAT and LSTM is due to their model 

structure. The SWAT operates as a physically driven model, where the impact of the spatial resolution 

of the precipitation dataset will propagate during hydrological process, which makes finer spatial 500 
resolution does not necessarily lead to the improved performance as indicated by studies such as Huang 

et al., 2019. This is probably exemplified by the SWAT performs better at 0.25° with CMA forcing based 

on NSE, while it performs better at 0.5° based on KGE. Regarding LSTM, as a deep learning model, 

some studies have highlighted significant performance enhancements when applied to larger, reliable 

datasets (Sun et al., 2017). Consequently, when forced by CMA and IMERG-F, LSTM shows the best 505 
performance across all statistical metrics at 0.1°, rather than at 0.25° or 0.5°. The deviations observed in 

IMERG-E and IMERG-L deviate from this pattern are likely attributable to inherent errors within the 

precipitation product itself. We previously evaluated the applicability of the IMERG dataset in the 

Xiangjiang River Basin, and found that IMERG-E and IMERG-L have larger uncertainties and errors 

than IMERG-F (Zhu et al., 2020a). The CMA has been confirmed by several studies to be a more reliable 510 
precipitation product in the Xiangjiang River Basin and always used as a reference precipitation product 

(Wang et al., 2017; Tang et al., 2017; Su et al., 2020). This probably makes IMERG-E and IMERG-L do 

not bring enough performance improvement to LSTM when the spatial resolution is finer. 

Considering the impacts of temporal resolutions on flood events simulation, for HBV and DHSVM, the 

flood events simulation at hourly scale outperforms than that at daily scale in general, which indicates 515 
that a higher temporal resolution can improve the performance of hydrological models. Meanwhile, 

hourly precipitation sources also show better performance of flood events simulation with LSTM, 

especially for the simulation of flood peaks. 
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5.3 Comparison of different models on flood events simulation 

In this study, a lumped hydrological model (HBV), a semi-distributed hydrological model (SWAT), a 520 
fully distributed hydrological model (DHSVM) and a data-driven model (LSTM) are utilized to simulate 

flood events. In order to compare the performance of different models on flood events simulation more 

clearly, some results presented in Fig.6 are illustrated in Fig.910. As shown in Fig. 910, HBV and SWAT 

forced by CMA show comparable runoff simulation performance, while HBV shows better performance 

than SWAT in flood events simulation. The inability of the SWAT model to capture the flood events is 525 
also proved in previous studies (Zhu et al., 2016; Yu et al., 2018). Furthermore, when driven by IMERG, 

HBV outperforms SWAT and DHSVM, especially by IMERG-E and IMERG-L. It is because the 

hydrological model with a simpler structure can reduce the impact of errors in radar rainfall estimation, 

which is better constrained during its propagation in the hydrological process.(Zhu et al., 2013).  

530 
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Fig. 910. The (a) NSE, (b) BIAS-P and (c) KGE of flood events simulation forced by CMA, IMERG-E, 

IMERG-L and IMERG-F using calibration strategies II. The box plots show the 25th, 50th, and 75th percentiles, 

and the mean value is given and shown by a square.  

The comparisons of SWAT, DHSVM and LSTM at different spatial resolutions are also illustrated.  535 
As a data-driven approach, LSTM shows better performance than hydrological modelsSWAT and 

DHSVM in terms of flood events simulation , and shows reduced uncertainty and a higher likelihood of 
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success than HBV, which is considered an appropriate model in this case. Among IMERG products, 

IMERG-F outperforms IMERG-E and IMERG-L in flood events simulation based on hydrological model, 

while IMERG-E and IMERG-L show comparable and even better performance than IMERG-F based on 540 
LSTM. This phenomenon shows that LSTM can deal with the error of precipitation products during the 

learning process. In many previous studies, LSTM is forced by large data sets, such as the CAMELS data 

set, the lower bound of data requirements used for calibration is considered as the daily time series of 15 

years (Kratzert et al. 2018, 2019). In this study, as mentioned above, the calibration (October 2015 to 

December 2017) and validation (April 2014 to September 2015) of LSTM are different from those of 545 
hydrological models. For hydrological models, the calibration period is from January 2015 to December 

2016, and the calibration period is January 2017 to December 2017. We tried to use the same calibration 

data in LSTM as the hydrological model, but the results about flood events simulation is not satisfactory, 

where its NSE of validation period is less than 0.5. The reason is that two major flood events are not 

included in the calibration period used in hydrological model. As a result, LSTM failed to learn the input–550 
output relationship during the periods of flood events. Containing the characteristics of inputs as many 

as possible is critical for data-driven model, for instance LSTM, to capture the accurate relationship 

between the inputs and the output. Therefore, we use the data in the latter part for calibration, through 

which the performance of LSTM is significantly improved. It should be notable that reliance on data may 

still be a potential barrier for LSTM in the data-sparse areas. In addition to obtaining more data for the 555 
input, such as the remote sensing data, how to make good use of limited data should also be considered 

in the future studies. What’s more, based on the same computer specification (Intel i5-9300H CPU, 8 GB 

Memory), the running time of one simulation based on HBV, SWAT, DHSVM, and LSTM are 0.2 

seconds, 1 minute, 54 minutes and 1.2 seconds, respectively. Results obtained from this case show that 

LSTM can provide reasonable accuracy in flood events simulation whilst it is also competitive in 560 
computational efficiency. 

In order to compare the performance of flood events simulation with different scenarios, two randomly 

selected flood events simulation from July 1st, 2015, to July 31st, 2015, and from March 15th, 2017 to 

April 14th, 2017 are shown in the Fig. 110. The first flood event is the typical one with single peak 

occurred during the calibration period of HBV, SWAT and DHSVM models, and the latter one is with 565 
twin peaks occurred during the validation period of HBV, SWAT and DHSVM. While for LSTM, the 

occurrence times of the two selected flood events are in its validation and calibration period, respectively. 

From the figure, it can be seen that hydrological models generally show good capability to capture the 

first flood event. However, for the second flood event from March 15th, 2017 to April 14th, 2017, an 

obvious underestimation of the first peak exists in the flood simulation, which is primarily caused by the 570 
bias of precipitation products, which are comprehensively evaluated in our previous study (Zhu et al., 

2020a). The underestimation of the second flood peak is reduced in LSTM-based simulations, which 

implies the ability of LSTM to correct the propagation of influence from the bias of precipitation. Since 

the hydrological models may smooth the short-term variability of input, the flood events simulated with 

hydrological models show relatively smooth runoff processes, compared with LSTM. Meanwhile, the 575 
performance of LSTM is not stable under different spatial resolutions, compared with the SWAT and 

DHSVM. Compared with spatio-temporal resolutions of precipitation and simulation models, 

precipitation source is the primary uncertainty source for flood events simulation, which indicates the 

importance of choosing appropriate precipitation source for ungagged regions. 
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 580 
Fig. 1011. Comparison of HBV-, SWAT-, DHSVM-, and LSTM- based flood events simulation from July 1st, 

2015 to July 31st, 2015, and from March 15th, 2017 to April 14th, 2017 forced by CMA, IMERG-E, IMERG-

L, and IMERG-F with different spatio-temporal resolutions. 
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6. Conclusion 

In this study, we investigated the impacts of temporal and spatial resolutions of precipitation on flood 585 
events simulation over a large-scale catchment. We accomplished the study with the application of HBV, 

SWAT, DHSVM and LSTM forced by high spatio-temporal resolution gauge-based and satellite-based 

precipitation products. The main conclusions of this study are summarized as follows:  

(1) According to the comparison of two calibration strategies, event-based calibration strategy leads to 

better performance of flood event simulation based on lumped HBV model and semi-distributed 590 
SWAT model. However, there is little difference between two calibration strategies application on 

distributed DHSVM model. For the data-driven model, LSTM, the event-based strategy also leads 

to better results. 

(2) Considering the impact of temporal resolution, both hydrological models and LSTM perform better 

at hourly scale on flood events simulation than at daily scale, especially in flood peaks. However, 595 
the influence of spatial resolution on flood events simulation has no significant pattern in this case, 

which varies with models and precipitation sources.  

(3) Three hydrological models and LSTM are used to simulate the flood events forced by gauge-based 

and satellite-based precipitation products in this study. The hydrological models and LSTM forced 

by IMERG precipitation estimates can achieve acceptable flood events simulation in most cases. In 600 
some cases, the LSTM outperforms the hydrological models. However, it should be notable that the 

performance of LSTM largely depends on the input data and settings such as the choice of 

hyperparameters, which may be unstable in some other cases. 
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Fig. A1. Same as Fig. 7, but the results in calibration and validation periods are separated. 615 
Appendix B 

 



23 
 

 

 
Fig. B1. Same as Fig. 8, but the results in calibration and validation periods are separated.  620 
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Appendix C 
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 625 
Fig. C1. Same as Fig. 910, but the results in calibration and validation periods are separated.  
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