
Author’s response 

Dear editor and reviewers, 

Thanks a lot for your great efforts to read through this paper and give very valuable 

comments. Here we have addressed the comments from you and the detailed description 

is attached in this document.  

Best regards, 

Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, Xinyi Song 

Response to editor 

Point 1: The comments of referees are very valid. The authors have shown that 

they appreciate these and have a plan for the paper revision. I would suggest to 

give special attention to the general comments of Referee 1, more clearly 

highlighting the novelty of this work. 

Response 1: Thank you very much for your comment. We have carefully responded to 

the comments of Referee 1 and the novelty of this work is clearly highlighted in the 

introduction part, which are listed as follows: 

Page 3-4 Lines 85-94: ‘But rare studies have been conducted to probe the effects of 

spatio-temporal of satellite-based precipitation on flood simulation, not to mention its 

impact on flood simulation with models based on DL methods (e.g., LSTM). What’s 

more important, to our best knowledge, the sensitivity of models with different 

structures, such as lumped hydrological model, semi-distributed/distributed 

hydrological model, and data-driven model, to the spatio-temporal resolutions of 

precipitation has not been investigated. Therefore, three widely used and typical 

physically based models (lumped HBV model, semi-distributed SWAT model, and 

distributed DHSVM model), and one data-driven model (LSTM) which shows good 



performance in hydrological simulation, are employed to probe the impacts of spatio-

temporal resolutions of precipitation on flood events simulation.’ 

Page 4 Lines 105-108: ‘However, studies about event-based calibration are still quite 

limited, particularly for LSTM. Therefore, in this study, we conduct different 

calibration strategies aimed at obtaining the best possible flood events simulation.’ 



Response to community comment

Point 1: Meaningful study! could the authors distinguish the sensitivities of these 

different models to the spatio-temporal resolutions of precipitation? and explain 

the reasons? 

Response 1: Thank you for your question. In our study, the hydrological models are 

more sensitive than the machine learning model on the whole, but the sensitivity of the 

model is related to the precipitation input.  

As illustrated in Fig.7 and Fig.8, when the spatiotemporal resolution of CMA changes, 

DHSVM is the most sensitive one, the mean NSE of flood events simulated with which 

declines from 0.68 to 0.45 when the spatial resolution of precipitation changes from 0.1° 

to 0.5°. Perhaps, in the case of CMA-driven DHSVM, the impact of spatial resolution 

on the capture of precipitation variability during flood event periods can propagate to 

the flood events simulation. 

But when the spatiotemporal resolution of IMERG changes, the SWAT and DHSVM 

model perform similarly under different spatial resolutions, which is consistent with 

previous research (Lobligeois et al. 2014, Huang et al. 2019), where insignificant 

improvement was reported with higher spatial resolution of observed rainfall in a large 

catchment area. It probably dues to the large catchment area and only the outlet station 

is used for calibration. Liang et al. (2004) found a critical resolution (1/8° for the VIC 

model) for a watershed with 1,233 km2, beyond which the spatial resolution shows 

limited impact on model performance. For our study area (82,375 km2), when the 

spatial resolution of precipitation changes from 0.1° to 0.5°, a small variation is shown 

in the performance of flood events simulation, which indicates the critical resolution 

may be larger for large watersheds. For HBV, it is not sensitive to changes in temporal 

resolutions because its simple hydrological model structure. 

For LSTM, even though its sensitivity to the precipitation is lower than that of 

hydrological models, a higher resolution shows better performance. A similar 



conclusion is drawn from a previous study conducted by Sun et al. (2017), which found 

that deep learning model performs better with larger datasets.  

References:  
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temporal and spatial resolutions of rainfall data. Hydrology and Earth System Sciences, 

23(6), 2647-2663. 
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improve streamflow simulation? An evaluation using 3620 flood events. Hydrology 

and Earth System Sciences, 18(2), 575-594. 
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Response to Referee 1

Point 1: Model calibration considering parts of discharge time series is not a new 

idea 

Response 1: Thank you very much for your comment. We agree that model calibration 

considering parts of discharge time series is not a new idea for hydrological model. As 

we clarified in the introduction part, “However, studies about event-based calibration 

are still quite limited, particularly for LSTM. Therefore, in this study, we conduct 

different calibration strategies aimed at obtaining the best possible flood events 

simulation.” Furthermore, besides calibration strategy, input data and model structure 

are the two main factors which affect the accuracy of flood events simulation and 

prediction, which are actually our primary focus. To our best knowledge, the sensitivity 

of models with different structures, such as lumped hydrological model, semi-

distributed/distributed hydrological model, and data-driven model, to the spatio-

temporal resolutions of precipitation has not been investigated. In this study, we 

investigated the impacts of temporal and spatial resolutions of precipitation on flood 

events simulation over a large-scale catchment, and we accomplished the study with 

the application of HBV, SWAT, DHSVM and LSTM forced by high spatio-temporal 

resolution gauge-based and satellite-based precipitation products. 

Point 2: Lines 20: It is not clear what you mean by "flood event." Also, I am not 

comfortable with the term "to match continuous streamflow." May be you can 

write "to match the entire streamflow time series." 

Response 2: Thank you very much for your comment. We have modified the relevant 

description of flood event in Lines 19-22: “Two calibration strategies are carried out, 

one of which targets at matching the flood events with peak discharge exceeding 8600 



m3/s between January 2015 and December 2017, and the other one is the conventional 

strategy to match the entire streamflow time series.” 

Point 3: How did you select the flood events 

Response 3: Thank you for your question. In 2.2 Data description, we have explained 

how we choose flood events: “Fig. 2 shows the time series of the hourly streamflow 

and corresponding gauge-based precipitation between 2015 and 2017, where eleven 

historical flood events are selected with flood peak exceeding the threshold of 8,600 

m3/s in this study.” 

Fig. 2. Time series of observed hourly streamflow in Xiangtan station and basin-average precipitation from 

CMA, with eleven selected flood events covered by shaded areas. 

Point 4: Line 295: Mean NSE may not be a reliable indicator. You should consider 

median, 75th and 25th percentile NSE. I see 75th NSE falling in case of CMA. The 

authors need to discuss it.  

Response 4: Thank you for your suggestion. Since our target is to explore the impacts 

of different calibration strategies on flood events simulation, mean NSE is used in our 

study for it is more suitable for flood events as many previous studies proved (Yu et al. 



2018, Kao et al. 2020). Meanwhile, the mean and median NSE have the same pattern 

in our study, the mean and median NSE of calibration strategy II are better than that of 

calibration strategy I as a whole, which is illustrated in Fig. 6, for HBV, the mean NSE 

values of CMA, IMERG-E, IMERG-L, IMERG-F increase from 0.78, 0.54, 0.54, 0.72 

with calibration strategy I to 0.79, 0.62, 0.67, 0.75 with calibration strategy II, while 

the median NSE increase from 0.78, 0.67, 0.79, 0.68 with calibration strategy I to 0.80, 

0.78, 0.83, 0.79 with calibration strategy II. 

As you said, the 75th percentile of NSE decreases in case of CMA. Upon checking the 

values, we found that it falls from 0.865 with calibration strategy I to 0.855 with 

calibration strategy II, indicating a very slight difference. Additionally, the other 

evaluation index, BIAS-P, shows better performance for calibration strategy II 

compared to calibration strategy I. Therefore, since it is targeted to compare the two 

calibration strategies, as a whole, we can summarize that calibration strategy II is better 

than calibration strategy I.  

Point 5: NSEs in Figure 6: I don’t see any consistent pattern. The results are not 

discussed properly. 

Response 5: Thank you for your question, and sorry for the misunderstanding. In order 

to discuss the results more thoroughly, results and discussion are presented in two 

separate sessions. The mean and median NSE of calibration strategy II are better than 

that of calibration strategy I as a whole, which is illustrated in Fig. 6. For HBV, the 

mean NSE values of CMA, IMERG-E, IMERG-L, IMERG-F increase from 0.78, 0.54, 

0.54, 0.72 with calibration strategy I to 0.79, 0.62, 0.67, 0.75 with calibration strategy 

II, the median NSE increase from 0.78, 0.67, 0.68, 0.79 with calibration strategy I to 

0.80, 0.78, 0.79, 0.83 with calibration strategy II. For SWAT, the NSE values in the 

validation period of IMERG-E, IMERG-L, IMERG-F show a significant increase from 

0.70, 0.58, 0.63 with the strategy I to 0.75, 0.78, 0.73 with the strategy II, the median 

NSE increase from 0.67, 0.53, 0.51 with the strategy I to 0.70, 0.67, 0.63 with the 

strategy II. For the LSTM, the NSE values of flood events simulation also show higher 



mean values and smaller uncertainty based on the strategy II for all precipitation 

products, the flood events simulation based on IMERG-F shows the most significant 

improvement with the mean NSE value increasing from 0.59 with the strategy I to 0.75 

with the strategy II, the median NSE value increase from 0.62 to 0.77. 

Fig. 6. The NSE and BIAS-P of flood events simulation forced by (a, e) CMA, (b, f) IMERG-E, (c, g) IMERG-

L and (d, h) IMERG-F using two calibration strategies (White box is based on calibration strategy I; red box 

is based on calibration strategy II). The box plots show the 25th, 50th, and 75th percentiles, and the mean 

value is given and shown by a square. The cross represents the NSE of simulated streamflow during 

calibration, and the triangle represents the NSE of simulated streamflow during validation. 

Please refer to “5.1 Comparison of two different calibration strategies” for the 

corresponding discussion. Thanks. 

Point 6: NSEs in Figure 7: Again, I do not see a consistent pattern. 

Response 6: Thank you for your comment. In the manuscript, we have discussed why 

there is not a consistent pattern for NSEs, and the impacts of spatial resolution on flood 

events simulation behave differently among different models and precipitation sources. 

The discussion part is as follows: 

Page 18-19 Line 426-450 ‘For the study area, under 0.25° spatial resolution, the CMA 

obtains the best flood events simulation based on SWAT and LSTM. The impact of 

spatial resolution on the capture of precipitation variability during flood event periods 



can propagate to the flood events simulation. The best results are obtained under 0.25° 

spatial resolution, the possible reason can be that finer spatial resolution (0.1°) increases 

the uncertainty of precipitation sets, nevertheless coarser spatial resolution (0.5°) 

decreases the sufficiency of datasets. 

The SWAT and DHSVM model driven by IMERG perform similarly under different 

spatial resolutions, which is consistent with previous research (Lobligeois et al. 2014, 

Huang et al. 2019), where insignificant improvement was reported with higher spatial 

resolution of observed rainfall in a large catchment area. It probably dues to the large 

catchment area and only the outlet station is used for calibration. Liang et al. (2004) 

found a critical resolution (1/8° for the VIC model) for a watershed with 1,233 km2, 

beyond which the spatial resolution shows limited impact on model performance. For 

our study area (82,375 km2), when the spatial resolution of precipitation changes from 

0.1° to 0.5°, a small variation is shown in the performance of flood events simulation, 

which indicates the critical resolution may be larger for a large watershed. 

For data-driven model, IMERG-E and IMERG-F show better performance under 0.1° 

spatial resolution in the LSTM-based simulation, which indicates that a higher spatial 

resolution, namely a larger dataset, can improve the performance of flood events 

simulation. Similar conclusion is drawn from previous study conducted by Sun et al. 

(2017), which also found that a deep learning model performs better with larger datasets. 

In addition, the simulation with IMERG-L at 0.1° spatial resolution is not satisfactory, 

which may be related to the choice of hyperparameters and the limited data. However, 

after upscaling, the performance of LSTM in flood events simulation is greatly 

improved when the IMERG-L data is applied with 0.25° spatial resolution, which 

implies that scale transformation can be regarded as an approach of data enhancement 

in hydrological simulation based on deep learning.’ 

References: 
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temporal and spatial resolutions of rainfall data. Hydrology and Earth System Sciences, 
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Lobligeois, F., et al. 2014. When does higher spatial resolution rainfall information 

improve streamflow simulation? An evaluation using 3620 flood events. Hydrology 

and Earth System Sciences, 18(2), 575-594. 

Liang, X., Guo, J. and Leung, L. R. 2004. Assessment of the effects of spatial 

resolutions on daily water flux simulations. Journal of Hydrology, 298(1-4), 287-310. 

Sun, C., et al. 2017. Revisiting Unreasonable Effectiveness of Data in Deep Learning 

Era. 2017 Ieee International Conference on Computer Vision (Iccv), 843-852. 

Point 7: Results and discussions should be put together. It is difficult to follow 

discussion when results are not immediately available. 

Response 7: We sincerely apologize for any difficulties you may have experienced 

while reading. As we outlined previously, we elected to separate the results and 

discussion sections, enabling us to delve into a more comprehensive examination of our 

findings. To enhance clarity and facilitate comprehension, we have highlighted where 

to locate the relevant results, for instance, “Compared with the conventional method 

choosing the fit parameter set based on entire streamflow time series (Calibration 

Strategy I), selecting the parameter set that results in the best flood events simulation 

(Calibration Strategy II) shows better performance on flood event simulation (Fig. 6).” 

Hope for your understanding. 



Point 8: 3.2.2. It is not clear whether you have considered peak discharge only or

all the data points of the flood hydrographs. If the former is true, the number of 

data points is very small for any meaningful calibration. The term 'flood event' 

has not been explicitly defined, which gives rise to additional confusion. 

Response8: Thank you very much for your comment. When we trained the models,

we use all the data points of the flood hydrographs instead of just the peak discharges. 

For the term “flood event”, In 2.2 Data description, we have explained how we 

choose flood events: “Fig. 2 shows the time series of the hourly streamflow and 

corresponding gauge-based precipitation between 2015 and 2017, where eleven 

historical flood events are selected with flood peak exceeding the threshold of 8,600 

m3/s in this study.” 



Fig. 2. Time series of observed hourly streamflow in Xiangtan station and basin-average precipitation from 

CMA, with eleven selected flood events covered by shaded areas. 

Point 9: 3.3. It is not clear if Eq. (1) uses only flood peaks or all the data points in the

time series for computing NSE. If the former is the case, the metric is not reliable since 

there are not many data points considered by the author. 

Response9: Thank you very much for your comment. To quantitatively evaluate the

performance of flood events simulation, three evaluation indices are selected in this 

study, namely NSE, BIAS-P and KGE. In Eq. (1) and Eq. (3), we used all the 

streamflow data points of 11 flood events and calculated the evaluation indices for each 

flood event separately.  

We have modified the relevant description of Eq. (1) and Eq. (3) in Page 12 Lines 284-

287: ‘Where 
o
tQ and t

sQ are the values of the observed and simulated flood events at 

time 𝑡; p

oQ and p

sQ are the observed and simulated peaks of the flood events; 𝑟 is 

the linear correlation between observations and simulations, 𝛼 a measure of the flow 

variability error, and 𝛽 a bias term.’ 

Point 10: Eq. (2): Bias is not typically presented in this way. Again, how reliable is

the equation when there are so few data points? 

Response10: Thank you very much for your comment. To quantitatively evaluate

the performance of the flood peaks simulation, BIAS-P is selected in this study 

instead of the common BIAS. BIAS-P provides a more comprehensive reflection of 

the errors between observed and simulated flood peaks. 

Point 11: 4.1. The results are not very surprising since you have calibrated the model

for flood peaks only. I would be surprised if you also show an improvement in overall 

NSE (i.e., NSE considering all the data points). 



Response11: As we respond above, we use all the data points of the flood 

hydrographs to calibrate the models, and the best model is selected by maximizing the 

mean NSE of the flood events simulation. All trained models show an improvement in 

overall NSE, but the selected models are those that performs the best on flood events 

simulation. 

Point 12: 4.2. The effects of precipitation data type on model performance are 

quite informative. However, no proper explanation is provided in the discussion 

section, which makes the analysis incomplete. Line 460 is unclear. What do you mean 

by error propagation? Please explain instead of merely citing another paper. 

Response12: Sorry for the misunderstanding. The section 4.2 is about the impact 

of spatial resolutions of precipitation on flood events simulation, rather than the effects 

of precipitation data type on model performance. To investigate the impact of 

spatial resolutions of precipitation on flood events simulation, the IMERG-E, 

IMERG-L, IMERG-F, and CMA are adopted to force the SWAT model, the DHSVM 

model and the LSTM model under 0.1°, 0.25° and 0.5°. 

The relevant discussion about the effects of precipitation data type on 

model performance is presented in 5.2 “Comparison of the performance of 

precipitation products on flood events simulation at different spatio-temporal 

resolutions”. 

We are very sorry for the difficulty in reading. The sentence in Line 460 has been re-

edited: 

Page 20 Lines 464-466: ‘Furthermore, when driven by IMERG, HBV 

outperforms SWAT and DHSVM, especially by IMERG-E and IMERG-L. It is 

because the hydrological model with a simpler structure can reduce the impact of 

errors in radar rainfall estimation, which is better constrained during its 

propagation in the hydrological process (Zhu et al. 2013).’ 

References:  



Zhu, D., Peng, D. Z., and Cluckie, I. D.: Statistical analysis of error propagation from 

radar rainfall to hydrological models, Hydrology and Earth System Sciences, 17, 1445-

1453, 10.5194/hess-17-1445-2013, 2013. 

Point 13: 4.3. The results look interesting. Again, no explanation is provided. 

For example, why does 0.25-degree data give the best 75th NSE and the worst 25th 

NSE for HBV (Figure 7a)? 

Response13: Thank you very much for your comment. Fig. 7 show the performance 

of flood events simulation based on SWAT, DHSVM, and LSTM forced by 

precipitation with different spatial resolutions. But the HBV is not included in this 

part. Since our target is to explore the impacts of different resolutions on flood events 

simulation, we focus on the overall performance of the model, therefore, the mean 

NSE is used in our study for it is more suitable for flood events as many previous 

studies proved (Yu et al. 2018, Kao et al. 2020).  

References:  

Kao, I. F., Zhou, Y., Chang, L.-C., and Chang, F.-J.: Exploring a Long Short-Term 

Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting, 

Journal of Hydrology, 583, 10.1016/j.jhydrol.2020.124631, 2020. 

Yu, D., Xie, P., Dong, X., Hu, X., Liu, J., Li, Y., Peng, T., Ma, H., Wang, K., and Xu, 

S.: Improvement of the SWAT model for event-based flood simulation on a sub-daily 

timescale, Hydrology and Earth System Sciences, 22, 5001-5019, 10.5194/hess-22-

5001-2018, 2018 

Point 14: The abstract says LSTM is outperforming other models. Figure 6 says HBV 

is better than LSTM. 

Response14: Thank you very much for your comment. Fig. 6 shows the distributions 

of NSE and BIAS-P values to illustrate the impact of calibration strategies on flood 

events 



simulation. It can be seen that flood events simulation with LSTM shows better 

performance than HBV, for the mean NSE values of CMA, IMERG-E, IMERG-F 

increase from 0.79, 0.62, 0.75 based on HBV to 0.82, 0.76, 0.77 based on LSTM. For 

IMERG-L, the mean NSE of LSTM is slightly lower than HBV, but the BIAS-P of 

LSTM show better performance than HBV. As a whole, we can summarize that LSTM 

is better than HBV. And there is a section about the comparison of different models on 

flood events simulation in the discussion part. Please refer to “5.3 Comparison of 

different models on flood events simulation” for details. 

Point 15: Line 90: The term 'physically based' is typically used for hydrological 

models based on hydrodynamic equations. The models you are referring to are 

typically called conceptual models. This is just a semantic issue though. 

Response15: Thank you for pointing it out. Yes, HBV is a conceptual model, 

while SWAT and DHSVM are physically based models. And we revise the 

corresponding sentences as you suggested. 

Page 2 Lines 38: ‘Numerous models are applied to simulate the flood events, most of 

which are conceptual/physically based models.’ 

Page 4 Lines 91-94: ‘Therefore, three widely used and typical conceptual/physically 

based models (lumped HBV model, semi-distributed SWAT model, and distributed 

DHSVM model), and one data-driven model (LSTM) which shows good performance 

in hydrological simulation, are employed to probe the impacts of spatio-temporal 

resolutions of precipitation on flood events simulation.’ 

Page 7 Lines 167-171: ‘As mentioned above, three widely used and typical 

conceptual/physically based models (lumped HBV model, semi-distributed SWAT 

model, and distributed DHSVM model), and one data-driven model (LSTM), are 

employed to probe the impacts of spatio-temporal resolutions of precipitation on flood 

events simulation.’ 



Point 16: Earlier I wrote “on. The term 'flood event' has not been explicitly 

defined.” The concern remains unaddressed. The authors write “… 17, 

where eleven historical flood events are selected with flood peak exceeding the 

threshold of 8,600 m3/s in this study.” Again, what is an event? Where does it start 

and where it ends? It appears the authors follow some subjective criteria to select 

the events, which are not elaborated. 

Response16: Thank you very much for your comment. The sentence has been re-edited:

Page 5 Line 154-157 ‘Fig. 2 shows the time series of the hourly streamflow and 

corresponding gauge-based precipitation between 2015 and 2017, where eleven 

historical flood events are selected in this study. The flood events are the streamflow 

time series with one-month span whose peak flow exceeded 8600m3/s, corresponding 

to 97th approximately the quantile level (Zhu et al., 2020a).’

References: 

Zhu, Q., Zhou, D., Luo, Y., Xu, Y.-P., Wang, G., and Gao, X.: Suitability of high-

temporal satellite-based precipitation products in flood simulation over a humid 

region of China, Hydrological Sciences Journal, 66, 104-117, 

10.1080/02626667.2020.1844206, 2020a. 

Point 17: I am not comfortable with the overly simplistic conclusion that LSTM is 

better than HBV. The results provide a much more nuanced picture. Figure 6 NSE 

plots: HBV is more consistent across the data products compare to LSTM. For 

instance, LSTM’s 25th percentile is much lower compared to HBV’s for IMERG-

L. A statement like “LSTM has a higher likelihood of success” would be much 

more acceptable. 



Response17:

Thank you very much for your suggestion and we agree with it. We add some discussion 

to compare the performance of LSTM and HBV in Figure 10 besides Figure 6, and the 

corresponding sentence has been re-edited: 

Page 18-19 Line 535-538: ‘The comparisons of SWAT, DHSVM and LSTM at 

different spatial resolutions are also illustrated. As a data-driven approach, LSTM 

shows better performance than SWAT and DHSVM in terms of flood events simulation 

and shows reduced uncertainty and a higher likelihood of success than HBV, which is 

considered an appropriate model in this case.’ 

Point 18: I reiterate my earlier statement: there is no surprise that 

model performance improved for flood events after calibrating exclusively 

for flood events. It is widely acknowledged that calibration with respect to 

a specific objective function leads to its improvement. As I said earlier, I would 

be surprised to see overall NSE (NSE for the whole time series)  improving after 

calibration with respect to flood events. 

Response18:

Thank you for this comment, and we calculate the NSE to see how the overall NSE performs for 

the whole time series. The results are presented in the following table. According to the Table 1, it 

can be seen that generally the calibration strategy II shows better performance than the strategy 

I in overall NSE, for the mean NSE values of HBV, SWAT, DHSVM, LSTM increase from 0.79, 

0.77, 0.80, and 0.88 with calibration strategy I to 0.80, 0.80, 0.86, 0.89 with calibration strategy II. 

This is probably due to the fact that the NSE is more sensitive to changes in flood peaks (Huang et 

al., 2019) and calibration strategy II can better capture the flood peaks compared to calibration 

strategy I. Based on your comment, we have added some discussion in “5.1 Comparison of two 

different calibration strategies”, and the details are as follows: 



Page 14 Line 425-431: ‘Although we targeted in difference between the two strategies 

in flood events simulation, their performances in the whole streamflow simulation 

time series are also compared, which is presented in Table 1 (The mean value is the 

average NSE of the four precipitation products with the same calibration strategy). 

According to the mean NSE values, calibration strategy II outperforms calibration 

strategy I. To be specific, for HBV, SWAT, DHSVM and LSTM models, among the 

four precipitation products, there are two, three, three and three NSE values 

larger with calibration strategy II than that with calibration strategy I.’ 

Table. 1 The NSE values of the whole streamflow simulation time series forced by CMA, IMERG-E, 

IMERG-L, IMERG-F 

Model Strategies CMA IMERG-E IMERG-L IMERG-F Mean 

HBV Strategies I 0.77 0.77 0.72 0.88 0.79 

Strategies II 0.73 0.81 0.82 0.86 0.80 

SWAT Strategies I 0.83 0.75 0.76 0.73 0.77 

Strategies II 0.83 0.84 0.82 0.70 0.80 

DHSVM Strategies I 0.86 0.75 0.75 0.85 0.80 

Strategies II 0.82 0.87 0.86 0.87 0.86 

LSTM Strategies I 0.92 0.89 0.87 0.85 0.88 

Strategies II 0.93 0.91 0.86 0.85 0.89 

References: 

Huang, Y., Bárdossy, A., and Zhang, K.: Sensitivity of hydrological models to 

temporal and spatial resolutions of rainfall data, Hydrology and Earth System 

Sciences, 23, 2647-2663, 10.5194/hess-23-2647-2019, 2019. 

Point 19: As I mentioned earlier, there are numerous results but proportionally 

less discussion. For instance, no explanation is provided for why a 0.25-degree 

resolution appears to perform well for NSE-CMA-SWAT (apologies for the 

earlier typo) but not for NSE-CMA-LSTM. Similarly, a 0.5-degree resolution 

seems to work for KGE-CMA-SWAT but not for KGE-CMA-LSTM. The 

authors have predominantly presented the results without a thorough critical 

analysis, which is the point I am emphasizing. Once again, I am not suggesting 

that the study is irrelevant, but I believe that additional effort is needed to 

enhance the paper's overall appeal. 



Response19:  Thank you for your comment, and we have added some results 

and discussion about this issue in ‘5.2 Comparison of the performance of 

precipitation products on flood events simulation at different spatio-temporal 

resolutions’: 

Page 15-16 Line 478-491: ‘In order to compare the performance of different models on 

flood events simulation in the same spatial resolutions, some results presented in Fig.7 

are illustrated in Fig.9. Overall, the LSTM shows better performance in most cases, for 

instance, in Fig. 9 (a) and Fig. 9 (c), LSTM is better than other models with the largest 

mean NSE and the smallest range between 25th and 75th percentile. There is also 

exception, for example, in Fig. 9 (b), the range of NSE between 25th and 75th percentile 

of SWAT with CMA is smaller than that of LSTM, but its mean and medium values of 

NSE are lower. Therefore, it can be summarized that the performance of LSTM has a 

higher likelihood of success than the other models. For KGE at 0.1° (Fig.9 (d)), LSTM 

also show better performance than the other models expect that simulated with CMA, 

with which DHSVM is better than LSTM, and they show similar results with 0.5° (Fig. 

9 (e)).’ 

Fig. 9. The NSE and KGE of flood events simulation forced by CMA, IMERG-E, IMERG-L and IMERG-F 

with different spatial resolutions. The box plots show the 25th, 50th, and 75th percentiles, and the mean value 

is given and shown by a square. 

As we stated in the manuscript, for the 0.25-degree resolution, it performs well for NSE-



CMA-SWAT and also for NSE-CMA-LSTM. Based on the mean and medium NSE 

values, NSE-CMA-LSTM is even better, with corresponding values increasing from 

0.64 to 0.66. 

To better explain the effect of spatial resolution on different models, we have added 

additional details in ‘5.2 Comparison of the performance of precipitation products on 

flood events simulation at different spatio-temporal resolutions’: 

Page 16 Line 492-513: ‘The influence of spatio-temporal resolution on flood events 

simulation is affected by model structure. For instance, based on NSE, the SWAT shows 

the best performance at 0.25° with CMA forcing, but the LSTM shows the best 

performance at 0.1°. Similarly, based on KGE, the SWAT performs the best at 0.5° with 

CMA forcing, but the LSTM has the best performance at 0.1°. On one hand, the 

difference in performance between NSE and KGE is due to their different statistical 

focus, with NSE giving larger weights to high values, especially flood peaks, which 

leads to different performance with different statistical metrics. On the other hand, the 

difference between SWAT and LSTM is due to their model structure. The SWAT 

operates as a physically driven model, where the impact of the spatial resolution of the 

precipitation dataset will propagate during hydrological process, which makes finer 

spatial resolution does not necessarily lead to the improved performance, as indicated 

by studies such as Huang et al. (2019). This is exemplified by the SWAT performs better 

at 0.25° with CMA forcing based on NSE, while it performs better at 0.5° based on 

KGE. Regarding LSTM, as a deep learning model, some studies have highlighted 

significant performance enhancements when applied to larger, reliable datasets (Sun et 

al., 2017). Consequently, when forced by CMA and IMERG-F, LSTM shows the best 

performance across all statistical metrics at 0.1°, rather than at 0.25° or 0.5°. The 

deviations observed in IMERG-E and IMERG-L from this pattern are likely attributable 

to inherent errors within the precipitation product itself. We previously evaluated the 

applicability of the IMERG dataset in the Xiangjiang River Basin, and found that 

IMERG-E and IMERG-L have larger uncertainties and errors than IMERG-F (Zhu et 

al., 2020a). The CMA has been confirmed by several studies to be a more reliable 



precipitation product in the Xiangjiang River Basin and always used as a reference 

precipitation product (Wang et al., 2017; Tang et al., 2017; Su et al., 2020). This 

probably makes IMERG-E and IMERG-L do not bring enough performance 

improvement to LSTM when the spatial resolution is finer.’ 

References: 

Huang, Y., Bárdossy, A., and Zhang, K.: Sensitivity of hydrological models to 

temporal and spatial resolutions of rainfall data, Hydrology and Earth System 

Sciences, 23, 2647-2663, 10.5194/hess-23-2647-2019, 2019. 

Su, J., Lü, H., Crow, W. T., Zhu, Y., and Cui, Y.: The Effect of Spatiotemporal 

Resolution Degradation on the Accuracy of IMERG Products over the Huai River 

Basin, Journal of Hydrometeorology, 21, 1073-1088, 10.1175/jhm-d-19-0158.1, 2020. 

Sun, C., Shrivastava, A., Singh, S., and Gupta, A.: Revisiting Unreasonable 

Effectiveness of Data in Deep Learning Era, Ieee I Conf Comp Vis, 843-852, 

10.1109/Iccv.2017.97, 2017. 

Tang, G., Zeng, Z., Ma, M., Liu, R., Wen, Y., and Hong, Y.: Can Near-Real-Time 
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2016 Summer in South China?, IEEE Geoscience and Remote Sensing Letters, 14, 
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Point 20: Mean NSE does not make a lot of sense if the distribution is skewed (which 

is very likely). 

Response 20: Thank you very much for your comment. In most cases in our study, the 

medium NSE performs the same pattern as the mean NSE. For instance, in Fig. 6, the 

mean NSE values of HBV, SWAT, LSTM driven by IMERG-F increase from 0.54, 

0.44, 0.56 with calibration strategy I to 0.67, 0.57, 0.63 with calibration strategy II 

while the medium NSE values increase from 0.68, 0.53, 0.98 to 0.79, 0.68, 0.99. 



BIAS-P also shows the same pattern between the medium BIAS-P and the mean 

BIAS-P. For the mean BIAS-P values of HBV, SWAT, LSTM driven by IMERG-E  

decrease from 27.0%, 29.8%, 22.4% with calibration strategy I to 21.2%, 

23.8%, 18.3% with calibration strategy II, while the medium BIAS-P values 

decrease from 34.3%, 37.6%, 27.2% to 27.8%, 32.5%, 23.1%. For the mean BIAS-P 

values of HBV, SWAT, LSTM driven by IMERG-F decrease from 14.5%, 26.0%, 

16.0% with calibration strategy I to 13.1%, 14.0%, 15.5% with calibration strategy 

II while the medium BIAS-P values decrease from 15.0%, 24.7%, 17.5% to 11.3%, 

11.3%, 13.1%.  

Similar to Fig. 6, Fig. 7 and Fig. 8 show the same pattern between the medium NSE 

and the mean NSE in most case. For instance, in Fig. 7, the SWAT driven by CMA 

shows the best performance at 0.25°with the mean NSE of 0.66 and the medium 

NSE of 0.71. The SWAT driven by IMERG-E and IMERG-L show the best 

performance at 0.5°with the mean NSE of 0.57, 0.61 and the medium NSE of 0.76, 

0.80. The SWAT driven by IMERG- F shows the best performance at 0.1°with the 

mean NSE of 0.63 and the medium NSE of 0.72. The LSTM driven by CMA and 

IMERG-F show the best performance at 0.1°with the mean NSE of 0.78, 0.78 and 

the medium NSE of 0.80, 0.78. The LSTM driven by IMERG-E shows the best 

performance at 0.5°with the mean NSE of 0.7 and the medium NSE of 0.73. The 

LSTM driven by IMERG-L shows the best performance at 0.25°with the mean NSE 

of 0.81 and the medium NSE of 0.81. In Fig. 8, the HBV driven by CMA and IMERG-

F show the best performance at the hourly scale with the mean NSE of 0.81, 0.77 and 

the medium NSE of 0.82, 0.80. The DHSVM driven by IMERG-E and IMERG-L also 

show the best performance at the hourly scale with the mean NSE of 0.36, 0.37 and 

the medium NSE of 0.59, 0.54. So, in this study the medium NSE and the mean NSE 

are considered to be representative of the overall performance.  

In some cases, as you said, mean NSE does not make a lot of sense if the distribution is 

skewed. For instance, in Fig. 6, the LSTM driven by CMA shows better medium NSE 

with calibration strategy I while better mean NSE with calibration strategy II. In Fig. 7, 

the DHSVM driven by IMERG-L shows the best medium NSE of 0.48 at 0.1°while 

the best mean NSE of 0.30 at 0.5.  



In order to better describe the results, we use the 25th NSE and 75th NSE to discuss 

the uncertainty of the results when the distribution isskewed.  

These sentences have been re-edited: 

Page 10 Line 323-331: ‘For the LSTM, the NSE values of flood events simulation 

also show higher mean values and smaller uncertainty based on the strategy II 

for all precipitation products. The flood events simulation based on IMERG-L shows 

the most significant improvement with the mean NSE value increasing from 0.62 

with the strategy I to 0.77 with the strategy II. The flood events simulation based on 

CMA and IMERG-E show lightly lower medium NSE values of 0.94, 0.88 with the 

strategy II than 0.95, 0.99 with strategy I. But they show higher 25th NSE with 

strategy II, especially LSTM driven by IMERG-E, which increases from 0.58 with 

strategy I to 0.66 with strategy II. Therefore, although strategy II has a lower median 

performance than strategy I in individual cases, it still significantly improves the 

performance of LSTM, particularly in terms of uncertainty.’ 

Page 10 Line 341-350: ‘For instance, CMA performs the best at 0.25° with 

the mean BIAS-P of 26.5%, while IMERG-E, IMERG-L and IMERG-F 

display the best performance at 0.5° with the mean BIAS-P of 23.7%, 22.9% and 

13.8%, respectively. Similar to its performance in BIAS-P, in terms of mean NSE, 

CMA also performs the best under 0.25° with the mean NSE of 0.66. IMERG-E 

presents little difference at different spatial resolutions, while IMERG-L performs 

slightly better at 0.5° with the mean NSE of 0.61and the medium NSE of 0.76.’ 

Page 11-12 Line 367-383: ‘Similar to DHSVM, LSTM shows 

different performance forced by precipitation with different spatial resolutions. 

CMA and IMERG-F performs the best at 0.1° with the mean BIAS-P of 

18.64% ,15.55% and mean NSE of 0.78. The 25th NSE of flood events simulated with 

CMA increases from 0.52 to 0.72, the 75th NSE increases from 0.78 to 0.83 while 

the spatial resolution is finer. By contrast, IMERG-E performs the best at 0.5° with 

the mean NSE of 0.69 and medium NSE of 0.68 while IMERG-L performs the best at 

0.25° with the mean NSE of 0.80 and the medium NSE of 0.81. In the light of BIAS, 



IMERG-E and IMERG-L achieve the best performance on flood events simulation at 

0.5°, the mean values of which are 24.55%, and 18.27%, 0.77. In contrast of BIAS-P, 

LSTM driven by IMERG-L shows the best KGE at 0.25° with the mean KGE of 0.76 

and the smallest uncertainty, which is the same as NSE. Compared with the SWAT 

and DHSVM, the LSTM shows better performance on flood events simulation. The 

mean NSEs of LSTM are higher than 0.7 in most cases, while the mean NSEs of 

SWAT is around 0.6, and the largest mean NSE of DHSVM is 0.68. The 25th NSE of 

LSTM are higher than 0.5 in most cases, while the 25th NSE of DHSVM is 

around 0.15. The smallest 75th NSE of LSTM is 0.78, while the 75th NSE of 

DHSVM are around 0.6. The mean KGEs of SWAT and LSTM are similarly around 

0.7, which are around 0.6 for DHSVM. In addition, LSTM also shows a relatively 

lower BIAS-P (the mean values less than 25%).’ 

Page 14-15 Line 445-459: ‘As illustrated in Fig.7 and Fig.8, the performance 

of precipitation products on flood events simulation is affected by both the spatial 

and temporal resolutions. Impacts of spatial resolution on flood events 

simulation behave differently among different models and precipitation sources. 

For the study area, under 0.25° spatial resolution, the CMA obtains the best 

flood events simulation based on SWAT. The impact of spatial resolution on 

the capture of precipitation variability during flood event periods can propagate to 

the flood events simulation. The best results are obtained under 0.25° spatial 

resolution, the possible reason can be that finer spatial resolution (0.1°) 

increases the uncertainty of precipitation sets, nevertheless coarser spatial 

resolution (0.5°) decreases the sufficiency of datasets. For SWAT driven by 

CMA, it shows the best 75th NSE and the worst 25th NSE at 0.5° while the 

DHSVM driven by CMA shows the same pattern at 0.5°, which proved 

that coarser spatial resolution decreases the sufficiency of datasets. But the 

DHSVM driven by CMA shows the best performance at 0.1°, which proves that the 

effects of increasing and decreasing spatial resolution are simultaneous and affect 

different models differently. It indicates that the choice of the dataset is 

influenced by the resolution range, which must be adapted to the model 

definition, for the proper spatial resolution is essential to both minimize the 



uncertainty and assure the sufficiency (Grusson et al., 2017).’ 
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Response to Referee 2

Point 1: Line 66: “the study”-> “they”. 

Response 1: Thank you for your suggestion. This sentence has been re-edited:  

Page 3 Lines 65-68: ‘Su et al. (2020) assessed the IMERG products at multiple spatial 

and temporal resolutions by upscaling, and they summarized that degrading the spatio-

temporal resolution improves the accuracy of IMERG products.’ 

Point 2: Line 124-127: The structure of these two sentences is suggested to be 

revised. The conjunction "so" in the beginning of the second sentence may be 

unclear. 

Response 2: Thank you for your suggestion. This sentence has been re-edited: 

Page 5 Lines 126-129: ‘Concentrated storm events during the flood season cause 

frequent floods throughout the basin. Since the Xiang River basin is the most densely 

populated and economically developed area in Hunan Province (Zhu et al. 2020a), it is 

critical to accurately simulate and predict flood events in the region for effective flood 

risk management.’ 

Point 3: Line 139: “(hereafter CMA)” needs to be put behind “China 

Meteorological Administration”. 

Response 3: Thank you for your suggestion. This sentence has been re-edited:  

Page 6 Lines 141: ‘A precipitation product released by China Meteorological 

Administration (hereafter CMA),’ 

Point 4: Line 185: the reference “(AghaKouchak et al. 2013)” should be located 

behind the “HBV model”. 



Response 4: Thank you for your suggestion. This sentence has been re-edited:  

Page 8 Lines 186-187: ‘A lumped version of HBV model (AghaKouchak et al. 2013) 

is used in this study,’ 

Point 5: Line 230-233: please pay attention to the format of the variables, such as 

xt, and t. 

Response 5: Thank you for your question. I am sorry for our carelessness; the format 

of the variables has been corrected: 

Page 10 Lines 233-236: ‘The inputs for the complete sequence  1,..., nx x x , where

𝑥௧ is a vector containing the input features of time 𝑡, and the dimension of the 𝑥௧ 

corresponds to the number of grids of the precipitation data. The outputs for the 

complete sequence  1,..., ny y y , where 𝑦௧ is the streamflow of time 𝑡.’ 

Point 6: Line 268-269: please explain how the eleven historical flood events are 

selected. 

Response 6: Thank you for your question. In 2.2 Data description, we have explained 

how we choose flood events: “Fig. 2 shows the time series of the hourly streamflow 

and corresponding gauge-based precipitation between 2015 and 2017, where eleven 

historical flood events are selected with flood peak exceeding the threshold of 8,600 

m3/s in this study.” 



Fig.2. Time series of observed hourly streamflow in Xiangtan station and basin-average precipitation from 

CMA, with eleven selected flood events covered by shaded areas. 

Point 7: Line 338: “as the resolution get coarser”-> as the resolution is coarser or 

as the resolution gets coarser.  

Response 7: Thank you for your suggestion. This sentence has been re-edited:  

Page 14 Lines 340-341: ‘The performance of IMERG-F gets worse as the resolution is 

coarser,’ 

Point 8: Line 350-352: “However, the uncertainty of NSE, KGE and BIAS-P values 

of flood events simulated with IMERG is decreasing as the spatial resolution.” As 

the spatial resolution what? finer or coarser? 

Response 8: Thank you for your question. We are very sorry for the difficulty in 

reading. This sentence has been re-edited: 

Page 15 Lines 354-355: ‘However, the uncertainty of NSE, KGE and BIAS-P values of 

flood events simulated with IMERG decreases as the spatial resolution is finer.’ 

Point 9: Line 365: in most instances -> in most cases. 



Response 9: Thank you for your suggestion. This sentence has been re-edited:  

Page 16 Lines 368: ‘The mean NSEs of LSTM are higher than 0.7 in most cases,’ 

Point 10: Line 407-408: “the same results” means the results are exactly the same, 

does that what the authors indicate? Otherwise, the same results -> the 

comparable/similar results or the results are almost the same. 

Response 10: Thank you for your suggestion. This sentence has been re-edited:  

Page 18 Lines 410-412: ‘However, the CMA shows the similar results under two 

different calibration strategies in SWAT-based flood events simulation.’ 

Point 11: Line 417-418: the calibration strategy II is an effective way for training 

the LSTM model to obtain the best flood events simulation results -> the 

calibration strategy II is an effective way to train the LSTM model to obtain the 

best flood events simulation. 

Response 11: Thank you for your suggestion. This sentence has been re-edited:  

Page 18 Lines 419-421: ‘When comparing the two calibration strategies, the calibration 

strategy II is an effective way to train the LSTM model to obtain the best flood events 

simulation.’ 

Point 12: Line 430: performs -> perform. 

Response 12: Thank you for your suggestion. This sentence has been re-edited: 

Page 19 Lines 433: ‘The SWAT and DHSVM model driven by IMERG perform 

similarly under different spatial resolutions,’ 

Point 13: Line 431: please delete the “results”. And please check the whole 

manuscript for this issue. 



Response 13: Thank you for your suggestion. This sentence has been re-edited: 

Page 19 Lines 434: ‘which is consistent with previous research (Lobligeois et al. 2014, 

Huang et al. 2019),’ 

And we checked the whole manuscript for this issue as you suggested. Thanks. 

Point 14: Line 440: larger data set -> larger dataset. Isn’t the “Fig. 9” shall be 

colored red to be consistent with other figures? 

Response 14: Thank you for your suggestions. This sentence has been re-edited: 

Page 19 Lines 443-444: ‘which indicates that a higher spatial resolution, namely a 

larger dataset, can improve the performance of flood events simulation.’ 

We have changed the color of Fig. 9 to make it consistent with other figures.: 

Fig. 9. The (a) NSE, (b) BIAS-P and (c) KGE of flood events simulation forced by CMA, IMERG-E, IMERG-

L and IMERG-F using calibration strategies II. The box plots show the 25th, 50th, and 75th percentiles, and 

the mean value is given and shown by a square.  

Point 15: The colors used in Fig.10 are not so easy to distinguish. 

Response 15: Thank you for your question. We are very sorry for the difficulty in 

reading. We have changed the color of Fig.10 to make it easier to distinguish: 



Fig. 10. Comparison of HBV, SWAT, DHSVM, and LSTM based flood events simulation from July 1st, 2015 

to July 31th, 2015, and from March 15th, 2017 to April 14th, 2017 forced by CMA, IMERG-E, IMERG-L, 

and IMERG-F with different spatio-temporal resolutions. 

Point 16: Same issue of Appendix C, and please refer to the comment #15 

Response 16: Thank you for your question. We are very sorry for the difficulty in 

reading. We have changed the color of Appendix C to make it consistent with other 

figures.: 

Fig. C0. Same as Fig. 9, but the results in calibration and validation periods are separated 
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