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Abstract.  1 

In this work, the variability of regional-scale transport of inert solutes in 2 

heterogeneous confined aquifers of variable thickness is quantified by the variance of 3 

the displacement of a solute particle. Variability in solute displacement is attributed to 4 

variability in hydraulic conductivity and aquifer thickness. A general stochastic 5 

methodology for deriving the variance of the displacement of a solute particle based 6 

on the convection velocity of solute particles, developed from the relationship 7 

between the two-dimensional depth-averaged solute mass conservation equation and 8 

the Fokker-Planck equation, is given. Explicit results for the solute displacement 9 

variance in the mean flow direction for the case of advection-dominated solute 10 

transport are obtained assuming that the fluctuations in log hydraulic conductivity and 11 

log thickness of the confined aquifer are second-order stationary processes. The 12 

results show that variation in hydraulic conductivity and aquifer thickness can 13 

lead to nonstationarity in the covariance of flow velocity, making longitudinal 14 

macrodispersion anomalous and increasing linearly with travel time at large 15 

distances.  16 

 17 

1 Introduction  18 

 19 
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It is widely accepted that the variability of solute movement in heterogeneous 20 

aquifers is controlled primarily by the spatial variability of groundwater flow 21 

fields (e.g., Dagan, 1989; Gelhar, 1993; Rubin, 2003). Much work on the 22 

stochastic analysis of solute transport in heterogeneous porous formations has 23 

focused on relating the spatial variability of the hydraulic conductivity field to 24 

that of the flow velocity field, and thus to the spatial variability of the 25 

displacement of a solute particle. However, natural aquifers at regional scales often 26 

exhibit nonuniform aquifer thickness (e.g., Masterson et al., 2013; Zamrsky et al., 27 

2018; DeSimone et al., 2020), and spatial variability in the aquifer thickness field has 28 

also been shown to have an important influence on flow field variability (e.g., 29 

Hantush, 1962; Cuello and Guarracino, 2020; Chang et al., 2021). Thus, the 30 

underlying motivation for this work is to provide an analytical stochastic method for 31 

improved quantification of the variability of solute displacement at the regional scale 32 

in heterogeneous aquifers under more realistic field conditions, i.e., taking into 33 

account the effects not only of the spatial variation of the hydraulic conductivity field 34 

but also of the thickness field of the confined aquifer. 35 

At a regional scale, the lateral extent of the confined aquifer is much greater than 36 

the thickness of the formation. Therefore, it is more practical to view the flow and 37 

solute transport processes in confined aquifers at the regional scale as essentially 38 
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two-dimensional, areal processes. In the traditional approach to the essentially 39 

horizontal flow, the stochastic description of flow and solute transport processes is 40 

related to the stochastic properties of transmissivity (e.g., Dagan, 1982; 1984), where 41 

the transmissivity is the line integration of hydraulic conductivity over the depth of 42 

the formation at a given point. However, in reality, transmissivity measurements from 43 

field tests give a value of integrated hydraulic conductivity over a larger volume than 44 

the range used for the line integration of hydraulic conductivity at a single point. This 45 

means that the field tests performed for the transmissivity measurements include more 46 

of the heterogeneity in the formation than that encountered over the depth of the 47 

formation at a single point. This would result in a reduction in the variance of 48 

transmissivity and an overestimation of the integral scale of transmissivity compared 49 

to values predicted from the line integration of hydraulic conductivity. Consequently, 50 

using the stochastic properties of transmissivity may not provide an accurate 51 

interpretation of solute movement at a regional scale. 52 

Rather than using the stochastic properties of transmissivity, this work uses the 53 

stochastic properties of hydraulic conductivity and thickness of the confined 54 

aquifer to interpret the variability of solute movement at a regional scale using a 55 

hydraulic approach (or essentially horizontal flow approach) (Bear, 1979; Bear 56 

and Cheng, 2010). That is, in this approach, the variability in solute movement is 57 
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due to variations in hydraulic conductivity and aquifer thickness.  58 

The traditional approach to regional groundwater flow problems introduces the 59 

transmissivity parameter to describe the ability of a confined aquifer to transmit water 60 

throughout its saturated thickness. The effect of the thickness of the aquifer is 61 

implicitly reflected in the transmissivity parameter. It is very difficult to assess the 62 

effect of thickness on the flow field and thus on solute transport at a regional scale. 63 

The stochastic approach presented here provides an efficient and rational way to 64 

analyze flow and solute transport fields affected by the non-uniform thickness of 65 

confined aquifers, which has not been previously presented in the literature. This 66 

work shows that variability in aquifer thickness can lead to nonstationarity in 67 

hydraulic head fields and thus to nonstationary flow velocity fields and anomalous 68 

longitudinal dispersion. This implies that neglecting the variability of aquifer 69 

thickness when predicting the longitudinal displacement of solutes at large times can 70 

lead to a significant underestimation of longitudinal dispersion. The stochastic theory 71 

presented here improves quantification of the variance of the solute displacement in 72 

natural confined aquifers of random thickness fields.  73 

In the present work, the convection velocity of solute particles is first developed 74 

based on the relationship between the two-dimensional depth-averaged solute mass 75 

conservation equation and the Fokker-Planck equation, so that the convection velocity 76 
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can explicitly reflect the effects of hydraulic conductivity and aquifer thickness. Using 77 

the perturbation approach to solute convection velocity, the covariance function of 78 

solute convection velocity is then developed, which allows a general expression for 79 

the variance of the displacement of a solute particle in the mean flow direction to be 80 

developed. A closed-form expression for the solute displacement variance is also 81 

developed for the case where solute transport is dominated by advection and the 82 

random fields of log conductivity and log thickness of the confined aquifer are 83 

second-order stationary. Finally, the influence of variations in log hydraulic 84 

conductivity and log aquifer thickness on the variability of solution displacement is 85 

analyzed. 86 

 87 

2 Mathematical formulation of the problem 88 

 89 

Consider here the steady flow of a fluid carrying an inert solute through a 90 

heterogeneous confined aquifer with variable thickness. When constituents are well 91 

mixed throughout the thickness of the aquifer (depth of flow) and fluid flow through 92 

an aquifer occurs on a regional scale, with the lateral extent of the formation much 93 

greater than the thickness of the formation, it is appropriate to view the flow and solute 94 

transport processes as essentially two-dimensional. In this work, the two-dimensional 95 
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solute transport process in heterogeneous confined aquifers is quantified by using 96 

moments of solute particle displacement in the Lagrangian framework (e.g., Dagan, 97 

1982; 1984), where the particle displacement can be defined as  98 

c

d

dt


X
V  (1) 99 

In Eq. (1), X (= (X1,X2)) is the displacement and Vc (= (Vc1
,Vc2

)) is the convection 100 

velocity of the solute particle. 101 

The displacement of the solute particles in Eq. (1) consists of two components: 102 

one originates from convection through the fluid and the other is associated with the 103 

transport process at the pore scale. This means that the statistical moments of particle 104 

displacement cannot be determined directly from the statistical moments of flow 105 

velocity. The convection velocity of the solute particle in Eq. (1) can be obtained from 106 

the relationship between the two-dimensional depth-averaged equation for the 107 

conservation of solute mass and the Fokker-Planck equation as follows:  108 

1 1 1 2
( ) ( ) ln ( ) ( ) ( )[ ]i

i i ii
i i

WX BD D D
x

dd q
dt n n n n dtx

 
   

 
   X X X X X    i =1,2. (2) 109 

where n is the porosity, iD , and iq  represent the depth-averaged dispersion 110 

coefficient and depth-averaged specific discharge in the xi direction, respectively, B is 111 

the thickness of a confined aquifer, and W denotes a Wiener process. The details of the 112 

development of Eq. (2) are given in Appendix A.  113 

From the right-hand side of Eq. (2), it can be seen that the first term represents the 114 
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convection velocity of the flow, the second and third terms are associated with 115 

pore-scale dispersion, which includes the effects of local heterogeneity of aquifer 116 

thickness and dispersion coefficient, respectively, and the last term is associated with a 117 

Brownian motion type diffusion process. Equation (2) provides a basic basis for 118 

evaluating the statistical moments of solute particle displacement.  119 

In this study, the fields (or processes) of hydraulic conductivity K(x1,x2) and 120 

thickness of the confined aquifer B(x1,x2) are considered spatially random, and 121 

therefore a random flow field and a random particle displacement field. It is also 122 

assumed that the mean fluid flow is uniform and unidirectional in the x1-direction (i.e., 123 

<X> = (<X1>, 0)) and that the spatial variation of the depth-averaged dispersion 124 

coefficients and the Brownian motion type diffusion process are negligible. This 125 

simplifies Eq. (2) to  126 

1 1
( ) ln ( )i

ii
i

X BD
d q
dt n n x


 


 X X    i =1,2. (3) 127 

Note that the assumption of uniform mean flow in the x1-direction implies that the 128 

gradient of the mean depth-averaged hydraulic head is constant in the x1-direction and 129 

zero in the x2-direction (Chang et al. 2021). 130 

By analogy with Butera and Tanda (1999), extending Eq. (3) in Taylor series 131 

around <X> in the x1-direction yields  132 

2
1 1 11

1 1111 2
1 1 1

'0 0 0
0

1 (< >, ) (< >, ) (< >, )
+< > + (< >, )[ ]X X X X

X XD
x x x

dd d
dt n d d d

vv
 

    , (4) 133 
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where X1 = X1-<X1>,  = <lnB>,  = lnB-<lnB>, 1 1 1-v v v    , 1v   = constant, 134 

and 1 1
/ nqv   . Note that due to the assumption of uniform mean flow in the 135 

x1-direction, the term 1
1

1

'
X

x

d

d

v   has been removed from Eq. (4). Equation (4) reveals 136 

that  137 

1 1
11

1

01 (< >, )
+< >X X

D
x

d d

dt n d
v

 
   , (5a) 138 

2
1 1 11 1

1 112
1 1

'
'0 0

0
(< >, ) (< >, )

(< >, )X X XD D
X X

x x

d dd
dt n nd d

v
 

  
 

. (5b) 139 

Equations (5a) and (5b) describe the mean and fluctuation, respectively, of the 140 

displacement of the solute particles. By the solution of Eq. (5), the variance of the 141 

solute displacement in the x1-direction (the mean flow direction) can be evaluated in 142 

the frame, (e.g., Dagan, 1984; 1989)  143 

11 1 1
' '( ) ( ) ( )X X Xt t t  . (6) 144 

It is important to recognize the validity of the assumption of a first order 145 

perturbation of X1. The first-order approximation for representing the depth-averaged 146 

hydraulic head perturbation, and hence the solute displacement perturbation, should 147 

be applied to porous formations where the standard deviation of the random 148 

fluctuations of the log hydraulic conductivity is less than 1. However, Zhang and 149 

Winter (1999) report in a Monte Carlo simulation study that it is accurate for the 150 

solutions of the head moment for the value of the variance of the log conductivity of 151 

up to 4.38. A similar finding from comparing moments of hydraulic head with results 152 
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of numerical Monte Carlo simulations is also reported in Guadagnini and Neuman 153 

(1999) for highly heterogeneous media with a variance of log conductivity from 2 to 154 

4. 155 

In the case where the thickness of the aquifer is a slowly spatially varying process 156 

(e.g., a second-order stationary process), the terms d/dx1 and d2/dx1
2 in Eq. (5) may 157 

be neglected, and, consequently, Eq. (5) reduces to  158 

1
1< >Xd

dt
v

 
  , (7a) 159 

1 11
11

1

' 0
0

(< >, )
(< >, )X XD

X
x

d d

dt n d
v


 


. (7b) 160 

Equation (7b) implies that the variability of the particle displacement is determined by 161 

the gradient of the variation of the aquifer thickness fields and the variability of the 162 

flow velocity. Note that when flowing through a confined aquifer with variable 163 

thickness, the variability in flow velocity is influenced by both the variation in log 164 

conductivity and log thickness fields (Chang et al., 2021). This means that the 165 

variability of v1 in Eq. (7b) depends on both the variation of log conductivity and log 166 

aquifer thickness.  167 

Using the solution of Eq. (7),  168 

1
1 1

1

0

1 1
' 0( ) (< > ,0) (< > , )[ ]

t

S S S
D

X
x

d
t dv

n d
v v


  

  , (8) 169 

the variance of the solute displacement in the mean flow direction in Eq. (6) results in  170 
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2
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11 12
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00
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( ) ( )[

t t

D D
X t

nn
v

  
     

  

  
          

  


  171 

1

1 21 1 1

1

( )
( ) ( ) ( ) ] S S

D
d d

n
v v v


   




       

   

 
   , (9) 172 

where  = (1, 2),  = ( 1, 2), 1 11 0=(< > , )Sv  , and 2 21 0=(< > , )Sv  . To arrive at Eq. 173 

(9), the solute particle was assumed to begin its motion at location x1 = 0 and time t = 174 

0. 175 

To proceed with the evaluation of solute displacement in the x1 direction, the 176 

following section develops the statistics of the flow fields in Eq. (9) for the case 177 

where both the variations in hydraulic conductivity and the thickness of the confined 178 

aquifer are considered to be second-order stationary processes and the random 179 

processes of hydraulic conductivity and aquifer thickness are statistically independent. 180 

 181 

3 Statistics of the flow fields 182 

 183 

Chang et al. (2021) develop the differential equations for the flow fields (Eqs. (6) and 184 

(12) of Chang et al., 2021) in a confined aquifer with variable thickness based on a 185 

hydraulic approach to flow in aquifers (Bear, 1979; Bear and Cheng, 2010). On this 186 

basis, under the condition of steady-state flow, the equation for the depth-averaged 187 

specific discharge about the mean, keeping only first-order terms in the perturbations, 188 

take the following form  189 
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1

1
( )[ ]ii

i

y
h

qq
J x

 


  


   i =1,2, (10a) 190 

where h h h     , h  is the depth-averaged hydraulic head, 1/J d h dx   (= 191 

constant), y = lnK-Y, K is the hydraulic conductivity, Y = <lnK>, i i iq q q     , 192 

1
Yq Jq e  , and the equation describing the depth-averaged head perturbation is 193 

of the form  194 

2

2
1 1

2[ ]
i

yh
J

x x x

   
  

   i =1,2. (10b) 195 

Equation (10) shows that the variations in log-hydraulic conductivity and log-aquifer 196 

thickness appear as forcing terms that produce the variations in depth-averaged head 197 

and hence the variations in depth-averaged specific discharge.  198 

It follows from Eq. (10) that the terms for the statistics of the flow fields in Eq. (9), 199 

such as the covariance function for the log-aquifer thickness gradient, the 200 

cross-correlation between the log-aquifer thickness gradient and the depth-averaged 201 

flow velocity, and the covariance function for the depth-averaged flow velocity 202 

process, can be evaluated using the spectral representation theorem as follows:  203 

2

1 1 1 1

,
( ) ( )

( )C

 
   

  
   

  
  , (11)  204 

2

1

1 1 1 1

( )
( ) ( , ) ( , )

h
VJ VC Cv


 


   

  
   

  
     , (12a) 205 

2

1

1 1 1 1

( )
( ) ( , ) ( , )

h
VJ VC Cv


 


   

  
   

  
     , (12b) 206 

 
1 1 12

( ) ( ) 1
( , ) ( , ) ( , ) ( , )[ ] [ ]

y

j
j

j

i
yy i iyh hC C C C

JV

v v


 
  

  
   


 

         207 

1 2

( , )1 1
( , ) ( , )[ ]

y
j

j

h
yh h

i i

C C
J J


  




  
  

 
    , (13) 208 
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where = / /YV q n J ne , Cyy and C are the lnK and lnB covariance functions, 209 

respectively, Cyhy
 is the covariance of lnK process with the head process, Ch

 is the 210 

covariance of lnB process with the head process, and h is the semivariogram of the 211 

head process, defined as  212 

2 21

2
( , ) ( , ) ( , ) [ ( ) ( ) [ ( ) ( )] ]{ }

y
h y yh h

h h h h


                     . (14) 213 

Note that Cyhy
, Ch

, and h in Eqs. (12) and (13) can be calculated using the 214 

representation theorem for the depth-averaged head perturbation h (the perturbation 215 

solution of equation (10b)). 216 

 217 

4 Results and discussion 218 

 219 

To simplify the analysis of the variation of log-aquifer thickness on the variability of 220 

the solute displacement, this study considers the case where the local dispersivity is 221 

very small compared to the integral scales for the lnK and lnB processes, so that the 222 

solute dispersion is mainly caused by the spatial variability of hydraulic conductivity 223 

and thickness of confined aquifer. That is, solute dispersion occurs in situations where 224 

advection dominates and solute particles do not transfer across streamlines. Therefore, 225 

Eq. (9) can be simplified to  226 
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11 1 2

00

1 1( ) ( ) ( )

t t

S SX t d dv v
 

     
  . (15) 227 

That is, the variance of the solute displacement in the mean flow direction can only be 228 

determined with Eqs. (15) and (13). There are numerous studies in the literature on 229 

solute transport under advection-dominated conditions, e.g., Dagan (1984), Rubin and 230 

Bellin (1994), Butera et al. (2009), Cvetkovic (2016), Ciriello and Barros (2020), etc. 231 

To determine the covariance function of the depth-averaged flow velocity, and 232 

thus the variance of solute displacement, it is assumed that the hydraulic conductivity 233 

and the thickness of the aquifer fields are lognormally distributed and characterized by 234 

the isotropic exponential covariance, i.e. (e.g., Dagan, 1984; Gelhar, 1993; Bailey and 235 

Baù, 2012)  236 

2( , ) exp[ ]yy y
y

C 



 

 
  , (16a) 237 

2( , ) exp[ ]C 






 

 
  , (16b) 238 

where y
2 and 

2 are the variances of y and , respectively, y and  are the integral 239 

scales of lnK and lnB fields, respectively. The corresponding spectra, which result 240 

from the inverse Fourier transform of Eq. (16), are as follows:  241 

2 2

1 2 3/ 22 2 2
1 22

( , )
1 ( )[ ]

y y
yy

y

R R
R R

S

 




 
, (17a) 242 

2 2

1 2 3/ 22 2 2
1 22

( , )
1 ( )[ ]

R R
R R

S
 




 




 
. (17b) 243 

 244 

4.1 Covariance of flow velocity in the x1-direction 245 
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 246 

Once the spectrum forms of the lnK and lnB fields are selected, the cross-correlation 247 

between the lnK perturbation and the perturbation in the depth-averaged head, Cyhy
, the 248 

cross-correlation between the lnB perturbation and the perturbation in the 249 

depth-averaged head, Ch
, and the semivariogram of the depth-averaged process, h, 250 

can be determined as follows:  251 

2 1 2 1 1 2 2 1 2 1 2
1 2 3 1( , ) ( , ) ( , ) ( , ) ( , )[ ]

y
y yyh

y y y y y y y y y y

JC
        

     
         

     , (18) 252 

2 1 2 1 1 2 2 1 2 1 2
1 2 3 1( , ) 2 ( , ) ( , ) ( , ) ( , )[ ]yh

JC
 

         

        
     

         
     , (19) 253 

( , ) ( , ) ( , )
y

h h h 
         , (20a) 254 

2 2

2 2 2 1 2 1 2 1 1 1 2 1 1 2
1 2 22 2

1 3 1

2 8 8
( , ) ( , ) ( , ) ( , )[ ]{

y
y

y y
y

h
y y y y y y y y y

J
               
          

        255 

2 2 1 2 2 1 2
3 3( , ) ( , )[ ]}

y y y y y y y

     
 

      
  , (20b) 256 

2 2

2 2 2 1 2 1 2 1 1 1 2 1 1 2
1 2 22 2

3 1
2

8 8
( , ) ( , ) ( , ) ( , )[ ]{

h
J


 

          

               
          

        257 

2 2 1 2 2 1 2
3 3( , ) ( , )[ ]}

      

     
 

      
  , (20c) 258 

where 1 = 1- 1,  2 =  2- 2, and the description of functions 1 through 3, or 1 259 

through 3, can be found in Appendix B. Detailed derivations of Eq. (18) to Eq. (20) 260 

can be found in Appendix B. 261 

In the case of statistically nonhomogeneous random fields, the structure of 262 

variability can be characterized by considering the semivariogram of a random field. If 263 

the semivariogram depends only on the separation, the random field is said to have 264 



16 

stationary increments. The semivariogram in Eq. (20) clearly depends on the spatial 265 

location, which means that the processes of depth-averaged hydraulic head are 266 

nonstationary.  267 

 268 

 269 

Figure 1. The stationary parts of the semivariogram of the head field, reflecting the 270 

effect of variation in the hydraulic conductivity fields, as a function of the separation 271 

distance in the mean flow direction, where Gy is the sum of the first three terms on the 272 

right-hand side of Eq. (20b).  273 

 274 

Figure 1 shows graphically the behavior of the stationary parts of the 275 

semivariogram (namely, the sum of the first three terms on the right-hand side of Eq. 276 

(20b)) as a function of the separation distance in the x1-direction (mean flow direction). 277 
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The semivariogram of the head field, reflecting the effect of variation in the hydraulic 278 

conductivity fields, shows an unlimited increase, as shown in Fig. 1. The unbounded 279 

head semivariogram suggests that there is no head covariance function (or the 280 

hydraulic head field with infinite variance). When taking samples from a field, one 281 

obtains a histogram from which a certain value of the variance can always be 282 

calculated. However, for many phenomena, the experimental variance is actually a 283 

function of the field. In particular, it increases as the field increases, i.e., many 284 

phenomena have an almost unlimited capacity of dispersion and cannot be adequately 285 

described by ascribing to them a finite a priori variance. In this case, the use of the 286 

semivariogram is an appropriate way to measure the variability of the variation. 287 

Similar conclusions can be drawn from Fig. 2, a graphical representation of the 288 

stationary parts of the semivariogram of the head field in Eq. (20c) in the mean flow 289 

direction, which reflects the effect of the variation of the aquifer thickness fields.  290 

At this point, the covariance function for the depth-averaged velocity process in 291 

Eq. (13) can now be determined in conjunction with Eqs. (16), and (18)-(20). For 292 

example, the covariance of flow velocity for the separation along the mean flow 293 

direction is explicitly determined as follows:  294 

1 11 1
1 11 2 1 2 1 2 1 2 1 2 1 22( , ) ( , ) ( , ) ( , ) ( , ) ( , )

y yv v v v v v 
                   , (21a) 295 

where  296 
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 = (1
2+2

2)1/2 and expressions for 1 and 2 are given, respectively, in the Appendix C. 301 

This should be used to compute the variance of solute displacement in the mean flow 302 

direction. The nonstationarity of the velocity covariance in Eq. (21) is evident in the 303 

dependence on spatial location, which is caused by nonstationarity in the hydraulic 304 

head processes.  305 

 306 

 307 

Figure 2. The stationary parts of the semivariogram of the head field, reflecting the 308 

effect of the variation of the aquifer thickness fields, as a function of the separation 309 
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distance in the mean flow direction, where G is the sum of the first three terms on the 310 

right-hand side of Eq. (21c).  311 

 312 

In the limit of 11, Eq. (21) approaches to the velocity variances in the mean 313 

flow direction as  314 

2 2 2
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y
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v v 
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 = (1
2+2

2)1/2 and expressions for 1-4 are given, respectively, in the Appendix D. 319 

From Eq. (22), it can be seen that the variance of the flow velocity is positively 320 

correlated with the variances of the log-hydraulic conductivity and log-aquifer 321 

thickness. This means that the variability of the flow velocity field increases with the 322 

variability of the hydraulic conductivity and aquifer thickness fields.  323 

 324 

4.2 Variance of the solute displacement in the mean flow direction 325 

 326 

4.2.1 Nonstationary flow fields 327 

 328 



20 

Substituting Eq. (21) into Eq. (15) and integrating it yields the following expression 329 

for the variance of longitudinal solute displacement as  330 

11 11 11
( ) ( ) ( )
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X X Xt t t
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where  332 
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 = Vt/y, and  = Vt/. 335 

 336 

4.2.2 Stationary flow fields 337 

 338 

Gutjahr and Gelhar (1981) show that the Poission equation in an unbounded porous 339 

medium such as equation (B1a) also has a zero-order intrinsic random function (0-IRF) 340 

as its solution when the input random process has a finite variance. That is, Eqs. (B1a) 341 

and (B1b) with stationary processes y and  admit the solutions of the form  342 
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Using a similar methodology as above and based on Eq. (24), one would arrive at 345 
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the following results  346 
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from which it follows that in the mean flow direction, 351 

1 11 1
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 = (1-1)/y and  = (1-1)/. Finally, the variance of solute displacement in the 356 

mean flow direction is obtained from Eq. (15) by applying Eq. (27):  357 
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Equation (28b) is equivalent to the solution of Dagan (1982; 1984) using the Green 362 

function approach, where the variance and integral scale of the log conductivity fields 363 

in Eq. (28b) are replaced by the variance and integral scale of the log transmissivity 364 
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fields. 365 

A comparison of the prediction of the solute longitudinal displacement variance 366 

in Eq. (23b) in nonstationary flow fields with the prediction in Eq. (28b) in stationary 367 

flow fields is shown graphically in Fig. 3. The variance of the longitudinal 368 

displacement in response to the change in the hydraulic conductivity grows 369 

monotonically with travel time. It can also be seen that the difference in displacement 370 

variance caused by the nonstationary and stationary flow fields increases with travel 371 

time, which means that the longitudinal mscrodispersion in nonstationary flow fields 372 

becomes anomalous and a Fick’s regime is not achieved. This behavior of anomalous 373 

macrodispersion is attributed to the effect of nonstationary hydraulic head fields 374 

caused by the variation of hydraulic conductivity. 375 

 376 
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 377 

Figure 3. Comparison of the prediction of the solute longitudinal displacement 378 

variance in Eq. (23b) in nonstationary flow fields with the prediction in Eq. (28b) in 379 

stationary flow fields. 380 

A macrodispersion coefficient in the mean flow direction can be defined by half 381 

of the time derivative of Eq. (23b) as follows: 382 
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This implies that the longitudinal macrodispersion coefficient at large time in 384 

nonstationary flow fields can be approximated as  385 

2
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8
( ) 1( )

y
y yVtD    . (29b) 386 

That is, the longitudinal macrodispersion increases linearly with travel time at large 387 

distances. Note that, in stationary flow fields, the longitudinal macrodispersion 388 

coefficient approaches an asymptotic limit D11y
 = y

2yV at large time. Clearly, 389 
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applying the asymptotic macrodispersion coefficient (Eq. (29b)), which is appropriate 390 

for macrodispersion in stationary flow fields, to the prediction of macrodispersion in 391 

the downstream region at a large distance from the contamination source leads to a 392 

significant underestimation of macrodispersion in nonstationary flow fields. 393 

The behavior of the longitudinal displacement variance of solutes, affected by the 394 

effect of variation of aquifer thickness field, in the nonstationary flow field (Eq. (23c)) 395 

and in the stationary flow field (Eq. (28c)) as a function of travel time is also presented 396 

graphically in Fig. 4. This again demonstrates that the displacement variance grows 397 

faster than linear with travel time and the longitudinal macrodispersion becomes 398 

anomalous at large travel times. The corresponding longitudinal macrodispersion 399 

coefficient is 400 
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with the approximation at large times as  402 
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 405 

Figure 4. Comparison of the prediction of the solute longitudinal displacement 406 

variance in Eq. (23c) in nonstationary flow fields with the prediction in Eq. (28c) in 407 

stationary flow fields. 408 

 409 

5 Conclusions 410 

 411 

In this work, a theoretical stochastic methodology is developed to quantify the 412 

displacement variance of an inert solute particle in heterogeneous confined aquifers 413 

with variable thickness. This methodology relates solute displacement to the 414 

Fokker-Planck equation through the two-dimensional depth-averaged solute mass 415 

conservation equation. In contrast to previous stochastic studies of two-dimensional 416 

solute transport problems, the variability of solute movement is caused not only by the 417 
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variability of log conductivity, but also by the variability of log thickness of confined 418 

aquifer. 419 

The two-dimensional stochastic groundwater flow equation for the 420 

depth-averaged hydraulic head perturbation always has a 1-IRF solution when the log 421 

hydraulic conductivity and log aquifer thickness fields are second-order stationary. 422 

This leads to an unbounded increasing head semivariogram where no head covariance 423 

exists. The nonstationarity of the hydraulic head leads to nonstationary flow velocity 424 

fields and thus a nonlinear increase in longitudinal solute displacement with travel 425 

time. That is, a Fick’s regime is not achieved, and the longitudinal macrodispersion 426 

becomes anomalous and increases linearly with travel time at large distances. It is also 427 

shown that the variability of solute displacement in the mean flow direction increases 428 

with the variability of hydraulic conductivity and aquifer thickness.  429 

 430 

Appendix A: Development of Eq. (2)  431 

 432 

When the dispersion tensor is expressed in its three principal directions and these 433 

principal directions are used as Cartesian coordinate axes, the equation for the 434 

transport of inert solutes through a rigid, saturated porous medium is (e.g., de Marsily, 435 

1986)  436 
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   i =1,2,3, (A1) 437 

where n is the porosity, c is the solute concentration, and Di and qi are the dispersion 438 

coefficient and the specific discharge in the xi direction, respectively. Integrating Eq. 439 

(A1) with respect to x3 over the vertical thickness of a confined aquifer, B(x1, x2), 440 

together with Leibniz's rule and no-slip condition for the dispersive and diffusive 441 

fluxes at upper and lower boundaries of the confined aquifer, yields the 442 

two-dimensional, depth-averaged equation for conservation of solute mass (e.g., Holly, 443 

1975; Fischer et al., 1979)  444 
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where iD , c , and iq  represent the depth-averaged dispersion coefficient, 446 

depth-averaged solute concentration, and depth-averaged specific discharge, 447 

respectively. Note that in developing Eq. (A2), it is assumed that the contaminant 448 

plume in confined aquifers is well mixed over depth, so that variations around the 449 

depth-averaged concentration are relatively small (Holly, 1975). Then the average of 450 

the product of concentration and velocity fluctuations can be assumed to be absorbed 451 

in the gradient transport terms in Eq. (A2) 452 

Starting from the identity, 453 
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Eq. (A2) can be rewritten as follows:  456 
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which corresponds to the form of the Fokker-Planck equation (e.g., Risken, 1989).  458 

The concentration field associated with the solute particle can be written as 459 

(Fischer et al., 1979; Dagan, 1989)  460 
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 x a , (A5) 461 

where M is the solute mass, f(x;t,a,t0) stands for the probability density function of the 462 

particle displacement which originates at x = a for t = t0. Substituting Eq. (A5) into Eq. 463 

(A4) gives  464 
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which is known as the Fokker-Planck equation. Moreover, it can be shown that the 466 

stochastic differential equation for the evolution of stochastic process (e.g., Van 467 

Kampen, 1992; Jing et al., 2019)  468 

( ( )) ( ( ))i
ii

X dWd t t
dt dt

  X X    i =1,2, (A7) 469 

where X(= (X1,X2)) is the displacement, i is the drift coefficient, i is the diffusion 470 

coefficient, and W denotes a Wiener process, is equivalent to the Fokker-Planck 471 

equation (A6) such that  472 
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Using Eq. (A8), Eq. (A7) leads to Eq. (2). 475 

 476 

Appendix B: Derivations of Eq. (18) to Eq. (20) 477 

 478 

Due to the property of the linearity of the driving forces, Eq. (10b) can alternatively 479 

be divided into two parts as  480 
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where h = hy+h. Matheron (1973) shows that if the random input process of the 483 

Poission equation is second-order stationary, then the Poission equation has a 484 

first-order intrinsic random function (1-IRF) as its solution. Since the processes y and 485 

 are second-order stationary, it can be shown that the derivatives of the processes y 486 

and  with respect to x1 are also stationary. This means that Eq. (B1) has a 1-IRF 487 

solution for hy and h which admits the Fourier-Stieltjes representation as follows:  488 
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where R1 and R2 are the components of the wave number vector R (= (R1, R2)), and Zy 491 
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and Z are complex-valued distributions with uncorrelated increments on wave 492 

number space. Note that a 1-IRF is the second integral of a zero-mean spatial random 493 

function (Chile`s and Delfiner, 1999).  494 

The stationarity of the lnK process allows the Fourier-Stieltjes representations 495 

(e.g., Lumley and Panofsky, 1964)  496 

1 2 1 21 2 1 2
( , ) exp ( ) ( , )[ ] yR R R Ry ix x x x dZ

 



  . (B3) 497 

Using this and Eqs. (B2a) and (24a), the covariance of lnK process with the head 498 

process Cyh in Eq. (12) is given as  499 
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Similarly, the closed-form expression for the covariance of lnB process with the 509 

head process Ch
 in Eq. (12) can be obtained using Eqs. (B2b), (24b), and the 510 

Fourier-Stieltjes representations for the stationary lnB process  511 
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Substituting Eq. (B2) into Eq. (13), it is found that the semivariogram of the head 516 

process has the following form  517 
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r2 = a2+b2, Ei is the exponential integral, and  is the Euler constant. 528 
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Appendix C: Expressions for the functions in Eq. (21) 530 
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where r = (a2+b2)1/2,  534 
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Appendix D: Expressions for the functions in Eq. (22) 539 
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2 42 2 4 2 44 216 2 90 41 20 2 2 72 12 30 13 80 4( ) ( ) ( ) ( ) ][ ] [b b b b br r r r r ra a           , (D4)  546 

where r = (a2+b2)1/2. 547 
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