
We would first like to thank the Reviewers, Editor and community members for their comments and 

suggestions to help improve this paper. This document presents the modifications made to the original 

manuscript in response to the reviewer comments and suggestions. Original comments are in black font 

and author responses are in blue. 

Reviewer #1 

This paper deals with a highly current subject matter. It presents a methodological framework for 

streamflow prediction in ungauged basins using a leave one out cross-validation approach (LOOCV) for 

three hydrological models and an LSTM network. The authors compare the performance of these four 

models for 148 basins in Northeast North America. The evaluation of the models at such a scale and 

working with these number of watersheds is quite impressive. The paper is well written, illustrated and 

organized. However, some points need to be taken into consideration to improve the manuscript, 

namely: 

We would like to thank Reviewer #1 for their comments and suggestions. Here are the point-by-point 

responses on how the manuscript was revised. 

(i) A more comprehensive literature review should be provided; that is, the authors should 

acknowledge the works of several other authors who have dealt with streamflow prediction 

using LSTMs, not just focusing on the works of a specific research group. Please homogenize the 

diversity of the literature review and cover the works of others that have provided significant 

achievements in the field of hydrological modelling using Deep Learning (DL) models. 

We have explored other studies and applications and contextualized the work better in this 

regard. We have found relevant studies performing similar work in different regions of the world 

and have added a more in-depth context to the introduction. The following references were 

added to the paper:  

Ayzel G, Kurochkina L, Abramov D, Zhuravlev S. Development of a Regional Gridded Runoff Dataset 

Using Long Short-Term Memory (LSTM) Networks. Hydrology. 2021; 8(1):6. 

https://doi.org/10.3390/hydrology8010006 

Ayzel, G., Kurochkina, L., Kazakov, E., & Zhuravlev, S. (2020). Streamflow prediction in ungauged basins: 

benchmarking the efficiency of deep learning. In E3S Web of Conferences (Vol. 163, p. 01001). EDP 

Sciences. 

Choi, J., Lee, J., & Kim, S. (2022). Utilization of the Long Short-Term Memory network for predicting 

streamflow in ungauged basins in Korea. Ecological Engineering, 182, 106699. 

Li, X., Khandelwal, A., Jia, X., Cutler, K., Ghosh, R., Renganathan, A., Xu, S., Tayal, K., Nieber, J., Duffy, C. 

and Steinbach, M., 2022. Regionalization in a global hydrologic deep learning model: from physical 

descriptors to random vectors. Water Resources Research, 58(8), p.e2021WR031794. 

Nogueira Filho, F. J. M., Souza Filho, F. D. A., Porto, V. C., Vieira Rocha, R., Sousa Estácio, Á. B., & 

Martins, E. S. P. R. (2022). Deep Learning for Streamflow Regionalization for Ungauged Basins: 

Application of Long-Short-Term-Memory Cells in Semiarid Regions. Water, 14(9), 1318. 

Zhang, Y., Ragettli, S., Molnar, P., Fink, O. and Peleg, N., 2022. Generalization of an Encoder-Decoder 

LSTM model for flood prediction in ungauged catchments. Journal of Hydrology, p.128577. 



(ii) In the proposed LOOCV for LSTM modeling, the LSTM model was trained using a large dataset 

(N-1 basins), while keeping one basin as a pseudo-ungauged basin for validation. This approach 

departs from the basic philosophy of training DL models. Indeed, to avoid introducing a bias 

during training of DL models such as LSTM, overfitting should be avoided by considering a 

considerable proportion of the whole dataset as a testing dataset. What was the rationale 

behind this methodological approach? 

This was incorrect and we acknowledged where the confusion came from. We forgot to clearly 

state the percentage of catchments used in training and validation in the methods and only 

referred to the values in line 408 of the original manuscript, where we explained that it is 80% of 

(N-1) basins used in training and 20% used in validation, with the pseudo-ungauged basin being 

the only one used as the “testing” basin. This is to ensure the LSTM model does not over-

train/overfit, and the “regionalization” skill is evaluated on the completely independent testing 

basin. This has been clarified in lines 344-352 in the revised manuscript. 

 

 

(iii) The authors propose an LSTM modeling approach for ungauged basins that will, without a 

doubt, spur the interest of the readers. However, the literature has provided several good 

performances of LSTM models for similar regions in Northeastern North America. Perhaps the 

authors could provide some insights for future work in dry regions where the presence of 

extreme flows may not be as prevalent and whether they expect that there approach would 

need to be modified or not accordingly. 

 

Thank you for this suggestion. We added a few sentences on the robustness of the approach on 

other regions in the introduction, lines 116-123. We did not perform new simulations and tests 

but a very recent study (Nogueira Filho et al. 2022) has shown that LSTM and another neural 

network were able to perform better than conceptual models in a semi-arid region of Brazil. It is 

thus likely that the LSTM, given sufficient data and trained on data from similar conditions, 

would outperform hydrological models in those regions as well, although this hypothesis would 

need to be tested in future studies. 

 

At this point, I am looking forward to reading the authors’ point of view as I believe they have earned an 

opportunity to provide sound rebuttal comments as I feel the paper has the potential to be a valuable 

contribution to Hydrology and Earth System Sciences. Thus, for the time being, I would say that major 

revisions are necessary and required. 

Please find additional suggestions/recommendations and editorial comments below that will need to be 

addressed thoroughly before the paper can be recommended for publication. 

We thank Reviewer #1 for these comments and will now respond to the specific comments below. 

Comments/suggestions/recommendations 

P4 The following sentence, « In the Kratzert et al. (2018) study, the regional LSTM models performed on 

average just as well as the local LSTM with the median NSE difference of 0. » Local LSTM should be 

clarified compared to regional LSTM. 



This has been clarified as :  

“In the Kratzert et al. (2018) study, the regional LSTM models (single models that can predict streamflow 

on a variety of catchments in a region) performed on average just as well as the local LSTM (trained 

specifically on a single catchment at a time) with a median NSE difference of 0.” in lines 103-106. 

P5 As illustrated in Figure 1 and Table 1, very large basins are included in the dataset, while including 

these basins during LSTM modeling has been quite a challenge since the input data are at the basin 

scale. How do the authors evaluate their results by assigning just one point to a basin with an average 

area of almost 31,900 km2? 

The issue of scale is actually quite interesting and one that we detailed more in lines 470-475 of the 

revised manuscript. In a nutshell, for the “traditional” hydrological models, having a wide variety of 

catchments might actually be causing problems since they will be less similar to their smaller 

counterparts. It is probable that the hydrological models calibrated on the large catchments will not 

transfer very well to the smaller catchments due to differences in hydrological response. However, LSTM 

networks can make use of this information to build relationships using more diversity, allowing to detect 

patterns more clearly. Therefore, adding these larger catchments probably helps predicting flows on 

other catchments since it contributes extra data points in the model that will help avoid extrapolating 

during testing. As for the data being averaged at the catchment scale, this is indeed a limitation of 

lumped hydrological models, and feeding the same data to the LSTM seems to benefit the LSTM. One 

other limitation is that the LSTM applied in regionalization needs to have the same number of inputs as 

all the training sets, thus having variable numbers of inputs (e.g., meteorological stations) at each 

catchment would not be possible without using a much more complex LSTM structure. This was also 

detailed in lines 502-511 of the revised manuscript. 

P10 Why did the authors choose the leaky ReLU activation function? The authors should provide a table 

presenting the tested functions and values of the specificities of the LSTM model and the optimal ones; 

that would provide more insights to the readers. 

Most parameters were adjusted using expert knowledge to focus on the hyperparameters that had a 

good likelihood of returning good results. Also, the model structure was generally made to be similar to 

that of Kratzert et al. (2018) given their excellent results. Therefore only a few hyperparameters were 

adjusted, as displayed in table 2. As for the LeakyReLU activation function, it was used to eliminate any 

possibility of generating impossible objective function values or exploding gradients. This was not 

common with ReLU but depending on the objective function choice and other hyperparameters, we did 

encounter cases when the model would not converge or would return undefined objective function 

values. LeakyReLU minimizes these errors, at the expense of a bit more computing time. This has been 

revised in lines 316-319 of the revised manuscript. 

 

P11 Correct me if I am wrong, but according to the following sentence: « The twelve static descriptors 

presented in Table 1 allow the model to distinguish between each catchment ». Which one of them did 

the authors exactly use? Please provide another table introducing the list of twelve basin descriptors 

used for LSTM modeling. 



This was an error related to the fact that in our first simulations we were using 12 descriptors, until we 

found that using more (many from recommendations in the literature) allowed for better results. We 

redid all the simulations but forgot to update this part of the text. It has been corrected in this revised 

version. All 25 catchment descriptors listed in Table 1 were used in this study. 

P11 According to the following sentence: « Static descriptors were normalized between 0 and 1 using a 

min-max scaler, while the dynamic variables were standardized by the mean and the standard deviation, 

which is a standard practice ». Did the authors include streamflow (target) during this normalization 

process? If not, how do they analyze their results after denormalization? Later, on the same page, it is 

mentioned, « The specific streamflow was used as the target variable by diving streamflow records by 

the drainage area, then converted from m3 s-1 to mm.d-1 .». Please further clarify. 

No, the target streamflow data was not scaled using a min-max or standard scaler. We added a few 

sentences in lines 335-342 to make this clearer in the revised manuscript. Streamflow is not an input to 

the models; it is only used to evaluate the model performance (as for traditional hydrologic models). 

Only the inputs to the model were scaled in this manner. We have emphasized this in the manuscript. 

Working with input variables on a similar scale allows the model to converge faster with the use of 

larger learning rates. However, normalizing the target variable is not needed to accelerate the training 

and is typically not performed. On the other hand, streamflow is highly dependent of the drainage area, 

generating larger volumes for the same precipitation. While this information is available within the static 

descriptor, we found that including that knowledge upfront ends up accelerating the training process 

significantly instead of letting the model search for this correlation. The drainage area static variable 

remains useful for the model considering that hydrological processes with differ between small and 

large watersheds. Thus, streamflow is standardized by the drainage area, such that units are m3s-1km-2. 

Then, by adjusting the length units, we can obtain the units mm3.s-1. This provides values that are hard 

to interpret/debug, so they are multiplied by the time units such that we obtain mm.d-1 units. This is 

what the LSTM model tries to reproduce and is trained on. Finally, once the LSTM returns a series of 

outputs for the pseudo-ungauged site, the reverse calculations are performed to obtain the flowrate to 

be compared to the observations. The fact that flows are compared on a mm/d basis means that the 

output can be tailored to any catchment. 

P14 According to the following sentence: « This is important, considering that a strong performing 

hydrological model with the 3 | 4 best regionalization method is still outperformed on average by a 

relatively simple LSTM model. », the authors claim to use a simple LSTM model while using 2 LSTM 

layers each with 512 units, based on my experience, this is not considered a simple LSTM model. Please 

modify the text accordingly. 

This interpretation is correct, the text did indeed mention that it is a “simple LSTM model”. However, 

this is relative, as in our opinion, an LSTM (even if the structure is internally quite complex) did not 

require much setting-up, calibrating, adjusting, etc. compared to other, more classical hydrological 

models. It is true that the LSTM model structure is quite complex compared to others, so this text has 

been modified to reflect this, i.e., that the LSTM model is complex but can be applied without a lot of 

work to represent the specific processes etc. The changes have been included in lines 430-432, and 

indirectly in lines 530-535. 

P14 Please be specific. According to the following sentence: « It is also important to note that the 

training (80%) and validation (20%) basins are categorized as such randomly, so the training step is 



performed on different catchments for each of the 5 runs #4a-#4e. », the authors should provide more 

details on how they couple this splitting approach with LOOCV, this needs to be clarified. 

Indeed, this has been clarified along with the general comment #2 above regarding the 

training/validation/testing phases in lines 344-352. Essentially, every time a model is trained, 1 

catchment (pre-determined as the pseudo-ungauged basin) is removed from the lot. Then, remaining 

basins are split into 2 groups, i.e., training (80%) and validation (20%). This splitting is random in nature, 

thus when testing over a large series of basins (each of the 148 basins considered pseudo-ungauged one 

at a time) and while varying the model structure, it is clear that the stochastic component could play a 

role in the results. However, given the large number of such simulations, the expected variance from 

one test to the other should be very small.  

P14 Figure 8 shows the sensitivity of the hyperparameter selection and the assessment of the LSTM 

model structure. The authors claimed that the performance generally increases with a more complex 

model structure, meanwhile Figure 8 shows that increments are very minor between the simple 

structure models and the complicated models. In real-world practices, training and calibration of 

complex models face major challenges, how do the authors explain the choice of the selected complex 

model? 

In figure 8, we can see that the trend is monotonously increasing from model 1 to 7, in increasing 

complexity order. The median testing NSE increases from 0.740 for the simple model to 0.785 for the 

most complex model. Furthermore, each of the quantiles of the distributions are improving with each 

successive model. These types of improvements in regionalization are very significant. Therefore, the 

most complex model was selected since it outperformed the others, without requiring the modeller to 

integrate new physics/physical process representation. Simply by adding LSTM layers, the LSTM model 

was able to perform better in testing/regionalization mode, at the expense of computing time. It is true 

that building and training complex hydrological models, in the classical sense, requires a lot of effort. In 

this paper, we show that the performance can be better than what is obtained with hydrological 

models, but with little modelling effort from the hydrologist. Therefore, if the computing time is 

available, the more complex model is to be preferred, especially since the training is only performed 

once for a given ungauged catchment application. A section to this effect has been added to the text in 

lines 530-535. 

P15 According to the following sentence: « First, the nature of the LSTM model makes it extremely 

difficult or practically impossible to determine the logical flow of data between the observations and the 

predicted streamflow », readers may find it misleading since understanding the relationships between 

inputs and output of datadriven models can be achieved using sensitivity analysis. It is the authors’ 

responsibility to provide such analysis as it would provide a way of following the logical flow of data. 

Thus, this sentence should be clarified accordingly. 

Agreed, the sentence was not entirely clear. What was meant was that the physical representation of 

processes is lost in these deep learning models. How precipitation becomes streamflow is hard to track 

due to the numerous weights, non-linear functions and layers that add lags and biases at each step. 

Therefore, the best approach would be to evaluate the final trained weights and try to correlate them 

with expected hydrological variables, but this was not part of the scope of this study. Some papers have 

already started showing these links (as stated in the manuscript) but it remains that following a 

precipitation value in an LSTM and seeing how it affects the streamflow for the next 3 days is very much 



convoluted compared to a classical hydrological model, where each process is explicitly defined. This has 

been rephrased in the revised version of the manuscript in lines 485-486. 

P16 Based on the following sentence: « However, in this study, regularization failed to improve results ». 

Did the authors test all the possible values of dropout rates to reach such a conclusion? For instance, the 

value of 0.5 for the dropout rate has shown to be promising in improving the accuracy of streamflow 

modeling in other studies. Did the authors test this value? 

Yes, dropout values of 0.1 to 0.7 were tested, and it was found that the values proposed here performed 

best (dropout of 0.3 for the LSTM layers and 0.1 for the dense layers). Dropouts simply drop some 

neurons during training to make the model more robust. On the other hand, regularization attempts to 

set some weights to 0 overall in the final model to remove noise from neurons that are weak (close to 

zero) to begin with, removing some influence from noise overfitting.  This means stronger, more 

important weights remain, that are more robust to the signal. However, using regularization did not 

improve results in this study. In our case, perhaps the dropout rate was sufficient to provide this 

reliability during the training, or perhaps the fact that there were a lot of training samples meant that 

the model was able to converge on the signal without too much overfitting in the first place. This has 

been clarified in the revised manuscript in lines 541-544. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer #2 

General comments 

This manuscript is a positive addition to the growing amount of research on the use of machine learning 

techniques in hydrological modelling with a focus on ungauged basins. The study compares an LSTM-

based model trained over multiple catchments with three traditional hydrological models calibrated 

using several regionalization methods. Overall, the LSTM outperformed the traditional hydrological 

models at almost all catchments regardless of regionalization method used. This manuscript provides 

interesting results, is well structured, and was enjoyable to read. However, some additional clarifications 

throughout the manuscript would allow the reader to fully understand the chosen methodology and the 

presented results. Please see the specific comments below. 

We would like to thank Reviewer #2 for their positive comments and for the suggestions on how to 

improve the manuscript. We have provided a point-by-point reply to all issues and comments below. 

Specific comments 

Introduction: As the authors rightly point out the LSTM has been used in several studies in recent years. 

However, the literature review is mainly focused on work conducted on catchments in North America 

and with limited acknowledgment of studies conducted in other regions (e.g., Choi et al., 2022; Nogueira 

Filho et al., 2022; Ayzel et al., 2021; Ayzel et al., 2020). Additionally, it would be beneficial to include a 

couple of lines near the beginning explaining that this study uses regionalization of hydrological model 

parameters specifically, and briefly defining what is meant by “hydrological model”. 

This comment is similar to that of Reviewer #1 and thus the response is copied here for your 

convenience: 

 

We have explored other studies and applications and contextualized the work better in this regard. We 

have found relevant studies performing similar work in different regions of the world and have added a 

more in-depth context to the introduction. The following references were added to the paper:  

Ayzel G, Kurochkina L, Abramov D, Zhuravlev S. Development of a Regional Gridded Runoff Dataset 

Using Long Short-Term Memory (LSTM) Networks. Hydrology. 2021; 8(1):6. 

https://doi.org/10.3390/hydrology8010006 

Ayzel, G., Kurochkina, L., Kazakov, E., & Zhuravlev, S. (2020). Streamflow prediction in ungauged basins: 

benchmarking the efficiency of deep learning. In E3S Web of Conferences (Vol. 163, p. 01001). EDP 

Sciences. 

Choi, J., Lee, J., & Kim, S. (2022). Utilization of the Long Short-Term Memory network for predicting 

streamflow in ungauged basins in Korea. Ecological Engineering, 182, 106699. 

Li, X., Khandelwal, A., Jia, X., Cutler, K., Ghosh, R., Renganathan, A., Xu, S., Tayal, K., Nieber, J., Duffy, C. 

and Steinbach, M., 2022. Regionalization in a global hydrologic deep learning model: from physical 

descriptors to random vectors. Water Resources Research, 58(8), p.e2021WR031794. 



Nogueira Filho, F. J. M., Souza Filho, F. D. A., Porto, V. C., Vieira Rocha, R., Sousa Estácio, Á. B., & 

Martins, E. S. P. R. (2022). Deep Learning for Streamflow Regionalization for Ungauged Basins: 

Application of Long-Short-Term-Memory Cells in Semiarid Regions. Water, 14(9), 1318. 

Zhang, Y., Ragettli, S., Molnar, P., Fink, O. and Peleg, N., 2022. Generalization of an Encoder-Decoder 

LSTM model for flood prediction in ungauged catchments. Journal of Hydrology, p.128577. 

Also, clarifications of our interpretation of “hydrological model” and “regionalization” have been added 

in lines 45 and 29, respectively. 

Line 210-212: I am confused by the sentence “Each of these models was calibrated using the Covariance 

Matrix Adaptation Evolution Strategy (CMAES; Hansen et al., 2003) optimization algorithm in the 

Arsenault and Brissette (2014) study, and parameters are reused here to maintain the comparability to 

this study.” Was the HSAMI model not the only hydrological model used in the Arsenault and Brissette 

(2014)? Please clarify which parameters are reused, and how they relate to the calibration method and 

results described in lines 210-225. 

This is a good catch. The models were actually used across a few papers instead of only the one 

mentioned previously, and this has been corrected and clarified in lines 225-226 of the revised 

manuscript. 

The information of the parameters that was taken from the other studies were the parameter 

boundaries for calibrations and not the calibrated parameters themselves since the models were applied 

to different catchments. This was clarified in the text in line 227. 

Line 262: Why was N=5 chosen (over other values between 4-8)? Please state the reasoning. 

The value of N=5 was chosen purely due to it being recommended in the literature as a reasonable value 

in the 4-8 range. In many papers, values between 4-8 donors do not show any significant differences, 

and between 5-7 previous studies have shown that there is essentially no difference. So, N=5 was 

chosen to make sure the full effect of multi-donor averaging was at play while not using unnecessary 

computing resources to extend to 6, 7 or 8 donors. This has been clarified in the text in lines 277-278 of 

the revised manuscript. 

Line 275: Please state how many catchments were classified as “poor” and thus removed when the filter 

was applied. 

This has been added in the text in lines 292-293. As seen in Figure 2, slightly more than half of the 

catchments have calibration NSE values below 0.7. This ranges from 84 to 89 basins depending on the 

hydrological model. 

Line 307-308: “The twelve static descriptors presented in Table 1 allow the model to distinguish 

between each catchment.”. Highlighting these variables in Table 1 may make it easier to understand 

which 12 are used as input to the LSTM. Also land cover (%) is split into 7 entries in Table 1 but I think is 

only considered as 1 of the 12 static descriptors which is confusing. 

This was an error related to the fact that in our first simulations we were using 12 descriptors, until we 

found that using more (many from recommendations in the literature) allowed for better results. We 



redid all the simulations but forgot to update this part of the text. It has been corrected in this revised 

version. All 25 catchment descriptors listed in Table 1 were used in this study. 

Line 312: Please clearly define the training, validation, and testing catchments. 

We forgot to clearly state the percentage of catchments used in training and validation in the methods 

and only referred to the values in line 408 of the original manuscript, where we explained that it is 80% 

of (N-1) basins used in training and 20% used in validation, with the pseudo-ungauged basin being the 

only one used as the “testing” basin. This is to ensure the LSTM model does not over-train/overfit, and 

the “regionalization” skill is evaluated on the completely independent testing basin. This has been 

clarified in lines 344-352 in the revised manuscript. 

Line 330: Why was model #7 chosen as the LSTM structure of choice? Please state the reasoning. 

In figure 8, we can see that the trend is monotonously increasing from model 1 to 7, in increasing 

complexity order. The median testing NSE increases from 0.740 for the simple model to 0.785 for the 

most complex model. Furthermore, each of the quantiles of the distributions are improving with each 

successive model. These types of improvements in regionalization are very significant. Therefore, the 

most complex model was selected since it outperformed the others, without requiring the modeller to 

integrate new physics/physical process representation. Simply by adding LSTM layers, the LSTM model 

was able to perform better in testing/regionalization mode, at the expense of computing time. It is true 

that building and training complex hydrological models, in the classical sense, requires a lot of effort. In 

this paper, we show that the performance can be better than what is obtained with hydrological 

models, but with little modelling effort from the hydrologist. Therefore, if the computing time is 

available, the more complex model is to be preferred, especially since the training is only performed 

once for a given ungauged catchment application. A section to this effect has been added to the text in 

lines 530-535. 

Line 374-375: Were non-linear relationships between catchment descriptors and NSE values 

considered? 

At this stage, no, only linear relationships were considered, to see if there was a correlation (i.e., if 

perhaps larger basins reacted better than smaller basins, etc.). However, this was not the case, leading 

to believe that the LSTM was able to use these descriptors in a non-linear fashion to provide the good, 

basin-dependent regionalized streamflow. This was clarified in line 409. 

Line 395-396: “relatively simple LSTM model”. Is this still referring to model #7 which is the most 

complex of the LSTM models tested? Please clarify. Also, on line 489 - “simple LSTM model”. 

Thank you for this comment. The text does indeed mention that it is a “simple LSTM model”. However, 

this is relative, as in our opinion, an LSTM (even if the structure is internally quite complex) did not 

require much setting-up, calibrating, adjusting, etc. compared to other, more classical hydrological 

models. It is true that the LSTM model structure is quite complex compared to others, so this text has 

been modified to reflect this, i.e., that the LSTM model is complex but can be applied without a lot of 

work to represent the specific processes etc. The changes have been included in lines 430-432, and 

indirectly in lines 530-535. 



Lines 455-459: As discussed in the introduction (lines 119-126) traditional hydrological models and LSTM 

models show different behaviours in terms of performance for increasing lengths of data (e.g., the 

plateauing after 3 years of the GR4J model (line 122)). Please comment on the “fair-ness” of the 

comparison considering only catchments with at least 30 years of data are included? 

This is a fair point, and we added a discussion point to reflect on it in lines 501-511. In theory, both he 

GR4JCN and the LSTM model have access to the same data and as such, the comparison is as fair as it 

can be. However, GR4JCN must compromise on the parameter sets to use to be “generally” good, 

whereas the LSTM has many more degrees of freedom to fit to various hydroclimatological situations. 

However, GR4JCN has a predefined structure where processes are directly defined, whereas the LSTM 

must build its internal structure using its more numerous “parameters”. We added a discussion point 

detailing the fact that not only the LSTM is to be favored due to the long time series of available data, 

but also that it can ingest data from many more catchments as well, whereas GR4J is limited to 

containing information from one catchment at a time. 

 

Technical corrections 

These technical corrections have also all be addressed in the revised version of the manuscript: 

Line 12: Suggest changing “A series of …” to “a set of …” as series implies that there is a sequential 

element to the methods. 

Line 12: “regionalization methods are applied” 

Line 180-181: “Environment and Climate Change Canada (ECCC), and the United States Geological 

Survey (USGS).” 

Line 232: Suggest changing “for each scenario” to “for each of the 18 scenarios” for clarity. 

Line 288: “have difficulty remembering” 

Line 315: “then converted from m.s-1 to mm.d-1” (as the division by drainage area would already have 

removed two spatial dimensions). 


