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 10 
Abstract. Flood hazard is typically evaluated by computing extreme flood probabilities from a flood frequency 

distribution following nationally defined procedures in which observed peak flow series are fit to a parametric 

probability distribution. These procedures, also known as flood frequency analysis, typically recommend only one 

probability distribution family for all watersheds within a country or region. However, large uncertainties 

associated with extreme flood probability estimates (> 50-year-flood or Q50) can be further biased when fit to an 15 
inappropriate distribution model because of differences in the tails between distribution families. Here, we 

demonstrate that hydroclimatic parameters can aid the selection of a parametric flood frequency distribution. We 

use L-moment diagrams to visually show the fit of gaged annual maxima series across the United States, grouped 

by their Köppen climate classification and the precipitation intensities of the basin, to a General Extreme Value 

(GEV), Log Normal 3 (LN3) and Pearson 3 (P3) distribution. Our results show that in real space basic 20 
hydroclimatic properties of a basin exert a significant influence on the statistical distribution of the annual maxima. 

The best-fitted family distribution shifts from an GEV towards an LN3 distribution across a gradient from colder 

and wetter climates (Köppen group D, continental climates) towards more arid climates (Köppen group B, dry 

climates). Due to the diversity of hydrologic processes and flood generating mechanisms among watersheds within 

large countries like the United States, we recommend that the selection of distribution model be guided by the 25 
hydroclimatic properties of the basin rather than relying on a single national distribution model. 
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1. Introduction 

 30 
Around the world, communities depend on rivers for vital resources, yet riverine floods present a significant hazard 

for people and infrastructure along interior waterways (Mallakpour and Villarini, 2015; Peterson et al., 2013). To 

mitigate risks and develop safe emergency plans, water managers depend on reliable methods to compute extreme 

flood probabilities. Typically these methods use the probability distribution of annual maxima discharge, also 

known as the flood frequency distribution, from which one can compute extreme flood probabilities (e.g., the 100-35 
year flood (Q100), a flood with a 1% chance of occurrence in a given year) (Hamed and Ramachandro Rao, 2000; 

Kidson and Richards, 2005; Cassalho et al., 2019). To construct flood frequency distributions, national flood 

frequency procedures around the world fit observed annual stream maxima to a parametric probability distribution 

model (Castellarin et al., 2012; Madsen et al., 2014). These approaches involve and are affected by, the a priori 

assumption of what parametric statistical model best captures the empirical distribution of flood magnitudes 40 
(Kidson and Richards, 2005). Standard national procedures often prescribe just one probabilistic distribution 

model, for example, the United States Bulletin 17C recommends the Log-Pearson III (LP3) distribution family 

(England et al., 2019), while in the United Kingdom, the FEH (Flood Estimation Handbook) recommends the use 

of the General Logistic distribution (GLO) (Robson and Reed, 1999). Although these recommendations provide a 

consistent framework for flood frequency analyses (Barth et al., 2019), they can also result in biased estimates of 45 
infrequent flood probabilities when applied over large hydro-climatically diverse regions (Klemes, 1993; Merz 

and Bloschl, 2003, 2008), due to the inherent differences in the distribution shape and tail thickness of different 

parametric models. These differences can amplify the existing large uncertainties for extreme flood probability 

estimates, such as the hundred- or five-hundred-year floods. 

 50 
Watershed morphology, land use management, and climatology affect flood frequency properties such as the mean, 

variance, and tails or respectively the location, scale, and shape parameters of the probabilistic distribution. For 

example, large watersheds have the capacity to absorb heavy precipitation events better than small watersheds 

(Iacobellis et al., 2002; Salinas et al., 2014b), meaning that peak flow in smaller watersheds is disproportionally 

affected by an extreme precipitation event and that they observe higher peak flow variances (Iacobellis et al., 2002; 55 
Salinas et al., 2014a). Other studies have noted more complex relationships, where the coefficient of variation 

(CV) of flood frequency distributions decreases with watershed area for small watersheds, but increases with area 

for large watersheds (Bloschl and Sivapalan, 1997; Smith, 1992). Urbanization leads to a reduction in soil 

permeability and an increase in precipitation-induced surface runoff (Hall et al., 2014; Hodgkins et al., 2019), 

which results in more local flash floods that are associated with thick-tailed flood frequency distributions (Merz 60 
and Bloschl, 2003; Zhang et al., 2018) — although this effect is strongest for regular floods and diminishes for 

increasing exceedance probability (Over et al., 2016). Relatedly, population growth (a proxy for urbanization) and 

river engineering (e.g., channel straightening) can increase mean annual peak flows (Villarini et al., 2009; Munoz 

et al., 2018), whereas dam reservoirs have reduced the median annual flood for up to 25% in 55% of the large US 

rivers  (Fitzhugh and Vogel, 2010).  65 
  

Local flood-generating mechanisms, particularly the type, duration, and intensity of local precipitation events, 

affect all aspects of the flood frequency distribution (Hall et al., 2014; Merz and Bloschl, 2003). In watersheds 

where precipitation occurs predominantly as rain as opposed to snow, flood frequency distributions exhibit higher 

variance (Merz and Bloschl, 2003; Gaal et al., 2015). Similarly, watersheds where total annual precipitation only 70 
falls in a few intense events also have flood distributions with high CV (Bloschl and Sivapalan, 1997; Pitlick, 

1994), whereas watersheds with high total annual precipitation observe flood distributions with lower CV (Salinas 

et al., 2014b). Merz and Bloschl (2003) summarized several of these findings in their typology of regional flood-

generating mechanisms. Antecedent soil moisture adds another level of complexity to the relationship between 

precipitation and flood frequency distribution shape, as synchronicity between precipitation and antecedent soil 75 
moisture levels is likely to thicken the flood frequency distribution tails through surface runoff levels (Ivancic and 

Shaw, 2015). 

 

The patterns between local watershed characteristics and flood frequency distribution properties form a potential 

tool to improve extreme flood probability estimates in hydrologically diverse regions. One method is to select a 80 
parametric distribution based on the value of an environmental parameter of the watershed, for example a 

precipitation statistics or drainage area. Salinas et al. (2014b) demonstrate that European rivers with different 

drainage areas and total annual precipitation fit differently to multiple three-and-two-parameter distribution 

families. However, as described above, the relation between drainage area and flood frequency shape is complex, 

and annual maximum rainfall does not necessarily reflect different precipitation regimes. There are relatively few 85 
studies that relate flood frequency distributions to aggregated climate classifications such as the Köppen climate 

regions (Kottek et al., 2006; Peel et al., 2007). In one such study, Metzger et al. (2020) demonstrate that flood 
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frequency distributions in arid and semi-arid regions give larger 10 to 100-year flood ratios compared to 

Mediterranean climates; a similar relation was found when arid regions are compared to humid regions (Zaman et 

al., 2012). These findings provide strong support for the hypothesis that the hydroclimatic properties of a basin - 90 
particularly aggregate hydroclimatic classifications like the Köppen system - influence the tail thickness of flood 

frequency distributions and thus exert considerable influence on the probabilities of the most extreme flood events.  

  

Here we build on the previous work by Salinas et al. (2014a, 2014b) by examining the fit of annual maxima 

streamflow data from across the United States to several three-parameter distributions via L-moment diagrams. 95 
We perform a similar experiment, but group annual maxima gage records based on two aggregated hydroclimatic 

variables instead of one-dimensional variables: (1) the Köppen climate region (Kottek et al., 2006); and (2) by 

watershed precipitation intensity, which is a combination of the maximum daily precipitation and the total annual 

precipitation. We chose the Köppen climate classification because it includes several of the above mentioned 

variables that affect peak flow distributions (temperature, precipitation, vegetation, soil properties), and 100 
precipitation intensity because it represents aspects of flood generating precipitation regimes (Hayden, 1988). By 

grouping gage discharge records based on the hydroclimatic properties of their basin, we assess whether these 

variables can guide a priori parametric distribution model selection. Our results demonstrate that peak flow records 

from different Köppen climate regions and precipitation intensity groups tend to fit to specific distribution families. 

These findings imply that the hydroclimate properties of a watershed could be used to guide the selection of a 105 
distribution family in flood frequency analysis. 

 

2. Hydroclimatic Data & Methodology for the L-moment Diagrams 

 

2.1. Data 110 
 

We chose the United States for our study because it spans all of the five main Köppen climate groups (Peel et al., 

2007) and has watersheds that are influenced by a diverse set of synoptic weather systems (Hirschboeck, 1988).  

Yet, despite this hydroclimatic diversity, the LP3 distribution is recommended for all flood frequency analyses in 

the United States in Bulletin l 7C (England et al., 2019). To determine the flood frequency distribution shape of 115 
different United States rivers, we constructed a dataset containing 1538 annual maxima discharge records (Fig. 1 

a). This dataset is a selection of the larger USGS surface water database which contains observational data from a 

network of gages across the United States (USGS, 2020). To generate our dataset, we first selected all records 

longer than 30 years. Next, we picked the longest continuous record for each available USGS hydrologic unit, to 

avoid biasing the distribution selection towards more heavily gaged rivers. We also included records from Alaska 120 
and Hawaii to encompass additional hydroclimatic diversity. The annual maxima records in the final dataset have 

an average length of 78 years, and a range from 30 to 118 years (Fig. 1 b). We also performed a preliminary 

analyses with a dataset from which records that have been affected by regulation or diversion (USGS qualification 

code 5 and 6) were omitted, however this did not yield meaningfully different results (Fig. S1-S3). As our aim is 

to find a distribution family that can support a broad range of impacts we decided to also include regulated records.  125 
 

To classify the gage records in different hydroclimatic groups, each annual maxima record was assigned a Köppen 

climate classification (Peel et al., 2007; ORNL DAAC, 2017), and a long-term (1981-2010) daily mean 

precipitation record from the Climate Prediction Center (CPC) precipitation dataset based on proximity to the 

centroid of the watershed (Falcone, 2011; CPC, 2020). First, annual maxima records were categorized by their 130 
main Köppen climate group: arid (B), temperate (C), or continental (D) - other climate groups did not have enough 

representation among the gages compared to the other climate groups (six for tropical and one for polar - all located 

in Hawaii or Alaska) (ORNL DAAC, 2017). Of the 1538 annual maxima, 204 are in an arid climate (Köppen group 

B), 549 are located in temperate climates (Köppen group C), and 778 are located in continental climates (Köppen 

group D). Next, we categorized annual maximum records by their watershed's hydroclimatic intensity, defined 135 
here as the percentage contribution of the maximum daily precipitation level to the total annual precipitation (PSC) 

in the CPC record (CPC, 2020). Gages close to high PSC values thus experience most precipitation during high 

intensity events, whereas gages with low PSC values experience precipitation more evenly throughout the year. We 

also assessed other precipitation metrics (e.g. annual maximum daily precipitation and the 95th percentile of the 

daily precipitation level distribution) but these metrics were not as meaningfully associated with flood distributions 140 
as PSC, which is similar to precipitation metrics known to influence flood frequency distribution shape (Metzger et 

al., 2020; Pitlick, 1994). Each annual maxima record was assigned to one of three groups: the lowest 20% PSC 

values containing 308 records (i.e., precipitation spread more evenly throughout the year), the highest 20% PSC 

values containing 308 records (i.e., a significant proportion of annual precipitation falls in one storm), and all 

intermediate values encompassing the remaining 922 records. The 20th and 80th percentiles were chosen, because 145 
they preserve a meaningful difference between the two groups while maintaining large sample sizes.  
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Figure 1: (a) Locations of hydrologic annual maxima records from instrumental river gages used in this study grouped 

by the percentage of the maximum annual daily precipitation level by the total annual precipitation level (PSC) and 150 
plotted atop their Köppen climate region. (b) Histogram of discharge record length in years, the red line indicates the 

mean value 78 years. 
 

2.2. L-Moment Diagrams 

 155 
We use L-moment diagrams to measure the fit of annual maxima records to several parametric distribution 

families. L-moment diagrams are a graphical tool to assess the goodness-of-fit of multiple annual maxima records 

to a series of probabilistic models and guide the selection of a regional flood frequency distribution family (Peel 

et al., 2001; Vogel and Fennessey, 1993). The L-moments of a hydrologic record are the linear combinations of its 

order statistics and, like regular moments (i.e. the mean, standard deviation, and skewness) describe the shape of 160 
a sample distribution. L-moments are often preferred over conventional product moments because they are more 

robust to small sample sizes (Hosking, 1990; Wang, 1990). When fitting data to 3-parameter distributions a L-

moment diagram is constructed by plotting the L-moment ratios of skewness (L-Skew; t3), the third L-moment 

divided by the second L-moment, against L-moment ratio of kurtosis (L-Kurtosis; t4) the fourth L-moment divided 

by the second L-moment (Hosking and Wallis, 1997). Any 3-parameter distribution can be plotted as a line in the 165 
L-moment diagram from their mathematical formulation of the ratio between L-Skew and L-Kurtosis (Table 1). 

The distance between the L-Skew and L-Kurtosis of a sample and the line describing a particular 3-parameter 

distribution 8 represents the likelihood of the record deriving from that distribution - the closer the sample to the 

line, the better the fit (Hosking and Wallis, 1997). A detailed description of L-moments and how to compute them 

is given by Hosking and Wallis (1997). 170 
 

The L-moments for all annual maxima record in our dataset are compared to a GEV, LN3 and a Pearson 3 (P3) 

distribution. These three parameter distributions are commonly used in hydrologic sciences (Salinas et al., 2014b), 

and are known to fit extreme flood values in the United States well (Vogel et al., 1993; Vogel and Wilson, 1996). 

Additionally, we plotted Log-transformed discharge records in L-moment diagram, to fit them to a LP3 175 
distribution. L-moment diagrams are constructed for all records in the dataset, and each selection of record based 

on their Köppen climate classification and PSC value. 

 

Prior work demonstrated that selecting one distribution that provides the best fit to annual maxima is difficult over 

a large hydrologically heterogeneous region due to the high sample variance of the L-moments (Asikoglu, 2018; 180 
Salinas et al., 2014a). To reduce the noise and guide model selection, we compute a weighted moving average 

(WMA) of neighboring L-Skew and their corresponding L-Kurtosis proportional to record length. Salinas et al. 

(2014a) applied this method to annual maxima series from across Europe to argue for the GEV distribution as a 

pan-European flood frequency distribution. We computed the WMA and its 95% confidence interval to summarize 

sample variance and facilitate distribution selection of all L-moment diagrams in this study. The weighted averages 185 
are taken from 50 consecutive L-Skew's and of the 50 corresponding L-Kurtosis's proportional to record length. 

Additionally we show the goodness-of-fit by computing the sum of squared error (SSE) between the WMA and 

the individual theoretical distribution lines.  
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Table 1: Overview of the distributions used in this study including their probability density function and L-moments 190 
(ratios). Mathematical formulations of the probability density functions, and L-moments as described by Hosking and 

Wallis (1997). 

Notes: In the probability density functions, ξ, a, and k are the location, scale and shape parameters, respectively.  The symbols 

λ1 , λ2 , t3 and t4 respectively stand for the first four L-moments. An approximation of t3 and t4 for the LN3 and P3 distribution 

are discussed in detail in Hosking and Wallis (1997). 195 
 

3. Results 

 

The WMAs demonstrate that the average statistical properties of the 1538 L-moment ratios across the United States 

are best characterized by the LN3 distribution (Table 2), with large variance among individual records (Fig. 2). 200 
Specifically, the WMA of the largest L-Skew and L-Kurtosis follow the LN3 distribution line as opposed to the 

P3 and GEV distributions (Fig. 2a). Generally, these originate from rivers for which the discharge of extreme 

floods is relatively large compared to the mean annual flood peak – in other words a distribution with a thick tail. 

The WMA deviates from the LN3 distribution as L-moment ratios become smaller, after which L-moments are 

better characterized by the GEV distribution (Fig. 2a). The theoretical distribution lines are more clustered for 205 
these smaller L-moment ratios, reflecting the similarities of GEV and LN3 distributions for thin-tailed distributions 

with low skewness (Fig. 2a). In log-space, the L-moment ratios cluster around the LN3, however the marginal 

difference of the SSE between the LN3 and LP3  distribution supports the general use of the LP3 distribution for 

rivers in the United States (England et al., 2019) 

 210 
Table 2: The sum of squared error of the WMA compared to the GEV, LN3 and P3 distribution. The values in bold 

indicate the lowest SSE among the three distributions for each experiment and thus the best fit according to this 

measure. 

 

 215 



6 
 
 

When annual maxima are grouped by Köppen climate region, the WMA shifts from the best-fitted distribution line 

as we move from arid to more temperate climates (Fig. 3). The statistical properties of records from temperate 

climates are best described by the LN3 distribution (Table 2; Fig. 3c), whereas records from continental regions 

are represented by a GEV distribution (Table 2; Fig. 3e). The WMA of annual records from arid climates does not 

track one distribution family line: the LN3 distribution best represents records with high L-Skew values [0.5-0.7] 220 
and the P3 distribution better follows the lower L-Skew values [0.1-0.4] (Fig. 3a). We note that the smaller sample 

size of the arid climate group results in larger confidence intervals. The concentrations of individual L-moment 

ratios also shift when grouped by climate region: the clustering of L-moment ratios for continental climates is 

highest along the GEV distribution line (Fig. 3e), for temperate L-moment ratios it falls in between the GEV and 

LN3 line (Fig. 3c), and for arid L-moments between the LN3 and P3 line (Fig. 3a). A clear shift between 225 
distribution families for different climate regions is not observed in log-space, with only small differences in 

goodness-of-fit between the LP3 and LN3 distribution (Table 2). The  Log-transformed records in arid climates 

exhibit overall lower L-Kurtosis values compared to records from continental and temperate climates and are best 

represented by the LP3 distribution for positive L-Skew (Fig. 3b), whereas negative L-Skew values do not clearly 

follow one distribution. Flood distributions in temperate regions are well represented by the LN3 distribution for 230 
negative L-Skew values, and the LP3 distribution for positive L-Skew values. (Figs. 3d).  

 

 

 
Figure 2: L-moment diagrams with the L-moment ratio for skew and kurtosis of annual maxima records used in this 235 
study (gray dots; n=1538), with their weighted moving average (WMA) proportional to record length (red line) and the 

P3, GEV and LN distribution lines: (a) annual discharge maxima as recorded by the gage, and; (b) the logarithm of the 

annual discharge maxima. 
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Categorizing annual maxima discharge records based on different local precipitation intensities (PSC) also 

influences the position and variance of the WMA (Table 2; Fig. 4). The WMA of records with low precipitation 240 
intensities follows the GEV distribution line (Table 2), especially for higher L-Skew values [0.2-0.45] (Fig. 4a). 

The SSE scores indicate that the LN3 distribution fits best the L-moment ratios with high PSC values (Table 2) 

however, along the range of L-Skew values we do observe variation (Fig. 4e). The L-moment ratios associated 

with high PSC values follow the LN3 distribution line for L-Skew values  between 0.4-0.7, whereas the WMA falls 

between the LN3 and P3 distribution for lower L-Skew values [0.15-0.4] (Fig. 4e). The WMAs of the intermediate 245 
group falls in between the GEV and LN3 distribution lines where for low [0-0.15] and high [0.4-0.6] L-Skew 

values it follows the GEV distribution, but for intermediate L-Skew values [0.15-0.4] it more closely follows the 

LN3 distribution (Fig. 3c). The position of this line within the parameter space indicates the observed shift from 

the GEV to the LN3 distribution as PSC values increase (Fig. 4c). Additionally, the range of L-Skew values is much 

smaller for records with low PSC values (Fig. 4a). We could not clearly distinguish a best-fitted distribution between 250 
the groups when records were log-transformed (Table 2; Figs. 4b, 4d, and 4f). For the intermediate PSC values the 

WMA line tracks the LN3 distribution line, but for the highest PSC values the WMA follows both the LN3 

distribution (for negative L-Skew values) and the P3 distribution (for positive L- Skew values).  

 

Our analyses document shifts of flood distribution properties for both the Köppen climate groups and the PSC 255 
groups, where arid climates (high PSC) and continental climates (low PSC) move away from the LN3 distribution 

towards the P3 and GEV distribution. In contrast, the WMAs of both the temperate and intermediate PSC group 

trend closer to the LN3 distribution line. A major difference between these two categories is the range of L-Skew 

values between the corresponding groups. For example, the range of the lower PSC is smaller than that of the L-

moment ratios in continental climates. There is no clear best-fit distribution within the arid Köppen category and 260 
the higher PSC groups, as the WMA varies over the observed L-Skew range.  However, we do demonstrate that 

regional hydroclimatic differences explain part of the variance among individual flood distributions.  
 

 

 265 
Figure 3: L-moment diagram with the L-skew and L-kurtosis for annual discharge maxima records (gray dots) grouped 

by their Köppen climate region, their weighted moving averages (WMA) proportional by record length (red line) and 

the P3, GEV and LN distribution line (striped; dotted; solid). Panels (a), (c), and (e) show annual discharge maxima as 

recorded by the gage; Panels (b), (d), and (f) show the logarithm of the annual discharge maxima. 

 270 
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Figure 4: L-moment diagram with the L-skew and L-kurtosis for gage discharge records (gray dots) grouped by their 

percentage of the maximum annual daily precipitation level by the total annual precipitation level (PSC), their weighted 

moving averages (WMA) proportional by record length (red line) and the P3, GEV and LN distribution line. Panels (a), 275 
(c), and (e) show annual discharge maxima as recorded by the gage; panels (b), (d), and (f) show the logarithm of the 

discharges. 

 

 

4. Discussion 280 

The main objective of this study is to evaluate whether hydroclimatic data can improve extreme flood probability 

estimates in flood frequency analysis procedures, through informed distribution family selection. To do this, we 

grouped annual hydrologic maxima from gage records across the United States by their hydroclimatic properties, 

and used L-moments to guide the selection of a probability model. Our work provides insights into the 

hydroclimatic parameters that drive flood frequency distribution shape, and how to supplement conventional flood 285 
frequency analyses using hydrological information accordingly.  

 

4.1. Flood Frequency Distributions in the United States 

 

The LN3 distribution fits most closely the average statistical properties of annual hydrologic maxima across the 290 
United States (Table 2), although for records with low L-Skew values [0.05 – 0.2] the GEV distribution fits better 

(Fig. 2a). These findings are consistent with, and further specify, prior work by Vogel and Wilson (1996), who 

also used L-moment diagrams to conclude that the LN3, LP3, and GEV distributions are all reasonable 

representations of annual maxima across the United States. In log-space the LN3 distribution also provides the 

best-fit (Table 2), however the theoretical distribution lines are more aligned making the log-P3 distribution an 295 
appropriate choice, as recommended by Bulletin 17C, for records with positive L-Skew values. Bulletin 17C 

accounts for negatively skewed flood distributions by censoring potentially influential low floods (PILFs) that 

could lead to underestimation of extreme flood values (England et al., 2019).  

 

Our analyses demonstrates that hydroclimatic factors, such as Köppen climate region and precipitation intensity, 300 
explain part of the L-moment ratios sample variance and flood frequency distribution shapes across the United 

States. The distribution family that best characterized hydrologic maxima shifts from the GEV towards the LN3 

distribution as we move from cold and wet climates (Köppen group D) to warmer and drier climates (Köppen 

group B) (Fig. 3). The contribution of the annual maximum storm to annual total precipitation (PSC) shows a similar 

pattern: watersheds with a lower maximum storm contribution are best captured by the GEV distribution and with 305 
a higher PSC by the LN3 distribution (Fig. 4). Although we do not provide evidence for a causal link, the flood 

regimes generally associated with arid and continental hydroclimatic regions match the statistical properties of the 
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GEV and LN3 distribution families as described by the L-moment lines (Fig. 3 and Fig. 4). For example, arid 

climates generally experience flash floods (high PSC values) and  as a result skewed flood frequency distributions 

(thick tails) compared to continental climates; similarly the LN3 distribution line fits to higher L-Skew ratios for 310 
the same L-Kurtosis compared to the GEV distribution (Metzger et al., 2020; Zaman et al., 2012). It also fits the 

results of a simulation experiment by Salinas et al. (2014a), that shows how the high variance of the L-moment 

ratio samples cannot alone be attributed to sampling error, and that other covariates were needed to explain the 

variance. They observed a shift of the best-fit distribution from GEV to LN3 as the total annual precipitation 

decreases over a catchment observed by Salinas et al. (2014b) in Europe. Köppen climate regions could provide a 315 
potential explanation for why Salinas et al. (2014b) found the GEV distribution to be the best fit for European 

annual maxima, as it is a continent dominated by temperate and cold climates (Köppen groups C and D). In 

contrast, the United States includes large regions with arid climates as well as temperate and cold regions, which 

shifts the overall best fit distribution for annual maxima to the LN3 distribution. 

 320 
4.2. Improvements to Flood Frequency Analysis 

 

Even though watershed-specific hydroclimatic variables, such as main Köppen group, affect the variance of L-

moment ratios of annual maxima records, they did not always yield a distinct best-fit distribution family for the 

constructed hydroclimatic regions in this study (Fig. 3). The Köppen classification indirectly already includes 325 
several flood generating variables — precipitation seasonality and intensity, vegetation, soil type, infiltration 

capacity, and surface runoff levels — as they are constructed from temperature and precipitation levels (Kottek et 

al., 2006; Peel et al., 2007). Accordingly, the observed results for gages grouped by Köppen climate regions are 

likely confounded by any of these factors, including PSC. As these climate classification schemes indirectly contain 

multiple environmental variables and encompass large contiguous areas they form a promising tool for systematic 330 
distribution selection in flood frequency analysis. Solely local precipitation intensities (like PSC) may represent 

large river systems poorly if discharge at given downstream location could be influenced by multiple precipitation 

regimes from multiple tributaries. Encountering this problem becomes less likely with Köppen regions which often 

cover entire watersheds. Yet, the high precipitation intensity (PSC levels) group and the arid Köppen region generate 

multiple best-fitted distribution families across the range of possible L-Skew values, implying a more detailed 335 
classification is necessary. The annual maxima records in arid climates (Fig. 3a) and with intense precipitation 

regimes (high PSC values) (Fig. 4e) either best-fitted to the P3 distribution for low L-Skew values, or the LN3 for 

high values. In this particular case, Köppen’s specification for arid climates — BWh, BWk, BSk, and BSk — 

might provide a systematic method to distinguish between different types of arid regions. Additionally, one could 

include other basin characteristics, specifically geomorphic properties of the watershed (e.g., size and elevation) 340 
in further improving probability model selection, given that prior work points to hydroclimatic variables as exerting 

a primary control on flood distributions (Salinas et al., 2014b). For example, Pitlick (1994) showed that the shape 

parameter of flood frequency distributions in mountainous areas of the Western United States were affected by 

regional precipitation intensity — combining climatic and geomorphic parameters.  

 345 
Our main finding - that hydroclimatic properties of a basin exert a strong influence on the distribution of annual 

discharge maxima - provides a potential means to improves the accuracy of extreme flood probability estimates 

without altering the mathematical procedure described in flood frequency analysis guidelines like Bulletin l7C 

(England et al., 2019). One approach to further improve on our work is the weighted mixed populations framework, 

where one stratifies data and fits a parametric distribution to each new data population to aggregate the population 350 
distributions into a single distribution weighted on population size (Barth et al., 2019). In a hydrologic context, 

one could subdivide annual flood discharges based on different (periodic) flood-generating mechanisms. 

Accordingly, this method works particularly well for watersheds with multiple distinct flood-generating 

mechanisms, for example due to periodic atmospheric rivers, and skewed flood distributions (Barth et al., 2019). 

Another approach is to use other parametric distributions, with four or more parameters - although such methods 355 
do not explicitly consider hydrologic information- or a Metastatistical Extreme Value Distribution (MEVD) 

(Marani and lgnaccolo, 2015; Miniussi et al., 2020). A MEV distribution derives an extreme (annual maxima) 

flood frequency distribution via 'ordinary' discharge values and has shown to be efficient with all sorts of 

parametric distributions (Marani and Ignaccolo, 2015).  

 360 
5. Conclusions 

 

We evaluated annual hydrologic maxima distributions from across the United States, and showed that probability 

model selection can be improved when it is based on the hydroclimatic properties of the basin. In the United States, 

the WMA line of L-moment coefficients track the LN3 distribution, implying that this distribution could serve as 365 
national distribution family. However, distribution selection can be improved by taking a basin's climate region 
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into account, where continental climates (cool/wet) are best described by GEV distributions while arid climates 

(hot/dry) are best described by LN3 distributions. More broadly, our work demonstrates that the climatology of a 

region is a powerful tool to guide the a priori distribution selection in flood frequency analysis. 

 370 
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