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Abstract. The Budyko framework is a simple and effective tool for estimating the water balance of watershed. 

Quantification of the watershed-characteristic-related parameter (Pw) is critical for accurate water balance simulations with 

the Budyko framework. However, there is no universal method for calculating Pw as the interactions between hydrologic, 

climatic, and watershed characteristic factors differ greatly across watersheds. To fill this research gap, this study 15 

introduced the hydrologically similar groups principle into the Budyko framework for quantifying the Pw of watersheds in 

similar environments. We first classified the selected 366 watersheds worldwide into six hydrologically similar groups 

based on watershed attributes, including climate, soil, and vegetation. Results show that soil moisture (SM) and fractional 

vegetation cover (FVC) are two controlling factors of the Pw in each group. The SM exhibits a power-law relationship 

with the Pw values, with increasing SM leading to higher Pw values in dry watersheds (SM ≤ 20 mm) and lower Pw values 20 

in humid watersheds (SM > 20 mm). Additionally, the FVC shows to be linearly correlated with the Pw values in most 

hydrologically similar groups, except in that group with moist soil and no strong rainfall seasonality (SM > 20 mm and SI 

≤ 0.4). Multiple non-linear regression models between Pw and the controlling factors (SM and FVC) were developed to 

individually estimate the Pw of six hydrologically similar groups. Cross-validations using the bootstrap sampling method 

(R2 = 0.63) and validations of time-series Global Runoff Data Centre (GRDC) data (R2 = 0.89) both indicate that the 25 

proposed models perform satisfactorily in estimating the Pw parameter in the Budyko framework. Overall, this study is a 

new attempt to quantify the unknown Pw in the Budyko framework using the hydrologically similar groups method. The 

results will be helpful in improving the applicability of the Budyko framework for estimating the annual runoff of 

watersheds in diverse climates and with different characteristics. 
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1 Introduction 30 

There has been an increasing interest in estimating the water balance of watersheds with a simple and effective tool—

the Budyko framework. Unlike process-based models that typically require a large number of parameters as inputs for 

accurate simulations (Caracciolo et al., 2018; Lei et al., 2014), the Budyko framework is a top-down approach that is rooted 

on a firm physical basis, relating a catchment’s long-term evaporative ratio (ratio between actual evapotranspiration and 

precipitation) to its aridity index (ratio between potential evapotranspiration and precipitation) (Vora and Singh, 2021; 35 

Sivapalan, 2003; Wang and Tang, 2014). Currently, the Budyko framework has been widely used for assessing linkages 

and feedbacks between climate forcing and land surface characteristics on water and energy cycles (Zhang et al., 2001; 

Milly and Shmakin, 2002; Li et al., 2013; Xu et al., 2013), prompting a great deal of empirical, theoretical, and process-

based studies (Chen and Sivapalan, 2020; Roderick and Farquhar, 2011; Rau et al., 2018; Goswami and Goyal, 2022). 

The original Budyko equation assumes that evapotranspiration is mainly controlled by precipitation (representing the 40 

availability of water) and potential evapotranspiration (representing the availability of energy) (Budyko, 1974; Wang et al., 

2022). Despite its solid performance, the original Budyko equation still produces a bias between modeled and measured 

evapotranspiration or runoff because it does not consider the effects of watershed characteristics other than mean annual 

climatic conditions on water balance (Kim and Chun, 2021; Zhang et al., 2001). As a result, hydrologists have invested 

considerable efforts to improve model performance by introducing parameters related to watershed characteristics 45 

(watershed-characteristic-related parameter, Pw) into the original Budyko equation. The popular parametric equations of 

the Budyko framework are presented in Table 1. 

Table 1. Parametric formulations of the Budyko framework (Pw - watershed-characteristic-related parameter; ET - actual evaporation, 

R - runoff, P - precipitation, PET - potential evapotranspiration, all in mm yr-1). 

Reference Formulation 
Pw 

 (Theoretical range) 
Reference values of Pw 

Budyko (1974) 

 

 0.5 0.5 

Zhang et al. (2001) 

 

w 

(0, ∞) 

Trees – 2.0, 

Plants – 0.5 

𝐸𝑇

𝑃
=  [

𝑃𝐸𝑇

𝑃
tanh⁡ (

𝑃𝐸𝑇

𝑃
)
−1

(1 − 𝑒𝑥𝑝(−
𝑃𝐸𝑇

𝑃
))]

0.5
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Turc (1954), 

Mezentsev (1955), 

Choudhury (1999), 

Yang et al. (2008) 

 

n 

(0, ∞) 

Field – 2.6, 

River basins – 1.8 

Wang and Tang 

(2014) 

 

ε 

(0,1) 
0.55 – 0.58 

Tixeront (1964), 

Fu (1981), 

Zhou et al. (2015) 

 
m 

(1, ∞) 

Forest – 2.83, 

Shrub – 2.33, 

Grassland or cropland 

– 2.28, 

Mixed land – 2.12 

  50 

From the hydrological point of view, Pw controls the fraction of precipitation diverted into runoff for a given aridity 

index (Caracciolo et al., 2018). Watersheds with higher Pw values partition more precipitation to evapotranspiration and 

consequently less to runoff than those with lower Pw values; some studies defined Pw as the water retention capacity of a 

watershed (Fu, 1981; Zhou et al., 2015). Overall, Pw denotes the adjustment of water-energy partitioning by various 

watershed characteristics (Yao et al., 2017; Li et al., 2013).  55 

During the past decades, researchers have done lots of work to quantify Pw for the accurate simulation of 

evapotranspiration or runoff using the Budyko framework (Wang et al., 2022; Yao et al., 2017; Guo et al., 2019; Yu et al., 

2021) and considerably improved the estimation of Pw by taking into account the influence of watershed characteristics 

(Fu, 1981; Liu and Liang, 2015; Guan et al., 2022; Yang et al., 2008). Although there is agreement that Pw represents the 

integrated effects of various environmental factors (Wang et al., 2022; Liu et al., 2022b; Yu et al., 2021; Gan et al., 2021), 60 

studies still differed greatly as to what factors and effects should relate to Pw and failed to give a general framework for 

quantifying it. For instance, whether the Pw in the Budyko framework is controlled by vegetation or not has been much 

debated. Ning et al. (2017) found that Pw generally correlated positively with vegetation cover. Zhang et al. (2018) obtained 

the sensitivity of Pw to changes in LAI by taking a derivative of the Pw function with respect to LAI, implying a crucial 

role of vegetation cover in impacting Pw. However, other studies indicated that most regions or watersheds show no 65 

significant influences of vegetation indices or cover on Pw (Li et al., 2013; Liu et al., 2021). For example, Li et al. (2013) 

noted that the variations in the Pw values are not entirely controlled by vegetation cover in small catchments. Another 

study by Liu et al. (2021) also found a weak correlation between the vegetation leaf area index and Pw. Therefore, more 

in-depth studies are needed for revisiting the hydrological basis of Pw in the Budyko framework.  
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Here, we hypothesize that watersheds with similar climatic, hydrologic, and watershed characteristics have consistent 70 

controlling factors of Pw in the Budyko framework. Classifying watersheds into groups that are hydrologically similar may 

help us identify how Pw responds to different watershed characteristic factors. However, to date, few studies have been 

conducted on classifying watersheds based on the highly variable hydro-climate-Pw relationships in the Budyko framework. 

This may be an important reason why researchers disagree about the factors and extent of the influence on Pw.  

This study proposes a new approach to address the research gap in accurately estimating the Pw parameter in the 75 

Budyko framework by classifying watersheds into hydrologically similar groups and developing a framework for 

estimating Pw (PwM) in each group to simulate global runoff. More specifically, we collected 726 hydrological records in 

366 watersheds from published literature for analyses. These 726 samples were classified into six hydrologically similar 

groups according to the hydrologically homogenous attributes of watersheds using the Decision Tree Regressor method. 

Then, we identified the controlling factors of Pw from various environmental factors in each hydrologically similar group 80 

and developed multiple non-linear regression models for estimating Pw in the Budyko framework. We expect that 

classifying watersheds into hydrologically similar groups can help explore the effect of watershed characteristics on their 

water balance and interpret the physical meaning of the Pw in the Budyko framework. This study highlights the need to 

account for the interactions among hydrologic, climatic, and watershed characteristic factors for explaining Pw in the 

Budyko framework. 85 

2 Fu’s formula 

This study employed Fu’s formula (Zhou et al., 2015) to analyze Pw in the Budyko framework. Fu's equation is a 

commonly used parametric equation in Budyko-type formulas due to its versatility and adaptability (Zhou et al., 2015). 

The formula is expressed as: 

𝑅

𝑃
= (1 + (

𝑃

𝑃𝐸𝑇
)
−𝑃𝑤

)

1
𝑃𝑤

− (
𝑃

𝑃𝐸𝑇
)
−1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)⁡ 90 

where R/P is a dimensionless annual water yield coefficient; P/PET is an aridity index; Pw is a dimensionless constant 

varying from 1 to infinity and represents water retention capacity for evapotranspiration. When Pw=1, all the precipitation 

becomes flow and the residence time is 0. When Pw tends to infinity, the runoff approaches to the difference between 

precipitation and potential evapotranspiration. In this scenario, all precipitation remains in the watershed and all available 

water is lost through evapotranspiration. The duration of water residence equals to the time for converting all precipitation 95 
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to evapotranspiration. However, in natural watersheds, it may be difficult to observe Pw approaching infinity since it is 

nearly impossible for all precipitation to be retained in the watershed. The natural watersheds with a high Pw value may 

be “non-conservative” (i.e., precipitation is not the sum of streamflow and evapotranspiration), as a portion of the water 

that remains in the watershed may not be solely from precipitation but may include groundwater flow and other difficult 

to measure flows. As a result, it may be challenging to accurately estimate the water balance, especially in regions with 100 

complex hydrological systems (De Lavenne and Andréassian, 2018; Goswami and O'connor, 2010). As a precautionary 

measure, this study sets an empirical upper limit of 10 for Pw to ensure that the watersheds in question remain conservative.  

3 Data 

3.1 Hydrological data 

Hydrological data for modelling, including runoff and corresponding precipitation data, were collected from published 105 

literature (726 samples listed in Supplement 1, Fig. 1). Potential evapotranspiration data were downloaded from version 

4.05 of the CRU TS (Climatic Research Unit gridded Time Series) climate dataset 

(https://doi.org/10.6084/m9.figshare.11980500), which is produced by the CRU at the University of East Anglia. For 

consistency, we used potential evapotranspiration values extracted from the CRU TS dataset of all watersheds listed in 

Supplement 1, even for studies with potential evapotranspiration values reported. The potential evapotranspiration values 110 

were extracted based on the coordinate points of watersheds. Using collected and extracted the annual average runoff, 

precipitation and potential evapotranspiration data for the observation period, we calculated the annual water yield 

coefficient (R/P) and aridity index (P/PET) for each sample. Then, we derive the annual average Pw value of each sample 

for the corresponding period according to Eq. (1). 

Observed river discharge data for validation were obtained from the Global Runoff Data Centre (GRDC, 115 

https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html). Only the GRDC stations meeting the 

following criteria were selected for further analysis: (1) The sites with continuous time-series runoff observations during 

the period 2000–2016 and corresponding surface soil moisture (SM), fractional vegetation cover (FVC) and seasonal index 

(SI) data were also available during such a period; (2) The drainage area reports can be found in the original data to provide 

area parameters for converting original flow volumes to runoff rates; (3) The geographical coordinates reports can be found 120 

in the original data and the shape of the drainage can be found in the GRDC Watershed Boundaries (2011); (4) The 

watersheds with “non-conservative” (Pw>10) and unrealistic runoff rates (Pw<1) are removed. Based on these criteria, 

https://doi/
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545 GRDC stations were selected for validation (Fig. 1). Then, the flow volumes of selected sites were converted to runoff 

rates (Ghiggi et al., 2019). 

We used the GRDC Watershed Boundaries (2011) to extract the average values of potential evapotranspiration and 125 

precipitation from grid datasets for each watershed. The potential evapotranspiration values were extracted from the CRU 

TS dataset. The precipitation values for runoff reconstruction were extracted from the Global Precipitation Climatology 

Centre (GPCC) Precipitation Total Full V2018 data provided by the NOAA/OAR/ESRL (PSL, Boulder, Colorado, USA) 

because these were found to agree better with observations in previous research compared to the CRU TS precipitation 

dataset (Ahmed et al., 2019; Degefu et al., 2022; Fiedler and Döll, 2007; Hu et al., 2018; Salaudeen et al., 2021).  130 

 

Figure 1. Location of observation sites for modeling (green dots) (n = 726) and GRDC (Global Runoff Data Centre) observation sites 

(orange triangles) (n = 545) for validation. Background colors represent UNEP (1997) climate classification for P/PET values (Hyper 

Arid: P/PET < 0.03; Arid: 0.03 ≤ P/PET < 0.2; Semi-Arid: 0.2 ≤ P/PET < 0.5; Dry sub-humid: 0.5 ≤ P/PET < 0.65; Humid: P/PET ≥ 

0.65). The globe was divided into nine geographic regions: North America (west, southwest, midwest, northeast, southeast, except of 135 

the USA), South America, Africa, and Europe. Due to the limited availability of GRDC observation data in Asia and Australia, these 

regions were absent in the division of global geographic regions. 

 

3.2 Watershed characteristic-related data 

The watershed characteristic-related factors mainly include SM (0-10 cm underground), FVC and SI of Walsh and 140 

Lawler (1981). For the collected watersheds from published literature without boundary files, these three datasets were 

extracted from grid data according to the coordinate points of these watersheds. For the GRDC watersheds, records of these 

three fields were extracted from grid data based on the boundary files provided by GRDC Watershed Boundaries (2011). 

The sources of datasets are summarized in Table 2.  
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Table 2. Data sources for watershed characteristic factors 145 

Watershed characteristic factors Data source/version Units Reference 

Surface soil moisture (0-10cm 

underground, SM) 
GLDAS Noah Land Surface Model L4 mm Rodell et al. (2004) 

Fractional vegetation cover (FVC) GLASS FVC V4 m2 m-2 Liang et al. (2021) 

Seasonal index (SI) 
CRU TS dataset version 4.03, global maps 

of seasonality indices 
dimensionless 

Walsh and Lawler 

(1981);Feng (2019) 

 

4 Methods 

4.1 Classification of watersheds into hydrologically similar groups using watershed attributes 

A hydrologically similar group (i.e., hydrologically homogeneous region) is defined as a group of drainage basins 

whose hydrologic responses are similar (Kanishka and Eldho, 2020). Therefore, the relationship between Pw and any 150 

watershed characteristic variable does not change substantially in a hydrologically similar group. However, when that 

relationship between Pw and the variable changes as certain boundaries are crossed, the corresponding watersheds are 

divided into different groups by these boundaries. 

We used SM, SI and FVC for classification. For SM and FVC, the bounded intervals of the variables were given by 

the Decision Tree Regressor (DTR) from the Scikit-learn library (Pedregosa et al., 2011) in Python. The locations of splits 155 

in DTR were used as dividing intervals. The criterion for measuring the quality of the split was set to “poisson”, which 

uses a reduction in Poisson deviance to find splits. The “random” strategy was used to choose local optimal splitting at 

each node. The results and performances of DTR are shown in Supplement 2. Based on the criteria used by Walsh and 

Lawler (1981), we divided the SI into three parts (SI ≤ 0.4, 0.4 < SI ≤ 0.8, SI > 0.8) to represent three hydroclimatic 

seasonality (precipitation spread throughout the year, marked seasonality with a short drier season, extreme seasonality 160 

with a long drier season). Finally, six hydrologically similar groups were classified (Table 3).  



8 

 

Table 3. Classification of watersheds 

Soil moisture 

classifier 

Water soil 

regime 

Seasonality 

index classifier 

Seasonality 

precipitation 

regime 

Fractional vegetation 

cover classifier 

vegetation cover 

regime 

Name of 

the group 

SM ≤ 20 Dry soil —— —— —— —— IND 

SM > 20 Wet soil 

SI ≤ 0.4 Seasonless —— —— INWP 

0.4 < SI ≤ 0.8 
Marked 

seasonality 

FVC ≤ 0.2 Low density INWMS 

0.2 < FVC ≤ 0.5 Middle density INWMM 

FVC > 0.5 High density INWML 

SI > 0.8 
Extreme 

seasonality  
——  INWE 

4.2 Setup of proposed Pw simulation model (PwM) 

4.2.1 PwM with the classification of hydrologically similar groups 

We performed regression analysis between the Pw and watershed characteristic variables to determine the input 165 

variables of the PwM. The variables whose R2 of the regression model was greater than 0.1 were selected as input variables. 

We used a polynomial as the basic model form. Each term of the polynomial depends on the regression model of the 

corresponding variable and the Pw. For each hydrological group, the Pw value is modeled as the function: 

𝑃𝑤 = ⁡∑𝐶𝑜𝑒𝑓_𝑛 × 𝑓(𝑉𝑎𝑟_𝑛)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where Pw represents the value of Pw; Var_n represents the input variable that passes the regression test; f corresponds to 170 

the function derived from the regression of Pw on Var_n; Coef_n represents the empirical coefficient fitted by multiple 

non-linear regression (MNR). 

4.2.2 PwM without classification of hydrologically similar groups 

For comparison, we estimated Pw without the hydrologically similar groups, defined as non_PwM. The non_PwM 

was defined as follows: 175 

𝑛𝑜𝑛_𝑃𝑤 = 𝑎1 × 𝑆𝑀
2 + 𝑎2 × 𝑆𝑀 + 𝑏1 × 𝐹𝑉𝐶

2 + 𝑏2 × 𝐹𝑉𝐶⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

where non_Pw is the annual value of Pw simulated by non_PwM; SM is the annual average value of surface soil moisture 

(0-10 cm underground); FVC is the annual average value of fractional vegetation cover; a1, a2, b1 and b2 represent the 

empirical coefficients fitted by the least square method. 
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4.3 Model validation 180 

4.3.1 Performance metrics 

Three performance metrics were used to assess the accuracy of PwM. The variable N is the number of observations, 

i is the ith value to be simulated, and ys and yo are the simulated and observed series, respectively. 

The relative bias (RelBIAS) represents systematic errors. A positive value indicates a general overestimation, while a 

negative one indicates an underestimation. The perfect agreement is achieved when RelBIAS equals zero. RelBIAS is 185 

defined as: 

𝑅𝑒𝑙𝐵𝐼𝐴𝑆 = ⁡
𝑚𝑒𝑎𝑛(𝑦𝑠 − 𝑦𝑜)

𝑚𝑒𝑎𝑛(𝑦𝑜)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

The coefficient of determination (R2) assesses the linear relationship between the simulated and observed time series 

data and is defined as: 

𝑅2 =⁡
∑ (𝑦𝑜

𝑖 − 𝑦̅𝑜)(𝑦𝑠
𝑖 − 𝑦̅𝑠)

𝑁
𝑖=1

[∑ (𝑦𝑜
𝑖 − 𝑦̅𝑜)

2𝑁
𝑖=1 ]0.5[∑ (𝑦𝑠

𝑖 − 𝑦̅𝑠)
2𝑁

𝑖=1 ]0.5
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 190 

The Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), a goodness-of-fit index, is usually used to assess the 

accuracy of the model. When NSE = 1, the model predictions perfectly match the observed data. A value higher than 0 

indicates that the modeled mean is a good predictor compared to the observed value. It is defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑠

𝑖 − 𝑦𝑜
𝑖)2𝑁

𝑖=1

∑ (𝑦𝑜
𝑖 − 𝑦̅𝑜)

2𝑁
𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

4.3.2 Cross-validations using the bootstrap sampling method 195 

We used cross-validation to test the stability of the proposed PwM using the bootstrap sampling method. The collected 

public data were split into two parts, one for model training and the other for model validation. A subset of 60% of the data 

was randomly selected using the bootstrap sampling method for training PwM. The remaining 40% of the data was used 

to evaluate the model performance using the validation metrics in Sect. 4.3.1. For each metric, the variable N is the number 

of test sets, i is the ith value to be simulated by the trained PwM, and ys and yo are the simulated and observed series of test 200 

sets, respectively. The process was repeated randomly 10000 times. We documented the cross-validation result of each 

bootstrapping and showed them in the violin plot (Fig. 3). 
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4.3.3 Validations of GRDC time-series runoff reconstruction results 

To further assess the model performance, we applied the proposed PwM to Fu’s model to reconstruct the time-series 

runoff data of GRDC from 2000 to 2016. Finally, the time-series runoff data from 545 GRDC stations, which were selected 205 

by Sect. 3.1, were used to evaluate the model performance using the validation metrics in Sect. 4.3.1. For each metric, the 

terms ys and yo represent the simulated and observed time-series runoff data, respectively. 

5 Results and discussion 

5.1 The new proposed model for estimating Pw in Fu’s formula 

The regressions between Pw in Fu’s formula and watershed characteristic variables collected from globally published 210 

datasets are shown in Fig. 2.  
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Figure 2. Regression between Pw in Fu’s formula and (a) SM (SM ≤ 20 mm), (b) SM (SM > 20 mm), (c) FVC (IND), (d) FVC (INWP), 

(e) FVC (INWMS), (f) FVC (INWMM), (g) FVC (INWML), and (h) FVC (INWE). Symbol shapes indicate SM (dots) and FVC (squares). 

As shown in Fig. 2a-b, the relationship between Pw and SM conforms to a power function, consistent with prior 215 

findings reported by Chen and Sivapalan (2020). The important finding here is that there is a critical soil moisture threshold 

at 20 mm that separates watersheds with two different water balances. In watersheds characterized by arid conditions (SM  

≤ 20 mm), as shown in Fig. 2a, the Pw values have an upward trend as SM values increase. On the other side, in watersheds 

characterized by humid conditions (SM > 20 mm), as shown in Fig. 2b, the Pw values exhibit a decreasing trend as SM 
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values increase. This is likely because transpiration usually increases as soil water increases in relatively dry conditions 220 

(Jiao et al., 2019; Bierhuizen, 1958; Wang et al., 2012; Yao et al., 2016; Schwarzel et al., 2020). However, once the soil 

moisture exceeds the threshold (20 mm in this study), the acceleration of transpiration from soil moisture slows down 

quickly (Havranek and Benecke, 1978; Verhoef and Egea, 2014; Metselaar and De Jong Van Lier, 2007). These findings 

are very in line with previous studies (Havranek and Benecke, 1978; Jiao et al., 2019; Cavanaugh et al., 2011; Ducharne et 

al., 1998), although the threshold of soil moisture varies slightly in these studies (e.g., 0.25 m3 m-3 in Ducharne et al. (1998), 225 

0.10 m3 m-3 in Cavanaugh et al. (2011) and 0.20 m3 m-3 in Jiao et al. (2019)). 

As shown in Fig. 2c-h, the FVC is linearly correlated with the Pw values of watersheds in most hydrologically similar 

groups but differs greatly between different groups. In dry watersheds (IND), the relationship between Pw and FVC 

followed a positive linear function (Fig. 2c). This finding is consistent with the majority view that vegetation transpiration 

increases (reflected by the increased Pw) with increasing vegetation cover in regions with insufficient soil moisture (Wang 230 

et al., 2012; Yao et al., 2016; Schwarzel et al., 2020). For those small and wet watersheds, vegetation-related factors are 

considered to be weakly correlated with Pw (Liu et al., 2021; Padrón et al., 2017; Yang et al., 2014). However, our study 

reveals a positive linear correlation between Pw and FVC in the INWMS (Fig. 2e) and INWE groups (Fig. 2h), whereas a 

negative linear correlation is observed in the INWMM (Fig. 2f) and INWML groups (Fig. 2g). Only in the INWP group, the 

relationship between Pw and FVC is not significant. These results indicate that the relationship between Pw and FVC may 235 

be stronger than what was previously believed, and this relationship varies across different groups characterized by specific 

combinations of FVC and SI. This confirms that climate, soil moisture, and vegetation cover are not independent factors 

affecting the water balance (Gan et al., 2021; Yang et al., 2009). Coupling vegetation with other catchment properties 

resulted in greater Pw variations (Gan et al., 2021). 

Based on the results of the regression analysis illustrated in Fig. 2, the proposed PwM employs SM and FVC as input 240 

variables (i.e., Var_n) for all groups, except for the INWP group, for which FVC was not chosen. The formula in PwM for 

calculating the Pw is modeled as a sum of a power function of SM and a linear function of FVC, given by Eq. (7): 

𝑷𝒘 = ⁡

{
  
 

  
 
𝟎. 𝟗𝟏 × 𝑺𝑴𝟎.𝟑𝟖 ⁡+ ⁡𝟏. 𝟒𝟖 × 𝑭𝑽𝑪⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐼𝑁𝐷, 𝑆𝑀 ≤ 20)

𝟐𝟖. 𝟕𝟐 × 𝑺𝑴−𝟎.𝟕𝟔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐼𝑁𝑊𝑃, 𝑆𝑀 > 20, 𝑆𝐼 ≤ 0.4)

𝟑𝟗. 𝟎𝟑⁡ ×⁡𝑺𝑴−𝟎.𝟗𝟔 ⁡+ 𝟏𝟏. 𝟖𝟐⁡ × ⁡𝑭𝑽𝑪⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐼𝑁𝑊𝑀𝑆, 𝑆𝑀 > 20, 0.4 < 𝑆𝐼 ≤ 0.8, 𝐹𝑉𝐶 ≤ 0.2)

𝟑𝟑. 𝟕𝟔⁡ ×⁡𝑺𝑴−𝟎.𝟕𝟏 ⁡− ⁡𝟏. 𝟒𝟕⁡ × ⁡𝑭𝑽𝑪⁡⁡⁡⁡⁡⁡⁡(𝐼𝑁𝑊𝑀𝑀, 𝑆𝑀 > 20, 0.4 < 𝑆𝐼 ≤ 0.8, 0.2 < ⁡𝐹𝑉𝐶 ≤ 0.5)

𝟐𝟎. 𝟒𝟏⁡ ×⁡𝑺𝑴−𝟎.𝟒𝟐 ⁡− ⁡𝟒. 𝟐𝟐𝟏⁡ × ⁡𝑭𝑽𝑪⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐼𝑁𝑊𝑀𝐿, 𝑆𝑀 > 20, 0.4 < 𝑆𝐼 ≤ 0.8, 𝐹𝑉𝐶 > 0.5)

𝟑𝟎𝟕𝟖⁡ ×⁡𝑺𝑴−𝟐.𝟒𝟑 + 𝟑. 𝟓𝟑⁡ × ⁡𝑭𝑽𝑪⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐼𝑁𝑊𝐸 , 𝑆𝑀 > 20, 𝑆𝐼 > 0.8)

                                      (7) 

where Pw is the annual value of Pw; SM is the annual average value of surface soil moisture (0-10cm underground); FVC 

is the annual average value of fractional vegetation cover.  245 
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5.2 Cross-validations based on data collected from globally published literature 

The performances of PwM and non_PwM were cross-validated based on the data collected from globally published 

literature using the bootstrap sampling method (Fig. 3). On average, the ensemble RelBIAS of Pw simulated by PwM is 

slightly negative (Fig. 3a), indicating a weak tendency to underestimate the values of Pw, but with a maximum relative 

bias less than 0.1. The interquartile range of R2 for PwM is from 0.35 to 0.40, with a median of 0.37. The scores of R2 are 250 

higher than 0.3 in more than 95% of the bootstrap sampling events. The NSE skill scores show that in most bootstrap 

samplings, the estimation error estimated variance for PwM is less than the variance of the observations (NSE > 0), with 

an interquartile range from 0.33 to 0.39. In comparison, the maximum relative bias of the Pw simulated by the non_PwM 

is 0.12, the median of R2 is 0.13, and the median of NSE is 0.13. Overall, cross-validations show that the performance of 

the PwM with the hydrologically similar groups is better and more stable than that of the non_PwM.  255 

Grouping watersheds based on their hydrological similarities ensures that watersheds within the same category exhibit 

similar behaviors in settings with comparable climate, soil and vegetation characteristics (Kanishka and Eldho, 2017; Sinha 

et al., 2019). The model developed based on the principle of hydrologically similar groups considers the unique 

hydrological characteristics of different watersheds and can more accurately simulate the hydrological response in complex 

watershed systems (Santra et al., 2011; Jin et al., 2017; Kouwen et al., 1993; Gao et al., 2018; Kanishka and Eldho, 2017). 260 

As a comparison, in the non_PwM, all watersheds were lumped into a single category and showed a similar hydrological 

response to changes in watershed characteristics. That non_PwM, as the similar model used in previous studies (Zhang et 

al., 2018; Liang et al., 2015; Xu et al., 2013), may overlook and oversimplify the intricate interplay between climate, 

watershed characteristics and hydrology, thereby potentially resulting in less precise predictions of Pw across diverse 

watersheds.  265 

 

Figure 3. Cross-validation results of (a) PwM and (b) non_PwM. A violin represents the distribution of the considered skill scores. The 

white dot on the violin plot represents the median. The black bar in the center of the violin represents the interquartile range. Colors 

distinguish three performance metrics: Red (RelBIAS), yellow (R2) and blue (NSE). 
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 270 

The skill scores of cross-validations for the six groups are shown in Fig. 4. Though its overall RelBIAS is negative, 

PwM tends to overestimate values of Pw in the INWP group (the median of RelBIAS is positive). The INWMS group scores 

highest in R2, with a median of 0.73, while the INWP group scores the lowest, with a median of 0.16. The grouped NSE 

scores show more uncertainty than the overall, especially in the INWMS: the lower adjacent value (LAV) larger than zero 

indicates more skill than the mean of observations; however, the outliers are far below zero. The low NSE value may be 275 

due to the low number of watersheds sampled in this interval, which increased the inconclusive results.  

 
Figure 4. Cross-validation results of PwM for (a) IND, (b) INWP, (c) INWMS, (d) INWMM, (e) INWML, and (f) INWE. 

Figure 5 shows the simulated R/P by PwM in comparison to site observations. The R2 between the observed and the 

simulated values is 0.63 (Fig. 5a). The model performs well in humid regions with P/PET ≥ 1 in southeast America, Europe, 280 

middle China and southeast Australia. However, PwM likely underestimated the runoff in the arid (P/PET < 0.2) and semi-

arid regions (0.2 ≤ P/PET < 0.5), mainly in western America and northwest China (Fig. 5b). 
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Figure 5. Simulated R/P using PwM in comparison with the observations collected from published literature. (a) Scatter plots between 

R/P (yellow: simulation; green: observations) and P/PET; (b) Difference between simulated R/P from PmM and observations from the 285 

published datasets. 

5.3 Validations of reconstructing the time-series GRDC runoff 

For the selected 545 GRDC watersheds, the annual runoff estimated by PwM ranges from 229.84 to 320.34 mm, 

which is slightly lower than the observed range of GRDC (265.82 ~ 345.50 mm yr-1) (Fig. 6a). Overall, the temporal 

evolution of runoff is captured well in the period 2000-2010. However, since 2011, the consistency between 290 

reconstructed runoff and GRDC runoff decreases, and the reconstruction results are consistently lower than the 

GRDC observations. The scatter plot between simulated and observed R/P also shows a slight underestimation of 

reconstructed global long-term mean runoff (Fig. 6b). The spatial patterns of long-term mean runoff reconstruction 

are shown in Fig. 6c-f. The estimated time-series runoff shows lower values in the west of the United States and south 

of Africa, and shows higher values in the northeastern United States and the European Mediterranean area, in 295 

comparison with the GRDC time series. 
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Figure 6. Time-series runoff reconstruction results in the selected GRDC stations. (a) Time-series annual mean runoff of the selected 

545 GRDC watersheds; (b) Scatterplot between the modeled runoff and observed runoff; The spatial distribution of annual mean runoff 

in (c) North America, (d) South America, (e) Africa, and (f) Europe. 300 

 

Figure 7 displays the skill scores of the reconstructed runoff by PwM in comparison with the GRDC ensemble from 

2000-2016. It can be seen that, generally, the result of reconstruction by PwM is satisfactory, as indicated by the RelBIAS 

close to 0. The underestimation of runoff mainly occurs in the high mountains of the western United States (Fig. 7a), where 

the runoff is much smaller. Humid regions such as the northeastern United States and the European Mediterranean area 305 

have quite high R2 values, while lower values are observed in the semi-arid (0.2 ≤ P/PET < 0.5) and the dry sub-humid (0.5 

≤ P/PET < 0.65) regions, which are mainly located in the western and midwestern United States (Fig. 7e-h). There are low 

NSE scores in the watersheds where runoff is unusually under-estimated or over-estimated (Fig. 7i-l), especially in the 

western United States.  
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 310 

Figure 7. Spatial distribution of the skill scores of the reconstructed time-series runoff. 

We classified the GRDC data into nine geographic regions (Fig. 1) and further evaluated the performance of PwM in 

each sub-region individually. In general, the simulated time-series runoff is consistent with the time-series observations 

(Fig. 8-9), except in the western United States, where runoff was consistently underestimated (Fig. 8a). Spatially, there is 

an underestimation of runoff in sub-regions like the western United States (Fig. 8a) and high latitudes in North America 315 

(Fig. 8f). The runoff underestimation is more severe in the arid areas of the western United States (Fig. 9a) than in the 

relatively wet areas of northwest North America (Fig. 9f). The reconstructed time-series runoff in the Milk River watershed 

(GRDC station number: 4220501) and Near Lethbridge watershed (GRDC station number: 4213111) both show an 

underestimation of annual runoff in arid areas. The Milk River and Near Lethbridge are two adjacent watersheds with 

similar drainage areas located on the border of the United States and Canada. However, the underestimation is more serious 320 

in the Milk River watershed (RelBIAS=-0.32, annual mean P/PET=0.52) than in the Near Lethbridge watershed 

(RelBIAS=-0.27, annual mean P/PET=0.55). Interestingly, the spatial pattern of runoff underestimation almost coincides 

with that of the glaciers. Therefore, we considered that glacial meltwater might be the probable cause of runoff 

underestimation in glacier-covered areas (Li et al., 2021), where glacial snowmelt plays a more important role as a water 

input in arid regions than in wet ones. Therefore, the underestimation of runoff in the western United States is greater than 325 
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in northwest North America. Temporally, the runoff was mostly underestimated by PwM in the year 2011, when the world 

experienced abnormally high temperatures (Frölicher et al., 2018; NOAANCEI, 2011) and glacier melting was thus 

accelerated and increased runoff (Du et al., 2022; Liu et al., 2022a).  

 

 330 

Figure 8. Observed time-series runoff versus reconstructed time-series runoff. Nine geographic sub-regions were in Fig. 1: North 

America ((a) west, (b) southwest, (c) midwest, (d) northeast, (e) southeast, (f) except of the USA), (g) South America, (h) Africa, and (i) 

Europe. 
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Figure 9. Scatterplots between observed annual mean runoff and reconstructed annual mean runoff. Nine geographic sub-regions were 335 

in Fig. 1: North America ((a) west, (b) southwest, (c) midwest, (d) northeast, (e) southeast, (f) except of the USA), (g) South America, 

(h) Africa, and (i) Europe. 

 

In this paper, we selected the new Fu’s equation and developed a universal framework for estimating Pw.  Our results 

show that, to a large extent, the Pw in Budyko equation can be well estimated by the PwM using only soil moisture and 340 

fractional vegetation cover parameters. This indicates that soil moisture and fractional vegetation cover strongly control 

the water balance of watersheds (Gan et al., 2021; Chen and Sivapalan, 2020; Yang et al., 2009; Wang et al., 2021). The 

better performance of PwM than non_PwM supports our hypothesis that watersheds with similar climatic, hydrologic, and 

watershed-related characteristics have consistent controlling factors of Pw in the Budyko Framework, and suggest that the 

classification of watersheds can reduce uncertainty and improve the accuracy of Pw and runoff predictions. 345 
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6 Conclusion 

This study developed a new framework for estimating the Pw in the Budyko framework for watersheds in similar 

environments based on the principle of hydrologically similar groups. The proposed method not only represented runoff 

observations in 366 watersheds from published literature but also reconstructed the time-series runoff in 545 GRDC stations. 

The findings indicated that Pw is closely related to SM and FVC, and the relationship varies across specific hydrologically 350 

similar groups. However, due to the complexity of hydrological processes, the new framework could not fully account for 

the impacts of all other factors, which might result in an underestimation of runoff in regions with glaciers or under climates 

with temperature anomalies. Overall, our findings lay a sound basis for estimating Pw in the Budyko framework, provide 

references for calibrating hydrological models, and will be helpful in improving global runoff estimations. 
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