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Abstract. The Budyko framework is a simple but effective tool for watershed water balance estimation. 

Accurate estimation of the watershed characteristic parameter (Pw) is critical to accurate water balance 

simulations using the Budyko framework. However, there is no universal quantification criterion for the 

Pw because of the complex interactions between hydrologic, climatic, and watershed characteristic 15 

factors at global scales. Therefore, this research introduced the hydrologically similar groups principle 

into the Budyko framework and defined the criteria for quantifying Pw in similar environments. We 

classified global watersheds into six groups based on watershed attributes, including climate, soil 

moisture, and vegetation, and identified the controlling factors of the Pw in each hydrologically similar 

group. Our results show that the Pw is closely related to soil moisture (SM) and the power function 20 

gradually changes from positive to negative as soil moisture increases. The relationship between the Pw 

and fractional vegetation cover (FVC) can be described with different linear equations in different 

hydrologic similarity groups, except in the group with no strong seasonality and moist soils. Based on 

these relationships, a model for estimating the Pw (PwM) was established with multiple non-linear 

regression methods between the Pw and its controlling factors  (SM and FVC). Then, we used 25 

bootstrapping and runoff reconstruction methods to verify the usability of PwM. The validation results 

illustrate that PwM overall presents a satisfactory performance through bootstrapping (R2 = 0.63) and 

runoff reconstruction (R2 = 0.89). Results show that the hydrologically similar groups method can 

quantify the Pw and the improved Budyko framework can aptly simulate global runoff, especially in 
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humid watersheds. This study lays the basis for explaining the Pw in the Budyko framework and 30 

improves the applicability of the Budyko framework for estimating global runoff. 

1 Introduction 

There has been an increasing interest in estimating the water balance with the Budyko framework 

(Budyko, 1974) because it is a simple and effective tool, unlike process-based models, which typically 

require a large number of parameters (Caracciolo et al., 2018; Lei et al., 2014). The Budyko framework 35 

has been used for assessing linkages and feedbacks between climate forcing and land surface 

characteristics on water and energy cycles (Zhang et al., 2001; Milly and Shmakin, 2002; Li et al., 2013; 

Xu et al., 2013), prompting a great deal of empirical, theoretical, and process-based studies (Chen and 

Sivapalan, 2020; Roderick and Farquhar, 2011; Rau et al., 2018; Goswami and Goyal, 2022). The 

Budyko framework is a top-down approach relating a catchment’s long-term evaporative ratio (ratio 40 

between actual evapotranspiration and precipitation) to its aridity index (ratio between potential 

evapotranspiration and precipitation) and is rooted on a firm physical basis (Vora and Singh, 2021; 

Sivapalan, 2003; Wang and Tang, 2014). 

The original Budyko equation assumes that evapotranspiration is mainly controlled by precipitation 

(representing the availability of water) and potential evapotranspiration (representing the availability of 45 

energy) (Budyko, 1974; Wang et al., 2022). Despite its solid performance, the original Budyko equation 

still produces a bias between modeled and measured evapotranspiration or runoff  because it does not 

consider the effects of watershed characteristics other than climatic conditions on water balance (Kim 

and Chun, 2021; Zhang et al., 2001). As a result, hydrologists have invested considerable efforts to 

improve model performance by introducing parameters related to watershed characteristics into the 50 

original Budyko equation. Some of the introduced parametric equations include the Fu (Fu, 1981), Zhang 

(Zhang et al., 2001), Choudhury-Yang (Yang et al., 2008), and Wang-Tang equations (Wang and Tang, 

2014). 

Table 1. Parametric Budyko-type formulations 

Reference Formulation 

Budyko (1974) 
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Fu (1981) 

 

Zhang et al. (2001) 

 

Yang et al. (2008) 

 

Wang and Tang (2014) 

 

 55 

These parametric equations have somewhat improved the estimation performance by taking into 

account the influence of watershed characteristics and thus have better estimation performance (Fu, 1981; 

Liu and Liang, 2015; Guan et al., 2022; Yang et al., 2008). Along with the widely used parametric 

equations, there has been a growing importance placed on research on the watershed characteristic 

parameter (Pw) as its accurate estimation is a prerequisite for the accurate simulation of 60 

evapotranspiration or runoff using the Budyko framework (Wang et al., 2022; Yao et al., 2017; Guo et 

al., 2019; Yu et al., 2021). Although introducing Pw improved the Budyko-type model performance, 

most studies failed to give a specific criterion for quantifying its value. While there is agreement that the 

Pw represents the integrated effects of various environmental factors (Wang et al., 2022; Liu et al., 2022; 

Yu et al., 2021; Gan et al., 2021), opinions differ as to what factors and effects should relate to the Pw. 65 

For instance, whether the Pw within the Budyko framework is controlled by watershed vegetation has 

been much debated. Some researchers advocated that vegetation plays a crucial role in the Pw, holding 

that there is a positive linear relationship between vegetation and the Pw (Ning et al., 2017; Zhang et al., 

2018; Zhang et al., 2001). Other scholars have argued against vegetation having a strong correlation with 

the Pw, suggesting that most regions or some special watersheds show no significant correlation between 70 

vegetation indices and Pw (Liu et al., 2021; Li et al., 2013). Although many studies have researched the 

relationship between the Pw and various watershed characteristics factors, they have shown contradictory 

results.  
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In fact, the relationships and interactions among hydrologic, climatic, and watershed characteristic 

factors are complicated by the great heterogeneity across space (Gao et al., 2018; Gan et al., 2021). 75 

Numerous studies have shown that the roles of climate and watershed characteristic factors on 

hydrological characteristics vary in different climatic regions (Li and Sivapalan, 2014; Trancoso et al., 

2017; Singh et al., 2014). Therefore, classifying watersheds into hydrologically similar groups is essential 

for exploring the effect of watershed characteristics on hydrology and interpreting the physical meaning 

of the Pw within the Budyko framework. However, to date, relatively little research has been conducted 80 

on classifying watersheds based on the highly variable climate-Pw relationships in the Budyko 

framework. This may be an important reason for the contradictory research results on the Pw. 

The purpose of this study was to investigate what factors and effects relate to the Pw based on the 

classification of hydrologically similar groups within the Budyko framework and develop a model for 

estimating the Pw (PwM) to simulate global runoff. We collected 726 hydrological data from globally 85 

published datasets and classified these watersheds into hydrologically homogenous regions applying the 

Decision Tree Regressor to measured watershed attributes. Then, we identified the controlling factors of 

the Pw from various environmental factors in each hydrologically similar group. Based on the 

relationship between the Pw and its controlling factors, the PwM was set up by multiple non-linear 

regression methods. This study highlights the need to account for the interactions among hydrologic, 90 

climatic, and watershed characteristic factors for explaining the Pw in the Budyko framework. 

2 Data 

2.1 Modeling data 

Global hydrological data, including runoff (R) and corresponding precipitation (PRE), were 

collected from globally published datasets (726 samples listed in Supplementary Data 1, Fig. 1). Potential 95 

evapotranspiration (PET) data were downloaded from version 4.05 of the CRU TS (Climatic Research 

Unit gridded Time Series) climate dataset (https://doi.org/10.6084/m9.figshare.11980500), which is 

produced by the CRU at the University of East Anglia. For consistency, we used PET values extracted 

from the CRU TS dataset of all watersheds listed in Supplementary Data 1, even for studies with PET 

values reported. 100 
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Figure 1. Location of the observation sites for modeling (green dots) (n = 726) and the GRDC (Global Runoff Data 

Centre) sites (orange triangles) (n = 545) for validation. Background colors represent P/PET. 

 
The datasets of other watershed characteristic factors were extracted from remote sensing data. All 105 

datasets were aggregated at the same spatial resolution (0.5 degrees). The sources of datasets are 

summarized in Table 2. 

Table 2. Data sources for watershed characteristic factors 

Param
eter Full name Data source/version Spatial/temporal 

resolution Reference 

SM Soil moisture 
15cm 

GLDAS Noah Land 
Surface Model L4 0.5°/monthly Rodell et al. (2004) 

FVC Fractional 
vegetation cover GLASS FVC V4 0.5°/monthly Liang et al. (2021) 

SI Seasonality Index CRU TS dataset version 
4.03 

0.5/ multi-year 
average 

Walsh and Lawler 
(1981);Feng (2019) 

2.2 Validation data 

Observed river discharge data for validation were obtained from the Global Runoff Data Centre 110 

(GRDC, https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html). The PET and 

PRE values corresponding to selected sites of GRDC were extracted from remote sensing data. PET 

values were extracted from the CRU TS dataset. PRE values were extracted from Global Precipitation 

Climatology Centre (GPCC) Precipitation Total Full V2018 (0.5×0.5) data provided by the 

NOAA/OAR/ESRL PSL, Boulder, Colorado, USA (https://psl.noaa.gov/data/gridded/data.gpcc.html).  115 
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3 Methods 

3.1 Budyko framework 

This study employed the new Fu’s formula (Zhou et al., 2015), a Budyko-type equation derived 

from Fu’s equation, to analyze Pw in the Budyko framework. Within the new Fu’s model, the ratio (R/P) 

of annual water yield (R) to precipitation (P) is determined by two variables: an aridity index 120 

(precipitation/potential evapotranspiration; P/PET), and Pw (m). The formula is expressed as: 

𝑅𝑅
𝑃𝑃

= �1 + �
𝑃𝑃
𝑃𝑃𝐸𝐸𝐸𝐸

�
−𝑚𝑚

�

1
𝑚𝑚
− �

𝑃𝑃
𝑃𝑃𝐸𝐸𝐸𝐸

�
−1

                                                                                                                  (1)  

where m is a dimensionless integration constant varying between 1 and infinity. 

Based on the randomly selected 726 samples from global hydrological studies, we derived the Pw 

(m) values for each sample. 125 

3.2 Classification of watersheds into hydrologically similar groups using watershed attributes 

A hydrologically similar group (hydrologically homogeneous region) is defined as a group of 

drainage basins whose hydrologic responses are similar (Kanishka and Eldho, 2020). Therefore, the 

relationship between Pw and a variable does not change substantially in a hydrologically similar group. 

However, when that relationship between Pw and the variable changes as certain boundaries are crossed, 130 

the corresponding watersheds are divided into different groups by these boundaries. 

Three watershed characteristic variables — soil moisture (SM), rainfall seasonality index (SI), and 

fractional vegetation cover (FVC) — were selected for classification. For SM and FVC, the bounded 

intervals of the variables were given by the Decision Tree Regressor (DTR). The locations of splits in 

DTR were used as dividing intervals. The Scikit-learn library (Pedregosa et al., 2011) in Python provides 135 

the DTR used in this study. Based on Walsh and Lawler (1981), we divided the SI into three parts (SI≤0.4, 

0.4<SI≤0.8, SI>0.8) to represent three hydroclimatic seasonalities (precipitation spread throughout the 

year, marked seasonality with a short drier season, extreme seasonality with a long drier season). 

Six hydrologically similar groups are detailed in Table 3. 

Table 3. Classification of watersheds 140 

Soil 
moisture 
classifier 

Water soil 
regime 

Seasonality 
index 

classifier 

Seasonality 
precipitation 

regime 

Fractional 
vegetation cover 

classifier 

vegetation cover 
regime 

Name 
of the 
group 

SM≤20 Dry soil —— —— —— —— IND 
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SM>20 Wet soil 

SI ≤ 0.4 Seasonless —— —— INWP 

0.4 < SI ≤ 
0.8 

Marked 
seasonality 

FVC ≤ 0.2 Low density INWMS 
0.2 < FVC ≤ 0.5 Middle density INWMM 

FVC > 0.5 High density INWML 

SI > 0.8 Extreme 
seasonality  ——  INWE 

3.3 Setup of PwM 

We performed regression analysis between the Pw and watershed characteristic variables to 

determine the PwM. The variables whose R2 of the regression model was greater than 0.1 were selected 

as input variables. Then we used a polynomial as the basic model form. Each term of the polynomial 

depends on the regression model of the corresponding variable and the Pw. For each hydrological group, 145 

the PwM is modeled as a function as: 

𝑚𝑚 =  �𝛽𝛽𝑖𝑖 × 𝑓𝑓(𝑒𝑒𝑖𝑖)                                                                                                                                               (2) 

where m represents the value of the Pw; xi represents the input variables; f corresponds to the function 

derived from the regression of m on xi; βi represents the empirical coefficient fitted by multiple non-linear 

regression (MNR). 150 

3.4 Model validation 

3.4.1 Performance metrics 

Three performance metrics were used to assess the accuracy of the PwM. The term N is the number 

of observations, i is the ith value to be simulated, and ys and yo are the simulated and observed series, 

respectively. 155 

The relative bias (RelBIAS) represents systematic errors. A positive (negative) value indicates a 

general overestimation (underestimation), and the perfect agreement is achieved when RelBIAS is equal 

to zero. RelBIAS is defined as: 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚(𝑦𝑦𝑠𝑠 − 𝑦𝑦𝑜𝑜)
𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚(𝑦𝑦𝑜𝑜)

                                                                                                                                 (3) 

The coefficient of determination (R2) assesses how strong the linear relationship is between the 160 

simulated and the observed series. It is represented as a value between 0.0 and 1.0. The optimal value is 

1 and indicates a perfect fit. It is defined as: 

𝑅𝑅2 =  �
∑ (𝑦𝑦𝑜𝑜𝑖𝑖 − 𝑦𝑦�𝑜𝑜)(𝑦𝑦𝑠𝑠𝑖𝑖 − 𝑦𝑦�𝑠𝑠)𝑁𝑁
𝑖𝑖=1

[∑ (𝑦𝑦𝑜𝑜𝑖𝑖 − 𝑦𝑦�𝑜𝑜)2𝑁𝑁
𝑖𝑖=1 ]0.5[∑ (𝑦𝑦𝑠𝑠𝑖𝑖 − 𝑦𝑦�𝑠𝑠)2𝑁𝑁

𝑖𝑖=1 ]0.5�                                                                                             (4) 
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The Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), a goodness-of-fit index, is usually 

used to assess the accuracy of the model. When NSE = 1, the model predictions perfectly match the 165 

observed data. A value lower than 0 indicates that the observed mean is a better predictor than the model. 

It is defined as: 

𝑁𝑁𝑅𝑅𝐸𝐸 = 1 −
∑ (𝑦𝑦𝑠𝑠𝑖𝑖 − 𝑦𝑦𝑜𝑜𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑜𝑜𝑖𝑖 − 𝑦𝑦�𝑜𝑜)2𝑁𝑁
𝑖𝑖=1

                                                                                                                                 (5) 

3.4.2 Bootstrapping validation 

The available data were split into training and test sets for the purpose of bootstrapping validation. 170 

A subset of 60% of the data was randomly selected without replacement for training PwM. The trained 

PwM was used to estimate the remaining 40% of the runoff data set, and then the performance metrics 

were used to evaluate the difference between the estimated and observed values. The process was 

repeated randomly 10000 times. We documented the model skill for each validation and showed them in 

a violin plot. 175 

3.4.3 Runoff reconstruction validation 

(1) The runoff reconstruction by using the PwM 

To assess the accuracy of the PwM, runoff reconstructions were generated using the Budyko 

framework in which the value of Pw is derived from the PwM simulation. 

(2) Selection of GRDC stations and conversion of flow volumes to runoff rates 180 

To evaluate the estimates of runoff reconstructed by the PwM, only the GRDC stations meeting the 

following criteria were selected for further analysis. 

1) The time series has observations within the period 2000–2016 (when corresponding  SM, FVC, 

and SI were available). 

2) The drainage area reports can be found in the original data. This criterion is designed to provide 185 

area parameters for converting original flow volumes to runoff rates. 

3) The geographical coordinates reports can be found in the original data and the shape of the 

drainage area can be found in the GRDC Watershed Boundaries (2011). This choice was made to retrieve 

the geographic location of the station and then extract the corresponding required values from remote 

sensing data. 190 
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4) Time series with unrealistic runoff rates are removed. It is generally agreed that in the Budyko 

framework, runoff is maximum (minimum) when m = 1 (10). Observations out of range are considered 

unrealistic. This criterion has been adopted to eliminate observations that are physically extremely 

unlikely. 

Based on these criteria, 545 GRDC stations were selected for validation (Fig. 1). 195 

Then, the flow volumes of selected sites were converted to runoff rates. The average year of 

catchment runoff can equal the annual streamflow measured at the outlet divided by the watershed area, 

provided other water losses are minimal (Ghiggi et al., 2019). Thus, runoff rates are obtained as: 

𝑅𝑅(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑚𝑚𝑎𝑎𝑎𝑎𝑒𝑒(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)

𝑅𝑅𝑎𝑎𝑒𝑒𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
×

1
1000

                                                                                                                (6)  

where R(GRDC) is the GRDC annual runoff rate (mm yr-1); Discharge (GRDC) is the GRDC annual flow 200 

volume (m3 yr-1); Area (GRDC) is the drainage area (km2); 1000 is the conversion factor. 

4 Results 

4.1 Model for estimating Pw 

Figure 2 shows the results of the regression between m and watershed characteristic variables for 

the studied watersheds within new Fu’s formula and helps assess the relationship between the Pw and 205 

watershed characteristic variables.  
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Figure 2. Regression between m with (a-b) SM (soil moisture) and (c-h) FVC (fractional vegetation cover). 
Symbol colors represent dry (red) and wet (blue) soil moisture. Symbol shapes indicate seasonless (square), marked 

seasonality (triangle), and extreme seasonality (diamond). The equation in red indicates that the input parameter is 210 

rejected in the corresponding group. The groups are defined in Table 3. 

We found that the relationship between m and SM shows a positive power function for SM values 

from 0 to 20 (Fig. 2a), while there is a negative power function with SM values from 20 to 100 (Fig. 2b). 

The relationship between m and FVC shows different situations in different groups (Fig. 2c-h). The 

relationship between m and FVC can be described as a positive linear equation in the IND group, the 215 

INWSS group, and the INWE group. The relationship can be described as a negative linear equation in the 

INWMM group and the INWML group. However, in the INWP group, the relationship between m and FVC 

is not significant. Therefore, FVC was rejected as the input variable in the INWP group. 

Finally, the developed PwM is given by:  

𝒎𝒎 =  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝟎𝟎.𝟗𝟗𝟗𝟗 × 𝑺𝑺𝑺𝑺𝟎𝟎.𝟑𝟑𝟑𝟑  +  𝟗𝟗.𝟒𝟒𝟑𝟑 × 𝑭𝑭𝑭𝑭𝑭𝑭                                                                                          (𝑅𝑅𝑁𝑁𝐺𝐺,𝑅𝑅𝑆𝑆 ≤ 20)
𝟐𝟐𝟑𝟑.𝟕𝟕𝟐𝟐 × 𝑺𝑺𝑺𝑺−𝟎𝟎.𝟕𝟕𝟕𝟕                                                                                                   (𝑅𝑅𝑁𝑁𝑊𝑊𝑊𝑊, 𝑅𝑅𝑆𝑆 > 20,𝑅𝑅𝑅𝑅 ≤ 0.4)
𝟑𝟑𝟗𝟗.𝟎𝟎𝟑𝟑 ×  𝑺𝑺𝑺𝑺−𝟎𝟎.𝟗𝟗𝟕𝟕  + 𝟗𝟗𝟗𝟗.𝟑𝟑𝟐𝟐 ×  𝑭𝑭𝑭𝑭𝑭𝑭                         (𝑅𝑅𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊,𝑅𝑅𝑆𝑆 > 20, 0.4 < 𝑅𝑅𝑅𝑅 ≤ 0.8,𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 0.2)
𝟑𝟑𝟑𝟑.𝟕𝟕𝟕𝟕 ×  𝑺𝑺𝑺𝑺−𝟎𝟎.𝟕𝟕𝟗𝟗  −  𝟗𝟗.𝟒𝟒𝟕𝟕 ×  𝑭𝑭𝑭𝑭𝑭𝑭             (𝑅𝑅𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊,𝑅𝑅𝑆𝑆 > 20, 0.4 < 𝑅𝑅𝑅𝑅 ≤ 0.8, 0.2 <  𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 0.5)
𝟐𝟐𝟎𝟎.𝟒𝟒𝟗𝟗 ×  𝑺𝑺𝑺𝑺−𝟎𝟎.𝟒𝟒𝟐𝟐  −  𝟒𝟒.𝟐𝟐𝟐𝟐𝟗𝟗 ×  𝑭𝑭𝑭𝑭𝑭𝑭                        (𝑅𝑅𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊, 𝑅𝑅𝑆𝑆 > 20, 0.4 < 𝑅𝑅𝑅𝑅 ≤ 0.8,𝐹𝐹𝐹𝐹𝐹𝐹 > 0.5)
𝟑𝟑𝟎𝟎𝟕𝟕𝟑𝟑 ×  𝑺𝑺𝑺𝑺−𝟐𝟐.𝟒𝟒𝟑𝟑 + 𝟑𝟑.𝟓𝟓𝟑𝟑 ×  𝑭𝑭𝑭𝑭𝑭𝑭                                                                  (𝑅𝑅𝑁𝑁𝑊𝑊𝑊𝑊 ,𝑅𝑅𝑆𝑆 > 20,𝑅𝑅𝑅𝑅 > 0.8)

 220 
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where m is the value of Pw; SM is soil moisture (kg m-2); FVC is fractional vegetation cover (m2 m-2).  

4.2 Model validation 

Figure 3 helps evaluate the performance of PwM by showing the results of the global bootstrapping 

validation. Overall, the PwM performs well, as indicated by satisfactory skill scores (Fig. 3a). On average, 

the ensemble RelBIAS of the m simulated by the model is slightly negative, indicating a weak tendency 225 

to underestimate the values of Pw, but the maximum relative bias is less than 0.1. The interquartile range 

of R2 for the PwM is from 0.35 to 0.40, with a median of 0.37. The scores of R2 are higher than 0.3 in 

more than 95% of the global bootstrapping events. The global NSE skill scores show that in most 

bootstrapping events, the estimation error estimated variance for the PwM is less than the variance of the 

observations (NSE > 0), with the interquartile range from 0.33 to 0.39. Figure 3b compares the published 230 

R/P observations against those simulated by the PwM. The R2 between the observed and the simulated 

values is higher than 0.63. The model performs well in arid and semi-arid regions. The main 

underestimated regions are the dry sub-humid regions and humid regions with Aridity Index values less 

than 1. In terms of the distribution of simulated and observed differences (Fig. 3c), the global R/P 

simulations are dominated by weak underestimations, of which larger underestimations occurred in 235 

western America and northwest China. 
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Figure 3. Global accuracy evaluation of the PwM. (a) Violin plot of skill scores for global bootstrapping. A violin 

represents the distribution of the considered skill scores of the bootstrapping validation. The white dot on the violin 

plot represents the median. The black bar in the center of the violin represents the interquartile range. Colors 240 

distinguish three performance metrics: Red (RelBIAS), yellow (R2) and blue (NSE). (b) Scatter plots between the 

R/P simulated by PwM and P/PET (yellow) and those from published data and P/PET (green). (c) Difference between 

the R/P values from the PmM and the published observations. 

The skill scores of six intervals (Fig. 4) show more variability. Though the overall RelBIAS of the 

PwM is negative, the PwM tends to overestimate values of Pw in the INWP group (the median of RelBIAS 245 

is positive). R2 scores vary widely between groups. The INWMS group scores highest in R2, with a median 

of 0.73, and the lowest in the INWP group with a median of 0.16. The grouped NSE scores show more 

uncertainty than the overall, especially in the INWMS, although the value of the lower adjacent larger than 

zero indicates more skill than the mean of observations, and the outliers are far below zero. The low NSE 

value may be due to the low number of watersheds sampled in this interval, which increased the 250 

inconclusive results.  
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Figure 4. Accuracy evaluation of PwM at bootstrapped works for (a) IND, (b) INWP, (c) INWMS, (d) INWMM, (e) 

INWML, and (f) INWE. 

4.3 Runoff reconstruction validation 255 

The runoff reconstruction results are shown in Fig. 5. The global annual runoff estimated by 

the PwM ranges from 229.84 to 320.34 mm, which is slightly lower than the observed range of 

GRDC (265.82 ~ 345.50 mm yr-1) (Fig. 5a). Overall, the temporal evolution of runoff is captured 

well in the period 2000-2010. However, since 2011, the consistency between reconstructed runoff 

and GRDC runoff has decreased, and the reconstruction results are constantly lower than the GRDC 260 

observations. Influenced by the underestimations in 2011-2016, the reconstructed global long-term 

mean runoff also shows a slight underestimation (Fig. 5b). The spatial patterns of long-term mean 

runoff are shown in Fig. 5c. The global estimated runoff shows lower values in the west of the 

United States and south of Africa, and higher values in the northeastern United States and the 

European Mediterranean area. Overall, the reconstructed spatial patterns are compatible with other 265 

reported findings (Ghiggi et al., 2019). 
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Figure 5. Runoff reconstruction results based on selected GRDC stations. 

Figure 6 displays the considered skill scores of the reconstructed runoff obtained from each 

watershed of the selected GRDC ensemble from 2000-2016. It can be seen that the result of 270 

reconstruction with PwM, in general, is satisfactory, as indicated by the RelBIAS close to 0. The main 

area of underestimation is in the high mountains of the western United States. In the lower part of the 

runoff rate distribution, the runoff tends to be underestimated. Humid regions such as the northeastern 

United States and the European Mediterranean area have quite high R2 values, while lower values are 

observed in semi-arid and dry sub-humid regions, which are mainly found in the western and midwestern 275 

United States. The low NSE scores tend to correspond to the watersheds where runoff is unusually under 

or over-estimated. Especially in the western United States, the model performance indicated by NSE 

decreases when runoff is underestimated.  
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Figure 6. Spatial distribution of the skill scores of the reconstructed runoff. 280 

We divided the world into nine geographic regions (Fig. 1) to further evaluate the performance of 

PwM on a global scale. Figure 7 shows the observational agreement of runoff time series and long-term 

mean for nine geographic regions. The temporal evolution of runoff is, in general, well captured, except 

in the western United States, where runoff was consistently underestimated. In addition, the runoff 

estimated by PwM is underestimated in 2011 to a greater extent than in other years. The regions where 285 

runoff was underestimated include the western United States and high latitudes in North America, and 

the runoff underestimation is more severe in the arid western United States than in the relatively wet 

northwest of North America. We considered that glacial meltwater might be the main cause of runoff 

underestimation. On the one hand, the spatial pattern of runoff underestimation almost coincides with 

that of glaciers. In glacier-covered areas, glacial snowmelt may play a more important role as a water 290 

input in arid regions than in wet ones. Therefore, the underestimation of runoff in the western United 

States is greater than in the northwest of North America. On the other hand, 2011 was a year in which 

the world generally experienced record high temperatures. The abnormal temperature might have 

accelerated glacier melting and altered watersheds' natural runoff yielding. The widespread 

underestimation in 2011 is consistent with the effect of glaciers. 295 
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Figure 7. Observed versus reconstructed time series (line plots) and long-term mean (scatter plots) runoff values. 

The globe was divided into nine geographic regions (Fig. 1): North America ((a) west, (b) southwest, (c) midwest, 

(d) northeast, (e) southeast, (f) except of the USA), (g) South America, (h) Africa, and (i) Europe. 

5 Discussion 300 

Zhou et al. (2015) provided a Budyko equation derived from Fu’s equation and confirmed that this 

is a valid framework for studying hydrological responses. However, the physical meaning of parameter 

m, a Pw in the Budyko equation, has remained unknown. In this paper, we selected the new Fu’s equation 

and developed PwM, a universal framework for estimating Pw, and exploring its physical meaning. The 

results show that, to a large extent, PwM can estimate Pw with soil moisture and fractional vegetation. 305 

As important hydrological watershed characteristics, soil moisture and fractional vegetation cover 

strongly control the Pw and affect runoff by the Budyko framework.  

The universal framework PwM for the derivation of Pw presented in the paper is built on 

empirically-based power relationships between Pw and soil moisture and linear relationships between 

Pw and fractional vegetation cover. Concering the power relationship between Pw and soil moisture, our 310 

findings seem to confirm those of Chen and Sivapalan (2020). However, the observed power relationship 

showed an evident soil moisture threshold—a positive power function appeared in the interval of 0 to 20 

kg m-2 (Fig. 2a), while a negative power function was more appropriate from 20 to 100 kg m-2 (Fig. 2b). 
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The possible reason for the threshold may be that transpiration increased as the relative extractable soil 

water increased until reaching a soil moisture threshold value. Once the soil moisture threshold was 315 

exceeded, the acceleration of transpiration from soil moisture slowed down, and excess soil moisture 

provided conditions for high runoff ratios. These findings are largely in line with previous studies 

(Havranek and Benecke, 1978; Jiao et al., 2019; Cavanaugh et al., 2011; Ducharne et al., 1998), although 

the threshold of soil moisture varied in these studies (e.g., the results of Ducharne, Cavanaugh and Jiao 

show that the threshold value is 0.25, 0.10 and 0.20 m3 m-3, respectively).  320 

Our study found a close linear relationship between Pw and fractional vegetation cover, and a similar 

linear relationship has been reported in previous studies. For example, Li et al. (2013) found that the 

spatial pattern of the Pw was linearly correlated with the spatial pattern of vegetation cover fraction. 

However, these reports were mostly from studies in large watersheds or non-humid watersheds. At the 

global scale, including small and wet watersheds, vegetation was considered weakly correlated with the 325 

watershed characteristic parameter of the Budyko framework (Liu et al., 2021). The classification of 

watersheds might provide some insights for explaining this paradox. The findings in this paper show that 

there were different relationships between fractional vegetation cover and Pw in different hydrological 

similarity groups. In dry soil watersheds (IND), the relationship between Pw and fractional vegetation 

cover followed a positive linear function. This finding was consistent with the majority view that 330 

vegetation transpiration increases (reflected by the increased Pw) with increasing vegetation in regions 

with insufficient soil moisture (Wang et al., 2012; Yao et al., 2016; Schwarzel et al., 2020). In wet soil 

watersheds, the relationship between vegetation and Pw also depends on the seasonality of precipitation 

and the size of vegetation: the relationship between the Pw and FVC could be described as a positive 

linear equation in the INWSS and the INWE groups.  In contrast, a negative linear equation is needed in the 335 

INWMM and INWML groups. This confirms that climate, soil moisture, and vegetation are not independent 

factors affecting the water balance, and the physiological characteristics of vegetation greatly depend on 

climate and soil moisture (Gan et al., 2021; Yang et al., 2009). When vegetation was coupled with other 

catchment properties, the watershed characteristic parameter exhibited greater variations (Gan et al., 

2021). Therefore, the classification of watersheds is crucial and supports the hypothesis that watersheds 340 

in the same class would function in a similar climate, soil moisture, and vegetation environment 

(Kanishka and Eldho, 2017; Sinha et al., 2019). The relationship between watershed characteristic 

variables and Pw may be confused without watershed classification.  
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Although the validation showed that the overall performance of PwM was satisfactory, we noted 

that the accuracy of the runoff simulated by the Budyko framework in some regions was likely not 345 

optimal. Because the Pw was only forced with soil moisture, seasonality index and fractional vegetation 

cover, the estimated runoff could not clearly account for the effects of temperature anomalies and excess 

glacial meltwater on the hydrological regimes. This may be one of the reasons for the severe 

underestimation of runoff in western North America and southern Europe. The time series and spatial 

distribution results of runoff validation also point to these reasons. However, the spatial resolution of the 350 

considered remote sensing data did not allow to capture the variability of snowmelt volume governed by 

the unusually high temperatures. Perhaps future research could examine the relationship between 

watershed characteristic parameters and glacier melting caused by temperature anomalies and further 

improve the accuracy of runoff simulation based on the Budyko framework. 

6 Conclusions  355 

This research developed PwM, a universal model for estimating the Pw and exploring its physical 

meaning. The development of PwM using global hydrological data collected from globally published 

datasets and validated using GRDC observational data provides confidence in PwM. The results show 

that the overall performance of PwM is satisfactory. Moreover, the findings indicated that the Pw is 

closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific 360 

hydrologic similarity groups.  

Due to the complexity of hydrological processes, the PwM could not fully account for all the 

dynamic impacts of watershed characteristics, such as temperature anomalies and excess glacial 

meltwater, which might result in an underestimation of runoff in regions with glaciers. Therefore, the 

interactions of climate and glaciers should be explicitly incorporated into a future Budyko framework. 365 

To achieve this, detailed hydrological and glacial melt datasets at fine spatial and temporal scales are 

also needed. 

The positive findings lay a sound basis for explaining the Pw in the Budyko framework. They could 

also be applied to improve global runoff estimations. We hope it will improve water balance estimates, 

pave the way for future hydrology research, and help consolidate water resources management studies. 370 
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