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Response to Reviewer#2 

 

General Comments: 

This manuscript proposes a framework to estimate the parameter of a parametric Budyko-type equation. The 

originality compared to other studies on the same issue is the preliminary classification of the catchments. 

In general, I enjoyed reading the paper and some results are very interesting, e.g., the ambiguous role of soil 

moisture on the evaporative ratio. There are two major comments that I think the authors should respond. 

Response:  

Thank you for your positive comments. Your suggestions are very useful for us to improve our research. We 

revised our manuscript according to your comments. The changes in our manuscript are underlined with red. We 

believe our manuscript improved a lot after the modification. Please see the response below. 

 

Major Comments of Reviewer 2#: 

Comment 1:  

Some methodological choices are not presented / enough discussed. See the exhaustive list in the minor 

comments below. Some key information is missing, e.g., the time step used for establishing the equations 

between m and vegetation fractions, and the settings of the classifier are not presented, as the output of the 

classification performance. 

Response: 

(1) Reply on the time step 

The time step used in our study is annual. For the collected datasets, the times of observation are discrete and 

discontinuous (listed in Supplement 1). The time range of verification datasets, including the data used for 

reconstructing runoff and the observed runoff data from GRDC, is from 2000 to 2016. 

 

(2) Reply on the classifier 

In the revised manuscript, we further describe the setup and performance of classifier, as follows, 

“Three watershed characteristic variables — surface soil moisture (SM), rainfall seasonality index (SI), and 

fractional vegetation cover (FVC) — were selected for classification. For SM and FVC, the bounded intervals of the 

variables were given by the Decision Tree Regressor (DTR). The locations of splits in DTR were used as dividing 

intervals. The Scikit-learn library (Pedregosa et al., 2011) in Python provides the DTR used in this study. The criterion 

for measuring the quality of the split was set to “poisson” which uses reduction in Poisson deviance to find splits. 

The “random” strategy was used to choose local optimal splitting at each node. The results and performances of DTR 

are shown in Supplement 2. Based on the criteria using by Walsh and Lawler (1981), we divided the SI into three 

parts (SI≤0.4, 0.4<SI≤0.8, SI>0.8) to represent three hydroclimatic seasonality (precipitation spread throughout the 

year, marked seasonality with a short drier season, extreme seasonality with a long drier season). Finally, six 

hydrologically similar groups were classified (Table 3). 

 

 

 

 

 



Table 3. Classification of watersheds 

Soil moisture 

classifier 

Water soil 

regime 

Seasonality 

index classifier 

Seasonality 

precipitation 

regime 

Fractional vegetation 

cover classifier 

vegetation cover 

regime 

Name of 

the group 

SM≤20 Dry soil —— —— —— —— IND 

SM>20 Wet soil 

SI ≤ 0.4 Seasonless —— —— INWP 

0.4 < SI ≤ 0.8 
Marked 

seasonality 

FVC ≤ 0.2 Low density INWMS 

0.2 < FVC ≤ 0.5 Middle density INWMM 

FVC > 0.5 High density INWML 

SI > 0.8 
Extreme 

seasonality  
——  INWE 

” 

 

Comment 2:  

The added value of the classification step is not demonstrated. I suggest the authors compare the performance 

of the model with relationships for each group with the performance of the model when a single relationship 

is used for the whole catchment set. At this stage, the classification provides insights in terms of the physical 

processes but we cannot measure the added value of this refined description in terms of predicted runoff. 

Response: 

Good idea. In our revised manuscript, we have setup a prediction model without the hydrologically similar 

groups (non_PwM) to show the effect of grouping on the PwM. The Cross-validations result of the PwM and 

non_PwM show that the performance of the PwM with the hydrologically similar groups is better and more stable 

than that of the non_PwM. In the revised manuscript, we have added the description and analysis of this part. 

“4.2.2 PwM without the hydrologically similar groups 

For comparison, we estimated Pw without the hydrologically similar groups, defined as non_PwM. The non_PwM is 

as follows: 

𝑛𝑜𝑛_𝑃𝑤 = 𝑎1 × 𝑆𝑀2 + 𝑎2 × 𝑆𝑀 + 𝑏1 × 𝐹𝑉𝐶2 + 𝑏2 × 𝐹𝑉𝐶                                                                                                     (3) 

where non_Pw is the annual value of Pw simulated by non_PwM; SM is annual average value of surface soil moisture (0-

10cm underground); FVC is annual average value of fractional vegetation cover; a1, a2, b1 and b2 represent the empirical 

coefficient fitted by least square method.” 

“5.2 Cross-validations based on data collected from globally published literatures  

The performance of the PwM and non_PwM were cross-validated based on the data collected from globally 

published literatures using the bootstrap sampling method (Fig. 3). On average, the ensemble RelBIAS of the Pw 

simulated by the PwM is slightly negative (Fig. 3a), indicating a weak tendency to underestimate the values of Pw, 

but the maximum relative bias is less than 0.1. The interquartile range of R2 for the PwM is from 0.35 to 0.40, with 

a median of 0.37. The scores of R2 are higher than 0.3 in more than 95% of the bootstrap sampling events. The NSE 

skill scores show that in most bootstrap samplings, the estimation error estimated variance for the PwM is less than 

the variance of the observations (NSE > 0), with the interquartile range from 0.33 to 0.39. In comparison, the 

maximum relative bias of the Pw simulated by the non_PwM is 0.12, the median of R2 is 0.13, and the median of 

NSE is 0.13. Overall, cross validations show that the performance of the PwM with the hydrologically similar groups 

is better and more stable than that of the non_PwM. 



 

Figure 3. Cross-validation results of (a) PwM and (b) non_PwM. A violin represents the distribution of the considered skill scores. The 

white dot on the violin plot represents the median. The black bar in the center of the violin represents the interquartile range. Colors 

distinguish three performance metrics: Red (RelBIAS), yellow (R2) and blue (NSE).” 

 

Minor comments: 

Comment 3:  

l.48: Note that the climate seasonality is not taken into account in basic Budyko-type equations so the sentence 

needs modification, maybe change “climatic conditions” by “mean annual climatic conditions”. 

Response:  

Thank you, according to your comments, we have changed the “climatic conditions” to “mean annual climatic 

conditions”. 

 

Comment 4:  

Table 1: please add a column with the parameter to be calibrated, the analytical role of the parameter in the 

equation (increase/decrease of evaporative ratio with increasing parameter value) and it would be highly 

beneficial to the reader if some information on previous estimation/calibration of these parameters could be 

given in this table. 

Response:  

Thank you. We have added two columns in table 1. One column is used to list the symbols for the watershed 

characteristic parameter (Pw) and their theoretical range, and the other column is used to list the reference values of 

Pw in the previous research. Table 1 in the revised manuscript was modified as follows, 

Table 1. Parametric Budyko-type formulations (Pw - watershed characteristic parameter; ET - actual evaporation, R - runoff, P - 

precipitation, PET - potential evapotranspiration, all in mm yr-1). 

Reference Formulation 
Pw 

 (Theoretical range) 
Reference values of Pw 

Budyko (1974)   0.5 0.5 

Zhang et al. (2001) 

 

w 

(0, ∞) 

Trees – 2.0, 

Plants – 0.5 

𝐸𝑇

𝑃
=  [

𝑃𝐸𝑇

𝑃
tanh (

𝑃𝐸𝑇

𝑃
)

−1

(1 − 𝑒𝑥𝑝(−
𝑃𝐸𝑇

𝑃
))]

0.5

 

𝐸𝑇

𝑃
=

1 + 𝑤
𝑃𝐸𝑇

𝑃

1 + 𝑤
𝑃𝐸𝑇

𝑃
+ (

𝑃𝐸𝑇
𝑃

)−1
 



Turc (1954), 

Mezentsev (1955), 

Choudhury (1999), 

Yang et al. (2008) 

 

n 

(0, ∞) 

Field – 2.6, 

River basins – 1.8 

Wang and Tang 

(2014) 

 

ε 

(0,1) 
0.55 - 0.58 

Tixeront (1964), 

Fu (1981), 

Zhou et al. (2015) 

 m 

(1, ∞) 

Forest – 2.83, 

Shrub – 2.33, 

Grassland or cropland 

– 2.28, 

Mixed land – 2.12 

 

Comment 5:  

l.58-63: At this stage of the manuscript, it is unclear what Pw stands for. Is it an a priori estimation of the 

parameters that are apparent in the equations of Table 1? To make things clearer the column of table 1 

indicating the free parameter could be headed Pw. 

Response:  

Thanks for your question. The Pw is the w in Zhang equations, n in Yang equations, ε in Wang and Tang 

equations, and m in Fu equations. As you suggested, we have added a column for listing the symbol of Pw and their 

theoretical range respectively. The modifications are as follows, 

“As a result, hydrologists have invested considerable efforts to improve model performance by introducing 

parameters related to watershed characteristics (watershed characteristic parameter, Pw) into the original Budyko 

equation. The popular parametric equations are presented in Table 1. 

Table 1. Parametric Budyko-type formulations (Pw - watershed characteristic parameter; ET - actual evaporation, R - runoff, P - 

precipitation, PET - potential evapotranspiration, all in mm yr-1). 

Reference Formulation 
Pw 

 (Theoretical range) 
Reference values of Pw 

Budyko (1974)   0.5 0.5 

Zhang et al. (2001) 

 

w 

(0, ∞) 

Trees – 2.0, 

Plants – 0.5 

Turc (1954), 

Mezentsev (1955), 

Choudhury (1999), 

Yang et al. (2008) 

 

n 

(0, ∞) 

Field – 2.6, 

River basins – 1.8 

Wang and Tang 

(2014) 

 

ε 

(0,1) 
0.55 - 0.58 

𝐸𝑇

𝑃
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𝑃
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𝑛
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𝑃
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1 +
𝑃𝐸𝑇

𝑃
− √(1 +
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𝑃
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Tixeront (1964), 

Fu (1981), 

Zhou et al. (2015) 

 m 

(1, ∞) 

Forest – 2.83, 

Shrub – 2.33, 

Grassland or cropland 

– 2.28, 

Mixed land – 2.12 

 

Comment 6:  

l.67-68: Does it depend on the equation? Since the statement is general and not specific to a given equation, 

this needs more details. 

Response:  

Thanks for your question. These results are based on the parametric Budyko-type formulations. We have 

rewritten this fragment in the revised manuscript, detailing the relationship between the Pw and the watershed 

characteristic factors in previous studies. 

“During the past decades, researchers have done lots of work to quantify the Pw for the accurate simulation of 

evapotranspiration or runoff using the Budyko framework (Wang et al., 2022; Yao et al., 2017; Guo et al., 2019; Yu 

et al., 2021)  and made considerable contributions for improving the estimation of Pw by taking into account the 

influences from watershed characteristics (Fu, 1981; Liu and Liang, 2015; Guan et al., 2022; Yang et al., 2008). 

Although there is agreement that the Pw represents the integrated effects of various environmental factors (Wang et 

al., 2022; Liu et al., 2022b; Yu et al., 2021; Gan et al., 2021), studies still differed greatly as to what factors and effects 

should relate to the Pw and failed to give a general framework for quantifying the Pw. For instance, whether the Pw 

in the Budyko framework is controlled by vegetation or not has been much debated. Ning et al. (2017) found that the 

Pw generally had a positive correlation with vegetation coverage. Zhang et al. (2018) obtained the sensitivity of the 

Pw to changes in LAI by taking a derivative of the Pw function with respect to LAI, implying a crucial role of 

vegetation cover in impacting the Pw. However, some other studies indicated that most regions or watersheds show 

no significant influences of vegetation indices or coverage on Pw (Li et al., 2013; Liu et al., 2021). For example, Li 

et al. (2013) pointed out the variations in the Pw values are not entirely controlled by vegetation coverage in the small 

catchments. Another study from Liu et al. (2021) also found a weak correlation between vegetation leaf area index 

and the Pw. Therefore, more in-depth studies are in need for revisiting the hydrological Basis of Pw in the Budyko 

Framework.” 

 

Comment 7:  

l.72: The term “contradictory” is not appropriate. There is no clear consensus but some results are relatively 

consensual (e.g., positive relationship between Pw and vegetation cover). 

Response:  

Thank you, according to your comments, we have replaced the simple word "contradiction" with the description 

of the results of the previous studies. The details are as follows, 

“During the past decades, researchers have done lots of work to quantify the Pw for the accurate simulation of 

evapotranspiration or runoff using the Budyko framework (Wang et al., 2022; Yao et al., 2017; Guo et al., 2019; Yu 

et al., 2021)  and made considerable contributions for improving the estimation of Pw by taking into account the 

influences from watershed characteristics (Fu, 1981; Liu and Liang, 2015; Guan et al., 2022; Yang et al., 2008). 

Although there is agreement that the Pw represents the integrated effects of various environmental factors (Wang et 

al., 2022; Liu et al., 2022b; Yu et al., 2021; Gan et al., 2021), studies still differed greatly as to what factors and effects 

should relate to the Pw and failed to give a general framework for quantifying the Pw. For instance, whether the Pw 

in the Budyko framework is controlled by vegetation or not has been much debated. Ning et al. (2017) found that the 

Pw generally had a positive correlation with vegetation coverage. Zhang et al. (2018) obtained the sensitivity of the 

Pw to changes in LAI by taking a derivative of the Pw function with respect to LAI, implying a crucial role of 

𝑅
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vegetation cover in impacting the Pw. However, some other studies indicated that most regions or watersheds show 

no significant influences of vegetation indices or coverage on Pw (Li et al., 2013; Liu et al., 2021). For example, Li 

et al. (2013) pointed out the variations in the Pw values are not entirely controlled by vegetation coverage in the small 

catchments. Another study from Liu et al. (2021) also found a weak correlation between vegetation leaf area index 

and the Pw. Therefore, more in-depth studies are in need for revisiting the hydrological Basis of Pw in the Budyko 

Framework.” 

 

Comment 8:  

l.78: the term essential is debatable. Splitting into groups leads to non-universal laws. I agree this could lead 

to better performance and it is, therefore, to be tested but the motivations in terms of the physical process are 

not clear at this stage of the manuscript. So the term essential is in my opinion too strong and I suggest changing 

it to "useful". 

Response:  

Thank you, according to your comments, we have changed the “essential” to “useful”. 

 

Comment 9:  

Data section: it is unclear why data are not taken homogeneously among published datasets and GRDC. The 

main caveat lies in the differences in the climatic forcing data (P and PET). Why not merge the data and use a 

single product to derive precipitation? Also, this would allow the authors to homogenize the calibration and 

validation datasets that appear largely different in terms of geographic locations (and climate settings). Also, 

is there a criterion on the number of years of data for including a catchment in the dataset? Last, it is not clear 

if climatic data are aggregated over catchment areas. Do the authors delineate catchment boundaries? 

Response:  

(1) Reasons for using published datasets and GRDC datasets 

We used the published datasets for modeling and the GRDC data for verification of runoff reconstruction. All 

of the published data we collected in this study came from the conservative watersheds (i.e., precipitation is the sum 

of streamflow and evapotranspiration). We need to use such conservative watershed data for modeling. However, the 

time of collected datasets are discrete and discontinuous. To verify the performance of the model in time series, we 

used the GRDC data to verify reconstructed time-series runoff. 

 

(2) Reasons for using GPCC precipitation data 

Compared to the CRU TS precipitation dataset, the Global Precipitation Climatology Centre (GPCC) 

precipitation data was found to be more agreeable with the observation in the previous researches (Ahmed et al., 

2019; Degefu et al., 2022; Fiedler and Döll, 2007; Hu et al., 2018; Salaudeen et al., 2021). Therefore, the P values 

for runoff reconstruction were extracted from GPCC Precipitation data. In the revised manuscript, we have added the 

explanation on the reasons for using GPCC precipitation data, as follows, 

“The P values for runoff reconstruction were extracted from Global Precipitation Climatology Centre (GPCC) 

Precipitation Total Full V2018 (0.5×0.5) data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA. It 

is because that the Global Precipitation Climatology Centre (GPCC) precipitation data was found to be more 

agreeable with the observation in the previous researches compared to the CRU TS precipitation dataset(Ahmed et 

al., 2019; Degefu et al., 2022; Fiedler and Döll, 2007; Hu et al., 2018; Salaudeen et al., 2021)”  

 

(3) The time range of datasets 

For the collected datasets, the times of observation are discrete and discontinuous (listed in Supplement 1). The 

time range of verification datasets, including the data used for reconstructing runoff and the observed runoff data 

from GRDC, is from 2000 to 2016. 



 

(4) The Climate data extraction method  

For the GRDC watersheds, the climate data (including P and PET data) were extracted from grid data based on 

the boundary files provided by GRDC Watershed Boundaries (2011). For the collected watersheds from published 

literatures without boundary files, the PET data were extracted from grid data according to the coordinate points of 

these watersheds. We have added that description in the revised manuscript, 

“Potential evapotranspiration (PET, mm yr-1) data were downloaded from version 4.05 of the CRU TS (Climatic 

Research Unit gridded Time Series) climate dataset (https://doi.org/10.6084/m9.figshare.11980500), which is 

produced by the CRU at the University of East Anglia. For consistency, we used PET values extracted from the CRU 

TS dataset of all watersheds listed in Supplement 1, even for studies with PET values reported. The PET values were 

extracted based on the coordinate points of watersheds.” 

“We used the boundary of watersheds provided by GRDC Watershed Boundaries (2011) to extract the average 

values of PET and P from grid datasets for each watershed. The PET values were extracted from the CRU TS dataset. 

The P values for runoff reconstruction were extracted from Global Precipitation Climatology Centre (GPCC) 

Precipitation Total Full V2018 (0.5×0.5) data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA.”  

 

Comment 10:  

l.95-96: Please indicate the formulation used for potential evaporation. 

Response:  

The potential evapotranspiration (PET, mm yr-1) data were downloaded from version 4.05 of the CRU TS 

(Climatic Research Unit gridded Time Series) climate dataset (https://doi.org/10.6084/m9.figshare.11980500), which 

is produced by the CRU at the University of East Anglia. The formulation used for CRU TS potential 

evapotranspiration is as follows, 

𝑃𝐸𝑇 =
0.408 △ (𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273.16

𝑈2(𝑒𝑎 − 𝑒𝑑)

△ +𝛾(1 + 0.34𝑈2)
 

We have added this formula to Supplement 1. 

 

Comment 11:  

l.98-100: why not do the same for precipitation data? 

Response: 

Thank you for your question. Generally, the monitoring data of watershed stations are more accurate than the 

data extracted by remote sensing data. Modelling may be more beneficial by using climate data monitored from 

watersheds stations. However, many sites in the collected data set did not provide corresponding values for potential 

evapotranspiration. Therefore, we used potential evapotranspiration values extracted from the CRU TS dataset of all 

watersheds in the collected data set, and used precipitation data collected from published data sets. 

 

Comment 12:  

l.132-133: why these three watershed characteristics? why only three? why not topographic attributes? These 

watershed characteristics are not stationary, do the authors change the value of these characteristics each year, 

or do they use aggregated statistics? 

Response: 

Thank you. In natural watershed, there are many factors affecting Pw, including soil moisture, vegetation 

coverage, seasonality, topography and so on. However, the topographic factor has little influence by other factors and 

remains stable for a long time. Therefore, topographic features are not considered in this study. Additional watershed 

characteristic factors may be considered in future studies. In the discussion section of the revised manuscript, we put 

forward the direction of future research, as follows, 

https://doi/


“Although the overall performance of PwM was satisfactory, we noted that the accuracy of the runoff simulated 

by the Budyko framework in some regions show either an overestimation or an underestimation. It is because the Pw 

in our study is only forced with soil moisture, seasonality index and fractional vegetation cover, and thus the estimated 

runoff could not clearly account for impacts from other drivers, like the effects of temperature anomalies and glacial 

meltwater on the hydrological regimes (Liu et al., 2022a). This is probably one of the main reasons for the severe 

underestimation of runoff in western North America and southern Europe (Fig. 7a, d). Future in-depth researches are 

in need to examine influences from other impact factors to improve the accuracy of Pw estimation in the Budyko 

framework.” 

 

Comment 13:  

l.133-139: it is not clear how the regression tree is parametrized and optimized. Is it a supervised or 

unsupervised classification? As stated in lines 130-131, it seems that the authors want a supervised 

classification, but this would require a preliminary calibration of m. Is the number of groups imposed by the 

authors or it is the result of a cross-calibration experiment? 

Response: 

Thanks for your consideration. Since watershed feature factor data are continuous data, we used Decision Tree 

Regressor (DTR) instead of Decision Tree Classification (DTC) to find the turning point of the relationship between 

Pw and SM, and Pw and FVC in the study. The DTR does not involve supervised classification or unsupervised 

classification. We used the locations of splits in DTR as dividing intervals. We further describe the setup and 

performance of classifier in the revised manuscript, 

“Three watershed characteristic variables — surface soil moisture (SM), rainfall seasonality index (SI), and 

fractional vegetation cover (FVC) — were selected for classification. For SM and FVC, the bounded intervals of the 

variables were given by the Decision Tree Regressor (DTR). The locations of splits in DTR were used as dividing 

intervals. The Scikit-learn library (Pedregosa et al., 2011) in Python provides the DTR used in this study. The criterion 

for measuring the quality of the split was set to “poisson” which uses reduction in Poisson deviance to find splits. 

The “random” strategy was used to choose local optimal splitting at each node. The results and performances of DTR 

are shown in Supplement 2. Based on the criteria using by Walsh and Lawler (1981), we divided the SI into three 

parts (SI≤0.4, 0.4<SI≤0.8, SI>0.8) to represent three hydroclimatic seasonality (precipitation spread throughout the 

year, marked seasonality with a short drier season, extreme seasonality with a long drier season). Finally, six 

hydrologically similar groups were classified (Table 3). 

Table 3. Classification of watersheds 

Soil moisture 

classifier 

Water soil 

regime 

Seasonality 

index classifier 

Seasonality 

precipitation 

regime 

Fractional vegetation 

cover classifier 

vegetation cover 

regime 

Name of 

the group 

SM≤20 Dry soil —— —— —— —— IND 

SM>20 Wet soil 

SI ≤ 0.4 Seasonless —— —— INWP 

0.4 < SI ≤ 0.8 
Marked 

seasonality 

FVC ≤ 0.2 Low density INWMS 

0.2 < FVC ≤ 0.5 Middle density INWMM 

FVC > 0.5 High density INWML 

SI > 0.8 
Extreme 

seasonality  
——  INWE 

” 

 

Comment 14:  

l.153-155: Not clear at this stage whether the time step is annual. Numerous studies pointed out the problems 

of using the Budyko-type equations on an annual time step. This should be taken into account by the authors. 

Response: 



Thanks for your consideration. The time step used in our study is annual.  

 

Comment 15:  

l.159-168: Are the metrics computed on each catchment or all catchment runoff values? What is the minimum 

number of years for considering a catchment? If the record periods are too short, the resulting performance 

metrics might be meaningless. 

Response: 

Thank you. In the process of cross-validation (using the bootstrap sampling method), for the performance 

metrics, the term N is the number of test sets, i is the ith value to be simulated by the trained PwM, and ys and yo are 

the simulated and observed series of test sets, respectively. In the process of runoff reconstruction verification, for 

the performance metrics, the terms ys and yo are the simulated and observed 17 years of each watershed, respectively. 

n the revised manuscript, we have added explanations on these terms, 

“4.3.2 Cross-validations using the bootstrap sampling method 

We used cross-validation to test the stability of the proposed PwM using the bootstrap sampling method. The 

collected public data were split into two parts, one for model training and the other for model validation. A subset of 

60% of the data was randomly selected using the bootstrap sampling method for training PwM. The remaining 40% 

of the runoff data were used to evaluate the model performance using the validation metrics in section 4.3.1. For each 

metric, the term N is the number of test sets, i is the ith value to be simulated by the trained PwM, and ys and yo are 

the simulated and observed series of test sets, respectively. The process was repeated randomly 10000 times. We 

documented the cross-validation result of each bootstrapping and showed them in the violin plot (Fig. 3). 

4.3.3 Validations of GRDC time-series runoff reconstruction results 

To further assess the model performance, we applied the proposed PwM into Fu’s model to reconstruct the time-

series runoff data of GRDC from 2000 to 2016. Finally, the time-series runoff data from 545 GRDC stations, which 

were selected by Sect. 3.1, were used to evaluate the model performance using the validation metrics in section 4.3.1. 

For each metric, the terms ys and yo represent the simulated and observed time-series runoff data, respectively.”  

 

Comment 16:  

l.170: In the data section, the authors present a calibration and a validation dataset, now, they say they perform 

bootstrapping... Is it a bootstrapping on the calibration dataset? 

Response:  

Thank you. For cross-validation (using the bootstrap sampling method), we split the collected data set into two 

parts, one for model training and the other for model validation. A subset of 60% of the data was randomly selected 

using the bootstrap sampling method for training PwM. The remaining 40% of the runoff data were used to evaluate 

the model performance using the validation metrics in section 4.3.1. The process was repeated randomly 10000 times. 

For the use of data, we have made the detailed descriptions in the revised manuscript, 

“4.3.2 Cross-validations using the bootstrap sampling method 

We used cross-validation to test the stability of the proposed PwM using the bootstrap sampling method. The 

collected public data were split into two parts, one for model training and the other for model validation. A subset of 

60% of the data was randomly selected using the bootstrap sampling method for training PwM. The remaining 40% 

of the runoff data were used to evaluate the model performance using the validation metrics in section 4.3.1. For each 

metric, the term N is the number of test sets, i is the ith value to be simulated by the trained PwM, and ys and yo are 

the simulated and observed series of test sets, respectively. The process was repeated randomly 10000 times. We 

documented the cross-validation result of each bootstrapping and showed them in the violin plot (Fig. 3). 

4.3.3 Validations of GRDC time-series runoff reconstruction results 

To further assess the model performance, we applied the proposed PwM into Fu’s model to reconstruct the time-

series runoff data of GRDC from 2000 to 2016. Finally, the time-series runoff data from 545 GRDC stations, which 



were selected by Sect. 3.1, were used to evaluate the model performance using the validation metrics in section 4.3.1. 

For each metric, the terms ys and yo represent the simulated and observed time-series runoff data, respectively.” 

 

Comment 17:  

l.180-201: I think this should be placed in the Data section. 

Response:  

Good idea. We have placed this to the data section, as follows, 

“Observed river discharge data for validation were obtained from the Global Runoff Data Centre (GRDC, 

https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html). Only the GRDC stations meeting the 

following criteria were selected for further analysis: (1) The sites with continuous time-series runoff observations during 

the period 2000–2016 and corresponding SM, FVC, and SI were also available during such a period; (2) The drainage area 

reports can be found in the original data to provide area parameters for converting original flow volumes to runoff rates; 

(3) The geographical coordinates reports can be found in the original data and the shape of the drainage can be found in 

the GRDC Watershed Boundaries (2011); (4) The watersheds of “non-conservative” (m>10) and unrealistic runoff rates 

(m<1) are removed. Based on these criteria, 545 GRDC stations were selected for validation (Fig. 1). Then, the flow 

volumes of selected sites were converted to runoff rates (Ghiggi et al., 2019).” 

 

Comment 18:  

l.198-201: I think we can assume that the reader knows how to convert volumetric discharge to runoff depth. 

Response:  

Thank you. We have deleted this part as suggestion. 

 

Comment 19:  

Figure 2: not clear at all what is represented. FVC changes each year. Do the authors plot the aggregated FVC 

over the temporal range of measured streamflow? Do the calibrated m for each year or globally over the entire 

record period? Figure caption should detail each panel explicitly. 

Response: 

Thank you for your question. Figure 2 shows the regressions between Pw in Fu’s formula and watershed 

characteristic variables collected from globally published datasets. Here, the FVC were the annual average values 

corresponding to the runoff observation period, and extracted by the coordinates of site from grid data. We performed 

regression analysis between the Pw and watershed characteristic variables to determine the input variables of the 

PwM. The variables whose R2 of the regression model was greater than 0.1 were selected as input variables. We used 

a polynomial as the basic model form. Each term of the polynomial depends on the regression model of the 

corresponding variable and the Pw. After the model was determined, we extracted the annual average values of FVC 

from 2000 to 2016 to reconstruct the time-series runoff in 545 GRDC stations. Therefore, the proposed PwM not 

only represented the runoff observations in 366 watersheds from global published literatures, but can also reconstruct 

the time-series runoff in 545 GRDC stations. 

We have redrawn Fig. 2 and modified the related description and analysis, as follows, 

“The regressions between Pw in Fu’s formula and watershed characteristic variables collected from globally 

published datasets are shown in Fig. 2. Analyses show that soil moisture (SM) and fractional vegetation cover (FVC) 

are strongly correlated to Pw in each group. The Pw values in dry watersheds with SM≤20mm monotonically 

increases with SM following a power function (Fig. 2a). However, in humid watersheds with SM>20mm, the Pw 

values converts to monotonically decrease with SM, which is also in a power function (Fig. 2b). And the fractional 

vegetation cover (FVC) shows linearly correlated with the Pw values of watersheds in most hydrologically similar 

groups but differ greatly between different groups (Fig. 2c-h). There is positive linear correlation between Pw and 

FVC in the IND, INWSS and INWE groups; while the relationship turns to be a negative linear equation in the INWMM 



and INWML groups. However, in the INWP group, the relationship between Pw and FVC is not significant.  Therefore, 

in the proposed PwM, SM and FVC were selected as input variables (i.e., Var_n) for all the groups, except that FVC 

was rejected in the INWP group.  The formula in PwM for calculating the Pw is modeled as sum of a power function 

of SM and a linear function of FVC, given by Equation 7.”  

 

Figure 2. Regression between Pw in Fu’s formula and (a) SM (SM≤20mm), (b)SM (SM>20mm), (c)FVC (IND), (d)FVC (INWP), (e)FVC 

(INWMS), (f)FVC (INWMM), (g)FVC (INWML), and (h)FVC (INWE). Symbol shapes indicate SM (dot) and FVC (square). 
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Supplement 2: The results and performances of Decision Tree Regressor 

 

 

Figure S.1 The results and performances of Decision Tree Regressor for (a) surface soil moisture (SM) and (b) fractional 

vegetation cover (FVC). The “poisson” indicates the value of Poisson deviance, “samples” indicates the number of samples, “T” 

means True, and “F” means Fales. 

  




