
Author’s response to Referee #1
This study quantified the contribution of each pixel to the global TWS IAV of GRACE
observations and two selected predominantly data-driven models, SINDBAD and
H2M, as well as its modeling errors. The results show that the global TWS IAV is
mainly driven by humid tropical and semi-arid region. The hotspots of modeling
errors of the global TWS IAV are mainly located in tropical regions that span across
climatic regions. The study provides an improved understanding of the global TWS
IAV and its modeling error. Generally, the topic is important, and the study is well
written and easy to follow. My comments are as follows.

AC: We would like to thank the reviewer for positive feedback on the study, as well as for
the suggestions to improve it further. We address the comments here, and will include the
changes in the revised submission.

1. In the high latitudes of the northern hemisphere, glacier changes contribute to
TWS, whether the SINDBAD model and the H2M model have a glacier module.

AC: Though glacier changes significantly contribute to TWS, especially to its trend (Rodell
et al., 2018; Scanlon et al., 2018), in the high latitudes of the northern hemisphere, the two
models, SINDBAD and H2M, do not consider the contribution or process. To account for this
limitation, grid cells with > 10% of permanent snow and ice cover were excluded from the
study area (Kraft et al., 2022; Trautmann et al., 2022). We will clarify it further in the
revision.

2. It needs to be further pointed out that the model is inconsistent with GRACE in
typical irrigation areas, such as the western United States, northern India, etc.

AC: We agree about the potential inconsistency between GRACE and models in typical
irrigation areas. That is why the analysis excludes regions with the largest anthropogenic
influence on TWS trends according to Rodell et al. (2018). We will address this aspect in
the manuscript as:

[...] Lastly, the two models covered different land pixels due to independent data filtering
(Kraft et al., 2022; Trautmann et al., 2022). The data filtering excludes land pixels with 1)
significant fraction of ice, snow, water body, bare land surface or artificial land cover, or 2) a
large human influence on trend in GRACE TWS mainly by groundwater extraction.
Therefore, only the common land pixels between two model simulations were used in this
analysis, and the same land mask was applied to all forcing and constraints.

We will clarify the potential inconsistency also in the discussion as:

Lastly, the additional sources of errors include anthropogenic influence and uncertainties in
the GRACE data. Though the analysis excludes pixels with a large anthropogenic influence



on TWS such as Northern India following Rodell et al. (2018), the human impact still
remains out of the excluded pixels. In Africa, a decrease in TWS IAV in 2003–2006 (Fig. 6c)
was due to the expansion of Nalubaale Dam as well as La Niña (Stager et al., 2007;
Awange et al., 2013, 2019). In the Indian subcontinent (Fig. 6d), the TWS changes have
been reported due to human impacts such as reducing groundwater abstraction and surging
reservoirs as well as increased precipitation (Meghwal et al., 2019; Munagapati et al.,
2021). In addition, typical irrigation areas such as the Corn Belt in the USA and northern
India (Fig. 4) [...]

3. Figure 2(a) shows that the two models are in good agreement, and they both have
some differences from GRACE. Does the input of precipitation significantly affect the
simulation results of the model? If other precipitation products are used as input, will
the results be different?

AC: Thank you for raising an important point. In the original manuscript, we evaluated the
association of TWS variability with different precipitation products and found little influence
on the results (Fig. B8 and B9 in the manuscript).

Nevertheless, we have tested the robustness of the results of SINDBAD and H2M by
forcing the models using an independent precipitation estimate from MSWEP v.2.8  (Table 1
in the manuscript) instead of GPCP1dd, and repeated the whole analysis. We could again
verify that using another precipitation forcing does not significantly change the results and
findings of our study. We will highlight this finding in the manuscript and include the relevant
analyses (Fig. 1~5, below) in the appendix.

Specifically, two models are still in good agreement when they are forced by MSWEP. The
performance of two models has been slightly improved, shown by R2, the distribution of
errors, and the slope of regression equations (Fig. 1). However, the main findings and
conclusions are not affected by that and stay the same. For example, spatial contribution to
TWS IAV (Fig. 2) and its modeling error (Fig. 3) remain similar in general, so do the
systematic larger wRivermax (Fig. 4) and more contribution of remotely-recharged
groundwater to transpiration (Fig. 5) in error hotspots.

This is in line with Kraft et al. (2022) who showed that H2M gave almost the same
performance when it is trained on different precipitation products.



Figure 1. The same as Fig. 2 in the manuscript, but using MSWEP for the precipitation
forcing. Comparison of monthly global terrestrial water storage (TWS) interannual
variability (IAV) from GRACE observations and two data-driven hydrological models
(SINDBAD and H2M). (a) Time series comparison of monthly global TWS IAV. R2 statistics
in the bottom-left is calculated as the square of the Pearson correlation coefficient. (b)
Histogram of errors of the global TWS IAV (Eq. 3) with smoothed kernel density curves
estimated using the Gaussian kernel and the Scott’s rule of thumb to determine the
bandwidth of the kernel. The sum of all bar heights (different models in different colors)
equals unity. Shown text in the upper-left is the mean±standard deviation of the distribution
of each model. (c) Scatter plot of monthly TWS IAV by GRACE and models. Equations in
the bottom-right are from a robust linear regression using Huber’s T estimation for
downweighting outliers.



Figure 2. The same as Fig. 3 in the manuscript, but using MSWEP for the precipitation
forcing. Global distribution of pixel-wise contributions to the variance of the global terrestrial
water storage (TWS) IAV. Along the diagonal, maps of the pixel-wise contribution in
GRACE, SINDBAD, and H2M are shown. Above the diagonal, maps of the difference (i.e.,
column - row) are shown. Below the diagonal, scatter plots comparing the corresponding
column (x-axis) versus row (y-axis) are shown. In the scatter plots, colors indicate the
density of points, r is the Pearson correlation coefficient, and ρ is the Spearman correlation
coefficient. Red lines are linear regression fit and red texts are corresponding equations.



Figure 3. The same as Fig. 4 in the manuscript, but using MSWEP for the precipitation
forcing. Global distribution of pixel-wise contributions to the variance of the modeling error
of global terrestrial water storage interannual variability. Along the diagonal, maps of the
pixel-wise contribution to the global TWS IAV modeling errors in SINDBAD and H2M are
shown. Above the diagonal, a map of the difference (i.e., column - row) is shown. Below the
diagonal, a histogram comparing the pixel-wise contributions of the corresponding column
(x-axis) versus row (y-axis) is shown. The probability density curves were estimated using
the Gaussian kernel and the Scott’s rule of thumb to determine the bandwidth of the kernel.



Figure 4. The same as Fig. 7 in the manuscript, but using MSWEP for the precipitation
forcing. Comparison of probability density distributions of the log-transformed maximum
river water storage (left), and wetlands fraction (right) between the error hotspot pixels and
non-hotspot pixels. Top and middle lows are distributions of each model; the bottom row is
the difference in bar heights between hotspot and non-hotspot (positive means occurrences
are larger in error hotspots). The probability density curves were estimated using the
Gaussian kernel and the Scott’s rule of thumb to determine the bandwidth of the kernel.
Asterisks (*) beside model names show the significance of the difference in distributions
between error hotspots and non-hotspots using the Kolmogorov-Smirnov two-sample test;
all results show significant difference in distributions (***, p-value < 0.001). Note that the
x-axis is normalized using the maximum and minimum of variables so that the range
becomes zero to one, and comparisons can be made across variables. The river water
storage (wRiver) was calculated using the Total Runoff Integrating Pathways (TRIP) river
routing model (Oki and Sud, 1999) with the input of runoff from SINDBAD. The maximum
wRiver of a pixel (wRivermax) during the entire period (April 2002–June 2017) was used with
log transformation to use the skewed distribution of wRivermax for the comparison. The
fraction of groundwater-driven (GW-driven) wetlands was provided by Tootchi et al. (2019).



Figure 5. The same as Fig. 8 in the manuscript, but using MSWEP for the precipitation
forcing. Same as Fig. 4, but for the contribution of four water sources to the water usage by
vegetation. Data by Miguez-Macho and Fan (2021) was used for the four sources. Source 1
is soil water from recent (< 1 month) precipitation; source 2 is soil water from past
precipitation; source 3 is locally-recharged groundwater via capillary flow; source 4 is
remotely recharged groundwater from uplands to lowlands.

4. The abscissa and ordinate of the scatter plot in Figure 3 have no text description

AC: The text labels for the x and y axes were omitted for clarity and stated only in the figure
caption. We further improved the related part of figure caption which now reads:

[...] Below the diagonal, scatter plots comparing the pixel-wise contributions of the
corresponding column (x-axis) versus row (y-axis) are shown. [...]

5. How much different precipitation inputs affect the modeling error of global
terrestrial water storage interannual variability? Does the precipitation input or the
different model structure affect the simulation error more?

AC: As in the response to the comment 3, we agree that model input and structure are
definitely important aspects that may potentially affect the results.

First, regarding the precipitation input, we show that the use of different precipitation
products does not significantly alter the main results and findings of the study. This was
shown in Kraft et al. (2022) as well.

Second, the potential effect of model structure is large. We assume that the two different
models used in this study cover that source of uncertainty to a certain extent. Interestingly,
we found that both models showed a large consistency in the findings despite having vastly
different model structures with SINDBAD rooted on traditional hydrological concepts, and
H2M formulated on modern machine learning methods.



Despite showing and presenting the effects of each of these factors separately, we cannot
say with a large confidence if the uncertainty due to input is larger than that due to model
structure or vice versa, especially based on what is presented in the current manuscript. For
such an analysis, one would envisage a comprehensive factorial analysis of different
modeling structures as well as the use of different input data but within a consistent
seamless framework rather than comparison of two or more different models (as presented
here, and in many model intercomparison projects to date). We will clarify this in the
discussion with the following:

Lastly, the additional sources of errors include 1) anthropogenic influence, 2) uncertainties
in the GRACE and forcing data, and 3) model structure. In Africa, a decrease in TWS IAV in
2003–2006 (Fig. 6c) was due to the expansion of Nalubaale Dam as well as La Niña
(Stager et al., 2007; Awange et al., 2013, 2019). [...]

With respect to the uncertainty from forcing and model structure, we show that the use of
different precipitation products does not significantly alter the main results and findings of
the study (Fig. B14-B18). This was shown in Kraft et al. (2022) as well. In addition, the
potential effect of model structure is large. We assume that the two different models used in
this study cover that source of uncertainty to a certain extent. Interestingly, we found that
both models, which have vastly different model structures, showed a large consistency in
the findings. Despite showing and presenting the effects of each of these factors separately,
we cannot conclude with a large confidence if the uncertainty due to input is larger than that
due to model structure or vice versa, especially based on what is presented in the current
manuscript. For such an analysis, one would envisage a comprehensive factorial analysis of
different modeling structures as well as the use of different input data but within a consistent
seamless framework.

, as well as in the introduction:

Both modeling frameworks are heavily rooted on using observations, and include GRACE
observations in the model parameter estimation and evaluation. As such, under ideal
conditions, the models have a potential to simulate aspects of hydrological cycle that agree
the most with relevant observations, and the model errors, if any, could be attributed to
either model structure (e.g., missing model processes or the way to formulate and connect
processes) or observational uncertainties.



Author’s response to Referee #2
The authors presented a study to diagnose the modeling errors by comparing
GRACE and model TWSA based on IAV. The motivation of this study is nice, since
Scanlon’s PNAS study revealed an interesting question on the discrepancy between
GRACE and models. The focus on interannual is a good complementary to the focus
on trend by Scanlon et al.. Generally, this study is interesting. However, I have some
critical questions related to the methods used for analysis, which may largely affect
the reliability of the findings.

AC: We would like to thank the reviewer for a positive outlook of the study. Please find our
responses below, which will also be included in the revised manuscript.

● Generally, WGHM, PCR-GLOBWB, and maybe some other LSMs that include
GW module, are more popularly used than the two models used in this
study. I am not going to say the two models used here is not good enough,
but I guess many researchers would be more interested on what will it like if
we use WGHM, or PCR-GLOBWB, or CLSM. Besides, it is not clear how the
including of GRACE in model parameter estimation and evaluation (Line 77)
will impact the comparison between GRACE and the two models.

AC: While we agree that it will be interesting to look at the results of sophisticated land
surface models or hydrological models, we focused on the two models because they are
data-driven and represent the best-case scenario in terms of model performance against
state-of-the-art observations. Note that Kraft et al. (2022) and Trautmann et al. (2022)
conducted a direct comparison of SINDBAD and H2M, respectively, with global
hydrological models from the eartH2Oserve ensemble (Schellekens et al., 2017), which
reveal that the two models are at least in par or better than the GHMs in the Earth2O
ensemble. So, the analysis presented in our study can be expected to be representative
of other GHMs as well.

Instead, the aim in our study was to go beyond the good performances of the two
models used, and rather understand if there are underlying model assumptions and
shortcomings that result in error of interannual variability of the global TWS. For this, we
also needed the models to be forced by identical data, and be given a fair opportunity to
learn from the observation. In fact, use of GRACE data in parameter estimation,
theoretically, allows for the modeling framework to produce TWS simulations with no
error. Note that this would not be possible with other GHMs/LSMs with uncalibrated
parameters. We included this in the introduction and methods sections of the original
manuscript and will improve the introduction in the revision as:

Both modeling frameworks are heavily rooted on using observations, and include
GRACE observations in the model parameter estimation and evaluation. As such, under
ideal conditions, the models provide the simulations that agree the most with
observations, and the model errors, if any, could be attributed to either missing model



processes or observational uncertainties. As we employ a covariance matrix analysis
(see Sect. 2.1.2), we not only evaluate the global IAV, but also identify the regions that
are most relevant to the IAV of global TWS in GRACE observations and the two models.
SINDBAD and H2M are appropriate for this purpose as it requires models to be forced
by identical data, and be given a fair opportunity to learn from the observation. In
addition, as two models cover different aspects of modeling approach (i.e.,
process-based vs. physics-guided machine learning), using SINDBAD and H2M can
cover the uncertainty of model structure to a certain extent.

Lastly, we, in fact, think that the framework presented in our study can be used for every
model in the earth2Observe ensemble to identify the regions of largest TWS interannual
variability and its error, which can then be utilized for model improvements. But, this is
out of scope of the current study. Instead, we analyzed the error hotspots of TWS IAV
modeling by four GHMs in the earth2Observe ensemble (W3RA, LISFLOOD,
SURFEX-TRIP, and PCR-GLOBWB) as shown in Fig. 1 below. Four models show strong
positive contributions in the humid regions of northern South America as SINDBAD and
H2M do, but the four models disagree with SINDBAD and H2M for some aspects like
hotspots in Central Africa. However, a direct comparison of the results of SINDBAD and
H2M with those of the four GHMs are not reasonable because different products of
forcing were used, and observations were either not used at all, or only used for model
validation. We include Figure 1 as appendix, and we will address the issue in the
discussion as:

[...] In SINDBAD, vegetation indirectly accesses secondary water storage with capillary
rise, which contributes to a larger evapotranspiration over some regions, including the
regions in Africa (Fig. 9 in Trautmann et al., 2022).

As shown above, the model structure is an influential uncertainty of the location of
hotspots. Though using SINDBAD and H2M cover the uncertainty to a certain extent,
more sophisticated hydrological models may have different hotspots and sources of
errors. Following Kraft et al. (2022), among 10 global hydrological models in the
eartH2Observe ensemble, we selected four GHMs with groundwater storage in the
structure to identify the hotspots of TWS IAV modeling error: W3RA (Van Dijk and
Warren, 2010), LISFLOOD (Van Der Knijff et al., 2010), SURFEX-TRIP (Decharme et
al., 2010, 2013), and PCR-GLOBWB (Van Beek et al., 2011; Wada et al., 2014). In Fig.
B19, the four GHMs show strong positive contributions in the humid regions of northern
South America as SINDBAD and H2M do, but the four models disagree with SINDBAD
and H2M for some regions like hotspots in Central Africa. However, as different sets of
forcing and constraints with different spatiotemporal domains were used for the
simulation of the four GHMs, and given the complexity of their structure, further research
will be required to investigate the hotspots and sources of TWS IAV modeling errors of
each GHM.



Figure 1. The same as Fig. 4 in the manuscript, but for four global hydrological
models in the eartH2Observe ensemble. Global distribution of pixel-wise contributions to
the variance of the modeling error of global terrestrial water storage interannual variability.
Along the diagonal, maps of the pixel-wise contribution to the global TWS IAV modeling
errors in W3RA, LISFLOOD, SURFEX-TRIP, and PCR-GLOBWB are shown. Above the
diagonal, a map of the difference (i.e., column - row) is shown.

● It is not clear why using Equation (1) to derive the IAV for analysis. I cannot
understand the physical meaning of subtracting long-term trend (fit ()) from
monthly values. So, the question comes that what is interannual variability,
and how to define it? Can we just subtracting long-term average from
monthly values? I am not sure my understanding is correct or not. Please
verify it.

AC: Thank you for pointing this out. It is important to define a term clearly and
evaluate the model at a proper aspect. First, we think that subtracting the long-term
average from monthly values is not suitable because it cannot remove the trend. We
want to remove the trend because SINDBAD and H2M do not properly account for
the trend as it is significantly driven by human activities (Rodell et al., 2018; Scanlon
et al., 2018) and long-term processes such as vegetation (Pokhrel et al., 2021) and
glacier melt (Rodell et al., 2018; Scanlon et al., 2018). Instead, by interannual
variability, we want to quantify how much each value deviates from the seasonal



mean condition including the trend as Fig. 2 illustrates below. This definition of IAV
will also make this study more suitable as a complementary to the study by Scanlon
et al. (2018) as well as other relevant studies (e.g., Jung et al., 2017; Humphrey et
al., 2018). To this goal in mind, for each month of a year, we calculated the linear
regression fit that represents the seasonal mean value including trend. We then got
the IAV by subtracting the fitted value from each monthly TWS.

For clarification, we will add Fig. 2 as appendix and the definition of IAV above in the
manuscript as follows:

In this study, IAV quantifies how much a value (e.g., TWS) deviates from the
seasonal mean including the trend. Accordingly, we calculated the globally integrated
GRACE TWS IAV as follows: [...]

Figure 2. Illustration of the calculation of interannual variability for the global terrestrial water
storage (TWS) anomalies.



● Since GRACE Level-3 data has been already processed by subtracting the
mean of a period (2004-2009?) from monthly TWS to get TWSA. If the
authors again do subtracting (2002-2017) for GRACE and models, it may
lead to mismatch between GRACE and model, because different subtracting
were done for GRACE (subtracting 2004-2009, and then subtracting
2002-2017) and models (subtracting 2002-2017).

AC: The reviewer is correct that the time period used to calculate the TWS anomaly
is crucial and different time periods would affect the comparison between GRACE
data and models. Exactly due to this difference, a suggested necessary step in the
GRACE data usage is to align both GRACE and modeled TWSA to the same time
mean anomaly (https://grace.jpl.nasa.gov/about/faq/), which, in the study, is
2002-2017. By removing the time period 2002-2017 from each series, both time
series of TWS anomalies are consistent and reflect the deviations from the same
baseline condition.

● Line 128: I am not sure it is the best way to evaluate model performance by
comparing the IAV derived from GRACE and models. How about compare
TWSA?

AC: We agree that TWSA can be evaluated as well, but as clearly mentioned in the
introduction, the main aim of the study is to diagnose the error in IAV of TWS, which
is still reproduced relatively poorer in the models compared to TWSA. The evaluation
of TWS IAV presented here complements previous studies evaluating the anomalies
(e.g., Scanlon et al., 2018) with climatic processes, and trends with anthropogenic
influences. We also note that the original TWSA includes the trend that should be
removed before the model evaluation as SINDBAD and H2M do not account for
important processes that affect the trend, e.g., human influences.

● Before Figure 2, people may be interested on seeing spatial distribution map
of TWSA from GRACE and models, as well as the distribution map of IAV,
which both can help we better understand the difference and consistence
between GRACE and models.

AC: Thank you for the suggestion. We will add figures for spatial distribution of
TWSA (Fig. 3, below) and TWS IAV (Fig. 4, below) to appendix, and will mention
them in the manuscript as follows:

SINDBAD and H2M reasonably reproduce the observed time series of global TWS
IAV by GRACE (R2 of 0.49 and 0.51 for SINDBAD and H2M, respectively) (Fig. 2),
as well as the spatial pattern of TWS anomaly and TWS IAV (Fig. B20 and B21). [...]



Figure 3. Global distribution of the standard deviation (std) of the global terrestrial
water storage (TWS) anomalies. Along the diagonal, maps of the pixel-wise std of
TWS anomalies in GRACE, SINDBAD, and H2M are shown (indicated by the label of
row or column). Above the diagonal, maps of the difference (i.e., column - row) are
shown. For example, the map of the first row and the second column is for SINDBAD
(column) minus GRACE (row). Below the diagonal, scatter plots comparing the
corresponding column (x-axis) versus row (y-axis) are shown. In the scatter plots,
colors indicate the density of points, r is the Pearson correlation coefficient and ρ is
the Spearman correlation coefficient. Red lines are linear regression fit and red texts
are corresponding equations. White pixels within land boundaries in maps are invalid
as they are out of the study area.



Figure 4. Global distribution of the standard deviation (std) of the global terrestrial
water storage (TWS) interannual variability (IAV). Along the diagonal, maps of the
pixel-wise std of the global TWS IAV in GRACE, SINDBAD, and H2M are shown
(indicated by the label of row or column). Above the diagonal, maps of the difference
(i.e., column - row) are shown. For example, the map of the first row and the second
column is for SINDBAD (column) minus GRACE (row). Below the diagonal, scatter
plots comparing the corresponding column (x-axis) versus row (y-axis) are shown. In
the scatter plots, colors indicate the density of points, r is the Pearson correlation
coefficient and ρ is the Spearman correlation coefficient. Red lines are linear
regression fit and red texts are corresponding equations. White pixels within land
boundaries in maps are invalid as they are out of the study area.



● Figure 3: Sorry, but I do feel difficult to understand what the exact meanings
of the spatial maps are. Maybe more information can be added to the figure
showing who minus who, something like that. Besides, I guess the white
blank areas here are the grid cells with positive covariances, is it true?

AC: Thank you for pointing out the confusion. The detail (i.e., who minus who) was
omitted for clarity, but was explained in the caption. We will improve the caption of
Fig. 3 and 4 in the manuscript as follows:

Figure 3. Global distribution of pixel-wise contributions to the variance of the global
terrestrial water storage (TWS) IAV. Along the diagonal, maps of the pixel-wise
contribution in GRACE, SINDBAD, and H2M are shown (indicated by the label of row
or column). Above the diagonal, maps of the difference (i.e., column - row) are
shown. For example, the map of the first row and the second column is for SINDBAD
(column) minus GRACE (row). [...] Red lines are linear regression fit and red texts
are corresponding equations. White pixels within land boundaries are invalid as they
are out of the study area.

Figure 4. Global distribution of pixel-wise contributions to the variance of the
modeling error of global terrestrial water storage interannual variability. Along the
map of the first row and the second column is for SINDBAD (column) minus GRACE
(row). [...] White pixels within land boundaries are invalid as they are out of the study
area.

We will also add the same sentence about white pixels to captions of relevant figures
such as Fig. B3 and B12 in the manuscript and ones that will be added in the revised
manuscript.



Author’s response to Referee #3
This study models the error between the global TWS IAV observations of GRACE and
two models, SINDBAD and H2M. The authors found that the global TWS IAV is mainly
driven by humid tropical and semi-arid regions, and identified the hotspots of
modeling errors of the global TWS IAV mainly in tropical regions that span across
climatic regions. The study presents a novel way to attribute global variability to each
pixel and focused on regions where hydrological cycle components in models may
not be sufficiently well represented due to their complex hydrological and
climatological processes.

The study in general is well-written and easy to follow.

AC: We would like to express our gratitude to the reviewer for positive feedback and
suggestions on the manuscript. Of course, we have responded to the other reviewers and
will incorporate all suggestions into the revised manuscript. Below, you will find the
responses to each comment of reviewer 3.

Additional to comments made by the two Anonymous Referees, which I consider
important to answer, my comments are as follows:

● As the study identifies humid regions of northern South Americas as one of
the main drivers of global TWS IAV,  I suggest including these references in
the discussion in which global models are compared with GRACE products
in a very important instrumented tropical basin.

Bolaños Chavarría, S., Werner, M., Salazar, J. F., & Betancur, T. (2022). Benchmarking
global hydrological and land surface models against GRACE in a medium-sized
tropical basin. Hydrology and Earth System Sciences, 26(16), 4323-4344.

Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion
of water storage in northwestern South America between ENSO extremes. Journal of
Hydrology, 596, 125687.

AC: Thank you for pointing to the relevant studies. We will include them in the
discussion of revised manuscript as:

On the other hand, tropical regions come out as the dominant contributor to the variance of
the global TWS IAV modeling errors (Fig. 4). Tropical regions were reported as one
significant contributor to the global TWS IAV, but with a large disparity between the models
and GRACE (Humphrey et al., 2018) due possibly to characteristics of the regions that the
tested models do not properly account for, for example, artificial reservoirs, complex
topography, and wetlands (Bolaños et al., 2021, 2022). [...]



● I am a bit confused with Equation 1, in figure 1 I think it is clear that TWS IAV
is the result of detrending and deseasonalizing TWS, but in Equation 1, I
understand that only TWS is deseasonalized.

AC: Yes, as in Fig. 1 in the manuscript, Eq. (1) deseasonalizes and detrends TWS
as the linear fitting includes the trend of the month of a year across years. Eq. (1)
could detrend as well because each regression line of a month includes the trend as
Fig. 1 illustrates below. We will include Fig. 1 in the revised manuscript as appendix.

Figure 1. Illustration of the calculation of interannual variability for the global terrestrial water
storage (TWS) anomalies.



● I think is necessary to define what is the meaning of SREX Regions, I don't
identify what is.

AC: We will add the meaning of SREX in the manuscript as follows:

After the error hotspots are identified, we compare the time series of TWS and
precipitation IAVs at the regional scale for error hotspots within selected
Intergovernmental Panel on Climate Change (IPCC) Special Report on Extremes
(SREX) regions (Sect. 3.4; see Fig. B1 for the SREX regions) to diagnose TWS IAV
errors. [...]. Note that SREX regions include different regions of the world, and they
have been used extensively to diagnose regional variation of climate model
simulations (e.g., Seneviratne et al., 2012; Pokhrel et al., 2021).

and in the caption of Fig. B2 of the manuscript as follows:

Figure B1. The Intergovernmental Panel on Climate Change (IPCC) Special Report
on Extremes (SREX) regions (Seneviratne et al., 2012), which were used in figures
(Figs. 6, B4, B6, B7, and B8) to spatially average global terrestrial water storage
interannual variability time series into four selected regions: the Laurentian Great
Lakes (SREX regions 5), Amazon (SREX regions 7), Eastern and Western Africa
(SREX regions 15 and 16), and South Asia (SREX regions 23).

● Why the preference for the JPL mascon if there is another mascon product
like the mascon CSR that has the same resolution?

AC: The purpose of this study is to qualitatively diagnose the hotspots of the global
TWS IAV and its modeling error. For this purpose, either JPL mass concentration
(mascon) product or CSR mascon product can be used, as JPL mascon and CSR
mascon are qualitatively comparable to each other across global basins and at the
interannual scale as well as longer-term temporal scales (Scanlon et al., 2016).

Nevertheless, to further clarify this, we analyzed the spatial contribution to the global
TWS IAV for RL06 version 1 mascon GRACE products by JPL (i.e., one used in this
study) and CSR (i.e., a comparable one by CSR). We find that the two GRACE
products are largely consistent with each other in terms of hotspots of the dynamics
of global TWS IAV (Fig. 2). This suggests that the main findings of our study would
not change even if a different GRACE data product was used.

Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D.,
Longuevergne, L., and Chen, J. (2016), Global evaluation of new GRACE mascon
products for hydrologic applications, Water Resour. Res., 52, 9412– 9429,
doi:10.1002/2016WR019494.Note that SREX regions include different regions

https://doi.org/10.1002/2016WR019494


Figure 2. The same as Fig. 3 in the manuscript, but using two mascon GRACE
products only. Global distribution of pixel-wise contributions to the variance of the global
terrestrial water storage (TWS) IAV. Along the diagonal, maps of the pixel-wise contribution
in GRACE by JPL and GRACE by CSR are shown. Above the diagonal, maps of the
difference (i.e., column - row) are shown. Below the diagonal, scatter plots comparing the
corresponding column (x-axis) versus row (y-axis) are shown. In the scatter plots, colors
indicate the density of points, r is the Pearson correlation coefficient, and ρ is the Spearman
correlation coefficient. Red lines are linear regression fit and red texts are corresponding
equations.

Save, H., S. Bettadpur, and B.D. Tapley (2016), High resolution CSR GRACE RL05
mascons, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2016JB013007.



● Figure 2 a) describes a "NSE is the Nash-Sutcliffe Efficiency", but it does not
appear in the figure

AC: We are sorry for the error. We will remove the wrong reference from the caption
as follows:

Figure 2. [...] R2 statistics in the bottomleft is calculated as the square of the Pearson
correlation coefficient; NSE is the Nash-Sutcliffe Efficiency. [...].

We will correct other errors as well, for example, the second text of Fig. 2a, from
R2(GRACE, SINDBAD) to R2(GRACE, H2M).


