
Author’s response to Referee #1
This study quantified the contribution of each pixel to the global TWS IAV of GRACE
observations and two selected predominantly data-driven models, SINDBAD and
H2M, as well as its modeling errors. The results show that the global TWS IAV is
mainly driven by humid tropical and semi-arid region. The hotspots of modeling
errors of the global TWS IAV are mainly located in tropical regions that span across
climatic regions. The study provides an improved understanding of the global TWS
IAV and its modeling error. Generally, the topic is important, and the study is well
written and easy to follow. My comments are as follows.

AC: We would like to thank the reviewer for positive feedback on the study, as well as for
the suggestions to improve it further. We address the comments here, and will include the
changes in the revised submission.

1. In the high latitudes of the northern hemisphere, glacier changes contribute to
TWS, whether the SINDBAD model and the H2M model have a glacier module.

AC: Though glacier changes significantly contribute to TWS, especially to its trend (Rodell
et al., 2018; Scanlon et al., 2018), in the high latitudes of the northern hemisphere, the two
models, SINDBAD and H2M, do not consider the contribution or process. To account for this
limitation, grid cells with > 10% of permanent snow and ice cover were excluded from the
study area (Kraft et al., 2022; Trautmann et al., 2022). We will clarify it further in the
revision.

2. It needs to be further pointed out that the model is inconsistent with GRACE in
typical irrigation areas, such as the western United States, northern India, etc.

AC: We agree about the potential inconsistency between GRACE and models in typical
irrigation areas. That is why the analysis excludes regions with the largest anthropogenic
influence on TWS trends according to Rodell et al. (2018). We will address this aspect in
the manuscript as:

[...] Lastly, the two models covered different land pixels due to independent data filtering
(Kraft et al., 2022; Trautmann et al., 2022). The data filtering excludes land pixels with 1)
significant fraction of ice, snow, water body, bare land surface or artificial land cover, or 2) a
large human influence on trend in GRACE TWS mainly by groundwater extraction.
Therefore, only the common land pixels between two model simulations were used in this
analysis, and the same land mask was applied to all forcing and constraints.

We will clarify the potential inconsistency also in the discussion as:

Lastly, the additional sources of errors include anthropogenic influence and uncertainties in
the GRACE data. Though the analysis excludes pixels with a large anthropogenic influence



on TWS such as Northern India following Rodell et al. (2018), the human impact still
remains out of the excluded pixels. In Africa, a decrease in TWS IAV in 2003–2006 (Fig. 6c)
was due to the expansion of Nalubaale Dam as well as La Niña (Stager et al., 22
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subcontinent (Fig. 6d), the TWS changes have been reported due to human 485 impacts
such as reducing groundwater abstraction and surging reservoirs as well as increased
precipitation (Meghwal et al., 2019; Munagapati et al., 2021). In addition, typical irrigation
areas such as the Corn Belt in the USA and northern India (Fig. 4) [...]

3. Figure 2(a) shows that the two models are in good agreement, and they both have
some differences from GRACE. Does the input of precipitation significantly affect the
simulation results of the model? If other precipitation products are used as input, will
the results be different?

AC: Thank you for raising an important point. In the original manuscript, we evaluated the
association of TWS variability with different precipitation products and found little influence
on the results (Fig. B8 and B9 in the manuscript).

Nevertheless, we have tested the robustness of the results of SINDBAD and H2M by
forcing the models using an independent precipitation estimate from MSWEP v.2.8  (Table 1
in the manuscript) instead of GPCP1dd, and repeated the whole analysis. We could again
verify that using another precipitation forcing does not significantly change the results and
findings of our study. We will highlight this finding in the manuscript and include the relevant
analyses (Fig. 1~5, below) in the appendix.

Specifically, two models are still in good agreement when they are forced by MSWEP. The
performance of two models has been slightly improved, shown by R2, the distribution of
errors, and the slope of regression equations (Fig. 1). However, the main findings and
conclusions are not affected by that and stay the same. For example, spatial contribution to
TWS IAV (Fig. 2) and its modeling error (Fig. 3) remain similar in general, so do the
systematic larger wRivermax (Fig. 4) and more contribution of remotely-recharged
groundwater to transpiration (Fig. 5) in error hotspots.

This is in line with Kraft et al. (2022) who showed that H2M gave almost the same
performance when it is trained on different precipitation products.



Figure 1. The same as Fig. 2 in the manuscript, but using MSWEP for the precipitation
forcing. Comparison of monthly global terrestrial water storage (TWS) interannual
variability (IAV) from GRACE observations and two data-driven hydrological models
(SINDBAD and H2M). (a) Time series comparison of monthly global TWS IAV. R2 statistics
in the bottom-left is calculated as the square of the Pearson correlation coefficient. (b)
Histogram of errors of the global TWS IAV (Eq. 3) with smoothed kernel density curves
estimated using the Gaussian kernel and the Scott’s rule of thumb to determine the
bandwidth of the kernel. The sum of all bar heights (different models in different colors)
equals unity. Shown text in the upper-left is the mean±standard deviation of the distribution
of each model. (c) Scatter plot of monthly TWS IAV by GRACE and models. Equations in
the bottom-right are from a robust linear regression using Huber’s T estimation for
downweighting outliers.



Figure 2. The same as Fig. 3 in the manuscript, but using MSWEP for the precipitation
forcing. Global distribution of pixel-wise contributions to the variance of the global terrestrial
water storage (TWS) IAV. Along the diagonal, maps of the pixel-wise contribution in
GRACE, SINDBAD, and H2M are shown. Above the diagonal, maps of the difference (i.e.,
column - row) are shown. Below the diagonal, scatter plots comparing the corresponding
column (x-axis) versus row (y-axis) are shown. In the scatter plots, colors indicate the
density of points, r is the Pearson correlation coefficient, and ρ is the Spearman correlation
coefficient. Red lines are linear regression fit and red texts are corresponding equations.



Figure 3. The same as Fig. 4 in the manuscript, but using MSWEP for the precipitation
forcing. Global distribution of pixel-wise contributions to the variance of the modeling error
of global terrestrial water storage interannual variability. Along the diagonal, maps of the
pixel-wise contribution to the global TWS IAV modeling errors in SINDBAD and H2M are
shown. Above the diagonal, a map of the difference (i.e., column - row) is shown. Below the
diagonal, a histogram comparing the corresponding column (x-axis) versus row (y-axis) is
shown. The probability density curves were estimated using the Gaussian kernel and the
Scott’s rule of thumb to determine the bandwidth of the kernel.



Figure 4. The same as Fig. 7 in the manuscript, but using MSWEP for the precipitation
forcing. Comparison of probability density distributions of the log-transformed maximum
river water storage (left), and wetlands fraction (right) between the error hotspot pixels and
non-hotspot pixels. Top and middle lows are distributions of each model; the bottom row is
the difference in bar heights between hotspot and non-hotspot (positive means occurrences
are larger in error hotspots). The probability density curves were estimated using the
Gaussian kernel and the Scott’s rule of thumb to determine the bandwidth of the kernel.
Asterisks (*) beside model names show the significance of the difference in distributions
between error hotspots and non-hotspots using the Kolmogorov-Smirnov two-sample test;
all results show significant difference in distributions (***, p-value < 0.001). Note that the
x-axis is normalized using the maximum and minimum of variables so that the range
becomes zero to one, and comparisons can be made across variables. The river water
storage (wRiver) was calculated using the Total Runoff Integrating Pathways (TRIP) river
routing model (Oki and Sud, 1999) with the input of runoff from SINDBAD. The maximum
wRiver of a pixel (wRivermax) during the entire period (April 2002–June 2017) was used with
log transformation to use the skewed distribution of wRivermax for the comparison. The
fraction of groundwater-driven (GW-driven) wetlands was provided by Tootchi et al. (2019).



Figure 5. The same as Fig. 8 in the manuscript, but using MSWEP for the precipitation
forcing. Same as Fig. 4, but for the contribution of four water sources to the water usage by
vegetation. Data by Miguez-Macho and Fan (2021) was used for the four sources. Source 1
is soil water from recent (< 1 month) precipitation; source 2 is soil water from past
precipitation; source 3 is locally-recharged groundwater via capillary flow; source 4 is
remotely recharged groundwater from uplands to lowlands.

4. The abscissa and ordinate of the scatter plot in Figure 3 have no text description

AC: The text labels for the x and y axes were omitted for clarity and stated only in the figure
caption. We further improved the related part of figure caption which now reads:

[...] Below the diagonal, scatter plots comparing the pixel-wise contributions of the
corresponding column (x-axis) versus row (y-axis) are shown. [...]

5. How much different precipitation inputs affect the modeling error of global
terrestrial water storage interannual variability? Does the precipitation input or the
different model structure affect the simulation error more?

AC: As in the response to the comment 3, we agree that model input and structure are
definitely important aspects that may potentially affect the results.

First, regarding the precipitation input, we show that the use of different precipitation
products does not significantly alter the main results and findings of the study. This was
shown in Kraft et al. (2022) as well.

Second, the potential effect of model structure is large. We assume that the two different
models used in this study cover that source of uncertainty to a certain extent. Interestingly,
we found that both models showed a large consistency in the findings despite having vastly
different model structures with SINDBAD rooted on traditional hydrological concepts, and
H2M formulated on modern machine learning methods.



Despite showing and presenting the effects of each of these factors separately, we cannot
say with a large confidence if the uncertainty due to input is larger than that due to model
structure or vice versa, especially based on what is presented in the current manuscript. For
such an analysis, one would envisage a comprehensive factorial analysis of different
modeling structures as well as the use of different input data but within a consistent
seamless framework rather than comparison of two or more different models (as presented
here, and in many model intercomparison projects to date). We will clarify this in the
discussion with the following:

Lastly, the additional sources of errors include 1) anthropogenic influence, 2) uncertainties
in the GRACE and forcing data, and 3) model structure. In Africa, a decrease in TWS IAV in
2003–2006 (Fig. 6c) was due to the expansion of Nalubaale Dam as well as La Niña
(Stager et al., 2007; Awange et al., 2013, 2019). [...]

With respect to the uncertainty from forcing and model structure, we show that the use of
different precipitation products does not significantly alter the main results and findings of
the study (Fig. B14-B18). This was shown in Kraft et al. (2022) as well. In addition, the
potential effect of model structure is large. We assume that the two different models used in
this study cover that source of uncertainty to a certain extent. Interestingly, we found that
both models, which have vastly different model structures, showed a large consistency in
the findings. Despite showing and presenting the effects of each of these factors separately,
we cannot conclude with a large confidence if the uncertainty due to input is larger than that
due to model structure or vice versa, especially based on what is presented in the current
manuscript. For such an analysis, one would envisage a comprehensive factorial analysis of
different modeling structures as well as the use of different input data but within a consistent
seamless framework.

, as well as in the introduction:

Both modeling frameworks are heavily rooted on using observations, and include GRACE
observations in the model parameter estimation and evaluation. As such, under ideal
conditions, the models have a potential to simulate aspects of hydrological cycle that agree
the most with relevant observations, and the model errors, if any, could be attributed to
either model structure (e.g., missing model processes or the way to formulate and connect
processes) or observational uncertainties.


