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Comments by Reviewer #1

General comments:

This study showcases a deep learning optimization method for a high-resolution

hydrologic model supported by information theory. I appreciate the honest

evaluation of the methodology, in-depth reasoning of the deteriorating model

performance for ET, and examination of results and conclusions aligned with

earlier studies. In general, this paper is well-written with a novel contribution.

However, I think the paper would be stronger if the authors can address the

following comments.

Thank you for the thorough review of our manuscript. We addressed each comment as shown below.

Model validation for climate sensitivity: Currently, the model validation period

overlaps with the period for calibrating ATS parameters. I am curious whether

the optimized parameters would be able to capture the climate sensitivity on flow

and ET, i.e., improving the flow/ET performance outside of the calibrating period

(2016-2019). It would strongly support this tool’s eligibility in climate change

studies.

We now extend the simulation period to 31-12-2021, which is the end of the available Daymet forcing (see
Figure 1(b)). We split the whole period into the calibration (1-10-2016 through 30-9-2019) and the evaluation
(1-10-2019 through 31-12-2021) periods, used to calibrate and evaluate the climate sensitivity of the model,
separately. The result in Figures 9 and 10 shows that the performances of the calibrated ATS during the
evaluation period are very close to that of the calibration period, suggesting the adaptability of the estimated
parameters to an uncalibrated time period. We revised the associated results and discussion as follows:

“ (L232-L239) Here, we separate the entire observations in Figure 1(b) into model calibration and
evaluation periods in order to assess the adaptability of the estimated parameters to an uncalibrated period.
To this end, we calibrate ATS only using the simulations during water year 2017 to water year 2019 and
used the remaining observations (till 31 December 2021) for model evaluation. The ensemble runs used for
sensitivity analysis and inverse modeling are performed during the calibration period. The calibrated ATS
forward runs were then performed on both periods and compared against the observations in Figure 1(b).
We assess the performances of the calibrated models on both periods by using two scale-independent metrics:
the Nash-Sutcliffe Efficiency (NSE; [6]) and the modified Kling-Gupta Efficiency (mKGE; [4]).

...
(L346-L352) Adaptability of the calibrated model in the evaluation period. For both Q and ET,

both NSE and mKGE of the evaluation period (the cyan lines) are astonishingly close, if not identical, to



that of the calibration period (the blue lines). Whenever the calibrated model shows improvement using the
knowledge-informed inverse mapping (such as the comparison between qonly-3yrs and mi-qonly-3yrs), we can
observe the corresponding improvement in the evaluation period. Such consistent performance between the
two periods suggests the robustness of the estimated parameters to climate sensitivity. ”

ET from flux tower: In this study, the authors have demonstrated that worse ET

performance results from poor quality of MODIS ET products. In this study region,

is there ET data from the flux tower that could be used for implementing this

workflow? Even though the flux tower ET data has less spatial coverage, the data

quality can be better, which might be more useful than MODIS ET when calibrating

hydrologic parameters.

We looked into the AmeriFlux and there is no flux tower site available in this watershed. Therefore, we are
not able to perform the calibration against the site-based observations.

Specific comments:

L158: Can the authors elaborate on what five soil types and four geological

types are?

They are grouped subsurface characteristics in the soil and geological layers using k-means clustering. We
add the following description for a better elaboration (L161-L163): “Each clustered soil or geological type is
associated with a specific set of subsurface characteristics (such as permeability), which are assigned to the
corresponding grouped grid cells. These subsurface characteristics are important in controlling flow dynamics
and can be estimated from hydrological observations.”

L160: A 1000-year spin-up is extremely long. Can the authors briefly explain the

reason for this long spin-up even if it might be explained in Shuai et al 2022?

We have revised the associated text to clearly explain the motivation for the 1000-year cold or steady-state
spinup (note that the cold spin-up took less than one hour to complete on 128 CPU cores due to the faster
model convergence once it reached quasi-steady-state.): “ (L163-L167) To ensure that the model achieved
a physically appropriate initial state, two spinups were performed sequentially, including (1) a cold spinup
that ran the model for 1000 years by using constant rainfall and led to steady-state condition at the end of
the simulation (e.g., converged total amount of subsurface water storage) and (2) a warm spinup that was
initialized by the steady-state spinup result and performed a transient simulation for 10 years (i.e., 1 October
2004 – 1 October 2014) under the Daymet forcing. ”

L162: Could the authors briefly explain how they preselected the parameters in

this study?

L208: Does the MI have to be zero? If the MI between a parameter and the

model responses is small enough, is it possible to neglect that parameter? What

would be a proper threshold for it?

L249-250: Given the narrowed list, it seems that the authors eliminated the

parameters with small MI (not zero), which slightly contradicts the previous

statement where only parameters with zero MI would be eliminated (L208). It

would be helpful to clarify the threshold of MI below which the parameters will

be eliminated.
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As all three comments are associated with how we performed the preliminary sensitivity analysis using
mutual information, we reply to them in one thread here. In short, the preselection is based on the mutual
information (MI) computed for each parameter and each response at a given time step. For a given model
response (e.g., Q), we say it is sensitive to a parameter if the proportion of non-zero MI over all the time
steps is greater than a given threshold (i.e., 5% in this study). For each MI calculation, we performed a
statistical significance test to determine whether the computed MI is significant and set MI to zero if the test
fails. So, the MI can be zero. We enriched the description in the associated texts as below:

“
“ (L190-L194) In this study, we follow a similar strategy of [2] to estimate p using 10 evenly divided bins

along each dimension and perform SST tests to filter out any non-significant MI value with a significance
level of 95% based on 100 bootstrap samples. In other words, the computed MI is set to zero if the statistical
significance test fails.

...
(L205-L209) This preliminary MI analysis would allow filtering out the parameters that show little

sensitivity to the model responses, thus reducing the number of parameters to be calibrated. This filtering
process is performed based on whether a parameter demonstrates sufficient sensitivity across the simulation
period. In this study, we selected the parameter whose proportion of the non-zero MI is larger than 5% of
the overall time steps for the following full sensitivity analysis.

...
(L285-L290) Based on the proportion of nonzero MI over all the time steps (see Figure A1 in the

appendix), we find that Q is mostly sensitive to (using a threshold of 5%) perm s3, perm s4, perm g1,
perm g4, snowmelt rate, snowmelt degree diff, and priestley taylor alpha transpiration, and ET is mostly
sensitive to priestley taylor alpha transpiration, priestley taylor alpha snow, perm s3, perm g1, and perm g4.
Consequently, we narrow down the parameters to be calibrated by taking the union of the two sets of
parameters that show sensitivities to either Q or ET (also highlighted in Table A1). ”

L208-210: Interesting! Great summary!

Thank you for the generous comment.

L215: When training using different combinations of years, why do the authors

only look at Q, not ET?

We do not use ET for multi-year analysis because the extrapolation issue of the ET observations deteriorates
the parameter estimations using the inverse mapping, as described in Section 3.3. In other words, a multi-year
analysis including ET would be questionable and not trustworthy to evaluate the impact of dry and wet
years. Therefore, we performed the multi-year analysis against only Q.

L286-287: Please clarify whether the extrapolation issue partially or solely

contributes to the worse MI-informed results.

The inferior calibrated ATS runs using knowledge-informed deep learning are attributed to both the extrapo-
lation issue of the observations and the potential high uncertainty of the ET product. The associated texts
are described below:

“ (L354-L366) This surprising result is probably attributed to both the extrapolation issue of ET
observations and the high uncertainty of the remote sensing product. Compared with the ensemble simulation
of Q (Figure 5(a)) that captures most observed Q, a majority of ET observations exceed the range of the
ATS ensemble of ET during the low ET period each year (i.e., wet seasons or September through May next
year; see Figure 5(b)). While it is possible that the defined sampling ranges of the two Priestley Taylor
coefficients in Table A1 are too limited to provide sufficient variations of ET dynamics, the uncertainty of the

3



MODIS ET product also plays a role here [3, 10]. [10] show that the MODIS ET product has much poorer
performance and higher uncertainty in the Colorado Basin than in most of the remaining areas in the United
States. The large uncertainty of this remote sensing product probably results from the increasing error in the
satellite data caused by the cloudier sky in the mountainous region [8], particularly during the dry seasons
(i.e., May through September) [10]. In other words, although the ET ensemble gives a better coverage on the
observations in the dry seasons than the wet seasons (Figure 5(b)), that could be due to the underestimation
of the MODIS ET in the dry period with high ET such that the mismatch between the ET ensemble and the
observed ET could be probably more significant. ”

Author name: Should the third author be Alexander?

Dr. Sun’s first name is corrected now.
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Comments by Reviewer #2

This study aims at basin scale parameter calibration for a physical hydrologic

model (ATS) using DL-based inverse method. The authors leveraged the mutual

information (MI) for the global sensitivity analysis to identify the relation

between parameters and model simulations, which was later applied to the input

selection of a MLP parameter inverse model. They executed different groups of

simulations and analyses to comprehensively evaluate the proposed framework. The

MS is well-written with overall structure easy to follow. I provide my suggestions

below regarding better clarifying several points and hopefully they can be useful

to further improving the quality of this study.

Thank you for the accurate summary and we appreciate your careful reviews and comments.

As my understanding on this study, the title ‘‘knowledge-informed DL’’ is mainly

represented by the MI sensitivity analysis used in the input selection for the

following inverse modeling. Knowledge informed learning, generally in my mind,

is applying physical laws or constraints to the data driven model based on our

domain knowledge. To bridge the proposed MI and physical processes together and

better strengthen the headline of this study, I suggest the authors try to link

the MI results with physical processes of the study area and give some physical

explanations of the results from sensitivity analysis. This can further highlight

the physical representations of this study.

We have added the following description to better delineate the knowledge obtained from the sensitivity
analysis which further facilitated the follow up inverse mapping development:

“ (L304-L314) Physical knowledge obtained by MI analysis. The sensitivity analysis reveals
the seasonal importance of these watershed characteristics to the hydrological fluxes in this area (Figure
5). During the low flow period (September through March of next year), Q is mostly controlled by the
subsurface permeability (i.e., perm g1, perm s3, and perm s4) which regulates both the infiltration and
the groundwater movement. Transpiration also plays a role in driving the low flow dynamics through the
Priestley Taylor coefficient (e.g., priestley taylor alpha transpiration). During the high flow period (March
through September), the snow melting process turns out to be the most critical factor in contributing to
the large runoffs, which complies with the prior knowledge about the dominance of the snow process in this
watershed. Likewise, the total ET is by and large attributed to a variety of evaporation and transpiration.
Snow evaporation is the main component of the total ET in both late autumn and winter when the snow
melting rarely happens. On the other hand, in warmer and high-flow seasons, transpiration becomes the
dominant contributor to the total ET. The seasonable pattern of the sensitivity of each parameter not only
uncovers the hydrological process in the watershed but also serves as the basis to select the most informative
model responses to estimate each model parameter. ”
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I am still confused at the details about how the inverse framework is set up

and trained. My understanding is that you first run some simulations with ATS

(how are the parameters first initialized here?) and use the simulations and

parameters to train an inverse mapping with inputs selected by MI, and then

replace ATS simulations with real observations to estimate parameters. Does the

\responses" mentioned throughout the paper mean the simulated ATS discharge and

ET? What are the training targets and how do you develop the structure, tune the

hyperparameters and train the DL framework? What are the training and testing

dataset separation?... Maybe I didn’t understand some parts very well, but indeed

expect the authors can better clarify their methodology and results to make readers

more easily understand this work.

Correct, we generated ensemble simulations of ATS to perform both MI-based global sensitivity analysis
and develop the deep learning (DL)-based inverse mappings. The mappings, developed using multilayer
perceptrons (MLPs), estimate model parameters from model responses that refer to streamflow and ET. The
technical details of DL model development were described in the appendix of the preprint version. For better
readability, we now moved it to Section 2.4 of the main manuscript and revised the associated texts as follows:

“ (L240-L265) For comparison purposes, we developed both the original inverse mapping and our proposed
knowledge-informed version for parameter estimation. While a separate neural network is developed for
estimating each parameter by using knowledge-informed inverse mapping (Figure 3(b)), the original inverse
mapping estimates all parameters using one neural network and is developed by following the same strategy
in [1] and [5] (Figure 3(a)). Further, to assess the impact of different responses in calibration, we developed
three types of inverse mappings that take various model responses: (1) using both Q and ET; (2) using only
Q; and (3) using only ET. Additionally, a multi-year analysis was performed by training inverse mappings
using Q of different combinations of observed years to evaluate both the impacts of the dry versus wet years
and the number of observed years used in calibration.

All the inverse mappings developed in this study are listed in Table 1. Each mapping was developed using
a multilayer perceptron (MLP) model as follows. The input of an MLP is an array concatenating the responses
to be assimilated within a given calibration period. The output is the model parameter(s). Let’s denote the
number of input neurons, output neurons, and hidden layers as Ni, No, and Nl, respectively. Ni depends
on the type of inverse mapping (with or without being knowledge guided), the selections of the response
variable(s), and the number of calibration years, varying from ∼100 using one year of Q to 1,785 using all
three years of Q and ET. No equals either one (i.e., estimating each parameter using knowledge-informed DL
calibration) or the number of all the parameters (i.e., using inverse mapping without mutual information).
Given Ni, No, and Nl, we adopt the arithmetic sequence to determine the number of neurons at each hidden
layer Nh,l = ⌊Ni − Ni−No

Nl
× l⌋ (where 1 ≤ l ≤ Nl and ⌊•⌋ is the floor function). In doing so, the information

from a sequence of observed responses can be gradually propagated to estimate the parameters. We use the
leaky ReLu as the nonlinear activation at the end of each layer. Based on the order of the Sobol sequences,
we sequentially split the 396 realizations into 300/50/46 for train/validation/test sets, respectively, such that
each set is able to cover the full range of the parameter ensemble as much as possible. We trained each
MLP using mean square error (MSE) as the loss function over 1,000 epochs with a batch size of 32. The
Adam optimization algorithm, a stochastic gradient descent approach, was used to train the neural network.
We performed hyperparameter tuning on each MLP using grid search to find the optimal result by varying
the number of hidden layers Nl = [1, 3, 5, 7, 9, 10] and the learning rate lr = [1e − 5, 1e − 4, 1e − 3]. The
performances of these mappings are further evaluated on the two magnitude-independent metrics, NSE and
mKGE. To have consistent comparisons between mappings with and without being knowledge guided, both
metrics are computed for the estimation of each parameter based on the test dataset. ”
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I didn’t understand the result of Figure 7 well and hope the authors can give

more explanations. Which variables are the NSE and mKGE calculated on, estimated

parameters or model simulations? If they are simulation metric, are theses

simulations from the model forwarding with parameters estimated from real

observations (Q & MODIS ET inverse)? For each individual parameter evaluation,

how do you set up the values of other parameters when doing ATS forwarding. The

caption notifies the performance is reported on testing data, but I didn’t see how

the authors divide testing and training data.

The result of Figure 7 (now Figure 8) was calculated between the true parameters and the estimation by
inverse mappings in the test dataset. How the train/validation/test data were splitted is described in the
reply to the previous comment regarding the details of DL model development. We revised the caption
of Figure 8 as: “Parameter estimation performance of the developed deep learning (DL) inverse mappings
on the test dataset using the model responses in the calibration period with regards to (a) the modified
Kling-Gupta Efficiency (mKGE) and (b) the Nash-Sutcliffe Efficiency (NSE). Green and light blue represent
the mappings without and with being knowledge informed, respectively. Blank, cross, and circle textures are
used to represent the mapping using discharge only (qonly), evapotranspiration only (etonly), and both (qet),
respectively.”.

I am thinking this multiple-years training VS one-year training discussed in

section 3.3. As for multiple years, you choose to increase the input neuron number,

or keep the one-year structure not changed and just use multiple years data as

more training samples? I think the latter one could be more beneficial because

inputting three-year time series once to the model would require large amounts

of parameters in the input layer which can be inefficient and overfitted to small

training data.

For multiple years, we increased the number of inputs of the DL model and performed hyperparameter
tuning to find the optimal architecture of the model. The tuning result partially addressed the overfitting
issue. Indeed, we observe a limited impact of overfitting from the training result (see Figures 7, A3, and
A4). Therefore, we did not try a different model architecture which complicates the hyperparameter tuning
procedure and is out of the scope of this study. We have added the following in the result section to
demonstrate this point:

“ (L316-325) The developed inverse mappings demonstrate limited overfitting issues. Figure 7 plots the
training and validation loss over epochs of the seven parameters, each of which is estimated by the knowledge-
informed inverse mapping using the corresponding three years of sensitive streamflows (i.e., mi-qonly-3yrs).
It can be observed from the figure that both losses quickly decrease with epochs with little discrepancies.
Particularly, the parameters sharing with higher mutual information with streamflows show faster convergences
of the loss function and do not have overfitting problem (e.g., perm s3 and snowmelt degree diff; see Figure
6(a)). The discrepancy between training and validation losses gets slightly larger for less sensitive parameters
(e.g., perm g4) where streamflow is less informative in parameter estimation. Indeed, informative model
responses can provide better parameter estimations, thus reducing the overfitting impact. The limited impact
of overfitting is also evident from the NSE and mKGE barplots of the training, validation, and test sets of all
the inverse mappings (see Figures A3 and A4), where most mappings have similar performances on parameter
estimations among the three sets. ”
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Another point I would be interested in is whether the authors have tried

adding meteorological forcings to the inputs of inverse modeling. I feel the

forcing-hydrologic response pair is very important to inform the characteristics

of basin processes reflected in model parameters. I am expecting the paired input

may bring more benefits to this study.

Including atmospheric forcing in the inputs of the neural network might be inappropriate for this basin-specific
study. This is because the forcings do not change with ensemble realizations and thus are constant values
to the DL model inputs, which might even deteriorate the DL model performance. Including such basin
characteristics would be more beneficial to studies encompassing multiple basins. We thus added it as one
future work in the conclusion:

“ (L458-L460) One potential future work is to develop a unified inverse modeling framework for multiple
basins, where the atmospheric forcings and basin characteristics can be also used as the inputs of the inverse
mappings in addition to the realization-dependent model responses. ”

Line 76 Do you intend to discuss the overfitting problem here? Large number of

weights and limited realizations as training data may cause overfitting with a

complicated model.

We now discuss the overfitting problem as follows:
“ (L77-L79) Further, when using all observed responses as inputs, the potentially large amount of trainable

weights of the DL model can make the model training hard and cause the overfitting of the model [11], thus
calling for more realizations used in training. ”

Line 177 Please also give explanations for H(Y|X) to help readers’ understanding.

We have added the explanation for H(Y |X) in L184-L185: “H(Y |X) is the conditional entropy that quantifies
the uncertainty of Y given the knowledge of X”.

Line 258 and 259 How did the authors safely draw the conclusion of ‘‘improves

the MI estimations’’ and ‘‘the parameters are falsely considered’’ based on the

differences of preliminary and full analysis?

This is due to the improved MI estimation of the fully analysis which uses around 400 realizations, as
evidenced by the convergence of the MI estimations shown in Figure A2 of the appendix. This converged MI
estimation allows us to identify the that is not available in the preliminary analysis. We have revised the
associated text to better illustrate this point in:

“ (L293-L301) By using more realizations, this complete MI analysis shows a better delineation of parameter
sensitivity than the preliminary analysis due to its convergence on MI estimation (see the convergence of
the parameter rankings in Figure A2). The convergence on a few hundred realizations is consistent with
another MI-based sensitivity analysis study using Soil & Water Assessment Tool (SWAT) [2]. Further, the
MI-based parameter ranking suggests that compared with the preliminary analysis, the full analysis (1)
improves the MI estimations (e.g., perm s3); and (2) identifies the insensitive parameters (e.g., perm s4)
that are falsely considered sensitive due to the limited samples in the preliminary analysis (see Figure 6).
The main permeability in the soil layer (i.e., perm s3), for example, now shows higher and more temporally
coherent sensitivity to Q (Figure 5(a)). On the other hand, perm s4, which shows some sensitivity in the
preliminary analysis, turns out to be insensitive to both Q and ET with almost zero MI at each time step. ”
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Additionally, is it possible that in the preliminary analysis some parameters are

not identified but actually behave sensitive if you include them in the full MI

analysis?

Yes, it is possible, because the preliminary analysis does not theoretically exclude such false negative cases due
to the limited sampling. However, the statistical significance test used to filter the insignificant MI estimation
can greatly improve the MI estimation as shown in a previous study in [2], thus partially eliminating such
cases. We acknowledge this point in the conclusion:

“ (L433-L439) The proposed hierarchical way of sensitivity analysis efficiently utilizes the available limited
computational resource through a combination of a prescreening analysis and then a full analysis. Although
the prescreening using 50 model runs does not theoretically exclude a false negative case that a sensitive
parameter is classified as insensitive, the statistical significance test is able to improve the estimation of
mutual information in Figure 4 thus facilitating narrowing down an “accurate” list of parameters to be
estimated. Based on the shortened parameter list, a full sensitivity analysis is successfully performed using
nearly 400 model runs and provides physically meaningful results on the dependency between the parameters
and model responses in Figure 5. ”

Figure 8 The inputs to the inverse model here are real observations or simulated

responses?

The forward runs (now shown in Figures 9 and 10) are driven by the parameters estimated by the observations.
We have revised the captions of the two figures accordingly.
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Comments by Reviewer #3

General comments:

This paper proposes a knowledge-informed deep learning method that can reduce

the computational demand required by the calibration of the computationally

expensive environmental model. I like the proposed MI sensitivity analysis best

because it is able to disclose the sensitivity of parameters varying along with

time which traditional sensitivity analysis is not capable of. Please see the

comments in the attached PDF file for suggestions and questions.

Thank you for reviewing our manuscript. We made modifications per the comments below.

Line 13: ‘‘all observations’’ --> observations covering all time steps

Revised.

Line 137: ‘‘continuous discharge (Q)’’ --> observed daily

Revised.

Line 214: When this inverse mapping is trained, how to select the significant time

steps from all time steps for each parameter? The union of the time steps that are

significant in using Q only and using ET only?

The significant modeled responses (either Q or ET) are identified prior to the development of a knowledge-
guided inverse mapping that uses these responses as the inputs. A response at a time step is considered as
significant to a parameter if its corresponding mutual information is non-zero based on a statistical significance
test, which is described below:

“(L190-L193)In this study, we follow a similar strategy of [2] to estimate p using 10 evenly divided bins
along each dimension and perform SST tests to filter out any non-significant MI value with a significance
level of 95% based on 100 bootstrap samples. In other words, the computed MI is set to zero if the statistical
significance test fails.”

In the case of using both Q and ET to estimate a parameter, we took those Q and ET that have non-zero
mutual information and concatenated them into an array to the inputs of the knowledge-guided inverse
mapping (as elaborated in Figure 3(b)).

Lines 225-226: It’s not clear what the epsilon is because there is no definition

of or equation defining the noise and observation error.

I assume what you mean by the observation error is the standard deviation of

the observation, and epsilon is 1/3 of observation standard deviation. I am not

sure whether my understanding is right.

To clarify, we modified the associated sentences as follows:
“ (L226-L230) To this end, we generate 100 realizations of noisy observations, denoted as on, such that

on = o+ ϵ× o× r, where o is the vector of the original observations, r is the random vector with the same
size as o and is drawn from a standard normal distribution, and ϵ is the standard deviation of the random
vector r and is usually taken as 1/3 of a given observation error. Following [1], ϵ is set to 0.0166 for a 5%
observation error in this study. ”
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Just would like to confirm that I understand your answer correctly. What you mean is 
Q (with non-MI) ∪ ET (with non-MI) 
where ∪ is the union symbol in math, instead of a subset of Q (with non-MI) and a subset of ET (with non-MI) filtered by that both Q and ET have non-MI values at the same time, correct?





Line 273: ‘‘redish’’ --> greenish

Revised.

Without reading Cromwell et al (2021) and Mudunuru et al (2021) about the original

inverse mapping that estimates all parameters from all responses(illustrated in

Figure 3(a)), I have no idea why the NSEs using the same response (for example Q)

for different parameters are different. To my understanding, the test data (46

out of 396 realizations including all time steps instead of selected time steps)

are the same in each case (q, et or qet) for different parameters in the original

inverse mapping since all the parameters are estimated together. Hence, the NSE

using the same response (for example Q) for different parameters should be the same.

How are the NSEs using data from the original inverse calculated for each of the

parameters in the three cases?

To make the complicated figure easy to digest, you might consider to remove 7(a)

in the upper pannel.

We calculated NSE and mKGE for the estimation of each parameter, instead of all the parameters. The
purpose is to compare the parameter estimation by the original and the knowledge-guided mappings. We
clarify this point in the following sentence:

“ (L263-L265) The performances of these mappings are further evaluated on the two magnitude-independent
metrics, NSE and mKGE. To have consistent comparisons between mappings with and without being knowledge
guided, both metrics are computed for the estimation of each parameter based on the test dataset. ”

Could you add the default ATS run which uses the default parameter values instead

of the estimated parameter values in Figure 8 and Figure 9?

In order not to complicate the two figures, we now add a figure in the Appendix (Figure A7) that compares
the default and the calibrated ATS runs, showing the improvement of the model performance using the
knowledge-informed inverse mapping.

Lines 345-347: I have no idea what this sentence is for.

This sentence is used to indicate the importance of the discharge fluctuations during the low flow period of
the dry year in model calibration. We revised the sentence as follows:

“ (L) Our finding on the significance of dry year discharge in model calibration indirectly supports some
recent studies. [7] found that high flow provides limited information to calibrate models in snow-dominated
catchments. This is mainly because there are fewer discharge fluctuations during snow melting or high flow
period than rainfall-fed catchments [9]. The decreased role of high flow, in turn, enhances the importance of
the low flow period in calibration, particularly in dry years. Indeed, in this watershed, we do observe stronger
diurnal discharge fluctuations during the low flow period of the dry year (i.e., WY2018) than the other two
wetter years (see Figure A3 in the appendix), which facilitates the better calibration result using observations
from the dry year. ”

Figure 12: Could you please plot the observation in a different color? Maybe

red?

Figure 12 (now Figure 13) is updated now.
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Highlight
Let me make my question clear. 

My question is whether in the original mapping, all the parameters are estimated as a whole. i.e., when the training dataset is applied, the original mapping outputs the estimates of all parameters (shown in Figure 3 (a))? For example, the estimated values of the seven parameters are [priestley_taylor_alpha-snow=0.01priestley_taylor_alpha-snow=0.02snowmelt_rate=0.03snowmelt_degree_diff=0.04perm_s3=0.05perm_g1=0.06perm_g4=0.07]If you applied this combined values of these parameters into the hydrological model, you should get the same time series of discharge (q) for all these seven parameters because you applied the same set of the parameter values shown above. Or for each parameter, you use the estimated value but use the default values for the other six parameters so that for each parameter the discharge (q ) calculated in the hydrological model is different and thus the NSEs are different for different parameters in Figure 8(b). Or in the original mapping, each parameter is estimated separately instead of all the parameters as a whole set? This is my question. 



Line 388: It’s not clear to me what the number of input means. Does it mean

the total time steps of the selected time steps? Please indicate the time step

of observed Q and modeled Q from ATS in section 2.1 and 2.2.

The input refers to the input neurons of a neural network. For knowledge-informed inverse mapping, the
input is an array concatenating the responses (i.e., with non-zero mutual information) to be assimilated
within a given calibration period. So, the number of inputs is the number of these selected responses used for
parameter estimation. We revised the associated texts as below:

“ (L248-L253) Each mapping was developed using a multilayer perceptron (MLP) model as follows. The
input of an MLP is an array concatenating the responses to be assimilated within a given calibration period.
The output is the model parameter(s). Let’s denote the number of input neurons, output neurons, and hidden
layers as Ni, No, and Nl, respectively. Ni depends on the type of inverse mapping (with or without being
knowledge guided), the selections of the response variable(s), and the number of calibration years, varying
from ∼100 using one year of Q to 1,785 using all three years of Q and ET. ”

Line 394: So the Adam optimization is used to tune the values of the number of

hidden layers Nl and the learning rate within the sets listed below?

The Adam algorithm is a stochastic gradient descent approach to optimize the parameters of a deep learning
model and is used for each MLP development. The hyperparameter tuning was done through a grid search to
find the optimal hyperparameters, where each trial/training employs the Adam algorithm to optimize the
loss. The related sentences are revised as follows:

“ (L259-263) We trained each MLP using mean square error (MSE) as the loss function over 1,000 epochs
with a batch size of 32. The Adam optimization algorithm, a stochastic gradient descent approach, was
used to train the neural network. We performed hyperparameter tuning on each MLP using grid search to
find the optimal result by varying the number of hidden layers Nl = [1, 3, 5, 7, 9, 10] and the learning rate
lr = [1e− 5, 1e− 4, 1e− 3]. ”
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