
Responses to the Comments of Reviewer #2 on ⟨hess-2022-282⟩

Peishi Jiang Pin Shuai Alexander Sun Maruti K. Mudunuru
Xingyuan Chen

December 28, 2022

This study aims at basin scale parameter calibration for a physical hydrologic

model (ATS) using DL-based inverse method. The authors leveraged the mutual

information (MI) for the global sensitivity analysis to identify the relation

between parameters and model simulations, which was later applied to the input

selection of a MLP parameter inverse model. They executed different groups of

simulations and analyses to comprehensively evaluate the proposed framework. The

MS is well-written with overall structure easy to follow. I provide my suggestions

below regarding better clarifying several points and hopefully they can be useful

to further improving the quality of this study.

Thank you for the accurate summary and we appreciate your careful reviews and comments.

As my understanding on this study, the title ‘‘knowledge-informed DL’’ is mainly

represented by the MI sensitivity analysis used in the input selection for the

following inverse modeling. Knowledge informed learning, generally in my mind,

is applying physical laws or constraints to the data driven model based on our

domain knowledge. To bridge the proposed MI and physical processes together and

better strengthen the headline of this study, I suggest the authors try to link

the MI results with physical processes of the study area and give some physical

explanations of the results from sensitivity analysis. This can further highlight

the physical representations of this study.

We have added the following description to better delineate the knowledge obtained from the sensitivity
analysis which further facilitated the follow up inverse mapping development:

“ (L304-L314) Physical knowledge obtained by MI analysis. The sensitivity analysis reveals
the seasonal importance of these watershed characteristics to the hydrological fluxes in this area (Figure
5). During the low flow period (September through March of next year), Q is mostly controlled by the
subsurface permeability (i.e., perm g1, perm s3, and perm s4) which regulates both the infiltration and
the groundwater movement. Transpiration also plays a role in driving the low flow dynamics through the
Priestley Taylor coefficient (e.g., priestley taylor alpha transpiration). During the high flow period (March
through September), the snow melting process turns out to be the most critical factor in contributing to
the large runoffs, which complies with the prior knowledge about the dominance of the snow process in this
watershed. Likewise, the total ET is by and large attributed to a variety of evaporation and transpiration.
Snow evaporation is the main component of the total ET in both late autumn and winter when the snow
melting rarely happens. On the other hand, in warmer and high-flow seasons, transpiration becomes the
dominant contributor to the total ET. The seasonable pattern of the sensitivity of each parameter not only
uncovers the hydrological process in the watershed but also serves as the basis to select the most informative
model responses to estimate each model parameter. ”



I am still confused at the details about how the inverse framework is set up

and trained. My understanding is that you first run some simulations with ATS

(how are the parameters first initialized here?) and use the simulations and

parameters to train an inverse mapping with inputs selected by MI, and then

replace ATS simulations with real observations to estimate parameters. Does the

\responses" mentioned throughout the paper mean the simulated ATS discharge and

ET? What are the training targets and how do you develop the structure, tune the

hyperparameters and train the DL framework? What are the training and testing

dataset separation?... Maybe I didn’t understand some parts very well, but indeed

expect the authors can better clarify their methodology and results to make readers

more easily understand this work.

Correct, we generated ensemble simulations of ATS to perform both MI-based global sensitivity analysis
and develop the deep learning (DL)-based inverse mappings. The mappings, developed using multilayer
perceptrons (MLPs), estimate model parameters from model responses that refer to streamflow and ET. The
technical details of DL model development were described in the appendix of the preprint version. For better
readability, we now moved it to Section 2.4 of the main manuscript and revised the associated texts as follows:

“ (L240-L265) For comparison purposes, we developed both the original inverse mapping and our proposed
knowledge-informed version for parameter estimation. While a separate neural network is developed for
estimating each parameter by using knowledge-informed inverse mapping (Figure 3(b)), the original inverse
mapping estimates all parameters using one neural network and is developed by following the same strategy
in [1] and [3] (Figure 3(a)). Further, to assess the impact of different responses in calibration, we developed
three types of inverse mappings that take various model responses: (1) using both Q and ET; (2) using only
Q; and (3) using only ET. Additionally, a multi-year analysis was performed by training inverse mappings
using Q of different combinations of observed years to evaluate both the impacts of the dry versus wet years
and the number of observed years used in calibration.

All the inverse mappings developed in this study are listed in Table 1. Each mapping was developed using
a multilayer perceptron (MLP) model as follows. The input of an MLP is an array concatenating the responses
to be assimilated within a given calibration period. The output is the model parameter(s). Let’s denote the
number of input neurons, output neurons, and hidden layers as Ni, No, and Nl, respectively. Ni depends
on the type of inverse mapping (with or without being knowledge guided), the selections of the response
variable(s), and the number of calibration years, varying from ∼100 using one year of Q to 1,785 using all
three years of Q and ET. No equals either one (i.e., estimating each parameter using knowledge-informed DL
calibration) or the number of all the parameters (i.e., using inverse mapping without mutual information).
Given Ni, No, and Nl, we adopt the arithmetic sequence to determine the number of neurons at each hidden
layer Nh,l = ⌊Ni − Ni−No

Nl
× l⌋ (where 1 ≤ l ≤ Nl and ⌊•⌋ is the floor function). In doing so, the information

from a sequence of observed responses can be gradually propagated to estimate the parameters. We use the
leaky ReLu as the nonlinear activation at the end of each layer. Based on the order of the Sobol sequences,
we sequentially split the 396 realizations into 300/50/46 for train/validation/test sets, respectively, such that
each set is able to cover the full range of the parameter ensemble as much as possible. We trained each
MLP using mean square error (MSE) as the loss function over 1,000 epochs with a batch size of 32. The
Adam optimization algorithm, a stochastic gradient descent approach, was used to train the neural network.
We performed hyperparameter tuning on each MLP using grid search to find the optimal result by varying
the number of hidden layers Nl = [1, 3, 5, 7, 9, 10] and the learning rate lr = [1e − 5, 1e − 4, 1e − 3]. The
performances of these mappings are further evaluated on the two magnitude-independent metrics, NSE and
mKGE. To have consistent comparisons between mappings with and without being knowledge guided, both
metrics are computed for the estimation of each parameter based on the test dataset. ”
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I didn’t understand the result of Figure 7 well and hope the authors can give

more explanations. Which variables are the NSE and mKGE calculated on, estimated

parameters or model simulations? If they are simulation metric, are theses

simulations from the model forwarding with parameters estimated from real

observations (Q & MODIS ET inverse)? For each individual parameter evaluation,

how do you set up the values of other parameters when doing ATS forwarding. The

caption notifies the performance is reported on testing data, but I didn’t see how

the authors divide testing and training data.

The result of Figure 7 (now Figure 8) was calculated between the true parameters and the estimation by
inverse mappings in the test dataset. How the train/validation/test data were splitted is described in the
reply to the previous comment regarding the details of DL model development. We revised the caption
of Figure 8 as: “Parameter estimation performance of the developed deep learning (DL) inverse mappings
on the test dataset using the model responses in the calibration period with regards to (a) the modified
Kling-Gupta Efficiency (mKGE) and (b) the Nash-Sutcliffe Efficiency (NSE). Green and light blue represent
the mappings without and with being knowledge informed, respectively. Blank, cross, and circle textures are
used to represent the mapping using discharge only (qonly), evapotranspiration only (etonly), and both (qet),
respectively.”.

I am thinking this multiple-years training VS one-year training discussed in

section 3.3. As for multiple years, you choose to increase the input neuron number,

or keep the one-year structure not changed and just use multiple years data as

more training samples? I think the latter one could be more beneficial because

inputting three-year time series once to the model would require large amounts

of parameters in the input layer which can be inefficient and overfitted to small

training data.

For multiple years, we increased the number of inputs of the DL model and performed hyperparameter
tuning to find the optimal architecture of the model. The tuning result partially addressed the overfitting
issue. Indeed, we observe a limited impact of overfitting from the training result (see Figures 7, A3, and
A4). Therefore, we did not try a different model architecture which complicates the hyperparameter tuning
procedure and is out of the scope of this study. We have added the following in the result section to
demonstrate this point:

“ (L316-325) The developed inverse mappings demonstrate limited overfitting issues. Figure 7 plots the
training and validation loss over epochs of the seven parameters, each of which is estimated by the knowledge-
informed inverse mapping using the corresponding three years of sensitive streamflows (i.e., mi-qonly-3yrs).
It can be observed from the figure that both losses quickly decrease with epochs with little discrepancies.
Particularly, the parameters sharing with higher mutual information with streamflows show faster convergences
of the loss function and do not have overfitting problem (e.g., perm s3 and snowmelt degree diff; see Figure
6(a)). The discrepancy between training and validation losses gets slightly larger for less sensitive parameters
(e.g., perm g4) where streamflow is less informative in parameter estimation. Indeed, informative model
responses can provide better parameter estimations, thus reducing the overfitting impact. The limited impact
of overfitting is also evident from the NSE and mKGE barplots of the training, validation, and test sets of all
the inverse mappings (see Figures A3 and A4), where most mappings have similar performances on parameter
estimations among the three sets. ”
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Another point I would be interested in is whether the authors have tried

adding meteorological forcings to the inputs of inverse modeling. I feel the

forcing-hydrologic response pair is very important to inform the characteristics

of basin processes reflected in model parameters. I am expecting the paired input

may bring more benefits to this study.

Including atmospheric forcing in the inputs of the neural network might be inappropriate for this basin-specific
study. This is because the forcings do not change with ensemble realizations and thus are constant values
to the DL model inputs, which might even deteriorate the DL model performance. Including such basin
characteristics would be more beneficial to studies encompassing multiple basins. We thus added it as one
future work in the conclusion:

“ (L458-L460) One potential future work is to develop a unified inverse modeling framework for multiple
basins, where the atmospheric forcings and basin characteristics can be also used as the inputs of the inverse
mappings in addition to the realization-dependent model responses. ”

Line 76 Do you intend to discuss the overfitting problem here? Large number of

weights and limited realizations as training data may cause overfitting with a

complicated model.

We now discuss the overfitting problem as follows:
“ (L77-L79) Further, when using all observed responses as inputs, the potentially large amount of trainable

weights of the DL model can make the model training hard and cause the overfitting of the model [4], thus
calling for more realizations used in training. ”

Line 177 Please also give explanations for H(Y|X) to help readers’ understanding.

We have added the explanation for H(Y |X) in L184-L185: “H(Y |X) is the conditional entropy that quantifies
the uncertainty of Y given the knowledge of X”.

Line 258 and 259 How did the authors safely draw the conclusion of ‘‘improves

the MI estimations’’ and ‘‘the parameters are falsely considered’’ based on the

differences of preliminary and full analysis?

This is due to the improved MI estimation of the fully analysis which uses around 400 realizations, as
evidenced by the convergence of the MI estimations shown in Figure A2 of the appendix. This converged MI
estimation allows us to identify the that is not available in the preliminary analysis. We have revised the
associated text to better illustrate this point in:

“ (L293-L301) By using more realizations, this complete MI analysis shows a better delineation of parameter
sensitivity than the preliminary analysis due to its convergence on MI estimation (see the convergence of
the parameter rankings in Figure A2). The convergence on a few hundred realizations is consistent with
another MI-based sensitivity analysis study using Soil & Water Assessment Tool (SWAT) [2]. Further, the
MI-based parameter ranking suggests that compared with the preliminary analysis, the full analysis (1)
improves the MI estimations (e.g., perm s3); and (2) identifies the insensitive parameters (e.g., perm s4)
that are falsely considered sensitive due to the limited samples in the preliminary analysis (see Figure 6).
The main permeability in the soil layer (i.e., perm s3), for example, now shows higher and more temporally
coherent sensitivity to Q (Figure 5(a)). On the other hand, perm s4, which shows some sensitivity in the
preliminary analysis, turns out to be insensitive to both Q and ET with almost zero MI at each time step. ”
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Additionally, is it possible that in the preliminary analysis some parameters are

not identified but actually behave sensitive if you include them in the full MI

analysis?

Yes, it is possible, because the preliminary analysis does not theoretically exclude such false negative cases due
to the limited sampling. However, the statistical significance test used to filter the insignificant MI estimation
can greatly improve the MI estimation as shown in a previous study in [2], thus partially eliminating such
cases. We acknowledge this point in the conclusion:

“ (L433-L439) The proposed hierarchical way of sensitivity analysis efficiently utilizes the available limited
computational resource through a combination of a prescreening analysis and then a full analysis. Although
the prescreening using 50 model runs does not theoretically exclude a false negative case that a sensitive
parameter is classified as insensitive, the statistical significance test is able to improve the estimation of
mutual information in Figure 4 thus facilitating narrowing down an “accurate” list of parameters to be
estimated. Based on the shortened parameter list, a full sensitivity analysis is successfully performed using
nearly 400 model runs and provides physically meaningful results on the dependency between the parameters
and model responses in Figure 5. ”

Figure 8 The inputs to the inverse model here are real observations or simulated

responses?

The forward runs (now shown in Figures 9 and 10) are driven by the parameters estimated by the observations.
We have revised the captions of the two figures accordingly.
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