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Abstract.

In this paper the question of how interpolation of precipitation in space by using various spatial gauge densities affects the

rainfall-runoff model discharge if all other input variables are kept constant is investigated. The main focus was on the peak

flows. This was done by using a physically-based model as the reference with a reconstructed spatially variable precipitation5

and a conceptual model calibrated to match the reference model’s output as closely as possible. Both models were run with

distributed and lumped inputs. Results showed that all considered interpolation methods resulted in underestimation of the

total precipitation volume and that the underestimation was directly proportional to the amount. More importantly, the under-

estimation of peaks was very severe for low observation densities and disappeared only for very high density precipitation

observation networks. This result was confirmed by using observed precipitation with different observation densities. Model10

runoffs showed worse performance for their highest discharges. Using lumped inputs for the models showed deteriorating

performance for peak flows as well, even when using simulated precipitation.

1 Introduction

Hydrology is to a very large extent driven by precipitation, which is highly variable in space and time. Point precipitation

is interpolated in space that is subsequently used as the true precipitation input for hydrological models without any further15

adjustments. A common problem with most interpolation schemes is that the variance of an interpolated field is always lower

than the variance of the individual point data that were used to interpolate it. Another problem which is very important in the

case of high precipitation events is that the absolute maximum precipitation coordinates in the interpolated field are at one of the

observation locations. Contrary to reality, it is very unlikely that for any given precipitation event the maximum precipitation

takes place at any of the observation locations. Accounting for conditional changes with additional variables helps only a little20

but never enough. New interpolations schemes are introduced on a regular basis but the main drawback is inherent to all of

them. Furthermore, distribution of the interpolated values tends to Gaussian, with an increase in the number of observations

used for interpolation for each grid cell, even when it is known that precipitation has an exponential-like distribution in space

for a given time step and also for a point in time. From experience in previous studies, Bárdossy et al. (2022, 2020); Bárdossy

and Das (2008), it was clear that model performance was dependent on the number and the configuration of observation station25
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locations but no decisive conclusion was made. It should not come as a surprise that models perform better, in terms of cause

and effect, with increasing data quantity and quality.

The problem of less precipitation observations

The effects of taking a sample from a population on the final distribution of precipitation can be visualized in the following

manner. Suppose, precipitation is measured at each point in space. For any given time step, when it is raining at some of the30

points, the distribution of values is exponential-like. Sampling a finite number of N values from the space, the chances that

points are sampled from the upper tail become smaller and smaller asN approaches 1 or conversely samples from the lower tail

are more likely. This has a strong bearing on the rainfall-runoff process. A large part of small rainfall volumes is intercepted by

the soil and the vegetation. These do not influence the peak flows directly. Large flows in rivers are due to soil saturation during

or after a rainfall event. To produce soil saturation and therefore runoff, a model first needs to be fed such large precipitation35

values. The saturation overflow is not necessarily catchment wide. It could also be due to a large precipitation event over part

of the catchment. If the precipitation observation network is not dense enough, it is possible that a representative pattern of

the event is not captured, even after interpolation due to the reasons mentioned before. Using this false precipitation as model

input will consequently lead to producing less saturation overflow and thereby model runoffs not matching the the observed.

Objectives40

To investigate the effects of sampling finite points in space on model performance and the reproduction of flood peaks this

study tries to answer the following questions:

1. How strong is the effect of sampling density on the estimation of areal precipitation for intense precipitation events? Is

there a systematic signal?

2. How does interpolation quality and hydrological model performance change with precipitation observation density?45

3. How strong is the effect of an error in precipitation observations on discharge estimations?

4. What is the role of spatial variability of hydrological model performance? How much information is lost if areal mean

precipitation is used i.e., sub-scale variability is ignored?

Some of the aforementioned points, among others, were recently discussed in a review paper by Moges et al. (2021). They

highlighted four sources of hydrological model uncertainties: parameter, input, structural and calibration data uncertainty. Their50

conclusion was that out of the four, parameter uncertainty got the most attention. Even though, all of these sources contribute

to the final results in their own unique manner.

Kavetski et al. (2003) concluded that addressing all types of uncertainty will force fundamental shifts in model calibra-

tion/verification philosophy. So far, the rainfall-runoff modeling community has not been able to put such ideas into common

practice. The reason being that a true estimate of the uncertainty of a forever changing system is extremely difficult to find.55

2



The so called epistemic uncertainty will always exist. Moreover, there is no consensus on how to model these uncertainties.

Following Kavetski et al. (2003), Renard et al. (2010) showed that taking into account both input and structural uncertainty

is an ill-posed problem as combinations of both affect the output and the performance of the model and addressing both

simultaneously is not possible.

Balin et al. (2010) tried to assess the impacts of having point rainfall uncertainty on model discharge by taking a 10060

km2 catchment at a spatial resolution of 200 m at a daily time scale. A normally distributed error of 10% was added to the

observed time series to produce new time series. This was done multiple times independently. By running the model with the

erroneous data (among other things), they found that the resulting performances were not so different than the original case.

The only noticeable difference was that the uncertainty bounds on discharge were slightly wider resulting in more observed

values contained by it. The conclusion was that the causes of model output uncertainty may not be due to erroneous data as65

the measurement errors everywhere compensated for the runoff error in a way that the final model performance stayed the

same. More interestingly, they found out that using observed rainfall for modeling resulted in under estimation of the peak

flows, a problem that this study will also try to address. Furthermore, for the same catchment Lee et al. (2010) arrived at

similar conclusions by using a different approach and a lumped rainfall-runoff model. Yatheendradas et al. (2008) investigated

uncertainty of flash floods using a physically-based distributed model by considering a mixture of parameter and input data70

uncertainty. They concluded that their model responses were heavily dependent on the properties of the precipitation estimates

using radar, among other findings.

This study is a special case of model input uncertainty. It specifically deals with the effects of using interpolated precipitation

data as a rainfall-runoff model input that is derived from point observations. It does not deal with input uncertainty as it is meant

to be as doing so requires very strong assumptions that are likely to remain unfulfilled, as was also pointed out in Beven (2021).75

The idea that various forms of uncertainties exist and should be considered is not disputed.

The rest of the study is organized as follows: Sect. 2 shows the investigation area and Sect. 3 shows the model setup, inputs

and the main idea of this study in detail. Sect. 4 discusses the two rainfall-runoff models used in this study and the methods of

their calibration. Sect. 5 discusses the results in detail where the questions posed in the beginning of this section are answered.

Sect. 6 presents two coarse correction approaches to reduce precipitation bias that were tried. Finally, in Sect. 7, the study ends80

with the summary, main findings and implications of the results.

2 Investigation area

The study area is the Neckar catchment situated in the South-West of Germany in the federal state of Baden-Würrtemberg (Fig.

1). It has a total area of 14,000 km2. From the East it is bounded by the Swabian Alps and by the Black forest on the West.

The maximum elevation is ca. 1000 m in the Swabian Alps that goes down to 170 m at the confluence of the Neckar and Rhine85

in the North. Mean recorded temperature is about 9.1 ◦C while minimum and maximum ever recorded are -28.5 and 40.2 ◦C

respectively. Annual precipitation sums reach to about 1800 mm in the Black Forest while the rest of the area receives 700
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to 1000 mm on the mean. The probability of precipitation on a given day and at a specific location is ca. 50% with a mean

precipitation of 2.5 mm per day.

The entire catchment area of the Neckar was not modeled by the considered rainfall-runoff models in this study. Rather, the90

large headwater catchments were modeled only, where times-of-concentration were long enough to allow for model runs on a

daily resolution i.e., if a large precipitation events takes place then the ensuing peak in discharge is observed at the next time

step. Namely, the Enz, Kocher and Jagst with catchment areas of 1656, 1943 and 1820 km2 respectively. Other reasons for

selection of these was that they are relatively intact as compared to the main river which is modified for transportation and also

the fact the the effects of catchment boundaries (e.g., exact boundary line and exchanges with neighboring catchments) vanish95

as the size becomes larger.

3 Model input data preparation

Point meteorological data time series (daily precipitation, and temperature) were downloaded from the Deutscher Wetter Di-

enst’s (DWD, German Weather Service) open access portal (DWD, 2019). The daily discharge time series was downloaded

from the open access portal of the Landesanstalt für Umwelt Baden-Würrtemberg (LUBW, Environmental agency of the federal100

state of Baden-Würrtemberg) (LUBW, 2020). The considered time period is from 1991 to 2015. Furthermore, the precipitation

gauges used in this study are evenly distributed across the catchment even at high elevations (Fig. 2). This is very important

because one of the cited causes of precipitation volumes (e.g., Yang et al. (1999); Legates and Willmott (1990); Neff (1977))

is the smaller density of gauges at higher elevations. It is also important to note that effects of elevation on daily precipitation

are negligible (Bárdossy and Pegram, 2013).105

3.1 Precipitation interpolation using various gauge densities

To demonstrate the effects of various gauge densities on peak flows of models, time series of the existing precipitation network

for the time period of 1991-2015 were taken. There were a total of 343 gauges. Only a subset of these was active at any given

time step as old stations were decommissioned and new ones were commissioned. Out of the total, random samples of sizes 10,

25, 50, 100 and 150 gauge time series were selected and gridded precipitation was interpolated using these for each catchment110

that was subsequently lumped into a single value for each time step. This was done 100 times. For comparison, the same

was done by using all the gauges. Furthermore, two interpolation schemes i.e., Nearest neighbor (NN) and Ordinary Kriging

(OK) were used to show that the problem was not interpolation scheme dependant. A stable variogram fitting method that was

described in Bárdossy et al. (2021) was used for OK.

3.2 Reference precipitation115

In the previous case, precipitation interpolations were not compared to reality, as one cannot not know what the real precipita-

tion was at locations with no stations. To obtain a complete coverage of rainfall, simulated precipitation fields were considered.
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A realistic virtual dataset was created to investigate the effect of precipitation observation density instead of using interpo-

lated precipitation. For this purpose, a 25 year long daily precipitation dataset corresponding to the time period of 1991-2015

was used. This dataset contains gridded precipitation on a 147x130 km grid with 1 km resolution. It was created so that the120

precipitation amounts were the same as the observed precipitation at the locations of the weather service observation stations.

Additionally, the empirical distribution function of the entire field for any selected day is the same as that of the observations

and its spatial variability (measured as the variogram) is the same as the observed. This precipitation is considered as reality. It

is called reference or reconstructed precipitation throughout this text. Full details of the procedure are described in Bárdossy

et al. (2022). To summarize the idea of the said study, consider the problem of inverse modeling in which a physically-based125

rainfall-runoff model is set up for a catchment. Daily fields of interpolated precipitation are fed to it, among other inputs. The

model hydrograph is computed. It should come as no surprise that the model and observed runoff do not match. Assume that

all the error in the model hydrograph are due to precipitation only. Now the question to be answered is that what precipitation

will result in a hydrograph that has very little to no error compared to the observed? To do so, new realizations of precipitation

that are constrained to have precipitation values exactly the same as those at the observation locations along with the same130

correlation function for any given time step in space are needed. The time step with a large error is selected and precipitation

fields for the about 10 time steps before this are simulated and fed to the model as new inputs. The resulting error is checked.

If it reduces, the new precipitation fields replace the old ones as observed. If not, then they are rejected and new ones are sim-

ulated and tested. This procedure is repeated up to the point where the model runoff error stops improving. Next, another time

step is selected that is far away (more than 10 time steps) from the one rectified before and the same procedure is repeated for135

that one. In this way all the time steps are treated and a new time series of precipitation fields is obtained that has significantly

less error compared to the case when interpolated precipitation is used.

3.3 Precipitation interpolation using the reference

To demonstrate the effects of sparse sampling of data and the resulting model runoff error, the following method was used:

N number of points were sampled from the reference grid. Time series for each point (1x1 km cell) was then extracted and140

taken as if it were an observed time series. Care was taken to sample points such that the density was nearly uniform over

the study area. N was varied to obtain a given amount of gauge density. Here, densities of 1 in 750, 400, 200 and 130 km2

were used. These correspond to 25, 50, 100 and 150 cells out of the 19,110 respectively. Labels of the form MN , are used to

refer to these in the figures, where M is a suffix to signify interpolation with N being the number of points used to create the

interpolation. For reference, Germany has around 2000 active daily precipitation stations for an area of 360,000 km2 which is145

about 1 station per 180 km2. The random sampling was performed 10 times for each N in order to see the effects of different

configurations later on in the analysis of the results.

This way many time series were sampled from the reference for various gauge densities. From here on the same procedure

was applied that is normally used in practice i.e., Spatial interpolation. To keep things simple the Ordinary Kriging (OK)

method was used to interpolate fields on the same spatial resolution as the reference at each time step. The use of OK is150

arbitrary. One could very well use any preferred method. Use of other methods that interpolate in space will not help much as
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all of them tend to result in fields that have reduced variance as compared to the variance of the observed values. Moreover, it is

also very unlikely (but possible in theory) that an interpolation scheme predicts an extreme at locations where no measurements

were made.

3.4 Temperature and potential evapotranspiration155

External Drift Kriging (EDK) (Ahmed and De Marsily, 1987) was used to interpolate daily observed minimum, mean and

maximum temperature for all cells at a resolution similar to that of the precipitation with resampled elevation from the SRTM

(Farr et al., 2007) dataset as the drift. For potential evapotranspiration (PET), the Hargreaves-Samani (Hargreaves and Samani,

1982) equation was used with the interpolated temperature data at each cell as input. It was assumed that temperature and

potential evapotranspiration are much more continuous in space as compared to precipitation which behaves as a a semi-160

Markov process in space-time that has a much larger effect on the hydrograph in the short term. To clarify that the role of

temperature and PET is not very important while considering peaks, consider the following: Peaks are a result of large scale

precipitation. It could be due to continuous precipitation that is not very intense but persists longer in time or an intense event

of a smaller duration. Long precipitation events result in very little sunlight and therefore little evapotranspiration. What is the

effect of 2 mm of evapotranspiration on a day where it rained 50 mm? An intense event will result in saturation of the soil165

and increased overland flow, again not enough time for evapotranspiration to have any significant impact. The only time when

temperature may have a considerable effect is when it goes very low, a large snow event takes place for many days and then

the temperature suddenly rises in the coming days rather quickly. It is very rare. For example, such an event that is on record

in the study area took place in 1882. This was also investigated previously in Bárdossy et al. (2020). Even then, the effect of

temperature is modelled to a very good extent by the interpolation due its nature in space-time.170

4 Model setup

Two rainfall-runoff models, namely SHETRAN (Ewen et al., 2000) and HBV (Bergström, 1992), were considered in this

study. Same gridded inputs were used for both and at a spatial resolution of 1x1 km and at a daily temporal resolution. Except

for precipitation, all other inputs remained the same during all the experiments. Description of the model used and the setup

specific to each is discussed in the following two subsections.175

4.1 SHETRAN

SHETRAN is a physically based distributed hydrological model which simulates the major flows (including subsurface) and

their interactions on a fine spatial grid (Ewen et al., 2000). It includes components for vegetation interception and transpira-

tion, overland flow, variably saturated subsurface flow and channel–aquifer interactions. The corresponding partial differential

equations are solved using a finite-difference approximation. The model parameters were not calibrated. Instead, available data180

such as the elevation, soil and land use maps were used to estimate the model parameters at a 1x1 km spatial resolution (Lewis

et al., 2018; Birkinshaw et al., 2010). It was considered as a theoretically correct transformation of rainfall to runoff. This way,
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combined with the reference precipitation, a realistic virtual reality was created in which the effect of different sampling den-

sities could be investigated. Same SHETRAN settings were used for the various precipitation interpolations. Furthermore, the

model and settings are the same as those in Bárdossy et al. (2022), which the readers are encouraged to read before proceeding185

further.

4.2 HBV

HBV is one of the most widely used models that needs no introduction. It requires very little input data i.e., precipitation,

temperature and potential evapotranspiration. Each grid cell of HBV was assumed to be a completely independent unit. All

cells shared the same parameters, only the inputs were different. The runoff produced by all cells was summed up at the end190

to produce the final simulated discharge value for each time step. It was calibrated for the reference precipitation and each of

the precipitation interpolation. Differential Evolution (DE) (Storn and Price, 1997) was used to find the best parameter vector.

It is one of the genetic-type optimization schemes to find the global optimum by updating a given sample of parameter vectors

successively by mixing three in a specific manner. A population size of 400 was used to find the global optimum. Overall, it

needed 150 to 200 iterations to converge for 11 parameters. 50% Nash-Sutcliffe (NS) (Nash and Sutcliffe, 1970) and 50% NS195

using the Natural logarithm (Ln-NS) was used as the objective function for calibration. Ln-NS was chosen because NS alone

concentrates too much on the peak flows during calibration and disregards, almost 95% of, the remaining flows. Ln-NS helps

to mitigate this flaw to some degree but not completely.

5 Results

Before showing the results, some terms specific to the following discussion are defined first. They are put here for the readers’200

ease.

1. The term reference precipitation refers to the reconstructed precipitation that is taken as if it were the observation.

Reference model refers to SHETRAN with the reference precipitation as input and the resulting discharge of this setup

is the reference discharge.

2. Interpolated discharge refers to the discharge of SHETRAN or HBV with interpolated precipitation as input. The model205

is mentioned specifically for it. The term subsampling refers to extraction of time series of a subset of points from the

entire grid.

3. Model performance, refers to the value of the objective function whose maximum, and optimum, value is 1.0, anything

less is less performance. The performance of the reference discharge is 1.

4. Furthermore, discharge and runoff are used interchangeably. They both refer to the volume of water produced by a210

catchment per unit time which is cubic meters per second in this study. The terms observation station, gauge and station

are used interchangeably. These refer to the meteorological/discharge observation stations.
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5.1 Metrics used for evaluation

To compare the change in precipitation or model runoff, scatter plots of reference values on the horizontal versus their corre-

sponding values after interpolation on the vertical scale are shown. Each point represents lumped precipitation for all the cells215

i.e., mean of all the cells per time step.

The largest five aerially lumped values for precipitation in the reference and the values at the corresponding time steps in

interpolation are compared by showing them as a percentage of the reference. This produces a number of points that is the

product of the number of interpolations and the considered number of events. For comparing discharge, 5 largest values in the

reference discharge are compared against the values at the same time steps using interpolated discharge. This results in 5 points220

per interpolation. Violin plots are used to show these points as densities.

Furthermore, figures comparing a high discharge event using all the interpolations are shown at the end of each subsection

wherever relevant. Tables summarizing over- and under-estimations as percentages relative to the reference are shown at the

end of each subsection.

5.2 Comparison of interpolations using fewer vs. all gauges225

Comparison of the largest five precipitation events’ depth using various number of gauges taken from the entire network are

shown in Fig. 3 and 4 for Enz. These are normalized with respect to the values computed using the entire network (343

gauges). There are many cases where the fewer gauges’ interpolations have larger values than the ones with the entire network.

However, the more important point to notice is the bias. By using a lower number of gauges, underestimation of the largest

precipitation events is more likely. NN exhibits a larger variance in terms of under- and over-estimations compared to OK.230

Using more gauges shows that the deviations reduce significantly. Another aspect that should be kept in mind is that here

interpolations are compared to an interpolation. Even by using all the gauges, there is still a very high chance of missing the

absolute maximum precipitation at a given time step. Keeping this in mind one should be aware that runoff predicted by a

model using this smoothed precipitation with all the gauges will still produce, on average, smaller peaks. This will become

clearer by the results in the next sections where the reference precipitation is used. Tables 1 and 2 summarize the cases with235

under- and over-estimations using various number of gauges with respect to using all of them for interpolation for the three

catchments using NN and OK respectively.

5.3 Effects of subsampling from reference on precipitation

Fig. 5 shows an exemplary event with very high daily precipitation for the reference and various interpolation cases. For the

lowest number of gauges, the field appears very smooth and has a smaller variance as compared to the field with the most240

stations which is much closer to the reference.

In Fig. 6, the scatter plot of lumped reference against one of the lumped interpolation values for all time steps for Kocher

is shown. Here, it is interesting to notice that overall, the larger the value in reference, the more it is reduced by the interpo-

lation. On the other hand, the interpolation increases the magnitude of the smaller values. Events in the mid-range values are
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10 25 50 100 150

Enz 60-09-31 51-16-33 45-26-29 35-41-24 25-52-23

Kocher 55-13-32 49-20-31 40-28-32 32-38-30 22-53-25

Jagst 52-15-33 48-20-32 40-28-32 32-36-32 25-53-22

Table 1. Relative percentages of under- and over-estimations of the top 5 precipitation events using various gauge densities (columns) with

respect to the top 5 values using interpolation with all the gauges for the three considered catchments (rows) using NN. The values are of

the format percentage of underestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to

the interpolation using all gauges. For example, 60-09-31 in the first row and first column means that out of the 100 interpolations (with 5

events per interpolation) using 10 gauges for Enz, 60% of the events were below 97.5%, 9% were within 97.5% and 102.5%, and 31% were

above 102.5% of the top 5 events using the interpolation with all the 343 gauges.

10 25 50 100 150

Enz 66-09-25 56-18-26 50-29-21 36-43-21 24-56-20

Kocher 61-15-24 62-17-21 52-25-23 35-42-23 20-57-22

Jagst 60-12-28 57-20-23 50-29-21 39-40-22 24-60-15

Table 2. Under- and over-estimation percentages of the top 5 precipitation events using OK. Caption of Table 1 shows how to interpret the

numbers here.

underestimated by a significant margin. Most points are below the ideal line. Consider the subsequent mass balance problems245

that would arise by such a consistent bias. Over the long term, one would adjust the model to have lower evapotranspiration.

Over the short term, the peak flows would almost always be underestimated. It is important to keep in mind that high discharge

values are the result of a threshold process in the catchment where the water moves in larger volumes towards the stream once

the soil saturates or when the infiltration cannot keep up with the rainfall/melt intensity. To match the peaks in such scenarios,

it is important to obtain the correct estimates of precipitation.250

Fig. 7 shows the relative change of the largest five peak precipitation values. These were computed by dividing the inter-

polated precipitation by the reference at the time steps of the top 5 events. A consistent bias, i.e., underestimation, is clear.

Especially, for the coarsest interpolation (25 points). Such a bias appears small but cosider the extra volume over a 1000 km2

catchment that is not intercepted by the soil. Another interesting point to note is that for the other interpolations there are

some overestimations as well. All the relative under- and over-estimations for the three catchments with various densities are255

summarized in Table 3.
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M025 M050 M100 M150

Enz 74-20-06 60-20-20 45-38-18 44-47-09

Kocher 80-06-14 60-18-22 50-15-35 31-44-24

Jagst 84-04-12 42-24-34 35-35-30 22-53-24

Table 3. Percentages of under- and over-estimations of the top 5 precipitation events using various gauge densities (columns) with respect

to the top 5 values using reference precipitation for the three considered catchments (rows). The values are of the format percentage of un-

derestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to the reference precipitation.

For example, 31-44-24 in the second row and last column means that out of the 10 interpolations (with 5 events per interpolation) using 150

points for Kocher, 31% of the events were below 97.5%, 44% were within 97.5% and 102.5%, and 24% were above 102.5% of the top 5

events using the reference precipitation.

5.4 Effects of subsampling from reference on discharge of SHETRAN

Similar to the precipitation, systematic bias in model runoff was investigated next. Fig. 8 shows the resulting runoff by using

the same precipitation (Fig. 6) as input to SHETRAN. What is immediately clear is that there are almost no overestimations of

discharge values when using interpolated precipitation. The largest peak is reduced by almost 50%.260

Looking at Fig. 9, the mean of the largest five peaks is reduced significantly while using the least number of points for

Kocher. The other point to note is that the peaks drop on average for other interpolations (except for the last one) much more

as compared to the reduction in precipitation. To see the effects more in detail, Fig. 10 and 11 show hydrographs obtained

using various gauging densities for two events. It is very clear that as the gauging density rises, the underestimation decreases

proportionally and the hydrographs become similar. All the under- and over-estimations are summarized in the Table 4 for all265

the catchments.

M025 M050 M100 M150

Enz 80-02-18 78-06-16 60-28-12 49-27-24

Kocher 91-04-04 84-10-06 56-24-20 27-49-24

Jagst 76-04-20 62-18-20 56-28-16 38-38-24

Table 4. Percentages of under- and over-estimations of the top 5 discharge events using various gauge densities (columns) with respect to the

top 5 values using reference discharge for the three considered catchments (rows) using SHETRAN. The values are of the format percentage

of underestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to the reference discharge.

For example, 38-38-24 in the third row and last column means that out of the 10 interpolations (with 5 events per interpolation) using 150

points for Jagst, 38% of the events were below 38%, 38% were within 97.5% and 102.5%, and 24% were above 102.5% of the top 5 events

using the reference discharge.
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5.5 Effects of subsampling from reference on discharge of HBV

While observing the scatter of reference and interpolated precipitation discharge in Fig. 12, HBV shows a different behaviour

as compared to SHETRAN. Overestimations from low to high flows exist except for the largest high flows which are underesti-

mated as well. Again, not as much as that by SHETRAN. This is due to the recalibration, where the new parameters compensate270

for the missing precipitation by decreasing evapotranspiration. This aspect will be investigated thoroughly in future research.

Fig. 13 shows the scaling of the five highest peaks compared to the reference discharge. Here, a similar reduction for the

least amount of stations can be seen. Even for the highest number of stations, the discharges are still underestimated. This

signifies that even a distributed HBV with full freedom to readjust its parameters cannot fully mimic the dynamics of the flow

produced by SHETRAN. Hydrographs for the same events shown in the previous section for HBV are shown in Fig. 14 and275

15. It is interesting to note that the first event is overestimated by all interpolations and that the hydrographs become similar

as the gauging density increases. The second event is estimated better as the gauging density increases. All the under- and

over-estimations are summarized in the Table 5 for all the catchments.

M025 M050 M100 M150

Enz 78-04-18 78-04-18 78-02-20 71-00-29

Kocher 100-00-00 96-04-00 90-08-02 89-11-00

Jagst 74-06-20 78-00-22 80-00-20 80-00-20

Table 5. Percentages of under- and over-estimations of the top 5 discharge events using various gauge densities (columns) with respect to

the top 5 values using reference discharge for the three considered catchments (rows) using HBV. Caption of Table 4 shows how to interpret

the numbers here.

5.6 Effects of removing subscale variability of precipitation on SHETRAN discharge

Effects of using lumped precipitation on the resulting discharge, i.e., mean precipitation value at each time step for all cells,280

were also investigated. The aim was to see the effects of subscale variability on runoff. While considering 10 largest peaks

per catchment for the entire time period, NS efficiencies of these dropped to 0.77, 0.78 and 0.90 for Enz, Kocher and Jagst

respectively. Almost all peaks were reduced in their magnitudes to 84%, 85% and 93% with respect to the ones produced by

the model on average with the distributed reference precipitation. Most of the underestimation of the peaks were during winter

that are likely to be snowmelt events. These are location/elevation dependent and it makes sense that using a lumped value285

of precipitation results in incorrect melt behavior. Overall, the tendency was towards reduced discharge when using lumped

precipitation. This tendency is likely to be much higher when a single cell is used to represent the catchment i.e., a fully lumped

model.
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5.7 Effects of measurement error in precipitation on runoff

To test how measurement error affects the model discharge, precipitation with a measurement error of 10% of each observed290

value having a standard Normal distribution was used and then interpolated as well. There, it was observed that magnitude of

under- and over-estimation of the peaks becomes more variable as compared to the reference but the bias remained the same

as that compared to using precipitation with no error. Table 6 shows the effects for precipitation. Comparing these to Table 3,

it can be concluded that the trends are not significantly different for the two cases. Similar to interpolations with no errors, the

ones with the largest number of samples have more values closer to the reference precipitation. These results corroborate the295

conclusions by Balin et al. (2010); Lee et al. (2010).

These results have an interesting consequence. If the gauges have measurement errors that are Normally distributed i.e.,

cheaper gauges, such as the Netatmo personal weather stations, can be used to close the gap of missing precipitation due to

sparse distribution networks. Studies, such as those by de Vos et al. (2017, 2019); Bárdossy et al. (2021), have shown that

these alternative sources of data can augment the existing networks, while still having some drawbacks nonetheless. The type300

of measurement error by these can be further studied to validate their usefulness for rainfall-runoff modeling.

M025 M050 M100 M150

Enz 71-11-18 46-32-22 54-22-24 24-50-26

Kocher 80-09-11 66-18-16 46-34-20 38-34-28

Jagst 82-11-07 60-16-24 48-30-22 30-40-30

Table 6. Percentages of under- and over-estimations of the top 5 precipitation events using various gauge densities (columns) with respect

to the top 5 values using reference precipitation for the three considered catchments (rows). The values are of the format percentage of un-

derestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to the reference precipitation.

For example, 38-34-28 in the second row and last column means that out of the 10 interpolations (with 5 events per interpolation) using 150

points for Kocher, 38% of the events were below 97.5%, 34% were within 97.5% and 102.5%, and 28% were above 102.5% of the top 5

events using the reference precipitation.

6 Preliminary attempts to correct precipitation bias

Consistent bias was shown by the interpolated precipitation. Consequently, it was also tried to rectify it by transforming

precipitation in such a manner where an improvement in the discharge could be observed. Two different approaches were

tested. These are described as follows.305

Static transform of the form,
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P ′(t) =

P (t) if P (t)< ψ,

β(P (t)−ψ)γ else
(1)

where, ψ is a threshold for transformation. β is a multiplier while γ is an exponent that may transform the values above the

threshold linearly or non-linearly.

Using transforms that do not consider the time of the year or the type of weather during a precipitation event are also not310

optimal. For example, precipitation events in Summer are more intense, occur for a shorter period of time, are more abrupt in

nature and cover smaller areas as compared to winter where the intensity is less, occur for longer periods of time, and cover

much larger areas. Accounting for such information while correcting for bias can be useful. Hence, transformations based on

weather circulation patterns (CPs) were used to correct the precipitation bias based on the type of event. An automatic CP

classification method based on Fuzzy logic (Bárdossy et al., 2002) was used to find relevant CPs that were dominant in the315

study area. The procedure assigns a type of weather to each time step based on the atmospheric pressure in and around the

catchment area and some other constraints. The number of CPs that may be obtained is arbitrary. For this study 5 CPs were

chosen based on previous experience and also for avoiding too many free variables for calibration. The transfomation was

then applied to precipitation that took place only in the two CPs that were related to the wettest weather. Contrary to a static

transform based on the precipitation magnitude only, independent of time or weather, transforms are applied to each time step320

based on its CP, which depends on the weather and time of the year. The CP-based transform was as follows,

P ′(t) = βCP ·P (t)γCP (2)

where, βCP is a CP dependent multiplier and γCP is a CP dependent exponent.

Finally, a simple experiment was set up to search for a consistent pattern in the unknown terms of the transforms using

the lumped HBV. The method to find the optimal transformation involved applying the same transform to precipitation values325

for all catchment while optimizing their model parameters independently. The assumption being that the model efficiencies

will bring better performance compared to the case where no precipitation correction was considered. This lead to a problem

of optimization in higher dimensions. For the previous cases, the optimization of model parameters was carried out for each

catchment independently, which was an 11 dimensional problem. For the case of testing transforms, the model parameters

of the three catchments and the unknown transform parameters have to optimized simultaneously. This has to be the case,330

as optimizing transforms for each catchment will lead to them being very different than the neighbors. However, considering

the behavior of precipitation in space, it could be argued that each catchment should be treated individually, but here the aim

was to evaluate if an overall correction was possible. Hence, 36 parameters for the static-transform case and 37 for the CP-

based case had to be optimized. For the case of the static transform, slight improvement in the results was observed for all the

catchments but no consistent patterns were observed, same was the case for the CP-based. Strangely, all transforms resulted335

in the reduction of the high precipitation values. Which signifies that the problem of the large precipitation’s underestimation
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cannot be considered independently of the low and medium precipitation values. Similar approaches and more sophisticated

ones will be investigated in later research.

7 Summary and conclusions

An often ignored problem of peak flow underestimation in rainfall-runoff modeling by using interpolated data was investigated340

in this study. To do so, data were interpolated using different gauge densities. It was shown how interpolated precipitation

differs from reference precipitation. This may come as no surprise as interpolation produces smooth transitions between two or

more points that are very unlikely to represent the actual state of the variable in space-time. SHETRAN was used as a reference

model that was assumed to represent reality with reconstructed precipitation as input. The other model was HBV. Runoff from

SHETRAN was chosen as a reference to avoid inherent mismatch of mass balances as compared to using observed discharge345

series. Simple approaches for bias correction were also presented, where it was learned that the bias cannot be corrected using

simple static or weather dependent transforms of input precipitation.

We arrived at the following answers to the questions that were stated in the beginning:

1. Sampling density of stations in and around a catchment have profound effects on the quality of interpolated precipitation.

While it is obvious that more stations lead to better estimates of precipitation, it was recognized that low density leads350

to a more frequent high underestimation of areal precipitation, especially for the large events. Depending on the density

the worst-case was an underestimation of about 75% of the precipitation volume. This effect decreased as the sampling

density increased.

2. Both considered hydrological models showed a consequent underestimation of peak flows. For example, SHETRAN

produced a peak that was about 50% less compared to the case when reference precipitation was used. HBV did not show355

a similar loss comparatively as it was recalibrated each time for different precipitation but its performance deteriorated

nonetheless.

3. Similar to previous studies, the effects of random measurement errors in precipitation on model discharge were not

significant.

4. Using precipitation as input with no spatial variability, showed an overall loss in model performance, especially for the360

events that involved snowmelt.

Further conclusions that can be derived from the above mentioned results are:

1. While modeling in hydrology, variables should be modeled in space and time at the correct resolution to have usable

results. Disregarding spatial characteristics (in terms of variance) leads to problems that cannot be solved by any model

or finer resolution temporal data.365

2. Cheaper networks may prove valuable where observations are sparse if the condition that their measurement errors are

normally distributed is met.
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3. Finally, the results and conclusions of this study must be interpreted with the important fact in mind, that models were

used to demonstrate the effects of the underestimation of peaks due to sparse networks and interpolations. In reality,

it could very well be that these effects become less dominant/observable due any number of other reasons such as370

incorrect temperature or discharge readings; or using models that insufficiently represent all the processes the lead to

river flows or changes in it. Nevertheless, this study proves that the main culprit behind underestimation of peaks is

the observation network density provided that a model is used that has a description of the dominant rainfall-runoff

producing mechanisms in it. The models used to demonstrate the effects are circumstantial to a large extent as the peak

flow underestimation is due to the missing volume of input precipitation.375

In future research, the following issues could be addressed:

1. Underestimation of intense precipitation due to interpolation.

2. Sensitivity of other variables, such as temperature, to interpolation and their effects on runoff. Especially, catchments

with seasonal or permanent snow cover.

3. The magnitude of performance compensation that recalibration introduces due to the missing precipitation.380

4. The effects of using different density networks on calibrated model parameters and regionalization of model parameters.

5. Determining the error distributions of cheaper precipitation gauges to establish their usefulness in rainfall-runoff model-

ing.
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Figure 1. Study area (taken from Bárdossy et al. (2022))
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Figure 2. Comparison of elevation distributions of observation locations (red) and the whole simulation grid (blue) using the SRTM 90m

grid for the study area.
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Figure 3. Precipitation bias comparison of the top five largest values due to using fewer points against an interpolation that uses all the points

using NN.

21



Figure 4. Precipitation bias comparison of the top five largest values due to using fewer points against an interpolation that uses all the points

using OK.
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Figure 5. Comparison of precipitation interpolations for a time step with high precipitation with the reference.
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Figure 6. Scatter of reference and lumped interpolated precipitation for one catchment.
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Figure 7. Precipitation bias comparison of various interpolations with respect to the reference for the top five largest values.
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Figure 8. Scatter of discharge using reference and interpolated precipitation for one catchment using SHETRAN.
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Figure 9. Discharge bias comparison of various interpolations with respect to the reference for the top five largest values using SHETRAN.
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Figure 10. Event hydrograph comparison for various gauging densities using SHETRAN.
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Figure 11. Event hydrograph comparison for various gauging densities using SHETRAN.
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Figure 12. Scatter of discharge using reference and interpolated precipitation for one catchment using HBV.

30



Figure 13. Discharge bias comparison of various interpolations with respect to the reference for the top five largest values using HBV.
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Figure 14. Event hydrograph comparison for various gauging densities using HBV.
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Figure 15. Event hydrograph comparison for various gauging densities using HBV.
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