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Abstract.

In this paper the question of how interpolation of precipitation in space by using various spatial gauge densities affects the

rainfall-runoff model discharge if all other input variables are kept constant is investigated.
:::
The

:::::
main

:::::
focus

::::
was

::
on

:::
the

:::::
peak

:::::
flows. This was done

::
by using a physically-based model as the reference with a reconstructed spatially variable precipitation5

and a conceptual model calibrated to match the reference modeloutput
:
’s

::::::
output

::
as

:::::::
closely

::
as

:::::::
possible. Both models were

run with distributed and lumped inputs. Results showed that all considered interpolation methods resulted in underestimation

of the total precipitation volume and that the underestimation was directly proportional to the amount. The underestimation

::::
More

:::::::::::
importantly,

:::
the

:::::::::::::
underestimation

::
of

::::::
peaks was very severe for low observation densities and disappeared only for very

high density precipitation observation networks. This result was confirmed by using observed precipitation with different10

observation densities. Model runoffs showed worse performance for their highest discharges. Using lumped inputs for the

models showed deteriorating performance for peak flows as well,
:
even when using simulated precipitation.

1 Introduction

Hydrology is to a very large extent driven by precipitation, which is highly variable in space and time. Point precipitation

is interpolated in space that is subsequently used as the true precipitation input for hydrological models without any further15

adjustments. A common problem with most interpolation schemes is that the variance of an interpolated field is always lower

than the variance of the individual point data that were used to interpolate it. Another problem which is very important in

the case of high precipitation events is that the absolute maximum precipitation coordinates in the interpolated field are at

one of the observation locations. Contrary to reality, it is very unlikely that our observation networks persistently catch
::
for

::::
any

::::
given

:::::::::::
precipitation

:::::
event the maximum precipitation

::::
takes

:::::
place

::
at

:::
any

::
of

:::
the

::::::::::
observation

:::::::
locations. Accounting for conditional20

changes with additional variables helps only a little but never enough. New interpolations schemes are introduced on a regular

basis but the main drawback is inherent to all of them. The reduction comes mainly from the underestimation of precipitation for

the high values and also because the
::::::::::
Furthermore,

:
distribution of the interpolated values tends to Gaussianthe more neighbors

one takes
:
,
::::
with

:::
an

:::::::
increase

::
in

:::
the

:::::::
number

::
of

:::::::::::
observations

::::
used

:
for interpolation for each grid cell, even when it is known

that precipitation has an exponential-like distribution in space for a given time step and
:::
also

:
for a point in time. The problem25
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gets worse as the number of stations reduces. From experience in previous studies, Bárdossy et al. (2022, 2020); Bárdossy and

Das (2008), it was clear that model performance was dependent on the number and the configuration of observation station

locations but no decisive conclusion was made. It should not come as a surprise that models perform better, in terms of cause

and effect, with increasing data quantity and quality.

:::
The

::::::::
problem

::
of

::::
less

:::::::::::
precipitation

:::::::::::
observations30

:::
The

::::::
effects

::
of

::::::
taking

:
a
:::::::

sample
::::
from

::
a
:::::::::
population

::
on

::::
the

::::
final

::::::::::
distribution

::
of

:::::::::::
precipitation

:::
can

::
be

:::::::::
visualized

::
in

:::
the

:::::::::
following

::::::
manner.

::::::::
Suppose,

:::::::::::
precipitation

::
is

::::::::
measured

::
at

::::
each

:::::
point

::
in

::::::
space.

:::
For

:::
any

:::::
given

:::::
time

::::
step,

:::::
when

:
it
::

is
:::::::
raining

::
at

::::
some

:::
of

:::
the

:::::
points,

:::
the

::::::::::
distribution

:::
of

:::::
values

::
is
::::::::::::::
exponential-like.

:::::::::
Sampling

:
a
:::::
finite

:::::::
number

::
of

::
N

::::::
values

::::
from

::::
the

:::::
space,

:::
the

:::::::
chances

::::
that

:::::
points

:::
are

:::::::
sampled

::::
from

:::
the

:::::
upper

:::
tail

:::::::
become

::::::
smaller

:::
and

:::::::
smaller

::
as

::
N

:::::::::
approaches

::
1

::
or

:::::::::
conversely

:::::::
samples

::::
from

:::
the

:::::
lower

:::
tail

::
are

:::::
more

:::::
likely.

::::
This

::::
has

:
a
:::::
strong

:::::::
bearing

::
on

:::
the

::::::::::::
rainfall-runoff

:::::::
process.

::
A

::::
large

::::
part

::
of

:::::
small

::::::
rainfall

:::::::
volumes

::
is

:::::::::
intercepted

:::
by35

::
the

::::
soil

:::
and

:::
the

:::::::::
vegetation.

:::::
These

:::
do

:::
not

::::::::
influence

:::
the

::::
peak

:::::
flows

::::::
directly.

::::::
Large

::::
flows

::
in

:::::
rivers

:::
are

:::
due

::
to
::::
soil

::::::::
saturation

::::::
during

::
or

::::
after

:
a
:::::::
rainfall

:::::
event.

:::
To

:::::::
produce

:::
soil

:::::::::
saturation

:::
and

::::::::
therefore

::::::
runoff,

:
a
::::::
model

:::
first

::::::
needs

::
to

::
be

:::
fed

:::::
such

::::
large

:::::::::::
precipitation

::::::
values.

:::
The

:::::::::
saturation

:::::::
overflow

::
is

:::
not

::::::::::
necessarily

::::::::
catchment

:::::
wide.

::
It

:::::
could

::::
also

::
be

::::
due

::
to

:
a
:::::
large

::::::::::
precipitation

:::::
event

::::
over

::::
part

::
of

:::
the

:::::::::
catchment.

::
If

:::
the

:::::::::::
precipitation

::::::::::
observation

:::::::
network

::
is

:::
not

:::::
dense

:::::::
enough,

::
it
::
is

:::::::
possible

::::
that

:
a
::::::::::::

representative
::::::
pattern

:::
of

::
the

:::::
event

::
is

:::
not

::::::::
captured,

::::
even

::::
after

:::::::::::
interpolation

::::
due

::
to

:::
the

::::::
reasons

:::::::::
mentioned

::::::
before.

::::::
Using

:::
this

::::
false

::::::::::
precipitation

::
as

::::::
model40

::::
input

::::
will

:::::::::::
consequently

::::
lead

::
to

::::::::
producing

::::
less

::::::::
saturation

::::::::
overflow

:::
and

:::::::
thereby

:::::
model

::::::
runoffs

:::
not

::::::::
matching

:::
the

:::
the

::::::::
observed.

:

:::::::::
Objectives

To investigate the effects of sampling finite points in space on model performance and the reproduction of flood peaks this

study tries to answer the following questions:

1. How strong is the effect of sampling density
::
on

:
the estimation of areal precipitation for intense precipitation events? Is45

there a systematic signal?

2. How does interpolation quality and hydrological model performance change with precipitation observation density?

3. How strong is the effect of an error in precipitation observations on discharge estimations?

4. What is the role of spatial variability of hydrological model performance? How much information is lost if areal mean

precipitation is used i.e.
:
, sub-scale variability is ignored?50

Some of the aforementioned points, among others, were recently discussed in a review paper by Moges et al. (2021). They

highlighted four sources of hydrological model uncertainties: parameter, input, structural and calibration data uncertainty.

Their conclusion was that out of the four, only parameter uncertainty got the most attention. Even though, all of these sources

contribute to the final results in their unique ways
:::
own

::::::
unique

::::::
manner.

Kavetski et al. (2003) concluded that addressing all types of uncertainty will force fundamental shifts in model calibra-55

tion/verification philosophy. So far, the rainfall-runoff modeling community has not been able to put such ideas into common
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practice. The reason being that we can never find a true estimate of the uncertainty of the
:
a forever changing system that we

are trying to model
:
is

::::::::
extremely

:::::::
difficult

:::
to

:::
find. The so called epistemic uncertainty will always exist. Moreover, there is no

consensus on how to model these uncertainties. Following Kavetski et al. (2003), Renard et al. (2010) showed that taking

into account both input and structural uncertainty is an ill-posed problem as combinations of both affect the output and the60

performance of the model and addressing both simultaneously is not possible.

Balin et al. (2010) tried to assess the impacts of having point rainfall uncertainty on model discharge by taking a 100

km2 catchment at a spatial resolution of 200 m at a daily time scale. A normally distributed error of 10% was added to the

observed time series to produce new time series. This was done multiple times independently. By running the model with the

erroneous data (among other things), they found that the resulting performances were not so different than the original case.65

The only noticeable difference was that the uncertainty bounds on discharge were slightly wider resulting in more observed

values contained by it. The conclusion was that the causes of model output uncertainty may not be due to erroneous data as the

measurement errors everywhere compensated for the runoff error in a way that the final model performance stayed the same.

More interestingly, they found out that using observed rainfall for modeling resulted in under estimation of the peak flows,

a problem that this study deals with
:::
will

::::
also

:::
try

::
to

::::::
address. Furthermore, for the same catchment Lee et al. (2010) arrived at70

similar conclusions by using a different approach and a lumped rainfall-runoff model. Yatheendradas et al. (2008) investigated

uncertainty of flash floods using a physically-based distributed model by considering a mixture of parameter and input data

uncertainty. They concluded that their model responses were heavily dependent on the properties of the precipitation estimates

using radar, among other findings.

This study is a special case of model input uncertainty. It specifically deals with the effects of using interpolated precipitation75

data as a rainfall-runoff model input that comes
:
is
:::::::
derived from point observations. It does not deal with input uncertainty as

it is meant to be . To do so
::
as

:::::
doing

::
so

:::::::
requires

:
very strong assumptions have to be made. Assumptions which

:::
that are likely

to remain unfulfilled, which
::
as

:
was also pointed out in Beven (2021). The idea that various forms of uncertainties exist and

should be dealt with
::::::::
considered

:
is not disputed. This research is not intended as a review, hence only relevant works are cited

and discussed.80

The rest of the study is organized as follows: Sect. 2 shows the investigation area and Sect. 3 shows the model setupand

inputs and especially
:
,
:::::
inputs

::::
and the main idea of this study in detail. Sect. 4 discusses the two

:::::::::::
rainfall-runoff

:
models used in

this study and the methods of
:::
their

:
calibration. Sect. 5 discusses the results in detail where the questions posed in the beginning

of this section are answered.
::::
Sect.

::
6

:::::::
presents

::::
two

:::::
coarse

:::::::::
correction

::::::::::
approaches

::
to

::::::
reduce

:::::::::::
precipitation

::::
bias

:::
that

:::::
were

:::::
tried.

Finally, in Sect. 7, the study ends with the summary, main findings and implications of the results.85

2 Investigation area

The study area is the Neckar catchment situated in the South-West of Germany in the federal state of Baden-Würrtemberg (Fig.

1). It has a total area of 14,000 km2. From the East it is bounded by the Swabian Alps and by the Black forest on the West.

The maximum elevation is ca. 1000 m in the Swabian Alps that goes down to 170 meters
::
m at the confluence of the Neckar
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and Rhine in the North. Mean recorded temperature is about 9.1 ◦C while minimum and maximum ever recorded are -28.5 and90

40.2 ◦C respectively. Annual precipitation sums reach to about 1800 mm in the Black Forest while the rest of the area receives

somewhere between 700 to 1000 mm on the mean. The chances of precipitation per day are about
:::::::::
probability

::
of

:::::::::::
precipitation

::
on

:
a
:::::
given

::::
day

:::
and

::
at

:
a
:::::::
specific

:::::::
location

::
is

:::
ca. 50% with a mean precipitation of 2.5 mm per dayover the catchment.

The entire
::::::::
catchment

:
area of the Neckar was not modeled by the considered rainfall-runoff models in this study. Rather,

the large headwater catchments were modeled where times of concentration
::::
only,

::::::
where

:::::::::::::::::::
times-of-concentration

:
were long95

enough to allow for model runs on a daily resolution .
:::
i.e.,

::
if

:
a
:::::
large

::::::::::
precipitation

::::::
events

:::::
takes

::::
place

::::
then

:::
the

:::::::
ensuing

:::::
peak

::
in

::::::::
discharge

::
is

:::::::
observed

::
at
:::
the

::::
next

::::
time

:::::
step. Namely, the Enz, Kocher and Jagst with catchment areas of 1656, 1943 and 1820

km2 respectively. Another reason for the
::::
Other

:::::::
reasons

:::
for selection of these was that they are relatively intact as compared

to the main river which is modified for transportation .
:::
and

::::
also

:::
the

::::
fact

:::
the

:::
the

::::::
effects

::
of

:::::::::
catchment

:::::::::
boundaries

:::::
(e.g.,

:::::
exact

::::::::
boundary

:::
line

:::
and

:::::::::
exchanges

::::
with

::::::::::
neighboring

:::::::::::
catchments)

:::::
vanish

::
as
:::
the

::::
size

::::::::
becomes

:::::
larger.

:
100

3 Model input data preparation

Point meteorological data time series (daily precipitation, and temperature) were downloaded from the Deutscher Wetter Di-

enst’s (DWD, German Weather Service) open access portal (DWD, 2019). The daily discharge time series was downloaded

from the open access portal of the Landesanstalt für Umwelt Baden-Würrtemberg (LUBW, Environmental agency of the federal

state of Baden-Würrtemberg) (LUBW, 2020). The considered time period is from 1991 to 2015.
::::::::::
Furthermore,

:::
the

:::::::::::
precipitation105

::::::
gauges

::::
used

::
in

:::
this

:::::
study

:::
are

::::::
evenly

:::::::::
distributed

::::::
across

:::
the

:::::::::
catchment

::::
even

::
at

::::
high

:::::::::
elevations

::::
(Fig.

:::
2).

::::
This

::
is
::::
very

:::::::::
important

::::::
because

::::
one

::
of

:::
the

:::::
cited

:::::
causes

:::
of

::::::::::
precipitation

::::::::
volumes

::::
(e.g.,

::::::::::::::::::::::::::::::::::::::::::::::::::
Yang et al. (1999); Legates and Willmott (1990); Neff (1977)

:
)

:
is
:::
the

:::::::
smaller

::::::
density

::
of

::::::
gauges

::
at
::::::
higher

:::::::::
elevations.

::
It

::
is

:::
also

:::::::::
important

::
to

::::
note

:::
that

::::::
effects

::
of

::::::::
elevation

:::
on

::::
daily

:::::::::::
precipitation

::
are

:::::::::
negligible

::::::::::::::::::::::::
(Bárdossy and Pegram, 2013)

:
.

3.1 Precipitation interpolation using various gauge densities110

The effects of taking a sample from a population on the final distribution of precipitation can be visualized even before the

start of the experiment. Imagine one was to observe precipitation at each point in space. For any given time step, when it is

raining at some of the points, the distribution of values is exponential-like.If one were to sample from this a finite number of N

values, the chances that points are sampled from the upper tail become smaller and smaller as N approaches 1, at which point

the probability of sampling from the upper tail corresponds directly to the probability density function. This also implies that115

samples from the lower tail are more likely. The consequence at the end is that low values are overestimated while high values

are underestimated on the mean when interpolating the whole grid.

To further prove this point, the

::
To

:::::::::::
demonstrate

:::
the

::::::
effects

::
of

:::::::
various

:::::
gauge

::::::::
densities

:::
on

::::
peak

:::::
flows

:::
of

:::::::
models, time series of the existing precipitation

network for the time period of 1991-2015 was
::::
were taken. There are

::::
were

:
a total of 343 gauges. Only a subset of these is120

:::
was

:
active at any given time step as old stations are

::::
were

:
decommissioned and new ones are

::::
were

:
commissioned. Out of
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the total, random samples of sizes 10, 25, 50, 100 and 150 gauge time series were selected and gridded precipitation was

interpolated using these for each catchment that was subsequently lumped into a single value for each time step. This was done

100 times. For comparison, the same was done by using all the gauges. Furthermore, two interpolation schemes i.e.,
:
Nearest

neighbor (NN) and Ordinary Kriging (OK) were used to show that the problem was not interpolation scheme dependant. A125

stable variogram fitting method that was described in Bárdossy et al. (2021) was used for OK.

3.2 Reference precipitation

In the previous casepreciitation
:
,
::::::::::
precipitation interpolations were not compared to reality, as one does

:::::
cannot not know what the

real precipitation was at unmeasured locations
:::::::
locations

::::
with

::
no

:::::::
stations. To obtain a complete coverage of rainfall,

:
simulated

precipitation fields have to be
::::
were considered.130

A realistic virtual dataset was created to investigate the effect of precipitation observation density instead of using interpo-

lated precipitation. For this purpose, a 25 year long daily precipitation dataset corresponding to the time period
::
of 1991-2015

was used. This dataset contains gridded precipitation on a 147x130 km
:::
km

:
grid with 1 km

:::
km

:
resolution. It was created so

that the precipitation amounts were the same as the observed precipitation at the locations of the weather service observation

stations. Additionally, their
::
the

:
empirical distribution function of the entire field for any selected day is the same as that of135

the observations and its spatial variability (measured as the variogram) is the same as the observedas well. This precipitation

is considered as reality. It is called reference or reconstructed precipitation throughout this text. Full details of the procedure

are described in Bárdossy et al. (2022).
::
To

::::::::::
summarize

:::
the

:::
idea

:::
of

:::
the

:::
said

::::::
study,

:::::::
consider

:::
the

:::::::
problem

::
of

:::::::
inverse

::::::::
modeling

::
in

:::::
which

:
a
::::::::::::::
physically-based

::::::::::::
rainfall-runoff

::::::
model

:
is
:::
set

:::
up

::
for

::
a
:::::::::
catchment.

:::::
Daily

:::::
fields

::
of

::::::::::
interpolated

:::::::::::
precipitation

:::
are

:::
fed

::
to

::
it,

:::::
among

:::::
other

::::::
inputs.

::::
The

:::::
model

::::::::::
hydrograph

::
is

:::::::::
computed.

:
It
::::::
should

:::::
come

::
as

:::
no

:::::::
surprise

:::
that

:::
the

::::::
model

:::
and

::::::::
observed

:::::
runoff

:::
do140

:::
not

::::::
match.

:::::::
Assume

:::
that

:::
all

:::
the

::::
error

::
in

:::
the

::::::
model

::::::::::
hydrograph

:::
are

:::
due

::
to

:::::::::::
precipitation

::::
only.

:::::
Now

:::
the

:::::::
question

::
to

:::
be

::::::::
answered

:
is
::::

that
:::::
what

:::::::::::
precipitation

:::
will

::::::
result

::
in

::
a

::::::::::
hydrograph

:::
that

::::
has

::::
very

::::
little

:::
to

::
no

:::::
error

:::::::::
compared

::
to

:::
the

:::::::::
observed?

::
To

:::
do

:::
so,

:::
new

::::::::::
realizations

::
of

:::::::::::
precipitation

:::
that

:::
are

::::::::::
constrained

::
to
:::::
have

::::::::::
precipitation

::::::
values

::::::
exactly

:::
the

:::::
same

::
as

:::::
those

::
at

:::
the

::::::::::
observation

:::::::
locations

:::::
along

::::
with

:::
the

:::::
same

:::::::::
correlation

:::::::
function

:::
for

:::
any

:::::
given

::::
time

::::
step

::
in

:::::
space

:::
are

::::::
needed.

::::
The

::::
time

::::
step

::::
with

:
a
::::
large

:::::
error

:
is
:::::::
selected

::::
and

:::::::::::
precipitation

:::::
fields

:::
for

:::
the

:::::
about

::
10

:::::
time

::::
steps

::::::
before

:::
this

::::
are

::::::::
simulated

:::
and

::::
fed

::
to

:::
the

:::::
model

:::
as

::::
new

::::::
inputs.145

:::
The

::::::::
resulting

::::
error

::
is

:::::::
checked.

::
If
::
it
:::::::
reduces,

:::
the

::::
new

:::::::::::
precipitation

::::
fields

:::::::
replace

:::
the

:::
old

::::
ones

::
as

::::::::
observed.

::
If
::::
not,

::::
then

::::
they

:::
are

::::::
rejected

::::
and

::::
new

::::
ones

:::
are

::::::::
simulated

:::
and

::::::
tested.

::::
This

:::::::::
procedure

::
is

:::::::
repeated

:::
up

::
to

:::
the

::::
point

::::::
where

:::
the

:::::
model

::::::
runoff

::::
error

:::::
stops

:::::::::
improving.

:::::
Next,

::::::
another

::::
time

::::
step

::
is

:::::::
selected

:::
that

::
is
:::
far

:::::
away

:::::
(more

::::
than

:::
10

::::
time

:::::
steps)

::::
from

:::
the

::::
one

:::::::
rectified

:::::
before

::::
and

:::
the

::::
same

:::::::::
procedure

:
is
::::::::
repeated

::
for

::::
that

::::
one.

::
In

:::
this

::::
way

:::
all

::
the

:::::
time

::::
steps

:::
are

::::::
treated

:::
and

::
a

:::
new

::::
time

:::::
series

:::
of

::::::::::
precipitation

:::::
fields

::
is

:::::::
obtained

:::
that

::::
has

::::::::::
significantly

:::
less

:::::
error

::::::::
compared

::
to

:::
the

::::
case

:::::
when

::::::::::
interpolated

:::::::::::
precipitation

:
is
:::::
used.

:
150

3.3 Precipitation interpolation using the reference

To demonstrate the effects of sparse sampling of data and the resulting model runoff error, the following method was used:

N number of points were sampled from the reference grid. Time series for each point (1x1 km
:::
km

:
cell) was then extracted

and taken as if it were an observed time series. Care was taken to sample points such that the density was nearly uniform over
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the study area. N was varied to obtain a given amount of station
:::::
gauge

:
density. Here, densities of 1 in 750, 400, 200 and 130155

km2
::::
km2 were used. These correspond to 25, 50, 100 and 150 cells out of the 19,110 respectively. Labels of the formMN , are

used to refer to these in the figures, where M is only a suffix to signify interpolation with N being the number of points used

to create the interpolation. For reference, Germany has around 2000 active daily precipitation stations for an area of 360,000

km2
::::
km2 which is about 1 station per 180 km2. The

:::::
km2.

:::
The

:::::::
random sampling was performed 10 times for each N in order

to see the effects of different configurations later on in the analysis of the results.160

This way many time series were sampled from the reference for various gauge densities. From here on the same procedure

was applied that is normally used in practice i.e.
:
,
:
Spatial interpolation. To keep things simple the Ordinary Kriging (OK)

method was used to interpolate fields on the same spatial resolution as the reference at each time step. The use of OK is

arbitrary. One could very well use any preferred method. Use of other methods that interpolate in space will not help much as

all of them tend to result in fields that have reduced variance as compared to the variance of the observed values. Moreover, it is165

also very unlikely
:::
(but

:::::::
possible

::
in

::::::
theory) that an interpolation scheme predicts an extreme at locations where no measurements

were made.

3.4 Temperature and potential evapotranspiration

External Drift Kriging (EDK) (Ahmed and De Marsily, 1987) was used to interpolate daily observed minimum, mean and

maximum temperature for all cells at a resolution similar to that of the precipitation with
::::::::
resampled elevation from the SRTM170

(Farr et al., 2007)
:::::
dataset

:
as the drift. For the potential evapotranspiration

:::::::
potential

::::::::::::::::
evapotranspiration

:::::
(PET), the Hargreaves-

Samani (Hargreaves and Samani, 1982) equation was used with the interpolated temperature data at each cell as input. It was

assumed that temperature and potential evapotranspiration are much more continuous in space as compared to precipitation

which is more like a
:::::::
behaves

::
as

::
a
:
a
:
semi-Markov process in space-time that has a much larger effect on the hydrograph in

::
the

:
short term.

::
To

::::::
clarify

:::
that

:::
the

::::
role

::
of

:::::::::::
temperature

:::
and

::::
PET

::
is
::::

not
::::
very

::::::::
important

:::::
while

::::::::::
considering

::::::
peaks,

::::::::
consider

:::
the175

::::::::
following:

::::::
Peaks

:::
are

:
a
:::::
result

:::
of

::::
large

:::::
scale

:::::::::::
precipitation.

::
It

:::::
could

:::
be

:::
due

::
to

::::::::::
continuous

::::::::::
precipitation

::::
that

::
is

:::
not

::::
very

:::::::
intense

:::
but

::::::
persists

::::::
longer

::
in

::::
time

::
or

::
an

:::::::
intense

::::
event

:::
of

:
a
::::::
smaller

::::::::
duration.

:::::
Long

::::::::::
precipitation

::::::
events

:::::
result

::
in

::::
very

::::
little

:::::::
sunlight

::::
and

:::::::
therefore

:::::
little

::::::::::::::::
evapotranspiration.

:::::
What

::
is

:::
the

:::::
effect

::
of

::
2
::::
mm

::
of
::::::::::::::::

evapotranspiration
:::
on

:
a
::::
day

:::::
where

::
it
::::::
rained

:::
50

:::::
mm?

:::
An

::::::
intense

::::
event

::::
will

:::::
result

::
in

:::::::::
saturation

::
of

:::
the

:::
soil

::::
and

::::::::
increased

:::::::
overland

:::::
flow,

:::::
again

:::
not

::::::
enough

::::
time

:::
for

::::::::::::::::
evapotranspiration

::
to

::::
have

:::
any

:::::::::
significant

::::::
impact.

::::
The

::::
only

::::
time

:::::
when

::::::::::
temperature

::::
may

::::
have

::
a
::::::::::
considerable

:::::
effect

::
is
:::::
when

::
it

::::
goes

::::
very

::::
low,

:
a
:::::
large180

::::
snow

:::::
event

:::::
takes

:::::
place

:::
for

:::::
many

::::
days

::::
and

::::
then

:::
the

::::::::::
temperature

::::::::
suddenly

::::
rises

::
in

:::
the

:::::::
coming

::::
days

::::::
rather

:::::::
quickly.

::
It

::
is

::::
very

::::
rare.

:::
For

::::::::
example,

::::
such

::
an

:::::
event

::::
that

::
is

::
on

::::::
record

::
in

:::
the

:::::
study

::::
area

::::
took

:::::
place

::
in

:::::
1882.

::::
This

::::
was

::::
also

::::::::::
investigated

:::::::::
previously

::
in

::::::::::::::::::
Bárdossy et al. (2020).

:::::
Even

:::::
then,

:::
the

:::::
effect

::
of

::::::::::
temperature

::
is
::::::::
modelled

::
to
::

a
::::
very

:::::
good

:::::
extent

:::
by

:::
the

:::::::::::
interpolation

:::
due

:::
its

:::::
nature

::
in

::::::::::
space-time.
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4 Model setup185

Two rainfall-runoff models, namely SHETRAN (Ewen et al., 2000) and HBV (Bergström, 1992), were considered in this study.

Same gridded inputs were used for both and at a spatial resolution of 1x1 km
:::
km

:
and at a daily temporal resolution. Except for

precipitation, all other inputs stayed the same . Setup
::::::::
remained

:::
the

::::
same

::::::
during

::
all

:::
the

:::::::::::
experiments.

::::::::::
Description

::
of

:::
the

::::::
model

::::
used

:::
and

:::
the

:::::
setup specific to each model is discussed in the following two subsections.

4.1 SHETRAN190

SHETRAN is a physically based distributed hydrological model which simulates the major flows (including subsurface) and

their interactions on a fine spatial grid (Ewen et al., 2000). It includes components for vegetation interception and transpira-

tion, overland flow, variably saturated subsurface flow and channel–aquifer interactions. The corresponding partial differential

equations are solved using a finite-difference approximation. Being a physically-based model, SHETRAN requires much more

input as compared to lumped models such as HBV. The model parameters were not calibrated. Instead, available data such as195

the digital elevationmodel
:::::::
elevation, soil and land use maps were used to estimate the model parameters at a 1x1 km spatial

resolution (Lewis et al., 2018; Birkinshaw et al., 2010). It was considered as a theoretically correct transformation of rainfall to

runoff. This way, combined with the reference precipitation, a realistic virtual reality was created in which the effect of differ-

ent sampling densities could be investigated. Same SHETRAN settings were used for the various precipitation interpolations.

Furthermore, the model and settings are the same as those in Bárdossy et al. (2022),
::::::
which

:::
the

::::::
readers

:::
are

::::::::::
encouraged

::
to

::::
read200

:::::
before

:::::::::
proceeding

::::::
further.

4.2 HBV

HBV is one of the most widely used models that needs no introduction. It requires very little input data i.e.,
:

precipitation,

temperature and potential evapotranspiration. Each grid cell of HBV was assumed to be a completely independent unit. All

cells shared the same parameters, only the inputs were different. The runoff produced by all cells was summed up at the end205

to produce the final simulated discharge value for each time step. It was calibrated for the reference precipitation and each

of the precipitation interpolation. DE
::::::::::
Differential

::::::::
Evolution

:::::
(DE) (Storn and Price, 1997) was used to find the best parameter

vector. It is one of the genetic-type optimization schemes to find the global optimum by updating a given sample of parameter

vectors successively by mixing with each other and perturbing them individually
::::
three

::
in

:
a
:::::::
specific

:::::::
manner. A population

:::
size

of 400 was used to find the global optimum. Overall, it needed 150 to 200 iterations to converge for 11 parameters. 50%210

Nash-Sutcliffe (NS) (Nash and Sutcliffe, 1970) and 50% NS using the Natural logarithm (Ln-NS) was used as the objective

function for calibration. Ln-NS was chosen because NS alone concentrates too much on the peak flows during calibration and

disregards, almost 95% of, the remaining flows. Ln-NS helped
:::::
helps to mitigate this flaw to some degree but not completely.
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5 Results

Before showing the results, some terms specific to the upcoming content
:::::::
following

:::::::::
discussion

:
are defined first. They are put215

here for the readers’ ease.

1. The term reference precipitation refers to the reconstructed precipitation that is taken as if it were the observation.

Reference model refers to SHETRAN with the reference precipitation as input and the resulting discharge of this setup

is the reference discharge.

2. Interpolated discharge refers to the discharge of SHETRAN or HBV with interpolated precipitation as input. The model220

is mentioned specifically for it. The term subsampling refers to extraction of
::::
time

:::::
series

::
of a subset of points (and their

time series) from the entire grid.

3. Model performance, refers to the value of the objective function whose maximum, and optimum, value is 1.0, anything

less is less performance. The performance of the reference discharge is 1.

4. Furthermore, discharge and runoff are used interchangeably. They both refer to the volume of water coming out of the225

:::::::
produced

:::
by

::
a catchment per unit time which is cubic meters per second in this study. The terms observation station,

gauge and station are used interchangeably. These refer to the meteorological
::::::::
/discharge

:
observation stations.

5.1 Metrics used for evaluation

To compare the change in precipitation or model runoff, scatter plots of reference values on the horizontal versus their corre-

sponding values after interpolation on the vertical scale are shown. Each point represents lumped precipitation for all the cells230

i.e.
:
, mean of all the cells per time step.

The largest five aerially lumped values for precipitation in the reference and the values at the corresponding time steps in

interpolation are compared by showing them as a percentage of the reference. This produces a number of points that is the

product of the number of interpolations and
::
the

::::::::::
considered number of eventsused. For comparing discharge, 5 largest values

in the reference discharge are compared against the values at the same time steps using interpolated discharge. This results in235

5 points per interpolation. Violin plots are used to show these points as densities.

Furthermore, figures comparing a high discharge event using all the interpolations are shown at the end of each section

::::::::
subsection

:
wherever relevant.

Tables summarizing over- and under-estimations as percentages relative to the reference are shown at the end of each sub-

section.240

5.2 Comparison of interpolations using fewer vs. all gauges

Comparison of the largest five precipitation events’ depth using various number of gauges taken from the entire network are

shown in Fig. 3 and 4 for Enz. These are normalized with respect to the values computed using the entire network (343 gauges).
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There are many cases where the fewer gauges’
:
interpolations have larger values than the ones with the entire network. The

::::::::
However,

:::
the

:
more important point to observe

:::::
notice

:
is the bias. By using a lower number of gauges, underestimation of245

the largest precipitation events is more likely. NN is more spread out
::::::
exhibits

::
a

:::::
larger

:::::::
variance

:
in terms of under- and over-

estimations compared to OK. Using more gauges shows that the deviations reduce significantly. Another aspect that should be

kept in mind is that here interpolations are compared to an interpolation. Even by using all the gauges, there is still a good
::::
very

::::
high chance of missing the absolute maximum precipitation at a given time step. Keeping this in mind one should be aware

that runoff predicted by a model using this smoothed precipitation with all the gauges will still produce, on average, smaller250

peaks. This will become clearer by the results in the next sections where the reference precipitation is used. Tables 1 and 2

summarize in numbers the cases with under- and over-estimations using various number of gauges with respect to using all of

them for interpolation for the three catchments using NN and OK respectively.

10 25 50 100 150

Enz 60-09-31 51-16-33 45-26-29 35-41-24 25-52-23

Kocher 55-13-32 49-20-31 40-28-32 32-38-30 22-53-25

Jagst 52-15-33 48-20-32 40-28-32 32-36-32 25-53-22

Table 1. Relative percentages of under- and over-estimations of the top 5 precipitation events using various gauge densities (columns) with

respect to the top 5 values using interpolation with all the gauges for the three considered catchments (rows) using NN. The values are of

the format percentage of underestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to

the interpolation using all gauges. For example, 60-09-31 in the first row and first column means that out of the 100 interpolations (with 5

events per interpolation) using 10 gauges for Enz, 60% of the events were below 97.5%, 9% were within 97.5% and 102.5%, and 31% were

above 102.5% of the top 5 events using the interpolation with all the 343 gauges.

10 25 50 100 150

Enz 66-09-25 56-18-26 50-29-21 36-43-21 24-56-20

Kocher 61-15-24 62-17-21 52-25-23 35-42-23 20-57-22

Jagst 60-12-28 57-20-23 50-29-21 39-40-22 24-60-15

Table 2. Under- and over-estimation percentages of the top 5 precipitation events using OK. Caption of Table 1 shows how to interpret the

numbers here.
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5.3 Effects of subsampling from reference on precipitation

Fig. 5 shows an exemplary event with very high daily precipitation for the reference and various interpolation cases. For the255

lowest number of gaugesthe field looks ,
:::
the

::::
field

:::::::
appears very smooth and has a smaller variance as compared to the field with

the most stations which is much closer to the reference.

In Fig. 6, the scatter plot of lumped reference against one of the lumped interpolation values for all time steps for Kocher

is shown. Here, it is interesting to see
:::::
notice

:
that overall, the larger the value in reference, the more it is reduced by the

interpolation. The other way around
:::
On

:::
the

::::
other

:::::
hand, the interpolation increases the magnitude of the small

::::::
smaller values.260

Events in the mid range
::::::::
mid-range

:
values are underestimated by a significant margin. Most points are below the ideal line.

Now imagine
::::::::
Consider the subsequent mass balance problems that would arise by such a consistent bias. Over the long term,

one would adjust the model to have lower evapotranspiration. Over the short term, the peak flows would almost always be

underestimated. It is important to keep in mind that high discharge values are the result of a threshold process in the catchment

where the water moves in larger volumes towards the stream once the soil saturates or when the infiltration cannot keep up265

with the rainfall/melt intensity. To match the peak
:::::
peaks in such scenarios, it is important to get

:::::
obtain the correct estimates of

precipitation.

Fig. 7 shows the relative change of the largest five peak precipitation values. These were computed by dividing the inter-

polated precipitation by the reference at the time steps of the top 5 events. A consistent bias, i.e.
:
, underestimation, is clear.

Especially, for the coarsest interpolation (25 points). Such a figure seems small but imagine
:::
bias

:::::::
appears

::::
small

:::
but

:::::::
cosider the270

extra volume over a 1000 km2
:::
km2

:
catchment that is not intercepted by the soil. Another interesting thing

::::
point

:
to note is that

for the other interpolations there are some overestimations as well. All the relative under- and over-estimations for the three

catchments with various densities are summarized in Table 3.

M025 M050 M100 M150

Enz 74-20-06 60-20-20 45-38-18 44-47-09

Kocher 80-06-14 60-18-22 50-15-35 31-44-24

Jagst 84-04-12 42-24-34 35-35-30 22-53-24

Table 3. Percentages of under- and over-estimations of the top 5 precipitation events using various gauge densities (columns) with respect

to the top 5 values using reference precipitation for the three considered catchments (rows). The values are of the format percentage of un-

derestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to the reference precipitation.

For example, 31-44-24 in the second row and last column means that out of the 10 interpolations (with 5 events per interpolation) using 150

points for Kocher, 31% of the events were below 97.5%, 44% were within 97.5% and 102.5%, and 24% were above 102.5% of the top 5

events using the reference precipitation.
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5.4 Effects of subsampling from reference on discharge of SHETRAN

Similar to the precipitation, the systematic bias in model runoff was investigated as well
::::
next. Fig. 8 shows the resulting275

runoff by using the same precipitation (Fig. 6) as input to SHETRAN. What is immediately clear is that there are almost no

overestimations of discharge values when using interpolated precipitation. The largest peak is reduced by almost 50%.

Looking at Fig. 9, the mean of the largest five peaks is reduced significantly while using the least number of points for

Kocher. The other thing
::::
point to note is that the peaks drop on average for other interpolations (except for the last one) much

more as compared to the reduction in precipitation. To see the effects more in detail, Fig. 10 and 11 show hydrographs obtained280

using various gauging densities for two events. It is very clear that as the gauging density rises, the underestimation decreases

proportionally and the hydrographs become similar. All the under- and over-estimations are summarized in the Table 4 for all

the catchments.

M025 M050 M100 M150

Enz 80-02-18 78-06-16 60-28-12 49-27-24

Kocher 91-04-04 84-10-06 56-24-20 27-49-24

Jagst 76-04-20 62-18-20 56-28-16 38-38-24

Table 4. Percentages of under- and over-estimations of the top 5 discharge events using various gauge densities (columns) with respect to the

top 5 values using reference discharge for the three considered catchments (rows) using SHETRAN. The values are of the format percentage

of underestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to the reference discharge.

For example, 38-38-24 in the third row and last column means that out of the 10 interpolations (with 5 events per interpolation) using 150

points for Jagst, 38% of the events were below 38%, 38% were within 97.5% and 102.5%, and 24% were above 102.5% of the top 5 events

using the reference discharge.

5.5 Effects of subsampling from reference on discharge of HBV

Looking at
:::::
While

::::::::
observing

:
the scatter of reference and interpolated precipitation discharge in Fig. 12, HBV shows a different285

behaviour as compared to SHETRAN. First of all, overestimations
::::::::::::::
Overestimations from low to high flows exist except for the

largest high flows which are underestimated as well. Again, not as much as that by SHETRAN. This is due to the recalibration,

where the new parameters compensate for the missing precipitation by decreasing evapotranspiration. This aspect will be

investigated thoroughly in future research.

Fig. 13 shows the scaling of the five highest peaks compared to the reference discharge. Here, a similar reduction for the290

least amount of stations can be seen. Even for the highest number of stations, the discharges are still underestimated. This

signifies that even a distributed HBV with full freedom to readjust its parameters cannot fully mimic the dynamics of the flow

produced by SHETRAN. Hydrographs for the same events shown in the previous section for HBV are shown in Fig. 14 and

15. It is interesting to note that the first event is overestimated by all interpolations and that the hydrographs become similar
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as the gauging density increases. The second event is estimated better as the gauging density increases. All the under- and295

over-estimations are summarized in the Table 5 for all the catchments.

M025 M050 M100 M150

Enz 78-04-18 78-04-18 78-02-20 71-00-29

Kocher 100-00-00 96-04-00 90-08-02 89-11-00

Jagst 74-06-20 78-00-22 80-00-20 80-00-20

Table 5. Percentages of under- and over-estimations of the top 5 discharge events using various gauge densities (columns) with respect to

the top 5 values using reference discharge for the three considered catchments (rows) using HBV. Caption of Table 4 shows how to interpret

the numbers here.

5.6 Effects of removing subscale variability of precipitation on SHETRAN discharge

Effects of using lumped precipitation , by taking its mean, on the resulting discharge
:
, i.e.same ,

:::::
mean

:
precipitation value at

each time step for all cells,
:

were also investigated. The aim was to see the effects of subscale variability on runoff. While

considering 10 largest peaks per catchment for the entire time period, NS
:::::::::
efficiencies of these dropped to 0.77, 0.78 and 0.90300

for Enz, Kocher and Jagst respectively. Almost all peaks were reduced in their magnitudes to 84%, 85% and 93% with respect

to the ones produced by the model on average with the distributed reference precipitation. Most of the underestimation of the

peaks were during winter that are likely to be snowmelt events. These are location/elevation dependent and it makes sense that

using a lumped value of precipitation results in incorrect melt behavior. Overall, the tendency was towards reduced discharge

when using lumped precipitation. This tendency is likely to be much higher when a single cell is used to represent the catchment305

i.e.
:
, a fully lumped model.

5.7 Effects of measurement error in precipitation on runoff

To test how measurement error affects the model discharge, precipitation with a measurement error of 10% of each observed

value having a standard Normal distribution was used and then interpolated as well. There, it was observed that magnitude

of under- and over-estimation of the peaks becomes more variable as compared to the reference but the bias stayed
::::::::
remained310

the same as that compared to using precipitation with no error. Table 6 shows the effects for precipitation. Comparing these

to Table 3, we can observe
:
it

:::
can

:::
be

:::::::::
concluded that the trends are not so different

::::::::::
significantly

::::::::
different

:::
for

:::
the

:::
two

:::::
cases.

Similar to interpolations with no errors, the ones with the largest number of samples have more values closer to the reference

precipitation. These results corroborate the conclusions by Balin et al. (2010); Lee et al. (2010).

These results have an interesting consequence. Given that
:
If
::::

the gauges have measurement errors that are Normally dis-315

tributed i.e.
:
, cheaper gauges, such as the Netatmo personal weather stations, can be used to close the gap of missing precip-

itation due to sparse distribution networks. Studies, such as those by de Vos et al. (2017, 2019); Bárdossy et al. (2021), have
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shown that these alternative sources of data can augment the existing networks
:
, while still having some drawbacks

:::::::::
nonetheless.

The type of measurement error by these can be further studied to validate their actual usefulness for rainfall-runoff modeling.

M025 M050 M100 M150

Enz 71-11-18 46-32-22 54-22-24 24-50-26

Kocher 80-09-11 66-18-16 46-34-20 38-34-28

Jagst 82-11-07 60-16-24 48-30-22 30-40-30

Table 6. Percentages of under- and over-estimations of the top 5 precipitation events using various gauge densities (columns) with respect

to the top 5 values using reference precipitation for the three considered catchments (rows). The values are of the format percentage of un-

derestimations (below 97.5%), within a threshold of ±2.5%, and overestimations (above 102.5%) with respect to the reference precipitation.

For example, 38-34-28 in the second row and last column means that out of the 10 interpolations (with 5 events per interpolation) using 150

points for Kocher, 38% of the events were below 97.5%, 34% were within 97.5% and 102.5%, and 28% were above 102.5% of the top 5

events using the reference precipitation.

6
::::::::::
Preliminary

::::::::
attempts

::
to

:::::::
correct

:::::::::::
precipitation

::::
bias320

::::::::
Consistent

::::
bias

::::
was

::::::
shown

:::
by

:::
the

:::::::::::
interpolated

:::::::::::
precipitation.

::::::::::::
Consequently,

::
it
::::
was

::::
also

:::::
tried

::
to

::::::
rectify

::
it

:::
by

:::::::::::
transforming

::::::::::
precipitation

::
in
:::::

such
:
a
:::::::

manner
::::::
where

::
an

::::::::::::
improvement

::
in

:::
the

::::::::
discharge

::::::
could

::
be

:::::::::
observed.

::::
Two

:::::::
different

::::::::::
approaches

:::::
were

:::::
tested.

:::::
These

:::
are

:::::::::
described

::
as

:::::::
follows.

:::::
Static

::::::::
transform

::
of

:::
the

:::::
form,

P ′(t) =

P (t) if P (t)< ψ,

β(P (t)−ψ)γ else
::::::::::::::::::::::::::::::::

(1)325

:::::
where,

::
ψ
::
is
::
a
::::::::
threshold

:::
for

:::::::::::::
transformation.

::
β

:
is
::

a
::::::::
multiplier

:::::
while

::
γ
::
is
:::
an

::::::::
exponent

:::
that

::::
may

:::::::::
transform

:::
the

:::::
values

::::::
above

:::
the

:::::::
threshold

:::::::
linearly

::
or

:::::::::::
non-linearly.

:::::
Using

:::::::::
transforms

::::
that

::
do

:::
not

::::::::
consider

:::
the

::::
time

::
of

:::
the

::::
year

:::
or

:::
the

::::
type

::
of

:::::::
weather

::::::
during

:
a
:::::::::::
precipitation

:::::
event

:::
are

::::
also

:::
not

:::::::
optimal.

:::
For

::::::::
example,

::::::::::
precipitation

::::::
events

::
in

:::::::
Summer

:::
are

:::::
more

:::::::
intense,

:::::
occur

::
for

::
a
::::::
shorter

::::::
period

::
of

::::
time,

:::
are

:::::
more

::::::
abrupt

::
in

:::::
nature

:::
and

:::::
cover

:::::::
smaller

:::::
areas

::
as

::::::::
compared

:::
to

:::::
winter

::::::
where

:::
the

:::::::
intensity

::
is
::::
less,

:::::
occur

:::
for

::::::
longer

::::::
periods

:::
of

::::
time,

::::
and

:::::
cover330

::::
much

::::::
larger

:::::
areas.

::::::::::
Accounting

:::
for

::::
such

::::::::::
information

:::::
while

::::::::
correcting

:::
for

::::
bias

:::
can

:::
be

::::::
useful.

::::::
Hence,

:::::::::::::
transformations

:::::
based

:::
on

::::::
weather

::::::::::
circulation

:::::::
patterns

:::::
(CPs)

::::
were

:::::
used

::
to

::::::
correct

:::
the

:::::::::::
precipitation

::::
bias

:::::
based

:::
on

:::
the

::::
type

::
of
::::::

event.
:::
An

:::::::::
automatic

:::
CP

::::::::::
classification

:::::::
method

:::::
based

:::
on

::::::
Fuzzy

::::
logic

::::::::::::::::::::
(Bárdossy et al., 2002)

:::
was

::::
used

::
to

::::
find

:::::::
relevant

::::
CPs

::::
that

::::
were

::::::::
dominant

:::
in

:::
the

::::
study

:::::
area.

::::
The

::::::::
procedure

:::::::
assigns

:
a
::::
type

:::
of

:::::::
weather

::
to

::::
each

::::
time

::::
step

:::::
based

:::
on

:::
the

::::::::::
atmospheric

::::::::
pressure

::
in

:::
and

:::::::
around

:::
the

13



::::::::
catchment

::::
area

::::
and

::::
some

:::::
other

::::::::::
constraints.

::::
The

::::::
number

:::
of

::::
CPs

:::
that

::::
may

:::
be

:::::::
obtained

::
is

::::::::
arbitrary.

:::
For

::::
this

:::::
study

:
5
::::

CPs
:::::
were335

::::::
chosen

:::::
based

:::
on

:::::::
previous

:::::::::
experience

::::
and

::::
also

:::
for

::::::::
avoiding

:::
too

:::::
many

::::
free

::::::::
variables

:::
for

:::::::::
calibration.

::::
The

::::::::::::
transfomation

::::
was

:::
then

:::::::
applied

::
to

:::::::::::
precipitation

:::
that

::::
took

:::::
place

::::
only

:::
in

:::
the

:::
two

::::
CPs

:::
that

:::::
were

::::::
related

::
to

:::
the

::::::
wettest

::::::::
weather.

:::::::
Contrary

::
to
::

a
:::::
static

::::::::
transform

:::::
based

::
on

:::
the

:::::::::::
precipitation

:::::::::
magnitude

::::
only,

:::::::::::
independent

::
of

::::
time

::
or

:::::::
weather,

:::::::::
transforms

:::
are

:::::::
applied

::
to

::::
each

::::
time

::::
step

:::::
based

::
on

::
its

::::
CP,

:::::
which

:::::::
depends

:::
on

:::
the

::::::
weather

::::
and

::::
time

::
of

:::
the

::::
year.

::::
The

::::::::
CP-based

::::::::
transform

::::
was

::
as

:::::::
follows,

:

P ′(t) = βCP ·P (t)γCP

::::::::::::::::::
(2)340

:::::
where,

:::::
βCP :

is
::
a
:::
CP

::::::::
dependent

:::::::::
multiplier

:::
and

::::
γCP::

is
::
a

:::
CP

::::::::
dependent

:::::::::
exponent.

::::::
Finally,

::
a

::::::
simple

:::::::::
experiment

::::
was

:::
set

:::
up

::
to

::::::
search

:::
for

:
a
:::::::::

consistent
::::::
pattern

:::
in

:::
the

::::::::
unknown

:::::
terms

::
of

:::
the

::::::::::
transforms

:::::
using

::
the

:::::::
lumped

:::::
HBV.

::::
The

::::::
method

::
to

::::
find

:::
the

::::::
optimal

:::::::::::::
transformation

:::::::
involved

::::::::
applying

:::
the

::::
same

::::::::
transform

:::
to

::::::::::
precipitation

::::::
values

::
for

:::
all

:::::::::
catchment

:::::
while

:::::::::
optimizing

:::::
their

:::::
model

::::::::::
parameters

::::::::::::
independently.

::::
The

::::::::::
assumption

:::::
being

:::
that

:::
the

::::::
model

::::::::::
efficiencies

:::
will

:::::
bring

:::::
better

:::::::::::
performance

::::::::
compared

::
to

:::
the

::::
case

::::::
where

::
no

:::::::::::
precipitation

:::::::::
correction

:::
was

::::::::::
considered.

::::
This

::::
lead

::
to

:
a
::::::::

problem345

::
of

::::::::::
optimization

:::
in

:::::
higher

::::::::::
dimensions.

::::
For

:::
the

:::::::
previous

::::::
cases,

:::
the

::::::::::
optimization

:::
of

:::::
model

::::::::::
parameters

:::
was

::::::
carried

::::
out

::
for

:::::
each

::::::::
catchment

:::::::::::::
independently,

:::::
which

::::
was

:::
an

::
11

:::::::::::
dimensional

::::::::
problem.

:::
For

:::
the

::::
case

:::
of

::::::
testing

:::::::::
transforms,

::::
the

:::::
model

::::::::::
parameters

::
of

:::
the

::::
three

::::::::::
catchments

:::
and

:::
the

::::::::
unknown

:::::::::
transform

:::::::::
parameters

::::
have

::
to
:::::::::
optimized

:::::::::::::
simultaneously.

::::
This

:::
has

::
to
:::

be
:::
the

::::
case,

:::
as

:::::::::
optimizing

:::::::::
transforms

:::
for

::::
each

:::::::::
catchment

:::
will

::::
lead

::
to

:::::
them

:::::
being

::::
very

:::::::
different

::::
than

:::
the

:::::::::
neighbors.

::::::::
However,

::::::::::
considering

:::
the

:::::::
behavior

::
of

:::::::::::
precipitation

::
in

:::::
space,

::
it
:::::
could

::
be

::::::
argued

::::
that

::::
each

:::::::::
catchment

::::::
should

::
be

::::::
treated

:::::::::::
individually,

:::
but

::::
here

:::
the

:::
aim

::::
was350

::
to

:::::::
evaluate

::
if

::
an

::::::
overall

:::::::::
correction

:::
was

::::::::
possible.

::::::
Hence,

:::
36

:::::::::
parameters

:::
for

:::
the

:::::::::::::
static-transform

::::
case

::::
and

:::
37

::
for

:::
the

:::::::::
CP-based

:::
case

::::
had

::
to
:::

be
:::::::::
optimized.

::::
For

:::
the

::::
case

:::
of

:::
the

:::::
static

:::::::::
transform,

:::::
slight

:::::::::::
improvement

:::
in

:::
the

::::::
results

::::
was

::::::::
observed

:::
for

:::
all

:::
the

:::::::::
catchments

:::
but

:::
no

::::::::
consistent

:::::::
patterns

:::::
were

::::::::
observed,

:::::
same

:::
was

::::
the

::::
case

:::
for

:::
the

::::::::
CP-based.

:::::::::
Strangely,

:::
all

:::::::::
transforms

:::::::
resulted

::
in

:::
the

::::::::
reduction

::
of

:::
the

::::
high

:::::::::::
precipitation

::::::
values.

::::::
Which

:::::::
signifies

:::
that

:::
the

::::::::
problem

::
of

:::
the

::::
large

::::::::::::
precipitation’s

::::::::::::::
underestimation

:::::
cannot

:::
be

:::::::::
considered

::::::::::::
independently

::
of

:::
the

::::
low

:::
and

::::::::
medium

::::::::::
precipitation

::::::
values.

:::::::
Similar

:::::::::
approaches

::::
and

:::::
more

:::::::::::
sophisticated355

::::
ones

:::
will

:::
be

::::::::::
investigated

::
in

::::
later

:::::::
research.

:

7 Summary and conclusions

An often ignored problem with model discharge
::
of

::::
peak

::::
flow

::::::::::::::
underestimation in rainfall-runoff modeling by using interpo-

lated data was investigated in this study. To do so, data were interpolated using different gauge densities. It was shown how

interpolated precipitation differs from reference precipitation. SHETRAN was used as a reference model that was assumed to360

represent reality with reconstructed precipitation as input. The other model was HBV. Runoff from SHETRAN was chosen as

a reference to avoid inherent mismatch of mass balances as compared to using observed discharge series.
::::::
Simple

::::::::::
approaches

::
for

::::
bias

:::::::::
correction

::::
were

::::
also

:::::::::
presented,

:::::
where

::
it
::::
was

::::::
learned

::::
that

:::
the

::::
bias

:::::
cannot

:::
be

::::::::
corrected

:::::
using

::::::
simple

:::::
static

::
or

:::::::
weather

::::::::
dependent

:::::::::
transforms

::
of

:::::
input

:::::::::::
precipitation.

:

The results showed that
:::
We

::::::
arrived

::
at

:::
the

::::::::
following

:::::::
answers

::
to

:::
the

::::::::
questions

::::
that

::::
were

:::::
stated

::
in

:::
the

:::::::::
beginning:365
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1. Interpolation produced a consistent underestimation of high precipitationvalues and overestimation of the low ones. The

underestimation increased with the increase in magnitude of precipitation. Possible reasons were also discussed. This

bias resulted in much higher error in model discharge i. e. consistent
::::::::
Sampling

:::::::
density

::
of

:::::::
stations

::
in

::::
and

::::::
around

::
a

::::::::
catchment

::::
have

::::::::
profound

::::::
effects

:::
on

:::
the

::::::
quality

::
of

::::::::::
interpolated

:::::::::::
precipitation.

::::::
While

:
it
::
is
:::::::
obvious

::::
that

::::
more

:::::::
stations

::::
lead

::
to

:::::
better

::::::::
estimates

::
of

:::::::::::
precipitation,

::
it

:::
was

::::::::::
recognized

:::
that

::::
low

::::::
density

:::::
leads

::
to

:
a
:::::
more

:::::::
frequent

::::
high

::::::::::::::
underestimation

::
of370

::::
areal

:::::::::::
precipitation,

:::::::::
especially

:::
for

:::
the

::::
large

::::::
events.

::::::::::
Depending

::
on

:::
the

:::::::
density

:::
the

:::::::::
worst-case

::::
was

::
an

:::::::::::::
underestimation

:::
of

::::
about

:::::
75%

::
of

:::
the

::::::::::
precipitation

:::::::
volume.

::::
This

:::::
effect

:::::::::
decreased

::
as

:::
the

::::::::
sampling

::::::
density

:::::::::
increased.

2.
::::
Both

:::::::::
considered

:::::::::::
hydrological

:::::::
models

::::::
showed

::
a
::::::::::
consequent underestimation of peak flows.

:::
For

::::::::
example,

::::::::::
SHETRAN

:::::::
produced

::
a
::::
peak

:::
that

::::
was

:::::
about

::::
50%

:::
less

:::::::::
compared

::
to

::
the

::::
case

:::::
when

::::::::
reference

::::::::::
precipitation

::::
was

:::::
used.

::::
HBV

:::
did

:::
not

:::::
show

:
a
::::::
similar

::::
loss

::::::::::::
comparatively

::
as

:
it
::::

was
::::::::::
recalibrated

::::
each

::::
time

:::
for

::::::::
different

::::::::::
precipitation

::::
but

:::
its

:::::::::::
performance

::::::::::
deteriorated375

::::::::::
nonetheless.

3. Removing subscale variability lead to underestimation of peaks. This is most likely due to the redistribution of water

to cells with less water from the cells with more water. As the drier cells hold the additional water, which would have

otherwise overflowed, from the cells that were saturated. Incorrect snowmelt due to spatial averaging is also a culprit.

::::::
Similar

::
to

::::::::
previous

:::::::
studies,

:::
the

::::::
effects

::
of

:::::::
random

:::::::::::
measurement

::::::
errors

::
in

:::::::::::
precipitation

:::
on

:::::
model

:::::::::
discharge

::::
were

::::
not380

:::::::::
significant.

4.
:::::
Using

::::::::::
precipitation

:::
as

::::
input

::::
with

:::
no

::::::
spatial

:::::::::
variability,

::::::
showed

:::
an

::::::
overall

::::
loss

::
in

:::::
model

:::::::::::
performance,

:::::::::
especially

:::
for

:::
the

:::::
events

::::
that

:::::::
involved

:::::::::
snowmelt.

::::::
Finally,

:::
the

::::::
results

:::
and

::::::::::
conclusions

::
of

:::
this

:::::
study

::::
must

::
be

:::::::::
interpreted

::::
with

:::
the

::::::::
important

::::
fact

::
in

:::::
mind,

:::
that

::::::
models

:::::
were

::::
used

::
to

::::::::::
demonstrate

:::
the

:::::
effects

:::
of

:::
the

:::::::::::::
underestimation

::
of

:::::
peaks

:::
due

:::
to

:::::
sparse

::::::::
networks

:::
and

::::::::::::
interpolations.

::
In

::::::
reality,

::
it

:::::
could

::::
very

::::
well385

::
be

:::
that

:::::
these

::::::
effects

:::::::
become

:::
less

:::::::::::::::::
dominant/observable

::::
due

:::
any

:::::::
number

::
of

::::
other

:::::::
reasons.

::::::::::::
Nevertheless,

:::
the

::::
main

::::::
culprit

::::::
behind

:::::::::::::
underestimation

::
of

:::::
peaks

::
is

:::
the

::::::::::
observation

:::::::
network

:::::::
density.

:::
The

::::::
models

:::::
used

::
to

::::::::::
demonstrate

:::
the

::::::
effects

:::
are

::::::::::::
circumstantial

::
to

:
a
::::
large

::::::
extent.

:

Further conclusions that can be derived from the above mentioned results are:

1. While modeling in hydrology, variables should be modeled in space and time at the correct resolution to have usable390

results. Disregarding spatial characteristics
::
(in

:::::
terms

::
of

::::::::
variance)

:
leads to problems that cannot be solved by any model

or finer resolution temporal data.

2. Cheaper networks may prove valuable where observations are sparse given
::
if

::
the

:::::::::
condition that their measurement error

are Normally distributed
:::::
errors

:::
are

:::::::
normally

:::::::::
distributed

::
is
::::
met.

In future research, the following issues could be addressed:395

1. Underestimation of intense precipitation due to interpolation.
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2. Sensitivity of other variables, such as temperature, to interpolation and their effects on runoff. Especially, catchments

with seasonal or permanent snow cover.

3. The magnitude of performance compensation that recalibration introduces due to the missing precipitation.

4. The effects of using different density networks on calibrated model parameters and regionalization of model parameters.400

5. Determining the error distributions of cheaper precipitation gauges to establish their usefulness in rainfall-runoff model-

ing.
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Figure 1. Study area (taken from Bárdossy et al. (2022))
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Figure 2.
::::::::

Comparison
::
of
:::::::

elevation
::::::::::

distributions
::
of

:::::::::
observation

:::::::
locations

::::
(red)

:::
and

:::
the

:::::
whole

::::::::
simulation

::::
grid

::::
(blue)

:::::
using

:::
the

:::::
SRTM

::::
90m

:::
grid

::
for

:::
the

::::
study

::::
area.

21



Figure 3. Precipitation bias comparison of the top five largest values due to using fewer points against an interpolation that uses all the points

using NN.
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Figure 4. Precipitation bias comparison of the top five largest values due to using fewer points against an interpolation that uses all the points

using OK.
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Figure 5. Comparison of precipitation interpolations for a time step with high precipitation with the reference.
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Figure 6. Scatter of reference and lumped interpolated precipitation for one catchment.
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Figure 7. Precipitation bias comparison of various interpolations with respect to the reference for the top five largest values.
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Figure 8. Scatter of discharge using reference and interpolated precipitation for one catchment using SHETRAN.
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Figure 9. Discharge bias comparison of various interpolations with respect to the reference for the top five largest values using SHETRAN.
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Figure 10. Event hydrograph comparison for various gauging densities using SHETRAN.
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Figure 11. Event hydrograph comparison for various gauging densities using SHETRAN.
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Figure 12. Scatter of discharge using reference and interpolated precipitation for one catchment using HBV.
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Figure 13. Discharge bias comparison of various interpolations with respect to the reference for the top five largest values using HBV.
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Figure 14. Event hydrograph comparison for various gauging densities using HBV.
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Figure 15. Event hydrograph comparison for various gauging densities using HBV.
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