
Author’s Response  
 
Editor Comments to the author: 
Dear authors, 
 
Your manuscript has now received three reviews that offer different critiques on your original 
manuscript. I appreciate that you've replied to these reviews, and also generated a general review 
document that integrates comments and responses across reviews. 
 
In general, the reviewers raised several critiques. In particular, I agree with the reviewers that 
certain metrics used for benchmarking should be modified, and appreciate that you have 
considered this in your plan for revision. 
 
I also agree with the reviewers that your work should be placed in a broader context, especially 
for those outside the US. In this frame, I'd encourage you to revise your Discussion and 
Conclusions section to more clearly integrate the state of the science and what your work 
contributes to this. What is the value of the models being used, and how do they improve the 
science of hydrologic prediction/inference? I also think it is worth contextualizing how this 
model is similar to or different from other models that have been used for CONUS scale 
exercises, again to emphasize the contribution being made. In addition, the manuscript could end 
on a stronger concluding note that places your work into the broader context of hydrologic 
modeling. 
 
I encourage you to make the revisions you've suggested in your responses to the reviewers, and 
to consider these comments and changes you may implement in your revised manuscript. 

 
General Response to the Editor: 

Dear Editor,  
 
We appreciate the additional comments and the opportunity to upload our revised our paper. As 
noted, during the open discussion, we posted a General Response, and point-by-point responses 
to all the reviewer comments. Although these were already posted, for completeness, we 
included these below this General Response. As indicated in our previous responses, our major 
revision has addressed all of the reviewer comments, including a key point also raised by the 
Editor here: we have modified the metrics used for benchmarking, as well as adding a 
climatological benchmark for context; these changes can be seen in the Evaluation Approach 
(Section 3) and Results (Section 4). In addition, as requested by the Editor, we have continued to 
revise the Discussion & Conclusions (section 5), which now helps to better articulate our 
contribution and the value of the models and approach being presented. We provide an excerpt 
here from the first paragraph of the Discussion & Conclusions:   
 
“Water availability is a critical concern worldwide, and its assessment extends beyond the individual catchment 
scale, needing to include basins large and small, influenced by human activities and not. As such, large-sample 
hydrologic modeling and evaluation has taken on a new urgency, especially as these models are used to assess 
water availability and risks. In the US, the high-resolution model applications benchmarked here are two widely 
used federal hydrologic models, providing information at spatial and temporal scales that are vital to realizing 
water security. To our knowledge, this is the first time that these models have been evaluated so comprehensively, as 



this analysis included daily simulations at 5,390 gages, over a 33- year period, and includes basins both impacted 
and non-impacted by human activities. Further, a climatological seasonal benchmark is used to provide an a priori 
expectation of what constitutes as a “good” model. This analysis is aligned with recent aims of the hydrologic 
benchmarking community to put performance metrics in context (Clark et al. 2021; Knoben et al. 2020). This paper 
extends this approach by demonstrating how the climatological benchmark can be used as a threshold to further 
scrutinize errors at underperforming sites.”    
 
We have also added a concluding paragraph to end on a stronger note: 
 
In closing, this paper uses the climatological seasonal benchmark as a threshold to screen sites for each model 
application. While this fit with the purpose of this study, the metrics for NWMv2.1 (Towler et al. 2022a) and 
NHMv1.0 (Towler et al. 2022b) are available for all sites (Foks et al. 2022); these can be analyzed and/or screened 
as needed. In the future, it could also be useful to extend the analysis beyond streamflow to other water budget 
components to assess additional aspects of model performance.   
 
These revisions to the Discussion & Conclusions, along with the revised Abstract and 
Introduction, better articulate and contextualize the contribution we make in the Evaluation 
Approach and Results. In addition, we point out that the manuscript has also gone through an 
internal USGS review process, where our manuscript is checked carefully for typos, clarity, 
terminology, completeness of tables and figure captions, addition of citations, etc., which will 
help with the overall clarity of the paper. We genuinely appreciate the opportunity to post our 
revision, and are grateful for all the reviews that contributed to improving the paper.   
 

 
  



Responses Already Posted in the Open Discussion Period: 
General Response for All Reviewers: 

 
We thank all three Referees for their reviews, which have been addressed to improve the paper. 
Though we provide a point-by-point response to each reviewer, we also have put together this 
General Response, articulating the main changes that were made to the manuscript, which should 
be read first. We focus on main changes in four of the sections, including: (i) Introduction, (ii) 
Evaluation Approach, (iii) Discussion, and (iv) Results. We refer to this in our point-by-point 
responses as needed. Further, although we have not finalized our manuscript revision, we have 
added relevant drafted excerpts here, followed by the updated Tables and Figures, to give the 
Referees a better sense how these changes were integrated.  
 

(i) Introduction: Added citations and revised to better articulate our contribution. We 
thank the reviewers for their suggestions from the literature to provide more context 
for our work. In addition, we have edited the final paragraph to better highlight our 
contribution. We provide the relevant revised draft excerpts from the last 3 
paragraphs of the Introduction here:  
 

Hydrologic catchment modelling has begun to move towards large-sample hydrology, an extension of comparative 
hydrology, where model performance is evaluated for a large sample of catchments, rather than focusing solely on 
individual watersheds. This is appealing since evaluating hydrologic models across a wide variety of hydrologic 
regimes facilitates more robust regional generalizations and comparisons (Gupta et al., 2014). As such, many 
hydrologic modelling evaluation efforts have begun to encompass larger spatial scales. As part of the North 
American Land Data Assimilation System project phase 2, Xia et al. 2012 evaluate simulated streamflow for four 
land surface models, focusing mostly on 961 small basins, as well as 8 major river basins in the contiguous US 
(CONUS), finding that the ensemble mean performs better than the individual models. Further, several large-sample 
datasets have been developed for community use. The Model Parameter Estimation Experiment (MOPEX) includes 
hydrometeorological time series and land surface attributes for hydrological basins in the US and globally that have 
minimal human impacts (Duan et al. 2006). The more recent CAMELS dataset (Catchment Attributes and 
Meteorology for Large-sample Studies) includes hydrometeorological data and catchment attributes for 600+ 
small- to medium-sized basins in the contiguous US (CONUS) (Addor et al. 2017). By using CAMELS basins that 
are minimally disturbed by human activities, Newman et al. (2015, 2017) and Addor et al. (2018) are able to 
attribute regional variations in model performance to continental-scale factors. Knoben et al. (2020) also use 
CAMELS with 36 lumped conceptual models, finding that model performance is more strongly linked to streamflow 
signatures than to climate or catchment characteristics.  

 
While these efforts are useful towards evaluating smaller, minimally-impacted basins, there is also a need to 
benchmark model performance for larger basins, including those impacted by human activities. On the global scale, 
catchment techniques have been applied to global hydrologic modelling, and have been shown to outperform 
traditional gridded global models of river flow (Arheimer et al. 2020). On the regional scale, Lane et al. (2019) 
benchmark the predictive capability of river flow for over 1,000 catchments in Great Britain by using four lumped 
hydrological models; Lane et al. (2019) include both natural and human-impacted catchments, finding poor 
performance when the water budget is not closed, such as due to non-modeled human impacts. Mai et al. (2022) 
conducted a systematic intercomparison study over the Great Lakes Region, finding that regionally calibrated 
models suffer from poor performance in urban, managed, and agricultural areas.  Tijerina et al. (2021) compared 
performance of two high-resolution models that incorporate lateral subsurface flow at 2,200 streamflow gages; they 
found poor performance in the Central US, potentially due to non-modeled groundwater abstraction and irrigation. 
As hydrologic model development moves to include human systems, these studies provide important baselines.   

 
This study builds on previous large-sample studies by benchmarking long-term retrospective streamflow simulations 
over the CONUS. Specifically, we evaluate two high-resolution, process-oriented models that have been developed 
to address water issues nationally: the National Water Model v2.1 application of WRF-Hydro (NWM v2.1; Gochis 



et al., 2020a) and the National Hydrologic Model v1 application of the Precipitation-Runoff Modeling System 
(NHM v1; Regan et al., 2018). The evaluation is performed on daily streamflow for 5,390 streamflow gages from 
1983-2016 (~33 years), including both natural and human-impacted catchments, representing one of the most 
comprehensive evaluations over the CONUS to date. The model performance is compared against a climatological 
benchmark that accounts for seasonality, and results are examined in terms of spatial patterns and human 
influences. The climatological seasonal benchmark is used as a threshold to screen the sites for each model 
application, offering a way to target the results for model diagnostics and development. 

 
(ii) Evaluation Approach: Reduced number of evaluation metrics and focus on KGE, 

added climatological benchmarks, used climatological benchmark as threshold to 
screen results for more targeted analysis.  
Based on the Referee suggestions, we focus on KGE, removing the other efficiency 
metrics (NSE and logNSE), and include the components of KGE (we replaced 
Spearman’s rank with linear r), and focused on only two of the hydrologic signatures 
(we removed PBIAS_FDC). See Table 1 for updated metrics. We also provide 
performance context by using climatological benchmarks outlined in Knoben et al. 
(2019) and Knoben et al. (2020). As suggested by the Referees, we also provide 
context for the interpretation of the KGE scores; we now note that a lower benchmark 
must be specified (Pappenberger et al., 2015; Schaefli and Gupta, 2007; Seibert, 
2001; Seibert et al., 2018). Further, as pointed out by the Referees, the KGE does not 
include a built-in lower benchmark in its formulation, but Knoben et al. (2019) show 
that models with KGE scores higher than −0.41 contribute more information than the 
mean flow benchmark. We also point to Knoben et al. (2020), who show that it is 
more robust to define a lower benchmark that considers seasonality. Hence, a 
reference time series based on the average and median flows for each day-of-year is 
used to calculate a lower KGE value which serves as a climatological (lower) 
benchmark; these are referred to as AvgDOY and MedDOY, respectively. We used 
this threshold to further target out analysis (see Results, revised below).  
  

(iii) Discussion: Revised discussion to address several points raised by Referees. 
The Referees raised several useful points, many of which we address in the 
Discussion now; these are pointed out in the point-by-point responses. But in general, 
we tightened up our discussion of using the benchmark to determine what a “good” 
model is, and discussed some of the updated results and what they might mean for 
model diagnostics and development.   
 

(iv) Results: Replaced tables with cumulative density functions, anchor KGE results 
based on climatological benchmarks, use climatological KGE benchmark to focus on 
underperforming sites.  
As indicated above, the Referees offered several suggestions that helped to re-shape 
the manuscript and its results. We provide the updated Results section here, followed 
by the draft Figures and Tables to show the Referees how these changes manifested in 
the updated manuscript.  

  



4 Results 

Using daily observations and model simulations, the evaluation metrics from Table 1 are calculated for each of the 
gages for the NWMv2.1 (Towler et al., 2022a) and NHMv1.0 (Towler et al., 2022b) hydrologic modelling 
applications. KGE is also calculated using daily observations and day-of-year averages (AvgDOY) and medians 
day-of-year (MedDOY) to produce a seasonal KGE benchmark for each site.  
    
KGE scores for the benchmarks and models can be seen as a cumulative density functions (CDFs; Figure 2), and 
Table 2 quantifies the percent of sites less than or greater than select KGE scores. First, the seasonal benchmarks 
and model KGE scores can be compared to the mean flow benchmark (i.e., KGE <-0.41; Knoben et al. 2019): for 
the MedDOY benchmark, 18% of sites have lower scores, and using the AvgDOY benchmark is always better than 
using the mean flow. For the models, at 14% of the sites the NWMv2.1 simulations do not provide more information 
than the mean flow benchmark, similar to 12% of sites using NHMv1.0. The CDFs for the models intersect with the 
AvgDOY curve at a KGE score of about -0.06; at this value, 19%-20% of the sites perform worse in terms of KGE 
using the model simulation, whereas above this value the model simulations perform better than AvgDOY. In terms 
of median values, the AvgDOY (MedDOY) has a median KGE of 0.08 (-0.1), while the NWMv2.1 has a median of 
0.53 and the NHMv1.0 median is 0.46. Given the better performance of AvgDOY in comparison to MedDOY, only 
AvgDOY is used for benchmarking the forthcoming analyses.   
 
KGE performance is also examined by whether it has been classified as Reference or Non-Reference. Reference 
gages indicate less-disturbed watersheds, whereas observations associated with Non-Reference gages have some 
level of anthropogenic influence (Falcone, 2011). Figure 3 shows KGE scores as CDFs for the models and the 
AvgDOY benchmark broken out by this classification. As expected, the AvgDOY curves are virtually identical 
regardless of classification. However, for both models, the Reference gages are outperforming the Non-Reference 
gages. Table 3 shows the median values for the models: for the NHMv1.0, the KGE is 0.67 (0.38) for the Reference 
(Non-Reference), and for NWMv2.1 it is 0.65 for the Reference versus 0.49 for the Non-Reference. Looking at the 
components, the r values are the same for both model Reference sites (0.78). For the PBIAS, the NHMv1.0 shows 
underestimation for both Reference and Non-Reference sites (-4.1% and -5.7%, respectively), but the NWMv2.1 
underestimates (-4.0%) at the Reference sites and overestimates (5.3%) at the Non-Reference sites.  
 
Figure 4 shows KGE scores as CDFs for the models broken out by region. Here it can be seen that the model 
applications are fairly similar, but that there are notable differences by region. In general, performance is best for 
the Northeast, followed by the Southeast. Central and West perform the worst, although West exhibits some high 
KGE values. Table 4 shows the median KGE, r, rSD, and PBIAS values broken out by region, showing the biggest 
differences coming from PBIAS. Regional variability can be further examined by the KGE maps for the models: in 
the West, more of the poor performing sites are in the arid Southwest and the lower elevation basins in the 
intermountain West; better performance is seen in the higher elevations in the intermountain West and West Coast, 
including the Pacific Northwest (Figure 5A for NWMv2.1 and Figure 5B for NHMv1.0). Figure 5 shows that for 
both models in the Central region, relatively poor performance is concentrated along the plains areas that span 
from the high plains (i.e., North Dakota) vertically down through the center of the CONUS (i.e., South Dakota, 
Nebraska, Kansas, Texas). Performance is more mixed as one moves further east in the Central region (e.g., around 
the Great Lakes). Relatively uniform good performance is seen in the Southeast. However, as previously mentioned, 
the model results need to be placed into context by comparing with a climatological benchmark. Figure 6 shows the 
KGE map for the AvgDOY, which has relatively higher KGE values mostly in parts of the western CONUS, where 
there are notable seasonal signatures (e.g., snowmelt runoff, etc.), and relatively lower KGE values in the most 
other regions. By taking KGE differences by site, it is easier to examine where the model applications are doing 
relatively better and worse than the seasonal benchmark. Figure 7 shows the spatial distribution of the KGE 
differences, where the model with the maximum KGE value is used (i.e., maximum between the KGENWMv2.1 and 
KGENHMv1.0). Overall, the model applications tend to outperform the AvgDOY benchmark, except in the West & 
western Central regions. Supplemental Figure 1 shows that if the AvgDOY benchmark is outperformed, it is usually 
by both models (at 63% of sites); this is similar to the findings of Knoben et al. (2020). KGE difference maps for 
each individual model can be seen in Supplemental Figures 2 and 3, but follow the same general spatial pattern.  
 
Basins that do not exceed the climatological benchmark are further scrutinized for each model application to offer 
insights toward model diagnostics and development; that is, only sites that have KGE scores worse than the 
AvgDOY benchmark are examined from here forward. In this section, these are called “underperforming sites”. By 



classification, most underperforming sites are human impacted (Non-Ref 90-93%, see Table 5). By region, most 
underperforming sites are in the West (55-67%) or Central (23-28%) regions (Table 6). Next, the bias metrics can 
be examined to try to get at why these sites are not able to beat the climatological benchmark. Spatial maps of 
PBIAS shows that the NWMv2.1 (Figure 8A) generally overestimates volume; NHMv1.0 (Figure 8B) is more mixed 
with underestimation in Central. Both models overestimate water volumes in the West. This could be because 
neither model is capturing active reservoir operations or water extractions (e.g., for irrigation), which is important 
since water is heavily managed in the West. This is different than the overall distribution of PBIAS for the modelling 
applications, where if you look at all the gages (n=5390), PBIAS for both models is centered around zero 
(Supplemental Figure 4). Another interesting feature of the PBIAS maps is the area of underestimation in Central 
for the NHMv1.0, which is absent in NWMv2.1. This could be due to the different time steps of the models, where 
NWMv2.1 is run hourly and NHMv1.0 is run daily; this hypothesis is expanded upon in the Discussion section. 
Maps for PBIAS_HF show a similar pattern (Supplemental Figure 5). However, for PBIAS_HF, the overall 
distribution of PBIAS_HFs is centered below zero, indicating that the models tend to underestimate high flows, but 
for the underperforming gages this is more pronounced in the NHMv1.0 than then NWMv2.1 (Supplemental Figure 
6). Results for rSD paint a similar picture: both models tend to underestimate variability, but the under-estimation is 
more pronounced in NHMv1.0 (Supplemental Figures 8 and 9). Figure 9 shows PBIAS_LF for both model 
applications: the NWMv2.1 tends to overestimate the low flows, whereas the NHMv1.0 is more mixed and the over- 
or under-estimation is less severe. This can also be seen in the histograms for PBIAS_LF (Supplemental Figure 7).    

  



Tables 
 
Table 1. Standard metric suite included in the daily streamflow evaluation. KGE = Kling–Gupta efficiency; Pearson’s r = 
linear correlation; rSD = ratio of standard deviations between simulations and observed; PBIAS =  percent bias; HF = high 
flows; LF = low flows. 

 
 
Table 2. Median Kling-Gupta efficiency (KGE) scores and percent of sites (p) less than or greater than given KGE scores 
for seasonal benchmarks based on the median day-of-year flows (MedDOY) and average day-of-year flows (AvgDOY), and 
the models: National Water Model v2.1 (NWMv2.1) and National Hydrologic Model v1.0 (NHMv1.0). 

 
 
  

Statistic Description Range (Perfect) Comments

KGE Kling–Gupta efficiency (Gupta et al., 
2009) -Inf to 1 (1) Normalized hydrologic metric of overall performance geared towards high 

flows (sensitive to outliers); calculated from KGE in R package hydroGOF.

Pearson's r Pearson's correlation coefficient -1 to 1 (1) Pearson (linear estimator) of correlation; calculated from rPearson in R 
Package  hydroGOF.

rSD Ratio of standard deviations 0 to Inf (1) Indicates if flow variability is being over- or under-estimated; calculated from 
rSD in R Package hydroGOF.

PBIAS Percent bias -100 to Inf (0) Indicates if total streamflow volume is being over- or under-estimated; 
calculated from pbias in R Package hydroGOF. 

PBIAS_HF Percent bias of flows >=Q98 (Yilmaz 
et al. 2008) -100 to Inf (0) Characterizes response to large precipitation events; calculated using flows 

>= the 98th percentile flow using pbias in R Package hydroGOF. 

PBIAS_LF Percent bias of flows <=Q30 (Yilmaz 
et al. 2008) -Inf to 100 (0)

Characterizes baseflow; calculated following equations in Yilmaz et al. 
(2008) using logged flows <= the 30th percentile (zeros are set to USGS 
observational threshold of 0.01 cfs).

Median KGE p(KGE<-0.41) p(KGE<-0.06) p(KGE>0.50) p(KGE>0.75)
MedDOY -0.13 18% 59% 5.7% 0.2%
AvgDOY 0.08 0% 19% 8.4% 1.5%
NHMv1.0 0.46 12% 20% 46% 15%
NWMv2.1 0.53 14% 19% 54% 16%



Table 3. Median values broken out by Reference (Ref, n= 1,115) and Non-Reference (Non-ref, n= 4,274) gages (one gage 
was not designated as Ref or Non-ref and is therefore not included).  KGE = Kling–Gupta efficiency; r = corelation 
coefficient, rSD = ratio of standard deviations between simulations and observed; PBIAS = percent bias; 
NHMv1.0=National Hydrologic Model v1.0; NWMv2.1 = National Water Model v2.1. 

 
 
Table 4. Median values for each region.  KGE = Kling–Gupta efficiency; r = correlation coefficient, rSD = ratio of 
standard deviations between simulations and observed; PBIAS = percent bias; NHMv1.0=National Hydrologic Model 
v1.0; NWMv2.1 = National Water Model v2.1. 

 
 
Table 5. The number (percent) of sites in each classification for each hydrologic model application where the KGE score is 
less than the average day-of-year flow (AvgDOY) benchmark (underperforming sites); KGE = Kling–Gupta efficiency; 
NHMv1.0=National Hydrologic Model v1.0; NWMv2.1 = National Water Model v2.1; max(Model) = model with maximum 
KGE value from NHMv1.0 or NWMv2.1; Ref = Reference (minimal human impacts); Non-Ref = Non-Reference (influenced 
by human activities). 

  
 
  

KGE r rSD PBIAS
Non-ref 0.38 0.72 0.86 -5.7
Ref 0.67 0.78 0.84 -4.1
Non-ref 0.49 0.75 0.92 5.3
Ref 0.65 0.78 0.87 -4.0

NWMv2.1

NHMv1.0

Model KGE r rSD PBIAS
NHMv1.0 0.29 0.74 0.98 9.3
NWMv2.1 0.32 0.75 1.17 27
NHMv1.0 0.33 0.68 0.78 -18
NWMv2.1 0.45 0.71 0.87 4.4
NHMv1.0 0.48 0.73 0.78 -11
NWMv2.1 0.56 0.77 0.85 -1.1
NHMv1.0 0.63 0.78 0.86 -3.0
NWMv2.1 0.65 0.79 0.82 -7.8

West

Central

Southeast

Northeast

Model Class
Ref 137 (9.4%)
Non-Ref 1319 (91%)
Ref 136 (9.5%)
Non-Ref 1302 (90%)
Ref 60 (7%)
Non-Ref 850 (93%)

NHMv1.0

NWMv2.1

max(Model)



Table 6. The number (percent) of sites in each region for each hydrologic model application where the KGE score is less 
than the average day-of-year flow (AvgDOY) benchmark (underperforming sites); KGE = Kling–Gupta efficiency; 
NHMv1.0=National Hydrologic Model v1.0; NWMv2.1 = National Water Model v2.1; max(Model) = model with maximum 
KGE value from NHMv1.0 or NWMv2.1. 

 
  

Model West Central Southeast Northeast

795 (55%) 412 (28%)

842 (59%) 370 (26%)

NHMv1.0

NWMv2.1

max(Model) 610 (67%) 213 (23%) 61 (7%) 27 (3%)

159 (11%) 91 (6%)

173 (12%) 54 (4%)



Figures 
 

 
Figure 1: Site locations used in evaluation (n=5,390), including regions and classification. Regions were further 
combinations of aggerated ecoregions defined by Falcone (2010): Central (n=1,450) includes Central Plains, Western Plains, 
and Mixed Wood Shield; Northeast (n=1,218) includes Northeast and Eastern Highlands; Southeast (n=1,212) includes 
South East Plains and South East Coastal Plains; and West (n=1,510) includes Western Mountains and West Xeric. 
Classifications are from Falcone (2010): Reference (Ref, n= 1,115) and Non-Reference (Non-ref, n= 4,274); one gage was 
not designated (NA, n=1).  

 



  
Figure 2: Cumulative density function (CDF) for Kling-Gupta efficiency (KGE) scores based on daily streamflow at U.S. 
Geological Survey (USGS) gages for seasonal benchmarks based on the median day-of-year flows (MedDOY) and average 
day-of-year flows (AvgDOY) and models: National Water Model v2.1 (NWMv2.1) and National Hydrologic Model v1.0 
(NHMv1.0). Dotted vertical line is KGE mean flow benchmark (=-0.41). For sites (n=1 for NWMv2.1 and n=16 for 
NHMv1.0) for which a KGE could not be calculated (i.e., the modeled timeseries had all zero values for the entire 
timeseries), these are included as -Inf in the CDFs.  

 
Figure 3: Cumulative density function (CDF) for Kling-Gupta efficiency (KGE) scores based on daily streamflow at U.S. 
Geological Survey (USGS) gages for seasonal benchmark based on average day-of-year flows (AvgDOY) and models: 
National Water Model v2.1 (NWMv2.1) and National Hydrologic Model v1.0 (NHMv1.0). Dotted vertical line is KGE 
mean flow benchmark (=-0.41). Reference (Ref, n= 1,115) and Non-Reference (Non-ref, n= 4,274) classifications are from 
Falcone (2010).  



 
Figure 4: Cumulative density function (CDF) for Kling-Gupta efficiency (KGE) scores based on daily streamflow at U.S. 
Geological Survey (USGS) gages for models: National Water Model v2.1 (NWMv2.1) and National Hydrologic Model v1.0 
(NHMv1.0). Dotted vertical line is KGE mean flow benchmark (=-0.41). Regions are further combinations of aggerated 
ecoregions defined by Falcone (2010): Central (n=1,450) includes Central Plains, Western Plains, and Mixed Wood 
Shield; Northeast (n=1,218) includes Northeast and Eastern Highlands; Southeast (n=1,212) includes South East Plains 
and South East Coastal Plains; and West (n=1,510) includes Western Mountains and West Xeric.  



   
Figure 5: Kling–Gupta efficiency (KGE) based on daily streamflow at U.S. Geological Survey (USGS) gages for (A) National 
Water Model v2.1 (NWMv2.1) and (B) National Hydrologic Model v1.0 (NHMv1.0). 

 
 



 
Figure 6: Kling–Gupta efficiency (KGE) based on daily streamflow at U.S. Geological Survey (USGS) gages for seasonal 
benchmark based on average day-of-year flows (AvgDOY). 

 
Figure 7: Difference between the Kling–Gupta efficiency (KGE) from the maximum model (maxModel) (i.e., the maximum 
KGE value from the National Water Model v2.1, NWMv2.1, or the National Hydrologic Model v1.0, NHMv1.0) minus the 
seasonal benchmark based on the average day-of-year flows (AvgDOY); negative (orange) indicates where AvgDOY has a 
higher (better) KGE, positive (purple) indicates that at least one of the models has a higher (better) KGE. 



 
Figure 8: Percent bias (PBIAS) maps for National Water Model v2.1 (NWMv2.1) (A) and National Hydrologic Model v1.0 
(NHMv1.0) (B), for sites where the KGE score is less than the average day-of-year flow (AvgDOY) benchmark. Cooler 
colors are where model application is overestimating volume and warmer colors are where model is underestimating 
volume. 



 
Figure 9: Percent bias low flow (PBIAS_LF, flows below 30% percentile) maps for National Water Model v2.1 (NWMv2.1) 
(A) and National Hydrologic Model v1.0 (NHMv1.0) (B), for sites where the KGE score is less than the average day-of-year 
flow (AvgDOY) benchmark. Cooler colors are where model application is overestimating low flows and warmer colors are 
where model is underestimating low flows.   
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Supplemental Figure 1. For the National Water Model v2.1 (NWMv2.1) and the National Hydrologic Model v1.0 
(NHMv1.0), the number of models where the KGE value is greater than the AvgDOY; both models are better (n=3396), 
one model is better (n = 1083), or neither model is better (n=911).  
 
 



 
Supplemental Figure 2. Difference between the Kling–Gupta efficiency (KGE) from the National Water Model v2.1 
(NWMv2.1) and the seasonal benchmark based on the average day-of-year flows (AvgDOY); negative (orange) indicates 
where AvgDOY has a higher (better) KGE, positive (purple) indicates that the NWMv2.1 has a higher (better) KGE. 
 

 
Supplemental Figure 3. Difference between the Kling–Gupta efficiency (KGE) from the National Hydrologic Model v1.0 
(NHMv1.0) and the seasonal benchmark based on the average day-of-year flows (AvgDOY); negative (orange) indicates 
where AvgDOY has a higher (better) KGE, positive (purple) indicates that the NHMv1.0 has a higher (better) KGE. 
 



 
  
Supplemental Figure 4: Normalized histograms of PBIAS for National Water Model v2.1 (NWMv2.1, top) and National 
Hydrologic Model v1.0 (NHMv1.0, bottom), for all sites (left) and for sites where the model’s KGE score is less than the 
average day-of-year flow benchmark (right). 
 



 
Supplemental Figure 5: Percent bias of high flow (PBIAS_HF; i.e., exceeding top 2%) maps for National Water Model 
v2.1 (NWMv2.1) (A) and National Hydrologic Model v1.0 (NHMv1.0) (B), for sites where the KGE score is less than the 
average day-of-year flow (AvgDOY) benchmark. Cooler colors are where model application is overestimating high flow 
bias and warmer colors are where model is underestimating high flow bias. 
 



 
Supplemental Figure 6: Normalized histograms of Percent bias of high flow (PBIAS_HF; i.e., exceeding top 2%) for 
National Water Model v2.1 (NWMv2.1, top) and National Hydrologic Model v1.0 (NHMv1.0, bottom), for all sites (left) 
and for sites where the model’s KGE score is less than the average day-of-year flow benchmark (right). 
 

 
Supplemental Figure 7: Normalized histograms of percent bias of low flow (PBIAS_LF, flows below 30% percentile) for 
National Water Model v2.1 (NWMv2.1, top) and National Hydrologic Model v1.0 (NHMv1.0, bottom), for all sites (left) 
and for sites where the model’s KGE score is less than the average day-of-year flow benchmark (right). 
 



 
Supplemental Figure 8: ratio of standard deviation (rSD) maps for National Water Model v2.1 (NWMv2.1) (A) and 
National Hydrologic Model v1.0 (NHMv1.0) (B), for sites where the KGE score is less than the average day-of-year flow 
(AvgDOY) benchmark. Cooler colors are where model application is overestimating variability and warmer colors are 
where model is underestimating variability. 
 



 
Supplemental Figure 9: Normalized histograms of standard deviation ratio (rSD) for National Water Model v2.1 
(NWMv2.1, top) and National Hydrologic Model v1.0 (NHMv1.0, bottom), for all sites (left) and for sites where the 
model’s KGE score is less than the average day-of-year flow benchmark (right). 
 



 
Supplemental Figure 10: Pearson’s correlation coefficient (r) for National Water Model v2.1 (NWMv2.1) (A) and 
National Hydrologic Model v1.0 (NHMv1.0) (B), for sites where the KGE score is less than the average day-of-year flow 
(AvgDOY) benchmark. 
 
 
  



Equations: 
 
The percent bias in the high flows (PBIAS_HF) is defined as (Yilmaz et al. 2008):  
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Where h = 1, 2,… H are the low flow indices for flows with exceedance probabilities lower than 
0.02.  
 
The percent bias in the low-flow (PBIAS_LF) is defined as (Yilmaz et al. 2008): 
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× 100 

 
where l = 1, 2,…L is the flow value index in the low-flow segment (0.7–1.0 flow exceedance  
probabilities) of the flow duration curve and L is the minimum flow index. 
 
 
Referee #1. 

Review of "Benchmarking High-Resolution, Hydrologic Performance of Long-Term 
Retrospectives in the United States" by Towler et al. 

Summary 

In this paper, performance of the National Water Model (NWM) v2.1 and the National 
Hydrologc Model (NHM) v1.0 is evaluated over the United States. These models are different in 
their internal structure, use different calibration approaches and are run with different 
meteorological inputs, but are similar in the sense that both are run over a high-resolution spatial 
grid. Model performance is evaluated with the help of 9 different metrics (e.g. Nash-Sutcliffe, 
PBIAS) that are calculated using observations and model simulations at 5390 streamflow gauges. 
Attention focuses most on median values in the 5390-member sample, and on differences 
between both models in various broad regions across the US. There are some recommendations 
on how to improve both models; most notably by updating the model structures to account for 
human water use and the impact of lakes and reservoirs. 

General comments 

Having read this paper, I must admit that I am not entirely sure whether HESS is the right venue 
for this. Various sentences suggest that this publication is intended as a benchmark for further 
development of the NWM and HWM. For example:  

• [line 25] "This benchmark provides a baseline to document performance and measure the 
evolution of each model application" 



• [line 80] "This paper highlights select results of the benchmarking analysis to document 
baseline model performance and characterizes overall performance patterns of both 
models." 

• [line 198] "Here, we provide select results, with a focus on documenting baseline model 
performance and providing insight towards model diagnostics and development." 

• [line 315] "here we provide a lower benchmark to gauge the evolution of the NWMv2.1 
and NHMv1.0".  

This is a great goal that I think should be the standard in any model development exercise (as it 
is in many other fields), but this kind of benchmarking is of limited interest to anyone who does 
not actively work with these models. A technical report instead of a journal publication might be 
more appropriate.  

We disagree in that this shows how a benchmarking approach can be used for additional 
modeling applications.  

To appeal to a wider (international) journal audience, the proposed benchmarking approach 
should be of general interest and I think in its current shape it fails to be that. 

General Reponse to Referee #1: We thank the Referee for these comments. We note that we 
had an initial “Short Response” to your general comments, and now we have fleshed out our 
response in the “General Response for All Referees”, which should be read first. We also 
respond here to each individual comment in this point-by-point response. As noted in the 
General Response, we have made major revisions to the (i) Introduction, (ii) Evaluation 
Approach (iii) Discussion and (iv) Results; this has made our study now of more general interest, 
and suited to a HESS Research Article, and we appreciate the Referee comments that helped us 
to achieve this end.  

My main concerns are that: 

1. The selected benchmarking metrics are too one-sided: out of the 9 metrics, 7 either 
include or are some form of model bias metric. Multiple other relevant aspects of 
hydrographs and model performance are not captured by these metrics. 

Please see “Evaluation Approach” in the General Response. As indicated, we now focus on KGE 
and reduce the number of metrics examined (see Table 1 in General Response, and included 
here):  
Table 1. Standard metric suite included in the daily streamflow evaluation. KGE = Kling–Gupta efficiency; Pearson’s 
r = linear correlation; rSD = ratio of standard deviations between simulations and observed; PBIAS =  percent bias; 
HF = high flows; LF = low flows. 



 

In the Discussion, we now also acknowledge that we focus on magnitude, since one of the main 
purposes of the model evaluation was to assess the suitability of the models for water availability 
studies. However, we now note that magnitude is only one aspect of streamflow, and that 
different metrics for other categories (e.g., frequency, duration, rate of change, etc), could be 
more appropriate for addressing specific modeling objectives.    

2. There is no clear way to relate a model's performance on this set of metrics to concrete 
suggestions for improvement of the model, because it is practically impossible to trace 
the scores a model obtains on these metrics to how well the model simulates a given 
hydrological process (though I appreciate that this is not an easy thing to do). 

We agree that this is a difficult endeavor. Nevertheless, we liked the suggestion of adopting the 
climatological benchmark of Knoben et al. 2020, since it offers a concrete goal for model 
development. Further, by screening our results to look mainly at the underperforming sites (I.e., 
sites that have KGE values below the climatological benchmark), we were able to come up with 
several hypothesis as to why, which could be useful for model development.   

3. The model results are presented in a vacuum: there is only very limited discussion of 
existing literature on benchmarking, there is no comparison of the performance of these 
two models to the performance of earlier modeling efforts across this domain, and there 
is no discussion about how high a model must score on any of the 9 metrics to be 
considered a good/plausible/acceptable/etc model. 

As seen in our General Response, we have done a major revision, and adopted the suggested 
approach of comparing with a climatological seasonal benchmark, and using this as a threshold 
to screen the results.    

4. There is almost no guidance (or better yet, software) available for a reader who might 
want to apply this benchmarking approach to their own simulations, beyond a table that 
shows references for the 9 metrics and a CSV file that contains the list of gauge IDs.  

Statistic Description Range (Perfect) Comments

KGE Kling–Gupta efficiency (Gupta et al., 
2009) -Inf to 1 (1) Normalized hydrologic metric of overall performance geared towards high 

flows (sensitive to outliers); calculated from KGE in R package hydroGOF.

Pearson's r Pearson's correlation coefficient -1 to 1 (1) Pearson (linear estimator) of correlation; calculated from rPearson in R 
Package  hydroGOF.

rSD Ratio of standard deviations 0 to Inf (1) Indicates if flow variability is being over- or under-estimated; calculated from 
rSD in R Package hydroGOF.

PBIAS Percent bias -100 to Inf (0) Indicates if total streamflow volume is being over- or under-estimated; 
calculated from pbias in R Package hydroGOF. 

PBIAS_HF Percent bias of flows >=Q98 (Yilmaz 
et al. 2008) -100 to Inf (0) Characterizes response to large precipitation events; calculated using flows 

>= the 98th percentile flow using pbias in R Package hydroGOF. 

PBIAS_LF Percent bias of flows <=Q30 (Yilmaz 
et al. 2008) -Inf to 100 (0)

Characterizes baseflow; calculated following equations in Yilmaz et al. 
(2008) using logged flows <= the 30th percentile (zeros are set to USGS 
observational threshold of 0.01 cfs).



As mentioned in the initial Short Response, most of the metrics are straightforward to calculate 
(we use HydroGOF in R), and we have also added the Equations to the manuscript.  Based on 
other comments below, we clarify the utility of the published metrics, and we update them by 
adding the climatological mean/median benchmark for each site.    
I believe that these issues can be addressed to a certain extent (see specific comments below), but 
in its current shape this manuscript mostly describes what performance scores two arbitrary 
models obtain on a limited selection of model performance metrics, without any context for 
those scores whatsoever. I don't think that's enough to warrant publication in HESS. 

Please see General Response for the Major Revisions applied to address the Reviewer’s 
comments.  
 
Specific comments 

l12. "a benchmark statistical design" - It's unclear to me what this means. 

We have removed this term from the text.  

l90. "https://noaa-nwm-retrospective-2-1-pds.s3.amazonaws.com/index.html" - The NWM docs 
(https://water.noaa.gov/about/output_file_contents) seem to say that output files are in netCDF4 
format, but if I follow this link all I can find is .comp files. What are these files and how can a 
reader open/use them?  

The output files are in netCDF files, they are just tagged as “.comp” because they are 
compressed. We will add to the manuscript: “(e.g., compressed netcdf files can be found at:…". 
The netCDF package in R allows for opening and viewing of netcdf files, but a reader can use a 
variety of programs to open these files.  

l105. "Using the AORC meteorological forcings, NWMv2.1 calibrates a subset of 14 soil, 
vegetation, and baseflow parameters to streamflow in 1,378 gauged, predominantly natural flow 
basins. The calibration procedure uses the Dynamically Dimensioned Search algorithm (Tolson 
and Shoemaker, 2007) to optimize parameters to a weighted Nash-Sutcliffe efficiency (NSE) of 
hourly streamflow (mean of the standard NSE and log-transformed NSE). Calibration runs 
separately for each calibration basin, then a hydrologic similarity strategy is used to regionalize 
parameters to the remaining basins within the model domain." - This needs a reference to 
indicate where a reader can find further details about this procedure. 

At this time, there is no publication to reference on this, but authors on this publication provided 
additional details. Based on this and other Referee comments, we have added the calibration 
periods to the model descriptions. For the NWMv2.1, the calibration period was from water 
years 2008 – 2013, and 2014-2016 was used for validation. For the NHMv1.0, the calibration 
period included the odd water years from 1981-2010, and the even water years from 1982-2010 
were used for validation.    

l113. "For the analysis in this work, hourly streamflow is aggregated to daily averages." - 
Looking at a snapshot of the USGS gauges used for this evaluation approach, observations seem 



to be available at a sub-daily resolution. Given that the model is run at a 3-hr resolution, and it is 
known that hydrologic processes of interest can show strong diurnal variation (e.g. evaporation, 
snowmelt), why are observations and simulations aggregated to daily values? 

Not all of the gages contain sub-daily records for the temporal extent of interest (1983-2016). 
Additionally, the NHM only can simulate streamflow at the daily timestep and comparison of 
these two models on different timesteps was not appropriate. For the benefit of the Referee, we 
note that other internal evaluations of the NWM have been conducted hourly, but that wasn’t the 
focus for this study.  

l148. "The NSE is formulated to emphasize high flows" - This statement seems to contradict the 
last part of this sentence: "models do not necessarily perform well at reproducing high flows 
when NSE is used for calibration". Suggest to rephrase this. 

In our revision, we have removed NSE (and logNSE) to focus on KGE results, and the new 
climatological benchmark comparison. As such, this sentence has been removed.  

l156. "Correlation, standard deviation ratio, and percent bias" - These three are (almost) the 
constitutive components of the KGE metric, and also appear in the NSE (see e.g. the 
decomposition of RMSE by Murphy, 1988, https://doi.org/10.1175/1520-
0493(1988)116%3C2417:SSBOTM%3E2.0.CO;2). There is likely value in looking at these 
individual components compared to the aggregated efficiency scores, but this section should 
state that these metrics are not independent from NSE and KGE. 

Thank you for raising this point. In our revision, we are focusing on KGE, and agree that there is 
value in looking at its constituents. We now look at the components of linear correlation (as 
opposed to in the previous draft, we looked at Spearman’s correlation), standard deviation ratio, 
and percent bias. These equations are now included in the manuscript.   

l167. "Three hydrologic signatures defined by Yilmaz et al. (2008)" - There are many possible 
signatures one could chose from and these are sometimes divided into five separate categories 
(magnitude, frequency, duration, timing and rate of change; e.g. Olden & Poff, 2003, 
dx.doi.org/10.1002/rra.770). More recently, McMillan (2022; dx.doi.org/10.1002/hyp.14537) 
created a signature taxonomy that relates signatures to specific hydrologic processes. The 
selected signatures here exclusively address the magnitude component, without explaining why 
these other components are not addressed or how a model's performance on any of these 
signatures might inform which of the model's process representations needs to be improved.  

More generally, out of the 9 presented metrics, 7 metrics are either some form of bias or include 
a bias component. This seems insufficient spread to me for a "standard metric suite". I believe 
this selection needs to be expanded quite a bit before these metrics can start to be used for 
comprehensive model benchmarking. 

We appreciate this comment and these references, this was part of the impetus towards our Major 
Revision (see General Response). We have added draft material to the Discussion to address this 
point explicitly in the paper: “Identifying a suite of evaluation metrics has an element of 



subjectivity, but our aim was to focus on streamflow magnitude, since the purpose of the model 
evaluation effort was for water availability applications. However, magnitude is only one aspect 
of streamflow, and different metrics for other categories (e.g., frequency, duration, rate of 
change, etc) could be more appropriate for addressing specific scientific questions or modeling 
objectives. Recently, McMillan (2019) links hydrologic signatures to specific processes using 
only streamflow and precipitation. Interestingly, McMillan (2019) does not find many signatures 
that relate to human alteration; however, in this paper, streamflow bias metrics are found to be 
useful in this regard.” 

l170. "big precipitation" - This might be inaccurate phrasing in the case of colder catchments, 
where flow events might originate from snow/ice melt and not directly from individual 
precipitation events. 

Thank you for this comment. We have added “big precipitation or melt events”.  

l178. "Foks et al., 2022" - The .csv file in this reference misses leading zeroes for station 
numbers, which makes searching for them somewhat difficult on the USGS website 
(https://waterdata.usgs.gov/nwis/uv?referred_module=sw&search_criteria=search_site_no&sear
ch_criteria=site_tp_cd&submitted_form=introduction). E.g. searching for station 1011000 yields 
no results with the default "exact match" option, whereas 01011000 does show a result. If 
possible, updating this resource could help others. Adding some guidance on how to obtain these 
observations in a reasonably efficient manner would be good too. 

We are not sure what software you used to open the CSV files, but a text-editor such as Rstudio, 
Notepad++, Visual Studio are common to use for opening CSV file formats so that leading zeros 
are observable. Microsoft Excel truncates data types it assumes are numeric values. The 
metadata accompanying this release has information regarding the leading zero for the station 
IDs. 

l191. "For statistical significance, we conduct pairwise testing, specifically the Wilcoxon signed-
rank test. The Wilcoxon signed-rank test is a non-parametric alternative to paired t-test. The 
Wilcoxon signed-rank test is appropriate here since the metrics (particularly the efficiency 
metrics) contain outliers and are not necessarily normally distribute" - This is unclear to me. 
What is being compared pair-wise? Why? A reference to point the reader to info about a 
Wilcoxon signed-rank test would be good too. 

We agree that the statistical significance analysis we included was not clear in the first draft, and 
not altogether necessary for the paper. In updating our paper to compare both models with the 
climatological benchmark, we have removed this (formerly Table 2) in the manuscript. See 
General Response Results section for more information.   

l202. "median values" - Why are only medians discussed here? How meaningful is that on a 
5000+ sample? 

In our updated analysis, although we still sometimes provide the median for a quantitative point-
of-reference, we now include CDFs (Cumulative Density Functions) of the KGE results for (i) 



the models and the climatological benchmarks, (ii) the Reference versus Non-Reference 
classification of the gages, and (iii) the 4 regions.  See the figures in the General Response 
Results section for more information.   

l206. "indicating that they are tracking similarly in terms of overall performance" - This may 
need to be a more nuanced. Because these correlations are calculated on ranks and not actual 
metric scores, I think all this indicates is that these models are similar in where they tend to do 
relatively better and worse (within their own 5390-member sample). I don't think these ranked 
correlations indicate that these models are similar in actual performance as measured by the 
metrics, which is what the text seems to say. 

Thank you for this comment. In our revision, we have replaced the Spearman rank correlation 
with the linear correlation, so to be more consistent with the components of KGE. As such, we 
have removed this sentence.   

l209. "these three popular efficiency metrics are providing very similar information in terms of 
overall performance assessments" - Again, I think this may need to be a bit more nuanced. What 
I believe these correlations show is that relative ranks are similar for these three metrics. In the 
.csv files I can see that there are still quite large differences in the actual scores on the three 
metrics. I would suggest to rephrase this paragraph. 

Thank you for this comment. In our revision, we have removed the NSE and logNSE from the 
manuscript, so as to focus more on KGE and its comparison with the climatological benchmark. 
As such, we have removed this sentence.  

l216. "Figure 2" - Why is the x-axis in this figure capped at KGE = -0.25? Looking at the data in 
the .csv files I see that KGE scores go as low as KGE = -306 for the NWM, and KGE = -158 for 
the NHM. This suggests that there is a lot of rather poor model performance that's not shown in 
this figure. Should that not be discussed as well in a paper intended to set a baseline for model 
performance? 

This is a good point, and as indicated in our General Response, we are now comparing with 
climatological benchmarks, including the mean annual flow KGE benchmark, i.e.,  –0.41 
(Knoben et al. 2019).  We have adjusted our x-axis to include this in Figure 2, 3, and 4 (see 
General Response). 

l219. "Table 4 bins the KGE scores" - A similar question can be asked here: why are these bins 
defined with a lower bin of KGE < 0.2? There seems to be a lot of variety in model performance 
below this arbitrary threshold. More generally speaking, what can be learned by binning the data 
in this way that is not obvious from a figure with four CDFs (one CDF each for west, central, 
southeast and northeast)? These KGE bin boundaries seem quite arbitrary to me and mask any 
variety within the bin. It might be cleaner to replace this table with CDFs per region instead. 

Thank you for this point and suggestion. We have added a new figure that shows the CDFs by 
region (Figure 4) and removed the previous Table 4 (see General Response).   



l231. "Relatively good performance is seen in the Southeast" - This paragraph uses fairly 
arbitrary thresholds to discuss the KGE performance of both models (e.g., anything with KGE < 
0.2 is considered poor performance; KGE > 0.8 is implicitly treated as a boundary above which 
everything is similarly good). Previous publications argue that efficiency scores such as NSE and 
KGE cannot be viewed in isolation but need to be compared to some form of baseline model, so 
that one can judge if these NSE/KGE scores are in fact poor or good for a given location (e.g. 
Seibert, 2001; Schaefli & Gupta, 2007; Pappenberger et al., 2015; Seibert et al., 2018). NSE 
includes such a benchmark by design (i.e. the mean annual flow - but this is often criticized as 
being too easy to beat). KGE does not include such a benchmark and therefore needs some other 
way to provide context. Work using the CAMELS catchments (Knoben et al., 2020) uses a 
seasonal cycle benchmark and suggests that for certain locations even KGE > 0.9 could be 
considered a basic requirement for models rather than being indicative of an exceptionally well-
performing model. I think the KGE scores discussed in this paragraph need to be given some 
context, so that there is some objective reason to qualify a given KGE score as "poor", "good" 
etc. Presenting these scores in isolation does not help the reader understand what kind of model 
performance they indicate. 

The same comment applies to the following paragraphs as well. The presented numbers need 
some context that gives the reader an objective reason to decide whether those numbers are 
indicative of good or bad model performance. 

Knoben et al.: doi.org/10.1029/2019WR025975  
 
Pappenberger et al.: doi.org/10.1016/j.jhydrol.2015.01.024 
 
Schaefli & Gupta, 2007: doi.org/10.1002/hyp.6825 
 
Seibert, 2001: doi.org/10.1002/hyp.446 
 
Seibert et al.: doi.org/10.1002/hyp.11476 

We appreciate the reviewer’s comments here, as well as the literature suggestions. As seen in the 
general response, we have taken this comment to heart, and are now comparing with the 
climatological seasonal benchmark following Knoben et al. (2020). We have also added the 
suggested literature to provide more background for our work.  

l244. "It is noticeable that many of the sites are in the tails" - I find this hard to grasp from just 
looking at this figure. Adding a small histogram to the bottom left corner might help.  

In our revision, this sentence has been removed, as we have removed this Figure (formerly 
Figure 4) and now show the difference between the in Kling–Gupta efficiency (KGE) from the 
maximum model (i.e., the maximum from the NWMv2.1 or the NHMv1.0) minus the seasonal 
benchmark based on the average day-of-year flows. See General Response Results for more 
information.  



l315. "here we provide a lower benchmark to gauge the evolution of the NWMv2.1 and 
NHMv1.0" - This sentence seems to suggest that this publication is mainly intended to 
benchmark future development of the NWM and NHM. Would a technical report not be a more 
appropriate venue for this? The kind of information presented in this paper seems useful to those 
actively working with the NWM or NHM, but may be of somewhat limited interest to the wider 
hydrological audience. 

Thank you for this comment, as we noted in our General response, we appreciate the suggestions 
to compare with a climatological KGE benchmark to make this of greater interest to the wider 
community. See General Response for more information.    

l317 "The baseline can provide an a priori expectation for what constitutes a “good” model." - I 
respectfully disagree. This baseline shows the current performance of the NWM and the NHM 
but it provides no objective reason for calling either a good model. For example, the mean annual 
flow (NSE = 0; KGE = -0.41) is often used as a rudimentary threshold for model performance. 
The .csv files with metric values show that the NWM does not outperform the mean annual flow 
as a predictor in 23% of gauges if NSE is used, and 14% of gauges if KGE is used. Similarly, the 
NHM does not outperform a mean annual flow in 24% of cases if NSE is used, and 12% of cases 
if KGE is used. To make the statement that these results are a priori expectations for what 
constitutes a good model, a much more in-depth comparison of both models against a range of 
statistical benchmarks (e.g., mean annual flow, seasonal cycle, persistence) and existing model 
results across this domain (e.g. any number of results based on the CAMELS data, NLDAS 
[10.1029/2011JD016051], global models [10.5194/hess-24-535-2020]) is needed. 

Thank you for this comment. We have revised our paper to compare both models against the 
climatological KGE benchmarks, including mean annual flow and mean/median daily of year 
flows). We also appreciate these additional references, and have added them to our Introduction 
(see General Response).   

l336. "Results helped to identify potentially missing processes that could improve model 
performance. PBIAS results showed that for both models, simulated streamflow volumes are 
overestimated in the West region, particularly for the sites designated as Non-Reference. One 
primary reason for this may be that water withdrawal for human use is endemic throughout the 
West and neither model has a thorough representation of these withdrawals. Furthermore, neither 
model possesses significant representations for lake and stream channel evaporation which, 
through the largely semi-arid west, can constitute a significant amount of water "loss" to the 
hydrologic system (Friedrich et al., 2018). Lastly, nearly all western rivers are also subject to 
some form of impoundment. Even neglecting evaporative, seepage and withdrawal losses from 
these water bodies, the storage and timed releases of water from managed reservoirs can 
significantly alter flow regimes from daily to seasonal timescales thereby degrading model 
performance statistics at gaged locations downstream of those reservoirs" - Upon reading this I 
cannot help but wonder if PBIAS values were needed at all to determine that these models might 
be improved by accounting for human water use and the presence of lakes & reservoirs. These 
seem fairly obvious processes to me when one is working with "two models that have been 
developed to assess water availability and risks in the United States". Should this even be listed 



as a discussion/conclusion point, instead of being presented as a known a-priori limitation of 
these models?  

In our revision, we have added more in our Discussion around this point. We note that as model 
development moves towards including human systems, the benchmark results could potentially 
provide a more concrete goal for “how much” improvement would be needed to adopt a 
management module. This is of increasing interest as the hydrologic modeling community 
grapples with how to account for the anthropogenic influence on watersheds, especially since 
most studies to date focus on minimally disturbed sites. It is also interesting to see that PBIAS is 
the component that is most useful for this aspect of model diagnostics. Recently, McMillan 
(2019) links hydrologic signatures to specific processes using only streamflow and precipitation. 
Interestingly, McMillan (2019) does not find many signatures that relate to human alteration; 
however, in this paper, streamflow bias metrics are found to be useful in this regard.   

l357. "state-of-the-art" - Without intending to disparage the work that undoubtedly has already 
gone into creating these models, calling them state-of-the-art seems an overstatement if neither 
of these water resources assessment tools has a way to account for human interaction with the 
water cycle.  

This has been removed. 

l354. "Identifying a suite of metrics has an element of subjectivity, but our aim was to identify an 
initial set of metrics that can be applied to a wide variety of science questions (e.g., see Table 1.1 
in Blöschl et al. 365 2013) and that build on standard practices for evaluation of model 
application performance within the hydrologic community" - As indicated earlier, with 7 out of 9 
metrics focusing on bias I find this set of metrics too limited for even an initial set. Of course 
there is some subjectivity in selecting metrics, but there is also some existing understanding of 
which statistical properties of hydrographs might be relevant to look at, how those might be 
captured in streamflow signatures, and how those signatures might be used to explain how well a 
model simulates certain, specific processes. This current selection of metrics seems too ad-hoc to 
me and some deeper literature searching would likely result in a set of metrics with a much wider 
applicability. 

Thank you for this suggestion; in addition to our General Response, we provide this draft excerpt 
to be added to the Discussion: “Identifying a suite of evaluation metrics has an element of 
subjectivity, but our aim was to focus on streamflow magnitude, since the purpose of the model 
evaluation effort was for water availability applications. However, magnitude is only one aspect 
of streamflow, and different metrics for other categories (e.g., frequency, duration, rate of 
change, etc) could be more appropriate for addressing specific scientific questions or modeling 
objectives. Recently, McMillan (2019) links hydrologic signatures to specific processes using 
only streamflow and precipitation. Interestingly, McMillan (2019) does not find many signatures 
that relate to human alteration; however, in this paper, streamflow bias metrics are found to be 
useful in this regard.”   



l576. "Table 1" - It would be helpful if equations were added to each row here. The ratio metrics 
are currently difficult to interpret for the reader, because they cannot know whether these are 
calculated as sim/obs or obs/sim without looking into other references. 

We have added the equations to the manuscript, and see next response.   

l576. "Table 1" - Why are these bias metrics capped at (-)100? 

This is the range for PBIAS as we define it; we have added the equation to the paper to make this 
clear (and equations for PBIAS_HF and PBIAS_LF to the Supplemental): 

Percent bias (PBIAS) is calculated as (Zambrano-Bigiarini 2020): 

 

where observed flow is O, simulated flow is S, and t = 1, 2,… N is the time series flow index. 
l642. "Reference (Ref, n= 1,115) and Non-Reference" - A brief explanation of what 
reference/non-reference means would be helpful. This could be a summary of lines 186-189). 

Ref and Non-Ref are now defined in section 3.1. Data, and used consistently throughout. 

Technical corrections 

l162. "modeled and observed" - Is there a word missing that should come after "observed"? 

We have added “streamflow” after. 

l197. "Using daily observations and simulations from the NWMv2.1 (Towler et al., 2022a) and 
NHMv1.0 (Towler et al., 2022b) hydrologic modeling applications" - The way the Towler et al. 
references are inserted in the text implies that they contain the daily time series of observations 
and simulations, but in reality these references include only the 9 metrics for each gauge. 
Suggest to clarify this. 

This has been clarified.  

l204. "the differences are statistically significant given the large sample size" - Why are some 
values bold in the NWM column and others in the NHM column? Shouldn't they be bold in both 
or neither? 

We have removed the statistical significance analysis from the paper.  

l230. "you move" - consider replacing with "one moves" 

This has been replaced. 



l241. "better and worse" - is there some text missing here that indicates compared against what 
these models do better or worse? 

This sentence has been removed in light of our Major Revision.  

l403. "References" - This list is not entirely in alphabetical order. 

Thank you, we will check the references for alphabetical order.  

l557. "https://10.5066/P9DKA9KQ" - Has this link been inserted correctly? When I click it it 
attempts to take me to a local file location instead of the link the text suggests this is. Unsure if 
this problem is on my end only, but the link in the Towler reference above this one seems to 
work fine for me. 

This has been updated and should be https://doi.org/10.5066/P9DKA9KQ 

l644. "Figure 2" - these figures are quite small. Stacking the subplots vertically would give more 
space to each figure. 

For the updated 2 panel plots, we now stack the plots vertically. 

l673. "Figure 8" - these figures are quite small. Stacking the subplots vertically would give more 
space to each figure. 

For the updated 2 panel plots, we now stack the plots vertically. 

 

l687. "Figure 11" - these figures are quite small. Stacking the subplots vertically would give 
more space to each figure. 

For the updated 2 panel plots, we now stack the plots vertically. 

  

 
RC2: 'Comment on hess-2022-276', Robert Chlumsky, 29 Sep 2022 
 
I have completed my review of the paper “Benchmarking High-Resolution, Hydrologic 
Performance of Long-Term Retrospectives in the United States”, Erin Towler et al. The paper 
presents a benchmark statistical design for the evaluation of process-based hydrologic models 
over large spatial and temporal scales, and is applied to evaluate the National Water Model 
v2.1 application of WRF-Hydro and the National Hydrological Model v1.0 of the Precipitation-
Runoff Modeling System. 
The paper itself is relatively straightforward in methods and application, including a description 
of both models, description of the metrics selected for evaluation and the presented 



comparison of the two models using the metrics selected. The paper draws a number of 
appropriate conclusions regarding the relative performance of the models spatially and based 
on flow regime, and is overall very well written and logically presented. 
Regarding the comments on paper type, the paper aligns largely with a Technical Report 
format, though the additional discussion and interpretation of results help move it towards a 
Research Article. 
A number of additional comments and concerns are presented here to help improve the paper. 
General Reponse to Referee #2: We thank the Referee for these comments. We note that we 
provide a General Response for All Referees, which should be read first. We also respond here 
to each individual comment in this point-by-point response. As noted in the General Response, 
we have made major revisions to the (i) Introduction, (ii) Evaluation Approach (iii) Discussion 
and (iv) Results; this has made our study now of more general interest, and suited to be a HESS 
Research Article; we appreciate the Referee comments towards this end. 

General Comments 
1. In the Introduction, mention of previous studies that have addressed the 5,390 USGS 

gages used in this study would be relevant (have any studies used all of these gages as 
well?) 

To our knowledge, this is the first time these 5390 gages have been used in this type of 
comprehensive evaluation. We point out that we have substantially revised the Introduction, 
please see General Response.   

2. Introduction - It would also be worth mentioning other datasets that have been 
commonly used in larger-scale benchmark and model intercomparison studies, such as 
the MOPEX (Duan et al., 2006) and CAMELS dataset (Addor et al., 2017). The Mai et al. 
(2022) GRIP-GL comparison would also be worth mentioning in the list of recent 
benchmark and model intercomparison studies. 

We appreciate these suggested references and have added them to our revision. Please see 
General Response for the changes to the Introduction.  

3. Introduction - Any previous studies benchmarking these two hydrologic models would 
be worth mentioning in the last introductory paragraph (lines 73-81), or mention that 
this is the first study benchmarking these two models specifically. 

Although there have been some internal evaluation efforts, they have not been published. We 
now mention that this is the first time publishing the benchmark results for these two models, 
in the Discussion: “The presented analysis documented model performance for two large-
sample, high-resolution hydrologic models over a long-term period. To our knowledge, this is 
the first time that these models have been evaluated so comprehensively, as this analysis 
included 5390 gages, both impacted and non-impacted by human activities.”   

4. Line 210 – are these three metrics providing very similar information for overall 
performance assessment in general, or simply because these models are similar and 
that happens to be the case in this study only? I would be surprised if this conclusion 
was generalized for very different hydrologic models, and I think this should be carefully 



rephrased to not overgeneralize from the limited model comparison (i.e. 2 similar 
models) presented in this study. 

As indicated in our General Response, we removed the NSE and logNSE metrics from the suite. 
As such, we have removed the lines in question from the manuscript.  

5. Reference to Knoben et al. (2019) on what a baseline KGE performance is may be useful 
in interpreting the results, since 0.2 seems somewhat artbitrary. The Knoben et al. paper 
suggests -0.4 is a more comparable threshold to the NSE=0 interpretation, so perhaps 
some justification or rationale for using 0.2 is warranted. 

We agree with this comment, and as indicated in our General Response, we are now use the 
KGE > –0.41 as the mean flow benchmark (Knoben et al. 2019), as well as computing the 
interannual mean/median benchmark values as in Knoben et al. (2020).  

6. Table 4 – the bolding pattern is confusing to me, since it is meant to represent the 
maximum number (percent) of sites by KGE category (?), though the Northeast has two 
bolded numbers, and in the Central region the minimum number is bolded. Similar 
bolding patterns continue in other Tables and seem to be at least non-intuitive. 

Thanks for this feedback. In our revision, we have removed most of the tables, and have 
replaced them with CDFs that better show the differences between models, regions, and 
classification. See the Results in the General Response.  

7. Table 6 – I would suggest a summary column with the average metric across regions to 
help summarize the results, similar to how Table 5 summarizes results for Ref and non-
ref sites. This would have some duplication with Table 5 but I think it is still worth 
including here as an additional column 

Thank you for pointing this out. Similar to the previous comment, we have removed this table 
in light of our updated manuscript. Please see updated Results in the General Response.  

8. Figure 4 and lines 241-247 – I thnk that screening the models with poor initial 
performance from Figure 4, perhaps as a separate figure, would be more meaningful 
than comparing relative model performance between a KGE of 0.0 and -0.05. In either 
case, the models likely don’t capture enough of the observed behaviour for a modeler 
to care which is better, and this inhibits interpretation of Figure 4 in identifying any real 
differences between the models. It seems the models will be similar in any case, but I 
would filter results first. 

Agreed, we have taken this suggestion to heart and adopt this approach of screening the 
models with poor performance relative to the KGE benchmark. Please see General Response.   

9. Line 268 – I think this statement is actually incorrect, since the lower variability at 
managed (non-reference) sites should already be normalized by comparison to 
observed data. My interpretation of this is that the ideal rSD is 1.0, and rSD below 1.0 
indicates that the model underestimates the variability of flow. In both cases the models 
underestimate the variability of flow, in particular for reference sites relative to non-
reference or managed sites. This suggests the models do better at capturing general 



changes in flow rather than sudden ones in unregulated reference sites perhaps. There 
is more interesting interpretation to add in this section. 

We have revised the Results (see General Response), and have revised our examination of the 
rSD results.  

10. Line 277-279 – this can be compared with the GRIP-GL study results (Mai et al., 2022) to 
discuss general trends in Great-Lakes areas 

Thanks for this suggestion. We appreciate pointing out the Mai et al., 2022 paper, and have 
added it to our Introduction, specifically where we discuss studies that include both impacted 
and non-impacted gages (See General Response). Further, given that we revised our study to 
compare the NHM and NWM CONUS-wide models with climatological seasonal benchmark, it 
would have broadened the scope too much to further compare directly with outputs from 
other model studies.     

11. Line 295 – general comment but an actual histogram plot of the information in 
Supplemental Table 2 would likely convey this information much better and would aid 
the discussion. A simple histogram of frequency vs binned PBIAS_LF, and either facet or 
colour code each of the four regions on one plot would greatly aid the discussion 

Agreed, we have removed Supplemental Table 2 and have revised our results to better convey 
the information, both in terms of new CDF plots and by filtering our results based on the 
climatological benchmark. We have also added histograms of some of the metrics (PBIAS, 
PBIAS_LF, PBIAS_HF, and rSD) for both models as separate figures in the Supplemental 
Material, which are referenced in the updated Results (See General Response). For the benefit 
of the reviewer, we include the histogram of PBIAS as a preview of what will be included in the 
finalized Supplemental Material: 
 

  
Supplemental Figure 4: Normalized histograms of PBIAS for National Water Model v2.1 (NWMv2.1, top) and National 
Hydrologic Model v1.0 (NHMv1.0, bottom), for all sites (left) and for sites where the model’s KGE score is less than the 
average day-of-year flow benchmark (right). 
 

12. Line 341 – it would be worth elaborating on the value of the passive lake/reservoir 
representation in the model relative the none. It is interesting that the model with the 
passive representation (NWMv2.1) does seem to perform slightly better than the 
NHMv1.0, though it is unclear if that is the reason why or what the improvement in 



performance would be with a better representation of reservoir operations. This would 
require some segmentation based on catchments with ‘significant’ reservoir controls, 
which is not included in this study, though worth discussing briefly here. 

Agreed, these differences in performance were only slight, and in our revision, we focus less on 
the differences between the NHM and NWM. Given the overall manuscript changes, we don’t 
add on to this point in the manuscript, but have added to the draft Discussion: “As model 
development moves towards including human systems, the benchmark results could potentially 
provide a more concrete goal for “how much” improvement would be needed to adopt a 
management module. This is of increasing interest as the hydrologic modeling community 
grapples with how to account for the anthropogenic influence on watersheds, especially since 
most studies to date focus on minimally disturbed sites.”   

13. Line 355 – the NWMv2.1 is described to perform better in high-flow-focused metrics 
than the NHMv1.0. This discussion should be expanded to how this could likely have 
been known from the model setup initially, since running the model on hourly or 
subdaily timesteps and aggregating will very likely produce better performance for peak 
flow metrics than a model that is run at a daily timestep, therefore this result should not 
be a surprise. This is touched on by mentioning that the latter model is designed for 
water availability, but I think this point should be emphasized. 

We have expanded on this, especially in light of new results showing the underestimation of 
PBIAS in Central by the NHM, we now note in the updated draft Discussion: “Another interesting 
difference in PBIAS was seen in the Central US, where the NHMv1.0 is underestimating volumes 
at underperforming sites. As detailed in the model descriptions, the model applications are run 
at different temporal scales: NHMv1.0 is run daily, whereas NWMv2.1 is run hourly and 
aggregated to daily. One hypothesis is that some precipitation events that are occurring on sub-
daily scales, like convective storms, may be missed, or the associated runoff modes (Buchanan et 
al. 2018). Similarly, while both models tend to underestimate high flows (PBIAS_HF) and 
variability (rSD), this is more pronounced for the NHMv1.0, which is in line with this hypothesis. 
The model applications showed differences in PBIAS_LF, with the NWMv2.1 overestimating low 
flows, whereas while the NHMv1.0 both over- and under-estimated them it was less extreme. It 
can be noted that both models used in the applications benchmarked here have only rudimentary 
representation of groundwater processes. Additional attributes (e.g., baseflow or aridity indices) 
could be strategically identified to further understand these model errors and differences. Model 
target applications, which drive model developer selections for process representation, space 
and time discretization, and calibration objectives, also have a notable imprint on the 
performance benchmarks. The NWMv2.1, with a focus on flood prediction and fast (hourly) 
timescales, shows better performance in high-flow-focused metrics, while the NHMv1.0, 
designed for water availability assessment and slower (daily) timescales, shows better 
performance in low-flow-focused metrics.”  

14. Conclusion – the concluding paragraph ends rather abruptly, a short one or two line 
paragraph at the end to tie off the accomplishments of the paper and goals for future 
studies would help to transition the conclusion. 



Thanks for this suggestion. We have added this as our updated Discussion final paragraph: “In 
closing, this paper uses the climatological seasonal benchmark as a threshold to screen sites for 
each model application. While this fit with the purpose of this study, the metrics for NWMv2.1 
(Towler et al. 2022a) and NHMv1.0 (Towler et al. 2022b) are available for all sites (Foks et al. 
2022); these can be analyzed and/or screened as needed. In the future, it would also be useful 
to extend the analysis beyond streamflow to other water budget components to assess 
additional aspects of model performance.” 
Technical Comments: 

15. I was under the impression that CONUS was an acronym for contiguous United States 
(not conterminuous), though I suppose the definitions are practically the same 

Thank you, this has been changed to contiguous. 
16. Links in lines 92-93 should be properly cited instead of providing raw urls 

This citation has been updated.  
17. Line 168 – I would rewrite this paragraph slightly to something like: “Three additional 

hydrologic signatures are included which evaluate performance based on different parts 
of the flow duration curve (FDC) for high, medium, and low flows. The definitions for 
these hydrologic signatures as used in this study are consistent with those from Yilmaz 
et al. (2008). The bias of high flows…“ This will help the readability of the section, 
otherwise the reader is left wondering which metrics you are porting in from Yilmaz 
until the whole section is read. 

Thank you, this has been edited as suggested. We note that we now only include PBIAS_LF and 
PBIAS_HF (we have removed PBIAS_FDC). 

18. Line 201 – “…for all 5,390 cobalt gages …”. If these will be called cobalt gages in the 
paper, this should be used throughout the paper after its definition for consistency 

We have removed the term cobalt gages throughout the manuscript.  
19. Line 221 – the line “Both models also have many sites with poor performance” – this can 

be quantified and merged with the next line, as many sites in a large sample study could 
mean 100 or 1000. Both models in fact have 30% of their sites with a KGE below 0.2, 
which is a lot of models with very poor performance (KGE below 0.2 is likely an 
‘unusable’ or ‘untrustworthy’ model for most applications) 

These lines have been updated now that our analysis includes a comparison to the 
climatological KGE benchmark. See General Response.   

20. Line 361 – link should be properly cited 

In revising our Discussion, this has been removed.  
References 
Thank you for these references, they have been added. 
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Runoff Intercomparison Project Phase 4: The Great Lakes (GRIP-GL) Hydrol. Earth Syst. Sci., 26, 
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RC3: 'Comment on hess-2022-276', Anonymous Referee #3, 03 Oct 2022 
This is a review of the manuscript “Benchmarking High-Resolution, Hydrologic Performance of 
Long-Term Retrospectives in the United States” by Towler et al. The manuscript compares the 
performance of two large-scale hydrologic models in estimating streamflow by comparing 
against observed streamflow at gauges across continental United States (CONUS). The 
performance is evaluated using a number a metrics that are commonly used in streamflow 
evaluation. The manuscript is well-written and easy to follow. The effort to create benchmarks 
for CONUS scale streamflow prediction models is commendable, necessary, and of interest to 
this journal and the hydrologic community. However the metrics presented here are 
commonplace and the evaluation/benchmarking workflow is not novel. My biggest criticisms of 
the study are regarding the consistency of comparing two model outputs (major comment 2) 
and the use of calibration gauges in evaluation (major comment 3).   
The manuscript can still be considered for publication provided the authors sufficiently address 
my concerns. I, therefore, recommend Major Revision. 
General Reponse to Referee #3: We thank the Referee for these comments. We note that we 
provide a General Response for All Referees, which should be read first. We also respond here 
to each individual comment in this point-by-point response. As noted in the General Response, 
we have made major revisions to the (i) Introduction, (ii) Evaluation Approach (iii) Discussion 
and (iv) Results. 

Major comments: 
1. Introduction: The Introduction is missing a comprehensive review of current literature 

and needs improvement to further clarify the hurdles being overcome by this study and 
bring out its novelty. Specifically, the last paragraph should have a few sentences 
summarizing how it is building on previous studies and what shortcomings are being 
overcome in this specific study. Additionally, for studies mentioned in L 48-65, please 
mention their drawbacks and how this study aims to overcome them. Also, review of 
studies regarding statistical design of large-sample benchmarks and intercomparisons 
has been ignored. The authors should also clarify how the benchmark statistical design 
used in this study compares to previous studies where large sample intercomparison 



and/or benchmarking have been carried out. Finally, the National Hydrologic Model is 
mentioned for the first time in the manuscript in L 75 when the authors are specifying 
the objectives of the study. The authors should introduce the two models briefly in the 
Introduction while also mentioning the reasons behind choosing these two specific 
models. 

Thank you for these comments. We have revised the Introduction, please see the General 
Response.  In short, we note that a drawback of most studies to date is that they are evaluating 
smaller, minimally-impacted basins (and we have added additional studies here, including Duan 
et al. 2006 using MOPEX, and Knoben et al. (2020) using CAMELS). Nevertheless, most river 
basins are impacted by human activities. These impacted basins also need to be benchmarked; 
especially as model development moves to include human systems. While there are some 
studies that have begun to address this globally (Arheimer et al. 2020); in Great Britain (Lane et 
al. 2019); Great Lakes Region (Mai et al. 2022); and for 1 year over the Central US (Tijerina et al. 
(2021); this has not been done for a long-term retrospective over the entire CONUS. This 
comprehensive evaluation of a long-term retrospective over the CONUS, using both impacted in 
addition to non-impacted sites, is our first contribution. We now note in the updated draft 
Discussion that to our knowledge, this is the first time that these models have been evaluated 
so comprehensively, Further, our second, related, contribution is facilitated by adopting and 
extending another suggestion to our paper, which was to provide performance context for our 
models. We now compare our two models to a climatological benchmark of KGE based on the 
interannual mean for each site, as in Knoben et al. (2020), and extend this by using it as a 
threshold to further scrutinize the metric results. Please see the General Response for details.  

2. L 113: NWM produces hourly streamflow using hourly atmospheric forcings whereas 
NHM produces daily streamflow using daily forcings. The hydrologic processes in the 
watersheds are simulated at different temporal scales (hourly vs daily) by the two 
models. Additionally, the many USGS gauges record 15-minute streamflow data. NWM 
can produce hourly streamflow and takes into account changes in hydrologic variables 
throughout the day. Averaging out higher resolution (hourly) streamflow timeseries 
produced using higher resolution (hourly) forcing to a coarser resolution is not the 
equivalent of simulating streamflow at a coarser resolution (daily) from coarse 
resolution (daily) forcings due to the non-linear nature of hydrologic processes. As such, 
is the comparison of the streamflow produced at two different temporal scales a 
consistent and fair comparison? 

Thanks you for this comment. We note that in our original preprint, we did focus on the 
comparison between the NHM and NWM, whereas in the updated manuscript, we now compare 
both models with a climatological benchmark. However, we agree that we need to be 
transparent about the model differences, including the different temporal scales. This comes out 
in a new point brought up in the draft updated Discussion, where we now note: Another 
interesting difference in PBIAS was seen in the Central US, where the NHMv1.0 is 
underestimating volumes at underperforming sites. As detailed in the model descriptions, the 
model applications are run at different temporal scales: NHMv1.0 is run daily, whereas NWMv2.1 



is run hourly and aggregated to daily. One hypothesis is that some precipitation events that are 
occurring on sub-daily scales, like convective storms, may be missed, or the associated runoff 
modes (Buchanan et al. 2018; https://doi.org/10.1002/hyp.13296). Similarly, while both models 
tend to underestimate high flows (PBIAS_HF) and variability (rSD), this is more pronounced for 
the NHMv1.0, which is in line with this hypothesis. The model applications showed differences in 
PBIAS_LF, with the NWMv2.1 overestimating low flows, whereas while the NHMv1.0 both over- 
and under-estimated them it was less extreme. It can be noted that both models used in the 
applications benchmarked here have only rudimentary representation of groundwater 
processes. Additional attributes (e.g., baseflow or aridity indices) could be strategically identified 
to further understand these model errors and differences. Model target applications, which drive 
model developer selections for process representation, space and time discretization, and 
calibration objectives, also have a notable imprint on the performance benchmarks. The 
NWMv2.1, with a focus on flood prediction and fast (hourly) timescales, shows better 
performance in high-flow-focused metrics, while the NHMv1.0, designed for water availability 
assessment and slower (daily) timescales, shows better performance in low-flow-focused 
metrics. 
Buchanan, B., Auerbach, D.A., Knighton, J., Evensen, D., Fuka, D.R., Easton, Z. Wieczorek, M., 
Archibald, J.A., McWilliams, B., and Walter, T.: Estimating dominant runoff modes across the 
conterminous United States, Hydrological Processes, 32: 3881–3890, 
https://doi.org/10.1002/hyp.13296, 2018. 
  

3. Calibration: What was the calibration period for the two models? It is unclear from the 
text if gauges used in calibration were also part of evaluation. If the calibration period 
overlapped the evaluation period (October 1, 1983, to December 31, 2016), then the 
gauges used for calibrating either of the models should be removed from the set of 
gauges used for benchmarking the models. Including these gauges will introduce biases 
in the evaluation process. 

The calibration periods differed for the two models. For the NWMv2.1, the calibration period 
was from water years 2008 – 2013, and 2014-2016 was used for validation. For the NHMv1.0, 
the calibration period included the odd water years from 1981-2010, and the even water years 
from 1982-2010 were used for validation. This has been added to the model descriptions. As 
such, the calibration period did overlap with the evaluation period for the calibration gages, but 
it was not consistent between the models. We acknowledge the reviewer’s point, but note that 
our approach fit with our objectives, which was to evaluate the long-term performance of both 
models at the same sites and time periods. The same technique was adopted in the MOPEX 
study (Duan et al. 2006). Further, there has been recent research activity in calibration. In 
particular recent studies suggest updating calibration techniques to use the full available data 
period and to skip model validation entirely (Shen et al. 2022; 
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021WR031523 ). We have added 
sentences to this effect in the updated Discussion section.  

Shen, H., Tolson, B. A., & Mai, J. (2022). Time to update the split-sample approach in 
hydrological model calibration. Water Resources Research, 58, e2021WR031523. 



4. The study also includes gauges near the coast in the evaluation scheme. USGS gauges do 
not measure streamflow directly, rather the water surface elevation (WSE) is measured 
and the WSE is converted to streamflow using rating curves. Gauges near the coast can 
experience backwater from coastal surge traveling up the river and/or tides. In such 
cases, the rating curve for converting WSE to streamflow are violated and streamflow 
readings are highly erroneous. As such, should gauges near the coast be included in the 
evaluation scheme? Additionally, both NWM and NHM do not take into account the 
interaction between the river and sea/ocean. 

 
We do not include tidally influenced gages in this analysis, though this was an interesting point 
we had not considered.  For the benefit of the reviewer, we note that we did speak to the USGS 
team, and they indicated that backwater effects are accounted for in USGS gauging procedures 
(tidal or otherwise). We believe that most are not stage-discharge gages but rather index-
velocity gages which allow negative velocities. They indicated that the tougher issue is how to 
handle negative velocities (flows) in a hydrologic (water only downhill) type model; which 
would be challenging to either the NHM or NWM.  In some previous work, when all the GAGESII 
references gages were analyzed, negative flows were very rare at the daily time step; recalling 
there were only two gages in Florida that had such. In short, we don’t believe this to be a major 
issue in this analysis.  

5. L 327-330: The authors should discuss why these areas are exhibiting poorer/better 
performance for both the models. They have a done good job of explaining the behavior 
of PBIAS in L 335-348 and need to similarly delve deeper into the potential causes of the 
behavior in the efficiency metrics for these regions. 

Thank you for these comments. We have updated our Results significantly to delve deeper into 
the performance of both models as compared to the climatological benchmark; please refer to 
the General Response, Results section.  

6. The authors need to discuss the limitations of this study and future work at the end of 
the manuscript in more detail. The limitations of the study extend beyond the 
subjectivity in choosing the performance metrics and their sensitivities. This could be a 
separated section or can be a continuation of the Results and Discussions. 

We have updated the Discussion, including points raised in major comments #2 and #3. Further, 
we have added this as our updated Discussion final paragraph: “In closing, this paper uses the 
climatological seasonal benchmark as a threshold to screen sites for each model application. 
While this fit with the purpose of this study, the metrics for NWMv2.1 (Towler et al. 2022a) and 
NHMv1.0 (Towler et al. 2022b) are available for all sites (Foks et al. 2022); these can be analyzed 
and/or screened as needed. In the future, it would also be useful to extend the analysis beyond 
streamflow to other water budget components to assess additional aspects of model 
performance.” 
 
Minor Comments: 



7. Title: is it really the United States if Alaska and the US territories have not been 
included? Should it be CONUS instead? 

We have amended the title to be contiguous United States 
8. L 177: The study uses 5,390 gauges and 5,389 of those are in GAGES II. So, there is just 

one gauge that was not part of GAGES II? 

Yes, only one was not part of GAGES II, but it fit all the other criteria so it was included.  
9. L 191: “For statistical significance …” – statistical significance of what? 

We agree that in the first draft of the paper this was confusing and unnecessary to the 
evaluation analysis. In updating our paper to compare both models with the climatological 
benchmark, we have removed this in the manuscript, see General Response. 

10. L 350: refer to the appropriate table/figure 

This has been fixed. 
11. Table 3 can be moved to supplementary information. KGE and NSE (and logNSE) are 

expected to behave somewhat similarly given their formulations. So this table does not 
convey anything particularly novel or important. 

We have removed Table 3, and further now focus the paper on KGE (we have removed NSE and 
logNSE); see General Response.  

12. Figure 2: There can be further subplots showing the CDF of KGE for the two models by 
region. This will be more informative than Table 4 which can then be moved to 
supplementary information. 

Thank you for this comment – we agree and have changed several of the Tables to be CDFs, 
which we agree are much clearer; see the Results in the General Response. 

13. Figure 4: Just a suggestion, with there being so many points, it is hard to discern a trend 
or behavior from the figure. It might help to have region-wise or HUC-unit-wise medians 
color coded across CONUS. See Figure 8 in 
https://doi.org/10.1016/j.jhydrol.2022.127470 as an example. 

Thank you for this suggestion. We note that we have removed Figure 4, and are now filtering 
the results by sites that underperforming relative to the climatological KGE benchmark (which 
reduces the number of points).   

14. Please adjust the font size in the figures to make sure the legends, subplot number and 
lat/long are easily readable (Figures 3, 8, 11) 

Some of the figures have changed, but we have adjusted the font sizes in the updated figures to 
make them easily readable. Further, we hope this will be helped by now stacking the figures 
vertically (rather than side-by-side).   
 
 


