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Canopy structure, topography and weather are equally important
drivers of small-scale snow cover dynamics in sub-alpine forests
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Abstract. In mountain regions, forests that overlap with seasonal snow mostly reside in complex terrain. Due to persisting
major observational challenges in these environments, the combined impact of forest structure and topography on seasonal
snow cover dynamics is still poorly understood. Recent advances in forest snow process representation and increasing
availability of detailed canopy structure datasets, however, now allow for hyper-resolution (<5 m) snow model simulations
capable of resolving tree-scale processes. These can shed light on the complex process interactions that govern forest snow
dynamics. We present multi-year simulations at 2 m resolution obtained with FSM2, a mass- and energy-balance based
forest snow model specifically developed and validated for meter-scale applications. We simulate a ~ 3 km? model domain
encompassing forested slopes of a sub-alpine valley in the Eastern Swiss Alps and six snow seasons. Simulations thus span a
wide range of canopy structures, terrain characteristics, and meteorological conditions. We analyse spatial and temporal
variations in forest snow energy balance partitioning, aiming to quantify and understand the contribution of individual
energy exchange processes at different locations and times. Our results suggest that snow cover evolution is equally affected
by canopy structure, terrain characteristics and meteorological conditions. We show that the interaction of these three factors
can lead to snow accumulation and ablation patterns that vary between years. We further identify higher snow distribution
variability and complexity in slopes that receive solar radiation early in winter. Our process-level insights corroborate and
complement existing empirical findings that are largely based on snow distribution datasets only. Hyper-resolution
simulations as presented here thus help to better understand how snowpacks and ecohydrological regimes in sub-alpine
regions may evolve due to forest disturbances and a warming climate. They could further support the development of

process-based sub-grid forest snow cover parametrizations or tiling approaches for coarse-resolution modelling applications.

1 Introduction

The presence of snow in the sub-alpine forest ecoregion of the European Alps, and other mountain ranges across the
Northern Hemisphere, means large areas of seasonal snow cover overlap with both forests and complex topography. Snow

accumulation and ablation processes are known to be controlled by the structure of the forest cover (Mazzotti et al., 2019a),
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topographic characteristics (Broxton et al., 2020; Safa et al., 2021; Schirmer and Pomeroy, 2020), as well as how these
physiographic factors interact with local climate and weather patterns (Lundquist et al., 2013; Seyednasrollah and Kumar,
2019; Pflug and Lundquist, 2020). Consequently, snow cover dynamics in sub-alpine forest are subject to strong complexity
and variability down to small spatial and temporal scales. A thorough understanding of the controlling factors is important
because snow cover dynamics affect eco-hydrological regimes (e.g. Barnhart et al.,, 2016; Manning et al., 2022),
microclimate and habitat characteristics (e.g. Niittynen et al., 2020), as well as land surface energy exchange (e.g. Webster
and Jonas, 2018; Manninen and Jaaskeldinen, 2018). Today, snow cover regimes are changing due to climate warming
(Mote et al., 2018; Marty et al., 2017; Notarnicola, 2020; Bormann et al., 2018), and forest structure is being altered by
manmade and natural disturbances (Bebi et al., 2017; Seidl et al., 2017; Goeking and Tarboton, 2020). In view of these
changes, understanding forest-snow dynamics can inform adequate management strategies - particularly in regions where
downstream water supply is dependent on snow resources from forested headwaters (Sturm et al., 2017; Siirila-Woodburn et
al., 2021). However, it remains unclear if and how the response of snow cover dynamics to environmental change will
depend on where this snow is located within the heterogeneous landscape.

Canopy structural controls on individual forest processes have been widely addressed in both experimental and modelling
studies. Interception of snow by the canopy (Moeser et al., 2015; Roth and Nolin, 2019), transmission of shortwave, and
enhancement of longwave radiation (Malle et al., 2019; Mazzotti et al., 2019b; Webster et al., 2016; Lawler and Link, 2011),
have received particular attention due to the strong spatial variability of these processes induced by tree-scale canopy
structural heterogeneity. Existing research has, however, focused on flat sites to single out the effect of canopy structure.
Only few studies have considered how the combination of forest and topography alter accumulation and ablation processes
under forest relative to clearings. Ellis et al. (2011) presented measurements from a Canadian site, including short- and
longwave irradiances and snow depth under the canopy and in clearings on different slopes and aspects, and showed that the
presence of forest delayed snowmelt relative to open areas more strongly on south-exposed slopes than on north-exposed
ones. In a modelling study, Strasser et al. (2011) found that forest cover diminished aspect-dependent differences in snow
cover dynamics compared to openings, and further noted that forest effects differed between years with varying
meteorological conditions. Neither of these studies did, however, consider fine-scale canopy structure in detail, and no study
that specifically addresses inter-annual consistency of fine-scale forest snow distribution patterns exists to our knowledge.

In recent years, the increased availability of LiDAR-derived snow depth distribution datasets has enabled a new approach to
analysing forest snow cover dynamics. Multiple studies have attempted to establish relationships between snow, canopy, and
terrain descriptors based on such datasets (Zheng et al., 2019; Mazzotti et al., 2019a; Currier and Lundquist, 2018). Broxton
et al. (2020) used maps of snow water equivalent (SWE) and time series of snow depth transect measurements to analyse the
combined impact of forest density and topographic location on snow water equivalent in a semi-arid climate. Safa et al.
(2021) applied machine learning to identify the factors that determine snow disappearance in different forest and topographic
settings based on snow depth maps covering four US sites with variable climate characteristics. Recently, Koutantou et al.

(2022) presented a time series of Uncrewed Aerial Vehicle (UAV) borne LIiDAR datasets to compare the evolution of snow
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depth distribution patterns on opposed slopes in an Alpine valley. All these studies were limited to process inferences as
snow distribution datasets only reflect the combined impact of various forest snow processes.

Instead of relying on snow data alone, understanding process interactions can be advanced through sophisticated process-
based models. In absence of observational data, or for predictive purposes, models are commonly used as a best estimate of
reality (Wood et al., 2011; Wrzesien et al., 2022). In forest snow research, the use of hyper-resolution models that resolve
tree-scale processes is gaining popularity in applications that require the small-scale variability of these processes to be
adequately represented (Harpold et al., 2020). To our knowledge, two models developed specifically for this purpose exist to
date: SnowPALM - Snow Physics and LiDAR Mapping (Broxton et al., 2015) and FSM2 - Flexible Snow Model (Mazzotti
et al., 2020a, b). They evolved independent of each other but follow similar principles. Impact studies have used
SnowPALM to analyse the effect of forest disturbance on snow water resources under varying meteorological conditions
(Moeser et al., 2020), and to assess forest thinning strategies (Krogh et al., 2020). Hyper-resolution models also provide an
approximation of processes that are not resolved in coarser resolution models and can thus inform the development of sub-
grid parametrizations of these processes. As such, both SnowPALM (Broxton et al., 2021) and FSM2 (Mazzotti et al., 2021)
have been used to derive recommendations for modelling forest snow processes at coarser resolutions, and there is still great
potential to further exploit these models as research tools.

In this study, we use hyper-resolution modelling to explore the spatio-temporal dynamics of individual forest snow processes
and their effect on snow cover evolution in forested complex terrain under varying meteorological conditions. We apply
FSM2 to a sub-alpine valley and across multiple winters to assess the interplay of canopy structure, topography, and
meteorology. Our work builds on Koutantou et al. (2022), who observed considerable differences in snow distribution
dynamics between their sites located on south- and north-exposed forested slopes over the course of one snow season. The
authors hypothesized that weaker correlations between snow depth and canopy cover at the south-exposed than at the north-
exposed slope were due to differences in the shortwave irradiance regimes at the two locations but could not fully
demonstrate this based on their observational data alone. The modelling approach used here, in contrast, will allow us to
analyse individual processes and their interactions over larger spatial and temporal extents than previously possible. Our
goals are thus (1) to characterize spatial patterns of snow cover dynamics and the underlying processes in such a sub-alpine
environment; (2) to detect connectivity between snow patterns and patterns of underlying processes; and (3) to assess their
temporal consistency throughout the season and between different years. By contributing to the improved understanding of
these dynamics, we hope to facilitate the development of approaches to treat sub-grid variability in coarser-resolution

models, and to help expand our capabilities to assess the impact of environmental change on ecohydrological processes.
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Figure 1: Overview of the study area: (a) Location of the model domain within Switzerland and on the topographic map of the
Davos area (source: swisstopo), including locations of the automatic weather stations DAV and WFJ; (b) Canopy height model and
contour lines (equidistance: 50m), including locations of the sites from Koutantou et al. (2022) and of the subdomain shown in

100 Figures 5and 7-9.

We focus our modelling in a domain situated in the Fliela valley near Davos (Figure 1) in the Eastern Swiss Alps. The

climate is inner-alpine with an average wintertime (DJF) air temperature of -4.2 °C and 450 mm yearly snowfall sum (Davos

station, MeteoSwiss, norm period 1991-2020; www.meteoschweiz.ch). The model domain is contained in a 2.5 x 1.5 km

area at the entry of the valley, which consists of two opposite (south- and a north-facing) slopes. Both slopes extend over 500

105 m elevation span from the valley bottom at 1570 m as.l. to the tree line around 2100 m. Maps of the topographic

characteristics of the model domain (elevation, slope, and aspect) are included in the Supplementary Material (Figure S1.1).

The forest is predominantly Norway spruce with some individual larches, which is typical of this sub-alpine forest

ecoregion. Understory vegetation is short, mainly consisting of blueberry bushes and grasses. Trees range from new- to old

growths with maximum heights of 35 m, and forest structure includes both dense stands and gaps of varied sizes. The

110 domain thus spans a range of variability in canopy structure and topographic conditions over a rather small area, which is

common in the sub-alpine environment.
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The site is at ~5 km distance to well-established and predominantly flat research sites that have hosted recent experimental
forest snow process studies from the WSL Institute for Snow and Avalanche Research (SLF), including Laret (Malle et al.,
2019; Webster, 2016), Seehornwald (Webster et al., 2016), and Ischlag (Moeser et al., 2015). The sites from Koutantou et al.
(2022) are fully contained in the perimeter of this study. The operational measurements from the automatic weather station
(AWS) Davos (DAV) and from the measurement field at Weissfluhjoch (WFJ) are within 1 km and 3 km of the site,
respectively (Figure 1a).

2.2 Modelling framework

Snow cover simulations with the Flexible Snow Model FSM2 (Mazzotti et al., 2020b, a) are at the core of this study’s
methodology (Figure 2). FSM2 is the upgrade of the Factorial Snow Model, FSM (Essery, 2015), with forest canopy
included. We apply the version presented by Mazzotti et al. (2020a) specifically developed for hyper-resolution (meter-scale)
simulations, FSM2.0.3. This version accounts for the influence of tree-scale canopy structure on individual forest snow
processes by using process-specific canopy metrics that integrate both hemispherical and vertically projected perspectives.
Notably, it can leverage detailed time series of point-scale transmissivity for direct shortwave radiation obtained with an
external radiative transfer model. Past research has demonstrated that FSM2 is able to capture sub-canopy snow energetics
by comparing model output to spatio-temporal multi-sensor datasets, for incoming irradiances, air space and snow surface
temperature, and wind speed (Mazzotti et al., 2020a). Consequently, FSM2 has been shown to accurately replicate small-
scale forest snow cover dynamics and the respective microclimatic states (Mazzotti et al., 2020b, a). For this study, we run
FSM2 at 2 m grid spacing (i.e., 850’000 points) and hourly resolution for six winters (i.e., water years (WY) 2016-2021).
Our model application follows Mazzotti et al. (2021), who used equivalent hyper-resolution simulations to explore model
upscaling behavior.
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Figure 2: Conceptual sketch of the study methodology. Input meteorological and surface datasets (from the OSHD and the 2017
LiDAR mission, Section 2.2), FSM2 including external radiative transfer model, evaluation approaches (presented in Mazzotti et
al. 2020a and Section 2.3) and resulting snow cover dynamics descriptors: peak SWE (SWEmax), start of snow cover period (SSD),
day of peak SWE (PSD) snow disappearance date (SDD) - see Section 2.4 for definitions.

LiDAR datasets acquired through airborne laser scanning (ALS) in 2017 in the context of the first European mission of the
Airborne Snow Observatory (ASO, Painter et al., 2016; Mazzotti et al., 2019a) provided the basis for computing all canopy
metrics required by FSM2, including the shortwave transmissivity time series. A canopy height model was created following
the LAStools-based algorithm from Khosravipour et al. (2014), enabling calculation of local and stand-scale canopy cover
fraction, mean canopy height, and leaf area index at all modelled locations. Details on the individual metrics are given in
Mazzotti et al. (2021, 2020b). Shortwave transmissivity time series at each location were obtained with the workflow from
Webster et al. (2020), which calculates transmissivity through an overlay of a hemispherical image and solar position at any
given point in time, as presented by Jonas et al. (2020). In Webster et al. (2020), LiDAR-derived synthetic hemispherical
images based on a methodology originally proposed by Moeser et al. (2014) are used for this purpose. The radiation model
was calibrated using real hemispherical images at our sites and using the same LiDAR data (Koutantou et al., 2022),
allowing direct application in this study. Additional surface datasets (e.g., elevation) were available through SLF’s
Operational Snow-Hydrological Service’s (OSHD) modelling framework. These data were provided at 25 m resolution and
interpolated to the model resolution (2 m).
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Meteorological forcing was also available through OSHD. As described by Griessinger et al. (2019), gridded data of all
necessary meteorological input variables (incoming short- and longwave radiation, air temperature and relative humidity,
wind speed, rain- and snowfall rates, and atmospheric pressure) are provided by MeteoSwiss (COSMO-1 product) at hourly
interval and 1-km resolution over all of Switzerland and further downscaled to model resolution. Additional corrections (for
biases or terrain effects) are applied to some of the variables, e.g., wind speed (Winstral et al., 2017) and shortwave radiation
(Jonas et al., 2020). We refer to Griessinger et al. (2019) for details. For this study, input fields were initially downscaled to

25 m and subsequently linearly interpolated to 2 m resolution.

2.3 Verification of model use case

The validation of individual modelled fluxes within FSM2 as presented by Mazzotti et al. (2020a) was done in the vicinity of
our study area, with the same type of input data, and for the same type of canopy data. For this reason, another model
validation is beyond the scope of this study; nevertheless, an assessment of our simulations against available snow
distribution datasets was performed to ensure plausibility of the model application for our use case. We use four independent
data sources: (1) Daily now depth data from stake readings acquired next to automatic weather stations (AWS) in Davos and
Weissfluhjoch to assess the simulations at open sites; (2) High- and medium-resolution satellite RGB imagery available
through Planet Explorer (www.planet.com) at approx. weekly intervals for the last five modelled WY’s, including Landsat 8,
Sentinel-2 and PlanetScope, to evaluate modelled snow cover extent during periods of partial snow cover; (3) Maps of sub-
canopy snow depth over the full domain from two of the 2017 ASO LiDAR acquisitions (see Section 2.2) at 3 m spatial
resolution, parts of which were used by Mazzotti et al. (2019a); and (4) Time series of sub-canopy snow depth maps over
two 150 x 150 m domains (see Figure 1) on the two opposed slopes obtained with UAV-borne LiDAR in 2020, presented by
Koutantou et al. (2022). For details on the LIDAR campaigns, the reader is referred to the corresponding publications.
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Figure 3: Examples of plausibility checks performed to verify the model use case, including comparisons of 1) satellite RGB
imagery acquired by Planetscope on 28. April 2018 (a) and snow cover extent simulated by FSM2 on the same day (b); 2) snow
depth distribution derived from ALS data (c) and simulated by FSM2 (d); and 3) snow depth statistics of UAV-LIDAR derived
snow maps at the north-exposed site and resulting from FSM2 (e) and observed and modelled spatial distribution of the 8 March

175 2020 campaign (f).
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Figure 3 presents examples of visual comparisons of model simulations to satellite (Figure 3a-b), ALS (Figure 3c-d) and
UAV-LIDAR data (Figure 3e-f). These assessments reveal that the model captures the general characteristics of snow depth
and snow disappearance patterns well. The strong temporal lag in snow disappearance between the south- and the north-
facing slope is clearly visible in the satellite imagery and likewise reproduced by the FSM2 simulations. Snow distribution
features such as preferential ablation along south-exposed forest edges and higher snow amounts in canopy gaps compared
to nearby under-canopy locations in the north-exposed slope are also clearly present in both the LiDAR datasets and the
simulations. Overall, the verification confirms that FSM2 simulations are suitable for this use case. Goodness of fit measures
would be confounded by uncertainties in meteorological input and snow measurement inaccuracies (see e.g. Raleigh et al.,
2015; Gunther et al., 2019; Currier et al., 2019) and were therefore not considered here.

2.4 Analysis approach

Our analysis uses several descriptors of the snow season and of the surface energy exchange processes derived from the
FSM2 simulation results. These metrics are computed at each modelled location (i.e. 2 m grid cell) for all winters as follows.

1. Peak SWE: The maximum value of snow water equivalent on the ground attained over the course of a snow season /
WY.

2. Day of peak SWE (PSD): The day on which peak SWE occurred. In case of multiple occurrences of peak SWE over
the season, the median was selected.

3. Accumulation period: Period between the last occurrence of SWE < 10 mm prior to peak SWE and the day of peak
SWE.

4. Start of snow cover period (SSD): The first day of the accumulation period.

5. Ablation period: Period between the day of peak SWE and the first occurrence of SWE < 10 mm following peak
SWE.

6. Snow disappearance day (SDD): The last day of the ablation period; also referred to as melt-out.

7. Snow cover duration: The number of days between the start of snow cover and snow disappearance.

8. Ablation rate: The quotient between peak SWE and the length of the ablation period.

9. Cumulative ablation: Amount of SWE depleted over the course of a specific time interval (computed as sum of

SWE decrements including losses due to both melt and sublimation).

10. Average surface energy fluxes: Incoming and net short- and longwave radiation as well as turbulent (sensible and
latent) heat fluxes into the snowpack, averaged over a specific time interval, where positive fluxes indicate transport
towards the snow surface.

Note that the temporal integration varies for different metrics, with some applying to the point-specific snow cover durations

and some integrating over fixed time intervals. The choice of temporal integration interval is motivated by the purpose of the

corresponding analysis. Moreover, it should be noted that the definition of contiguous accumulation and ablation periods

until / from peak SWE, as applied here, implies that melt events can occur during the accumulation and snowfall events

9
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during the ablation periods, respectively. The 10mm threshold applied to define snow vs. no-snow conditions served to
ensure that only days with snow present throughout the whole day would be included in the analysis of ablation rate and
surface energy fluxes.

To assess relationships of any snow or process descriptor to canopy structure, we quantify the fine-scale canopy structure at
a point in terms of local canopy cover fraction, one of the canopy metrics provided as input to FSM2 (‘fveg’, see Mazzotti et
al. (2020b)). This variable describes the fraction of the vertically projected canopy cover within a 5 m radius around each
modelled location, taking values between 0 and 1. We used local canopy cover fraction because it was shown to be strongly
correlated to small-scale snow depth distribution at flat sites (Mazzotti et al., 2020b) and in steep terrain (Koutantou et al.,
2022).

3 Results

The following sections present a systematic analysis of FSM2 simulation results, aimed at illustrating the interplay of canopy
structure, topographic, and meteorological controls. We first provide a general overview of snow cover dynamics across the
site for all simulated years to provide context (Section 3.1), then consider the spatial distribution of our snow descriptors in
more detail (Section 3.2). To help interpret spatial patterns, we analyse the combined impact of the physiographic factors,
topography and canopy structure, first on the temporal evolution (Section 3.3) and then on the spatial distribution (Section
3.4) of snow cover dynamics and the underlying processes. Finally, we explore the impact of meteorological conditions on

the temporal consistency of said spatial patterns between water years (Section 3.5).

3.1 Overview of simulated snow cover dynamics

Figure 4 summarizes the statistics of the different snow season descriptors for all simulated years, aiming to give an
overview of their within-year variability (attributable to variations in canopy structure and topography), and of their
between-year variability (attributable to variations in driving meteorology). A summary of meteorological conditions during
the simulation period is provided in the Supplementary Material (Figures S2.1-2.2). The start of continuous snow cover
strongly varies both across the model domain and between the years (Figure 4a). The medians within the model domain vary
by 2 months, ranging from 5 November (WY 2019) to 5 January (WY 2017). Noteworthily, the spread of the start of snow
cover varies strongly between the simulated WYs as well. While in three years snow cover onset happens basically
simultaneously across the entire domain (WYs 2017, 2018, 2019), partial melt-out during snow accumulation cause
heterogeneous snow cover onset dates across the domain in the other years, with interquartile ranges of full snow cover onset
of over a month.

The timing of peak SWE (Figure 4b) is, on average, much more consistent over the years, with median peak SWE ranging
from 11 March (WY 2020) to 1 April (WY 2018). However, the spread across the model domain in each year can be large

(interquartile range of approx. 2 months in WYs 2019 and 2021), which means that there can be a considerable temporal
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offset in the start of the ablation period across the site. Notably, this leads to some locations reaching peak SWE only when
others have melted out already (overlap of boxes for day of peak SWE and snow disappearance day of the same year). The
rather large spread in snow disappearance day within each year (Figure 4c), with interquartile ranges between 2 and 6 weeks,
is the result of spatial variability in both accumulation and ablation rates and is thus not surprising. Between-year variability
in melt-out timing is much larger than for timing of peak SWE, with medians between 10 April (WY 2016) and 26 May
(WY 2019). Further, also peak SWE itself varies (Figure 4e), with median peak SWE across the model domain between 135
mm (WY 2016) and 314 mm (WY 2019), mostly reflecting years with higher and lower snowfall, respectively. Notably,
interquartile ranges are not systematically higher or lower for higher or lower median peak SWEs occurrences.
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Figure 4: Summary statistics of snow season descriptors across the full model domain and for all simulated water years (WY),
including (a) the start of snow cover period, (b) day of peak SWE, (c) snow disappearance day, (d) duration of full snow cover, (e)
peak SWE, and (f) ablation rate. Descriptors denoting specific points in time (a-c) are indicated in terms of day since October 1st.

The combination of the variable start of snow cover and snow disappearance days implies highly variable snow cover
durations (Figure 4d). Median full snow cover duration across the model domain varies between 96 (WY 2017) and 173
(2018) days, and interquartile range varies between 19 (WY 2018) and 65 (WY 2020) days. Snow cover duration can also be
interpreted as the combination of amount of SWE to be depleted and efficiency of ablation processes. Notably, ablation rates
(Figure 4f) are more uniform across the WYs (median 5.5-9 mm/day) but still rather variable across the model domain
(interquartile ranges of 3.6-5.9 mm/d).
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It should be highlighted that there does not appear to be any clear link between any of the individual snow cover descriptors;
for instance, higher peak SWE does not seem to imply longer snow duration, and later snow disappearance is not linked to
higher ablation rates. Essentially, this is a consequence of accumulation and ablation processes being affected by different
meteorological drivers.

3.2 Spatial patterns of snow cover dynamics

Large spread in the boxplots in many of the subpanels of Figure 4 indicates that most snow season descriptors exhibit strong
spatial variability across the model domain during most years. In Figure 5, we present spatial maps of the same snow season
descriptors for WY2019 to analyse the full spatial patterns behind this variability. To better demonstrate the spatial details,
we zoom in to a sub-domain (Figure 1) that comprises the entire range of canopy covers, elevation ranges, slopes, and
aspects, yet representing the physiographic character of the entire domain well. Equivalent plots over the full model domain
are included in the Supplementary Material (Figures S3.1-3.3) for interested readers.

Figure 5 illustrates how peak SWE, ablation rates, day of peak SWE, and snow disappearance date vary across the landscape
as a function of canopy and within the complex topography. The link between peak SWE and canopy structure (Figure 5a vs
5b) is obvious and reflects the impact of snow interception by the canopy on accumulation, which scales with local canopy
cover. This dependency is well visible when comparing peak SWE at under-canopy vs. open / gap locations (Figure 5b). Yet,
a closer look at the gaps and forest edge areas (especially in the upper, south-exposed part of the domain) reveals a rather
large spread in peak SWE for these locations with low to no local canopy cover, even within this relatively small subdomain
of 1.5 km?. For this specific example, the spread in peak SWE amounts to approx. 200 mm. Consequently, canopy structure
is clearly not the only factor controlling peak SWE distribution, despite the strong correlation between peak SWE and local
canopy cover fraction with Pearson’s correlation coefficient (R) ranging from -0.89 (2018) to -0.76 (2017). Note that
correlation coefficients are computed over the full model domain.

12
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280 Figure 5: Canopy cover (a) and topographic (d) maps, as well as snow season descriptors including peak SWE (b), ablation rate
(c), day of peak SWE (e) and snow disappearance day (f), for a sub-section of the model domain and WY 2019.

When interpreting spatial patterns of peak SWE, it is important to consider that the timing of peak SWE also varies across
the domain (i.e., ablation starts in some areas while others are still accumulating snow; Figure 5e). Generally, the onset of
the ablation period occurs earlier on the south-exposed slope. The earliest onsets occur along the canopy edge at lower

285 elevations, but there is no evident simple relationship with canopy cover. The combination of strong variability in peak SWE
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and heterogeneous peak SWE timing means that spatial patterns of ablation rates (Figure 5c) and snow disappearance date
(Figure 5f) are complex, with non-trivial dependencies with either canopy cover or topography (Figure 5d).

Notably, snow disappearance day is more variable on the south-exposed slope than in the north-exposed slope, where snow
disappearance is restricted to a shorter time span. Complex melt-out patterns on the south-exposed slope hint at considerable
spatial heterogeneity in ablation processes which override accumulation patterns, so that the spatial structure of snow
disappearance is considerably different from that of peak SWE (Figure 5b vs 5f, upper part). In contrast, this is not the case
on the north-exposed slope: Here, under-canopy areas melt out earlier than canopy gaps, which means that melt-out patterns
generally have a similar spatial distribution as accumulation patterns (Figure 5b vs 5f, lower part). These similarities suggest
that on the north-exposed slope spatial variations in ablation rates are not strong enough to supersede spatial variations in
accumulation. We will look at the physical processes that drive these patterns in more detail in the following sections.
Ablation rates (Figure 5c) exhibit spatial patterns that do not correspond to any other snow season descriptor. Remarkable
features are the maxima along the south-facing canopy edge on the south-exposed slope, and in the canopy gaps on the
higher-elevation areas of the north-exposed slope. This is where snow generally either starts to melt first or last (compare to
Figure 5e). Furthermore, large canopy gaps on both slopes generally feature higher ablation rates than adjacent under-canopy
areas. Note that assessing the dependencies of ablation rate on canopy structure and topography is confounded by the
necessity to calculate ablation rates over the local ablation period (see definition in Section 2.4), which itself varies across

the domain due to variable timings of peak SWE and snow disappearance.

3.3 Impact of canopy structure and topography on the temporal evolution of the snow cover and underlying processes

The analysis in Section 3.2 clearly suggests that the interaction between canopy structure and topography plays a relevant
role in shaping spatial snow cover dynamics. To understand these patterns and the processes that lead to them, it is
instructive to consider time series of snow cover evolution at some representative locations. We manually selected seven
locations that cover the existent range of canopy structures and topographic settings to showcase potential outcomes of
process interactions in a systematic way. We include points located at the north- and south-facing edges of canopy gaps for
both north- and south-exposed slopes, as well as three points located under canopy (two on the south- and one on the north-
exposed slope; the two points on the south-exposed slope differ in their proximity to a sun-exposed canopy edge, where
point 1 is more sun-exposed and point 2 more shaded). The locations of these points are marked in the Supplementary
Material (Figure S4). Figure 6a shows SWE at these seven locations for WY 2019. Note that we will look at data from other
years and the influence of weather on inter-annual differences in Section 3.5.

At the beginning of the accumulation period, all three points that are located under canopy accumulate less snow than all
points located in gaps. These two distinct pathways reflect the fact that, if no major precipitation gradients exist across the
site and if ablation processes or the impact of wind redistribution is negligible, interception of snow is the only process that
introduces spatial variability during this phase. Canopy structure thus exerts the primary control on snow accumulation.

However, as the season progresses, further pathways fork off. In this example, early onset of ablation at two points on the
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south-exposed slope results in further spatial segregation. The first point (dark red), which reaches peak SWE by mid-
February, is located under canopy close to a south-facing canopy edge. The second point (light green), which reaches peak
SWE in mid-March, is located at the south-facing edge of a forest gap. These findings showcase that the same canopy
structure configuration can host different snow evolution pathways in different topographic settings. This creates more
variability in snow cover evolution pathways on the south-exposed slope (here, points at south- and north-facing canopy
edges diverge), and limited variability on the north-exposed slope (here, points at south- and north-facing canopy edges do
not diverge).
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Figure 6: Interactions between canopy structure and topography illustrated at seven example points (locations see S3). Time series
of SWE (a), weekly melt during the ablation period (b) and surface energy balance partitioning at four of the points (c-f). In c-f,
bars show weekly average fluxes, while the black line depicts their sum, grey triangles mark the day of peak SWE, and only
periods with snow on the ground are shown.

While accumulation patterns are mainly dictated by canopy structure, topography comes into play when ablation processes
start. Melt requires a positive net energy input to the snowpack, which is the result of multiple superimposed fluxes. To
elucidate the underlying processes, Figure 6¢-f show surface energy balance partitioning over time at four of the seven
points, which cover the four major snow cover evolution pathways seen in Figure 6a. These plots show that at all points prior
to the onset of the ablation period, net shortwave radiation and sensible heat generally provide positive contributions, while

latent heat provides a negative contribution. Longwave radiation acts as a compensating flux. It is strongly negative at
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locations in canopy gaps (large sky-view, i.e., little longwave enhancement, Figure 6¢c+d) as well as under-canopy locations
that receive positive shortwave radiation and sensible heat contributions. In contrast, it is positive where other positive fluxes
only constitute negligible contributions (i.e., under-canopy, shaded locations, Figure 6e). At both points where ablation starts
early, regardless of canopy structure, its onset is due to an increase in net shortwave radiation that can no longer be
compensated by a negative longwave radiation flux. Exposure to shortwave irradiance early in the snow cover period is thus
a mechanism by which topography can affect snow cover evolution pathways in addition to canopy structure, either by way
of terrain shading or due to inclined terrain (towards or away from sun). At points where direct insolation is unavailable
early in the snow cover period and ablation starts later, the driving mechanisms are different. At under-canopy points,
positive longwave radiation contributions and sensible heat drive melt; at gap locations, shortwave radiation and sensible
heat constitute the strongest positive fluxes.

Generally, shortwave radiation driven ablation leads to larger net energy turnover and therefore high ablation rates even
early in the season (Figure 6b). This can create situations where snow in canopy gaps can melt out earlier than snow under
canopy, despite peak SWE being higher (Figure 6a, light green vs light red). Early-season insolation is hence the driver by
which spatial heterogeneity in ablation processes can override accumulation patterns on the south-exposed slopes (c.f.
Section 3.2). Not surprisingly though, the highest ablation rates are in the late season in gaps when all fluxes are positive.
Yet these high ablation rates do not impact melt-out patterns, because by this time gaps on the north-exposed slopes are the

only areas with snow left.

3.4 Impact of canopy structure and topography on the spatial distribution of leading processes

The snow cover evolution pathways and corresponding energy balance partitioning pathways shown in Section 3.3 illustrate
the interaction between canopy structure and topography. Considering how these pathways are distributed in space puts the
snow cover descriptor maps from Figure 5 in context. An important insight from Section 3.3 is that exposure to early-season
shortwave radiation majorly affects snow cover dynamics, which leads to contrasts between opposing slopes that are or are
not affected by terrain shading. Figure 7 shows maps of canopy cover, average shortwave irradiance, all-wave irradiance,
and cumulative snow ablation between mid-January and end of February for WY 2019 across the two opposing slopes. This
period was chosen because it falls between the start of the snow cover period and median day of peak SWE, which makes it

suitable for analysing the occurrence and distribution of early-season ablation.
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Figure 7: Canopy cover fraction and aspect in the sub-domain (a), average incoming shortwave (b) average all-wave irradiance (c),
and cumulative SWE ablation (d) between mid-January and end of February for WY 2019.

In early winter, shortwave irradiance controls all-wave irradiance patterns (Figure 7b vs. 7c; see also Figure S3.2 in
Supplementary Material), and ablation largely matches these patterns (Figure 7d), confirming that early-season shortwave
irradiance is a prerequisite for early-season ablation. Due to topographic shading, only the south-exposed slope receives
direct shortwave irradiance at this time of the year. Consequently, topography exerts a primary control on early-season
ablation. On top of that, canopy shading affects the distribution of shortwave irradiance, but during times with low solar
elevation angles the dependency between canopy structure and direct shortwave radiation is complex. In fact, early in the
season the correlation between shortwave irradiance and local canopy cover is rather low (R = -0.52). This, in turn, entails
local canopy cover and snow ablation to be uncorrelated as well (R = 0.05). These low correlations imply that early-season
ablation may potentially counteract and even disrupt the association of peak SWE patterns and local canopy cover identified
in Section 3.2 (see Figure 5).

Shortwave irradiance is, however, not the only flux determining ablation patterns. Figure 7 reveals that some areas above the
tree line on the south-exposed slope do not experience early-season ablation, despite the high shortwave radiation input. This
indicates that net energy input must be reduced by other negative fluxes. Additionally, the energy balance partitioning plots
in Figure 6 evidence other positive contributions to net energy input to the snowpack. To visualize the spatial structure of
these contributions, Figure 8 shows each individual surface energy balance component (net short- and longwave radiation,
sensible and latent heat fluxes) for periods early (Figure 8a) and late (Figure 8b) in the season (WY 2019), as well as the
corresponding net surface energy flux (Figure 8c). The spatial distribution of individual energy fluxes and their evolution in
time generally conform with findings from Figure 6, with sensible heat as the only other positive contribution early in the
season and longwave transitioning into a positive flux especially at under-canopy locations and later in the season. Overall,

Figure 8 demonstrates how spatial patterns of individual fluxes translate to patterns of net surface energy, which largely
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match shortwave radiation patterns in both periods. Figure 8d displays correlation coefficients between net surface energy
and individual energy balance components as they evolve over the season. The strongest positive correlations to shortwave
radiation are confirmed, while correlations to longwave radiation are consistently and increasingly negative. No systematic

link between net energy and turbulent fluxes is evident.
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Figure 8: Energy flux partitioning into the four surface energy balance components (net short- and longwave radiations, SWR and
LWR; sensible and latent heat fluxes, SHF and LHF)for two weeks in February (a) and May (b) 2019, respectively, as well as net
energy flux at the snow surface (c), areas that have melted out by the time shown are marked black; Correlations (Pearson’s R)
between individual energy fluxes and net surface energy over the season (d), with lines showing WY 2019 and shaded areas the
range of all modelled WYs.
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3.5 Impact of meteorological conditions on the temporal consistency of spatial patterns
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Figure 9: Spatial patterns of snow season descriptors for the sub-domain, including peak SWE (1st column), day of peak SWE
(2nd col.), snow disappearance day (3rd col.) and ablation rate (4th col.) during three different WYs, namely 2017 (1st row), 2018
(2nd row) and 2019 (3rd row).

Meteorological conditions and their variability between years alter the relative magnitude and timing of different processes.

By doing so, they can potentially impact the consistency of snow cover dynamics and resulting spatial patterns. Figure 9
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shows the spatial distribution of the same snow cover descriptors shown in Figure 5, but now including three different WYs.
Full domain maps of all WYs are available in the Supplementary Material (Figures S5.1-S5.5). For all snow season
descriptors, we find both temporally consistent and inconsistent features. The link between canopy structure and peak SWE
is evident in all years, despite stronger imprints of early-season ablation patterns in some years (e.g. 2018 vs. 2019). In fact,
the autocorrelation between peak SWE patterns of different years is high (R: 0.94-0.98). In contrast, ablation rate patterns are
generally uncorrelated (R: 0.07-0.79). Ablation rate maxima are found at different locations of the domain in different years.
For example, maximum ablation rates in WY 2018 were above the tree line on the south-exposed slopes but were in canopy
gaps on the north-exposed slope in both WY's 2017 and 2019. Below-canopy areas have comparatively low ablation rates in
all years, but differences between slopes are more pronounced in WY 2018 than in 2017 and 2019. These consistencies and
inconsistencies are likely affected by differences in the timing of the ablation period.

In terms of the timing of peak SWE and snow disappearance, the temporal sequence in which different locations melt out is
mostly consistent between years: South-exposed canopy edges and under-canopy locations generally become snow-free first,
and snow lasts longest in shaded canopy gaps (i.e. those on north-exposed slopes). However, the timing of and days between
both peak SWE and snow disappearance across the domain vary. For example, distribution of peak SWE day in 2019 is, in
the first order, bimodal, with a clear separation between the south- and north-exposed slopes; also in 2017, the distribution of
peak SWE day is approximately bimodal, but in this case with a separation of only the sunny forest edges on the south facing
slope, reflecting a considerably smaller number of pixels that exhibit sufficient early-season ablation to prepone peak SWE
day relative to all other pixels.

Analogous to our approach in Section 3.3, we consider time series at point locations to unravel the process-level mechanisms
that cause potential inconsistencies in snow cover descriptor patterns between years (Figure 10). To better highlight these
inter-annual variations, we focus on a set of points located in semi-open conditions on the south-exposed slope, i.e., where
they can potentially receive early-season direct shortwave radiation (locations see Supplementary Material, Figure S4.1).
These include a point in a large gap, close to the south-facing canopy edge (yellow); a point in a smaller gap (dark red); and
two points under relatively sparse canopy in a rather sunny (dark blue) and a shady (cyan) location, respectively. Due to the
limited range in local canopy cover at these points, the differences in accumulation caused by interception are less
pronounced than for the examples shown in section 3.3 (c.f. Figure 10 vs. Figure 6). Yet, these points experience different
drivers of ablation and therefore react differently to variations in meteorological conditions between the years.

Firstly, we note that accumulation patterns (i.e. peak SWE) vary between years based on the timing of the first ablation
events relative to the timing of peak SWE, particularly whether or not considerable ablation events occur during the
accumulation period (Figure 10a). In 2019, when all major snowfall events occur prior to the first melt episode, gaps feature
the highest peak SWE, corresponding to low interception losses (yellow and red). In 2017 in contrast, overall accumulation
is low, and substantial melt precedes the last major accumulation event, which is sufficient to cause melt-out at some of the
most sun-exposed locations; peak SWE at the sunny canopy gap point (yellow) is now thus the lowest of the four points

considered. It should be noted that for all WY’s considered here, onset of full snow cover happened roughly simultaneously
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across the entire model domain; early ablation events leading to partial melt-out prior of the onset of full snow cover (not

shown, but observed e.g. in WY 2016) would obviously further complicate peak SWE patterns.
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Figure 10: Impact of meteorological conditions illustrated by comparing three different WYs (columns), including (a) SWE
evolution at four example points (locations see S3) and surface energy partitioning pathways at three of these, i.e. (b) a shady
sparse canopy location, (c) a sunny canopy gap location, and (d) a shady canopy gap location.

Second, we note that the relative timing of snow disappearance between years can vary across the domain, based on the

availability of melt energy over the course of the season (Figure 10a). Points that normally receive early-season shortwave

irradiance (i.e., the dark blue and the yellow point) melt out later in WY 2018 compared to 2019 because less shortwave
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irradiance is available in February (see strong positive shortwave contributions in Figure 10c). In contrast, points in shadier
locations (cyan and red) melt earlier in WY 2018 because of the consistently warmer and sunnier weather in spring
compared to 2019 (see earlier switch to both positive shortwave and longwave contributions in Figure 10b+d). The opposed
effect of these differences in meteorological conditions causes snow disappearance day of the four points to be much closer
in WY 2018 than in 2019. The overall melt-out patterns will thus vary between WYs, even if the dominating fluxes at each

specific location remain approximately consistent (Figure 10b-d).

4 Discussion
4.1 Process-level insights

Spatio-temporal snow cover dynamics and associated snow accumulation and ablation patterns are a result of superimposed
processes that themselves vary as a function of both time-invariant physiographic features (vegetation, topography) and
time-varying meteorological conditions. While the phenological analysis of snow season descriptors presented in Sections
3.1-3.2 paints a complex picture of snow distribution patterns, the process-level analysis in Sections 3.3-3.5 allowed us to
attribute the processes that underly these patterns. The main takeaway from this work is that patterns of snow season
descriptors and their inter-seasonal consistency can only be explained by considering all three factors, canopy structure,
topography, and meteorology, as well as their interaction throughout the snow season.
Snow distribution patterns at any point in time arise from an interplay between accumulation and ablation patterns. For the
study site considered here, our analysis showed that snow cover dynamics result from the superposition of (1) a pattern that
is temporally static and dependent on canopy structure alone, with more snow where there is less canopy (i.e., accumulation
mostly controlled by interception) and (2) a time-varying pattern with complex dependencies on canopy structure, solar
position, weather, and topography, with an overall tendency for faster ablation where there is less canopy (i.e., melt mostly
controlled by shortwave radiation). Depending on the relative strength of each of both signals, three regimes of snow cover
dynamics are principally possible:

R1. Snow distribution can be described as function of canopy structure alone throughout the whole season. This is the
case when accumulation creates a strong signal, and ablation patterns are too homogeneous or too weak to override
this signal, so that areas that accumulate less snow also melt out first.

R2. Snow accumulation patterns can be described as a function of canopy structure during the accumulation period, but
those patterns will be overridden by ablation patterns during the ablation period. Consequently, snow disappearance
date exhibits no simple relationship with canopy structure.

R3. Early-season ablation inhibits formation of simple snow accumulation patterns, and snow distribution patterns
remain weakly correlated with canopy structure throughout the entire season.

Based on these regimes and using WY 2018 as an example, Figure 11c shows a conceptual subdivision of our model domain

into 4 zones. Zone A does not feature early-season ablation and exhibits snow disappearance patterns that carry the imprint
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of local canopy cover; Zone B is characterized by substantial cumulative early-season ablation amounts (Figure 11a); Zones
C and D largely lack early ablation but exhibit fewer clear linkages between canopy cover and snow disappearance day
(Figure 11b). Note that Zones C and D are treated separately due to elevational differences. As a crosscheck, we computed
the temporal evolution of the correlation coefficient between SWE and local canopy cover for each of the four zones
separately (Figure 11d). As expected, Zone A (R1) features a strong negative correlation between SWE and local canopy
cover throughout the entire season; Zone D (R2) exhibits a similarly strong correlation at the beginning of the season which
then degrades during ablation season; and Zone B (R3) a weaker correlation even early in the season, where each ablation
episode degrades and each interception event improves the correlation, until the ablation season causes the correlation to
collapse more permanently. Zone C seems to show characteristics of R2 in 2018, but of R3 in 2016, which implies that the
regime found at a specific location may not be consistent from year to year.
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Figure 11: Conceptual subdivision of study domain into snow cover evolution regimes, the identification of which is based on maps
of cumulative SWE ablation between mid-January and mid-March (a) and snow disappearance day (b) in WY 2018. Resulting
zones (c) and evolution of the correlation coefficients between snow depth and vegetation cover fraction in these for WYs 2016 and

2018, resulting in the attribution to a specific regime (d).
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The co-occurrence of different regimes across our study domain is a consequence of topography because early-season
shortwave irradiance is a prerequisite for regime 3, while its absence is a prerequisite for regime 1. North-exposed slopes are
prone to falling into regime 1, while south-exposed slopes tend to conform with regime 3. Regime 2 is less evident in our
example, but most likely to be found in flat areas with large canopy gaps, where early-season ablation is not expected but
substantial melt energy gradients can evolve during ablation. The impact of inter-annual variability in meteorological
conditions can lead to the same locations hosting different regimes in different WYs: Differences result from either weaker
accumulation patterns or variations in magnitude and timing of shortwave irradiance. This finding is in line with Lundquist
and Flint (2006), who attributed variability in snowmelt patterns between years with early and late snowmelt onset to
differences in topographic shading. Our analysis also furthers the conceptual framework presented by Lundquist et al.
(2013). Based on site-scale simulations of the net radiative balance, they established timing of early melt, determined by the
climatological temperature at a site, as the primary control of whether denser forest would generally accelerate or delay
snowmelt through the prevalence of longwave radiation enhancement or shading, respectively. Our approach, involving
more processes and detailed canopy structure information, confirms the importance of early-season ablation, but
demonstrates the additional key role of shortwave radiation patterns in determining snow dynamics regimes at smaller spatial
scales.

The categorization of snow cover dynamics into regimes provides a context to temporal snapshots of snow distribution
patterns, such as those derived from singular LIiDAR datasets. The temporal evolution of correlation coefficients (Figure
11d) corroborates findings from Koutantou et al. (2022), who used maps of modelled sub-canopy irradiance to explain why
snow distribution patterns exhibited different dependencies on canopy structure at their north- and south-exposed survey
sites. A decay of the correlation between snow distribution and canopy structure between two LiDAR acquisitions in spring
was also observed by Mazzotti et al. (2019a) for sites with less topographic variability. In general, our process-level insights
explain why these correlations can vary between years and regimes, as shown in this study, and hence why different studies
may have observed different and sometimes inconsistent dependencies between snow and canopy variables, depending on
when and where data were acquired (e.g. Safa et al., 2021; Currier and Lundquist, 2018).

4.2 Implications and applications

The process-level insights discussed in the previous section have important implications in a variety of contexts in which
small-scale variability of forest snow cover dynamics is relevant. We elaborate on three such examples in the following.

Firstly, our findings indicate that strategies to account for sub-grid variability in coarser-resolution models that are intended
for application to sub-alpine environments need to account for variations in canopy structure, topography, and meteorology.
This is particularly the case at sub-kilometre model resolutions, where variability in driving meteorological conditions
induced by topography is at least partially resolved (e.g., through temperature lapse rates and orographic precipitation
gradients), while variability in snow cover dynamics caused by canopy structure occurs at much smaller spatial scales and

needs to be parameterized (Clark et al., 2011). The south-exposed slope in our model domain featured stronger variability
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and more complex patterns of snow cover descriptors than the north-exposed slope, with impacts on the evolution of
fractional snow-covered area in grid cells that include such terrain. To our knowledge, sub-grid variability parametrizations
that incorporate these effects are inexistent to date (Dickerson-Lange et al., 2015; Mazzotti et al., 2021; Schneider et al.,
2020), but their development is a promising avenue for further model improvement. Alternatively, recent studies have
suggested tiling schemes based on fine-scale canopy structure as an approach to representing sub-grid variability (Broxton et
al., 2021; Currier et al., 2022). Our findings indicate that tiling strategies could be further refined by additionally accounting
for topography.

Secondly, our simulations evidence a strong complexity in eco-hydrologically relevant processes across a still relatively
limited study domain. The large range of snow cover durations observed creates spatial variability in ground insulating
properties and soil temperatures. Snow water input to the ground also exhibits strong spatial heterogeneity due to variability
in snow melt magnitudes and rates, with further influences on soil moisture evolution. As soil conditions control a wide
range of biophysical processes (Neumann et al., 2019; Stark et al., 2020; Harpold, 2016), their spatial heterogeneity
potentially implies strong variability of habitat characteristics across relatively small spatial scales (Niittynen et al., 2018). It
is also possible that the observed process variability affects ecologically relevant snow properties such as surface layer
density (Boelman et al., 2019; Gilbert et al., 2017) or the formation of ice layers in the snowpack (Rasmus et al., 2018). This
is an unexplored research topic to date, as resolving these internal snowpack processes would require a more sophisticated
snow scheme than available in FSM2. Coupling of detailed canopy representation to snow physics models such as Crocus
(Vionnet et al., 2012; Lafaysse et al., 2017) and SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002; Gouttevin et
al., 2015) would hence be a prerequisite. Overall, our results advocate that small-scale landscape heterogeneity needs to be
considered when addressing snow-related eco-hydrological questions in sub-alpine forested environments.

Lastly, process-level insights allow us to extrapolate our findings spatially and temporally. While it is known that forest
snow cover dynamics differ across climates (Lundquist et al., 2013; Dickerson-Lange et al., 2021; Safa et al., 2021), the
same underlying processes are active everywhere. The snow distribution patterns found in this study may thus not be directly
transferrable to other regions, but improved understanding of how physiographic and meteorological factors interact with
one another allows us to better predict where and when certain processes will prevail. Consequently, we expect the
prevalence of specific snow dynamics regimes to vary with latitude, regional temperature, and snowfall characteristics.
Likewise, these insights enable improved prediction of how patterns may shift following environmental change. Our findings
suggest, for instance, that canopy removal may have the opposite effect in different topographic locations, i.e., earlier and
faster ablation on south-exposed slopes but longer snow retention in north-exposed ones. Warmer temperatures earlier in the
season favour longwave-radiation driven ablation (Lundquist et al., 2013), shifting the relative timing of shortwave vs.
longwave-radiation driven ablation. Such a shift which would likely accentuate accumulation patterns and thus alter melt-out
patterns on south-exposed slopes but only show minor impacts on north-exposed slopes.

The use of hyper-resolution models in the context of forest management and climate change impact studies is still

underexploited but should be encouraged in the future as only process-based models allow predictions that extrapolate from
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currently known conditions. Indeed, forest snowpacks in sub-alpine regions reside at climate-sensitive elevations (Schoner et
al., 2019; Pepin et al., 2015), and forest structural change is widely and rapidly happening (Albrich et al., 2020; Goeking and
Tarboton, 2020).

4.3 Assets, limitations, and outlook

Considerations in Sections 4.1 and 4.2 underline the assets of a process-based modelling approach in terms of its capabilities
to resolve individual process dynamics. Additionally, modelling allowed us to obtain spatially and temporally continuous
information, which is not feasible with today’s observation technology. Most ALS-based snow datasets that cover large areas
are available for only a few temporal snapshots (Safa et al., 2021; Currier and Lundquist, 2018; Harpold et al., 2014;
Broxton et al., 2019), while existing attempts to acquire snow distribution time series are very limited in spatial extent and
mostly cover one winter season only (Koutantou et al., 2022; Broxton and van Leeuwen, 2020). Process-level data that is
both spatially and temporally explicit is even more scarce and extremely challenging to obtain (Moeser et al., 2015; Malle et
al., 2019, 2021; Mazzotti et al., 2019b). Model application, in contrast, is only limited by the availability of driving
meteorological data and surface datasets, and thus potentially applicable to extensive spatial and temporal domains.

Modelled process dynamics, however, can only yield satisfactory estimates of reality if the model representations of the
processes involved are sufficiently accurate. While models like FSM2 already enable tackling relevant research questions,
the modelling community should strive for continued improvement. On one hand, the representation of some processes could
still be improved, and associated uncertainties should be evaluated systematically across the full range of canopy structure
and topographic diversity of the application domains of interest. This is especially the case for processes involving snow in
the canopy (Lundquist et al., 2021; Lumbrazo et al., 2022). Moreover, while Mazzotti et al. (2020a) could infer spatial
patterns of snow surface fluxes from their data, direct validation of turbulent fluxes is challenging even with recent
measurement techniques (see e.g., Conway et al., 2018; Peltola et al., 2020; Haugeneder et al., 2022).

Some processes, such as snow transport by wind and gravitational redistribution by avalanches in steep slopes, are not
represented in the model framework used here. These processes significantly drive snow distribution patterns in open alpine
terrain but are assumed to have a smaller impact on fine-scale patterns in forests. Efforts to couple FSM2 to snow
redistribution models (e.g., Liston and Sturm, 1999; Bernhardt and Schulz, 2010) are ongoing. Additionally, mass and
energy exchange between neighbouring locations may become relevant at hyper-resolutions (Schlégl et al., 2018), and lateral
coupling would likely improve the representation of expanding snow-free areas in spring. Coupling to a soil or eco-
hydrological model (Fatichi et al., 2012; Tague and Band, 2004) would further extend the potential applications of hyper-
resolution forest snow schemes beyond just snow cover dynamics. Finally, a major challenge concerns the estimation of
model parameters that are potentially variable in space. This approach was not pursued in this study but has been shown to
considerably increase the benefits of calibration efforts (Wrzesien et al., 2022). Approaches to automate model calibration

across the full range of canopy structures and topographic settings may thus further improve the skill of models like FSM2.
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In the longer term, combining hyper-resolution models and observations to leverage their complementary assets is likely the
most promising avenue to advance our understanding of forest snow cover dynamics in complex terrain. Plausibility checks
as presented in Section 2.3 are indispensable for the verification of model use cases, as well as for continued model
enhancement and refinement, and there is potential for improvement here as well. For instance, the use of RGB satellite data
to validate melt-out patterns (Section 2.3) is promising despite limited visibility of snow under the canopy. Automated
algorithms to extract snow cover information from RGB imagery are not currently applicable to forested complex terrain
(Deschamps-Berger et al., 2020; Gascoin et al., 2019), but would encourage the use of such datasets for this purpose. If
respective workflows are continuously improved, enabling simulations and observations to be used in tandem and to benefit
from each other (e.g., through data assimilation approaches), hyper-resolution model applications at large temporal and
spatial scales in the contexts discussed in Section 4.2 promise advances in eco-hydrological and land surface modelling

research.

5 Conclusion

This study represents the first multi-year application of a hyper-resolution forest snow model capable of resolving tree-scale
processes within a sub-alpine valley, aimed at investigating how snow cover dynamics and the underlying processes are
shaped by the interplay of (1) canopy structure, (2) terrain, and (3) meteorological conditions. The chosen approach yielded
process-level insights that could not be obtained based on snow distribution datasets alone.

Our findings evidenced that all these three factors must be considered when attempting to explain spatio-temporal snow
cover dynamics. Canopy structure exerts the primary control on accumulation patterns, yet the resulting snow distribution
can be disrupted by ablation patterns, which are primarily driven by the distribution of shortwave radiation. Because
shortwave radiation exhibits complex canopy dependencies and tends to counteract accumulation patterns, it is the timing of
radiation relative to the strength of the accumulation patterns that determines whether accumulation patterns persist until
melt-out, or whether they are overridden by more complex ablation patterns. Since amount and timing of shortwave
irradiance are largely controlled by topography, south-exposed slopes are more prone to accumulation patterns being
superseded by ablation patterns even early in the season compared to north-exposed slopes, where accumulation patterns
likely persist throughout melt-out. Finally, variability in meteorological conditions alters the relative strength of processes
(accumulation, direct insolation, longwave driven ablation) and can thus cause snow accumulation and ablation pattern
inconsistencies between years. This framework explains why snow distribution patterns in some areas exhibit a strong
relationship with canopy structure, while they do not in other areas, and why this can change between years.

Process understanding gained from this work provides context to existing snow distribution datasets and a proof of concept
for the continued development and application of hyper-resolution modelling approaches to forest-snow related research in

complex terrain. Potential usages include questions that revolve around developing sub-grid variability parametrization in
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coarse-resolution models, exploring the eco-hydrological effects of the observed small-scale snow dynamics, and the

application of hyper-resolution models in environmental change impact studies.

Data and code availability. The FSM2 model code is available on GitHub under
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