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Abstract. In mountain regions, forests that overlap with seasonal snow mostly reside in complex terrain. Due to persisting 

major observational challenges in these environments, the combined impact of forest structure and topography on seasonal 10 

snow cover dynamics is still poorly understood. Recent advances in forest snow process representation and increasing 

availability of detailed canopy structure datasets, however, now allow for hyper-resolution (<5 m) snow model simulations 

capable of resolving tree-scale processes. These can shed light on the complex process interactions that govern forest snow 

dynamics. We present multi-year simulations at 2 m resolution obtained with FSM2, a mass- and energy-balance based 

forest snow model specifically developed and validated for meter-scale applications. We simulate a ~ 3 km2 model domain 15 

encompassing forested slopes of a sub-alpine valley in the Eastern Swiss Alps and six snow seasons. Simulations thus span a 

wide range of canopy structures, terrain characteristics, and meteorological conditions. We analyse spatial and temporal 

variations in forest snow energy balance partitioning, aiming to quantify and understand the contribution of individual 

energy exchange processes at different locations and times. Our results suggest that snow cover evolution is equally affected 

by canopy structure, terrain characteristics and meteorological conditions. We show that the interaction of these three factors 20 

can lead to snow accumulation and ablation patterns that vary between years. We further identify higher snow distribution 

variability and complexity in slopes that receive solar radiation early in winter. Our process-level insights corroborate and 

complement existing empirical findings that are largely based on snow distribution datasets only. Hyper-resolution 

simulations as presented here thus help to better understand how snowpacks and ecohydrological regimes in sub-alpine 

regions may evolve due to forest disturbances and a warming climate. They could further support the development of 25 

process-based sub-grid forest snow cover parametrizations or tiling approaches for coarse-resolution modelling applications.   

1 Introduction 

The presence of snow in the sub-alpine forest ecoregion of the European Alps, and other mountain ranges across the 

Northern Hemisphere, means large areas of seasonal snow cover overlap with both forests and complex topography. Snow 

accumulation and ablation processes are known to be controlled by the structure of the forest cover (Mazzotti et al., 2019a), 30 
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topographic characteristics (Broxton et al., 2020; Safa et al., 2021; Schirmer and Pomeroy, 2020), as well as how these 

physiographic factors interact with local climate and weather patterns (Lundquist et al., 2013; Seyednasrollah and Kumar, 

2019; Pflug and Lundquist, 2020). Consequently, snow cover dynamics in sub-alpine forest are subject to strong complexity 

and variability down to small spatial and temporal scales. A thorough understanding of the controlling factors is important 

because snow cover dynamics affect eco-hydrological regimes (e.g. Barnhart et al., 2016; Manning et al., 2022), 35 

microclimate and habitat characteristics (e.g. Niittynen et al., 2020), as well as land surface energy exchange (e.g. Webster 

and Jonas, 2018; Manninen and Jääskeläinen, 2018). Today, snow cover regimes are changing due to climate warming 

(Mote et al., 2018; Marty et al., 2017; Notarnicola, 2020; Bormann et al., 2018), and forest structure is being altered by 

manmade and natural disturbances (Bebi et al., 2017; Seidl et al., 2017; Goeking and Tarboton, 2020). In view of these 

changes, understanding forest-snow dynamics can inform adequate management strategies - particularly in regions where 40 

downstream water supply is dependent on snow resources from forested headwaters (Sturm et al., 2017; Siirila-Woodburn et 

al., 2021). However, it remains unclear if and how the response of snow cover dynamics to environmental change will 

depend on where this snow is located within the heterogeneous landscape.  

Canopy structural controls on individual forest processes have been widely addressed in both experimental and modelling 

studies. Interception of snow by the canopy (Moeser et al., 2015; Roth and Nolin, 2019), transmission of shortwave, and 45 

enhancement of longwave radiation (Malle et al., 2019; Mazzotti et al., 2019b; Webster et al., 2016; Lawler and Link, 2011), 

have received particular attention due to the strong spatial variability of these processes induced by tree-scale canopy 

structural heterogeneity. Existing research has, however, focused on flat sites to single out the effect of canopy structure. 

Only few studies have considered how the combination of forest and topography alter accumulation and ablation processes 

under forest relative to clearings. Ellis et al. (2011) presented measurements from a Canadian site, including short- and 50 

longwave irradiances and snow depth under the canopy and in clearings on different slopes and aspects, and showed that the 

presence of forest delayed snowmelt relative to open areas more strongly on south-exposed slopes than on north-exposed 

ones. In a modelling study, Strasser et al. (2011) found that forest cover diminished aspect-dependent differences in snow 

cover dynamics compared to openings, and further noted that forest effects differed between years with varying 

meteorological conditions. Neither of these studies did, however, consider fine-scale canopy structure in detail, and no study 55 

that specifically addresses inter-annual consistency of fine-scale forest snow distribution patterns exists to our knowledge. 

In recent years, the increased availability of LiDAR-derived snow depth distribution datasets has enabled a new approach to 

analysing forest snow cover dynamics. Multiple studies have attempted to establish relationships between snow, canopy, and 

terrain descriptors based on such datasets (Zheng et al., 2019; Mazzotti et al., 2019a; Currier and Lundquist, 2018). Broxton 

et al. (2020) used maps of snow water equivalent (SWE) and time series of snow depth transect measurements to analyse the 60 

combined impact of forest density and topographic location on snow water equivalent in a semi-arid climate. Safa et al. 

(2021) applied machine learning to identify the factors that determine snow disappearance in different forest and topographic 

settings based on snow depth maps covering four US sites with variable climate characteristics. Recently, Koutantou et al. 

(2022) presented a time series of Uncrewed Aerial Vehicle (UAV) borne LiDAR datasets to compare the evolution of snow 
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depth distribution patterns on opposed slopes in an Alpine valley. All these studies were limited to process inferences as 65 

snow distribution datasets only reflect the combined impact of various forest snow processes.  

Instead of relying on snow data alone, understanding process interactions can be advanced through sophisticated process-

based models. In absence of observational data, or for predictive purposes, models are commonly used as a best estimate of 

reality (Wood et al., 2011; Wrzesien et al., 2022). In forest snow research, the use of hyper-resolution models that resolve 

tree-scale processes is gaining popularity in applications that require the small-scale variability of these processes to be 70 

adequately represented (Harpold et al., 2020). To our knowledge, two models developed specifically for this purpose exist to 

date: SnowPALM - Snow Physics and LiDAR Mapping (Broxton et al., 2015) and FSM2 - Flexible Snow Model (Mazzotti 

et al., 2020a, b). They evolved independent of each other but follow similar principles. Impact studies have used 

SnowPALM to analyse the effect of forest disturbance on snow water resources under varying meteorological conditions 

(Moeser et al., 2020), and to assess forest thinning strategies (Krogh et al., 2020). Hyper-resolution models also provide an 75 

approximation of processes that are not resolved in coarser resolution models and can thus inform the development of sub-

grid parametrizations of these processes. As such, both SnowPALM (Broxton et al., 2021) and FSM2 (Mazzotti et al., 2021) 

have been used to derive recommendations for modelling forest snow processes at coarser resolutions, and there is still great 

potential to further exploit these models as research tools. 

In this study, we use hyper-resolution modelling to explore the spatio-temporal dynamics of individual forest snow processes 80 

and their effect on snow cover evolution in forested complex terrain under varying meteorological conditions. We apply 

FSM2 to a sub-alpine valley and across multiple winters to assess the interplay of canopy structure, topography, and 

meteorology. Our work builds on Koutantou et al. (2022), who observed considerable differences in snow distribution 

dynamics between their sites located on south- and north-exposed forested slopes over the course of one snow season. The 

authors hypothesized that weaker correlations between snow depth and canopy cover at the south-exposed than at the north-85 

exposed slope were due to differences in the shortwave irradiance regimes at the two locations but could not fully 

demonstrate this based on their observational data alone. The modelling approach used here, in contrast, will allow us to 

analyse individual processes and their interactions over larger spatial and temporal extents than previously possible. Our 

goals are thus (1) to characterize spatial patterns of snow cover dynamics and the underlying processes in such a sub-alpine 

environment; (2) to detect connectivity between snow patterns and patterns of underlying processes; and (3) to assess their 90 

temporal consistency throughout the season and between different years. By contributing to the improved understanding of 

these dynamics, we hope to facilitate the development of approaches to treat sub-grid variability in coarser-resolution 

models, and to help expand our capabilities to assess the impact of environmental change on ecohydrological processes. 
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2 Methods 

2.1 Study area 95 

 

Figure 1: Overview of the study area: (a) Location of the model domain within Switzerland and on the topographic map of the 

Davos area (source: swisstopo), including locations of the automatic weather stations DAV and WFJ; (b) Canopy height model and 

contour lines (equidistance: 50m), including locations of the sites from Koutantou et al. (2022) and of the subdomain shown in 

Figures 5 and 7-9.  100 

We focus our modelling in a domain situated in the Flüela valley near Davos (Figure 1) in the Eastern Swiss Alps. The 

climate is inner-alpine with an average wintertime (DJF) air temperature of -4.2 °C and 450 mm yearly snowfall sum (Davos 

station, MeteoSwiss, norm period 1991-2020; www.meteoschweiz.ch). The model domain is contained in a 2.5 x 1.5 km 

area at the entry of the valley, which consists of two opposite (south- and a north-facing) slopes. Both slopes extend over 500 

m elevation span from the valley bottom at 1570 m a.s.l. to the tree line around 2100 m. Maps of the topographic 105 

characteristics of the model domain (elevation, slope, and aspect) are included in the Supplementary Material (Figure S1.1).  

The forest is predominantly Norway spruce with some individual larches, which is typical of this sub-alpine forest 

ecoregion. Understory vegetation is short, mainly consisting of blueberry bushes and grasses. Trees range from new- to old 

growths with maximum heights of 35 m, and forest structure includes both dense stands and gaps of varied sizes. The 

domain thus spans a range of variability in canopy structure and topographic conditions over a rather small area, which is 110 

common in the sub-alpine environment.  
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The site is at ~5 km distance to well-established and predominantly flat research sites that have hosted recent experimental 

forest snow process studies from the WSL Institute for Snow and Avalanche Research (SLF), including Laret (Malle et al., 

2019; Webster, 2016), Seehornwald (Webster et al., 2016), and Ischlag (Moeser et al., 2015). The sites from Koutantou et al. 

(2022) are fully contained in the perimeter of this study. The operational measurements from the automatic weather station 115 

(AWS) Davos (DAV) and from the measurement field at Weissfluhjoch (WFJ) are within 1 km and 3 km of the site, 

respectively (Figure 1a).  

2.2 Modelling framework 

Snow cover simulations with the Flexible Snow Model FSM2 (Mazzotti et al., 2020b, a) are at the core of this study’s 

methodology (Figure 2). FSM2 is the upgrade of the Factorial Snow Model, FSM (Essery, 2015), with forest canopy 120 

included. We apply the version presented by Mazzotti et al. (2020a) specifically developed for hyper-resolution (meter-scale) 

simulations, FSM2.0.3. This version accounts for the influence of tree-scale canopy structure on individual forest snow 

processes by using process-specific canopy metrics that integrate both hemispherical and vertically projected perspectives. 

Notably, it can leverage detailed time series of point-scale transmissivity for direct shortwave radiation obtained with an 

external radiative transfer model. Past research has demonstrated that FSM2 is able to capture sub-canopy snow energetics 125 

by comparing model output to spatio-temporal multi-sensor datasets, for incoming irradiances, air space and snow surface 

temperature, and wind speed (Mazzotti et al., 2020a). Consequently, FSM2 has been shown to accurately replicate small-

scale forest snow cover dynamics and the respective microclimatic states (Mazzotti et al., 2020b, a). For this study, we run 

FSM2 at 2 m grid spacing (i.e., 850’000 points) and hourly resolution for six winters (i.e., water years (WY) 2016-2021). 

Our model application follows Mazzotti et al. (2021), who used equivalent hyper-resolution simulations to explore model 130 

upscaling behavior.  
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Figure 2: Conceptual sketch of the study methodology. Input meteorological and surface datasets (from the OSHD and the 2017 

LiDAR mission, Section 2.2), FSM2 including external radiative transfer model, evaluation approaches (presented in Mazzotti et 

al. 2020a and Section 2.3) and resulting snow cover dynamics descriptors: peak SWE (SWEmax), start of snow cover period (SSD), 135 
day of peak SWE (PSD) snow disappearance date (SDD) - see Section 2.4 for definitions. 

LiDAR datasets acquired through airborne laser scanning (ALS) in 2017 in the context of the first European mission of the 

Airborne Snow Observatory (ASO, Painter et al., 2016; Mazzotti et al., 2019a) provided the basis for computing all canopy 

metrics required by FSM2, including the shortwave transmissivity time series. A canopy height model was created following 

the LAStools-based algorithm from Khosravipour et al. (2014), enabling calculation of local and stand-scale canopy cover 140 

fraction, mean canopy height, and leaf area index at all modelled locations. Details on the individual metrics are given in 

Mazzotti et al. (2021, 2020b). Shortwave transmissivity time series at each location were obtained with the workflow from 

Webster et al. (2020), which calculates transmissivity through an overlay of a hemispherical image and solar position at any 

given point in time, as presented by Jonas et al. (2020). In Webster et al. (2020), LiDAR-derived synthetic hemispherical 

images based on a methodology originally proposed by Moeser et al. (2014) are used for this purpose. The radiation model 145 

was calibrated using real hemispherical images at our sites and using the same LiDAR data (Koutantou et al., 2022), 

allowing direct application in this study. Additional surface datasets (e.g., elevation) were available through SLF’s 

Operational Snow-Hydrological Service’s (OSHD) modelling framework. These data were provided at 25 m resolution and 

interpolated to the model resolution (2 m). 
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Meteorological forcing was also available through OSHD. As described by Griessinger et al. (2019), gridded data of all 150 

necessary meteorological input variables (incoming short- and longwave radiation, air temperature and relative humidity, 

wind speed, rain- and snowfall rates, and atmospheric pressure) are provided by MeteoSwiss (COSMO-1 product) at hourly 

interval and 1-km resolution over all of Switzerland and further downscaled to model resolution. Additional corrections (for 

biases or terrain effects) are applied to some of the variables, e.g., wind speed (Winstral et al., 2017) and shortwave radiation 

(Jonas et al., 2020). We refer to Griessinger et al. (2019) for details. For this study, input fields were initially downscaled to 155 

25 m and subsequently linearly interpolated to 2 m resolution. 

2.3 Verification of model use case 

The validation of individual modelled fluxes within FSM2 as presented by Mazzotti et al. (2020a) was done in the vicinity of 

our study area, with the same type of input data, and for the same type of canopy data. For this reason, another model 

validation is beyond the scope of this study; nevertheless, an assessment of our simulations against available snow 160 

distribution datasets was performed to ensure plausibility of the model application for our use case. We use four independent 

data sources: (1) Daily now depth data from stake readings acquired next to automatic weather stations (AWS) in Davos and 

Weissfluhjoch to assess the simulations at open sites; (2) High- and medium-resolution satellite RGB imagery available 

through Planet Explorer (www.planet.com) at approx. weekly intervals for the last five modelled WY’s, including Landsat 8, 

Sentinel-2 and PlanetScope, to evaluate modelled snow cover extent during periods of partial snow cover; (3) Maps of sub-165 

canopy snow depth over the full domain from two of the 2017 ASO LiDAR acquisitions (see Section 2.2) at 3 m spatial 

resolution, parts of which were used by Mazzotti et al. (2019a); and (4) Time series of sub-canopy snow depth maps over 

two 150 x 150 m domains (see Figure 1) on the two opposed slopes obtained with UAV-borne LiDAR in 2020, presented by 

Koutantou et al. (2022). For details on the LiDAR campaigns, the reader is referred to the corresponding publications.   
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 170 

Figure 3: Examples of plausibility checks performed to verify the model use case, including comparisons of 1) satellite RGB 

imagery acquired by Planetscope on 28. April 2018 (a) and snow cover extent simulated by FSM2 on the same day (b); 2) snow 

depth distribution derived from ALS data (c) and simulated by FSM2 (d); and 3) snow depth statistics of UAV-LiDAR derived 

snow maps at the north-exposed site and resulting from FSM2 (e) and observed and modelled spatial distribution of the 8 March 

2020 campaign (f). 175 
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Figure 3 presents examples of visual comparisons of model simulations to satellite (Figure 3a-b), ALS (Figure 3c-d) and 

UAV-LiDAR data (Figure 3e-f). These assessments reveal that the model captures the general characteristics of snow depth 

and snow disappearance patterns well. The strong temporal lag in snow disappearance between the south- and the north-

facing slope is clearly visible in the satellite imagery and likewise reproduced by the FSM2 simulations. Snow distribution 

features such as preferential ablation along south-exposed forest edges and higher snow amounts in canopy gaps compared 180 

to nearby under-canopy locations in the north-exposed slope are also clearly present in both the LiDAR datasets and the 

simulations. Overall, the verification confirms that FSM2 simulations are suitable for this use case. Goodness of fit measures 

would be confounded by uncertainties in meteorological input and snow measurement inaccuracies (see e.g. Raleigh et al., 

2015; Günther et al., 2019; Currier et al., 2019) and were therefore not considered here.  

2.4 Analysis approach 185 

Our analysis uses several descriptors of the snow season and of the surface energy exchange processes derived from the 

FSM2 simulation results. These metrics are computed at each modelled location (i.e. 2 m grid cell) for all winters as follows.  

1. Peak SWE: The maximum value of snow water equivalent on the ground attained over the course of a snow season / 

WY. 

2. Day of peak SWE (PSD): The day on which peak SWE occurred. In case of multiple occurrences of peak SWE over 190 

the season, the median was selected. 

3. Accumulation period: Period between the last occurrence of SWE < 10 mm prior to peak SWE and the day of peak 

SWE.  

4. Start of snow cover period (SSD): The first day of the accumulation period.  

5. Ablation period: Period between the day of peak SWE and the first occurrence of SWE < 10 mm following peak 195 

SWE. 

6. Snow disappearance day (SDD): The last day of the ablation period; also referred to as melt-out. 

7. Snow cover duration: The number of days between the start of snow cover and snow disappearance. 

8. Ablation rate: The quotient between peak SWE and the length of the ablation period.  

9. Cumulative ablation: Amount of SWE depleted over the course of a specific time interval (computed as sum of 200 

SWE decrements including losses due to both melt and sublimation).  

10. Average surface energy fluxes: Incoming and net short- and longwave radiation as well as turbulent (sensible and 

latent) heat fluxes into the snowpack, averaged over a specific time interval, where positive fluxes indicate transport 

towards the snow surface.  

Note that the temporal integration varies for different metrics, with some applying to the point-specific snow cover durations 205 

and some integrating over fixed time intervals. The choice of temporal integration interval is motivated by the purpose of the 

corresponding analysis. Moreover, it should be noted that the definition of contiguous accumulation and ablation periods 

until / from peak SWE, as applied here, implies that melt events can occur during the accumulation and snowfall events 
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during the ablation periods, respectively. The 10mm threshold applied to define snow vs. no-snow conditions served to 

ensure that only days with snow present throughout the whole day would be included in the analysis of ablation rate and 210 

surface energy fluxes.  

To assess relationships of any snow or process descriptor to canopy structure, we quantify the fine-scale canopy structure at 

a point in terms of local canopy cover fraction, one of the canopy metrics provided as input to FSM2 (‘fveg’, see Mazzotti et 

al. (2020b)). This variable describes the fraction of the vertically projected canopy cover within a 5 m radius around each 

modelled location, taking values between 0 and 1. We used local canopy cover fraction because it was shown to be strongly 215 

correlated to small-scale snow depth distribution at flat sites (Mazzotti et al., 2020b) and in steep terrain (Koutantou et al., 

2022). 

3 Results 

The following sections present a systematic analysis of FSM2 simulation results, aimed at illustrating the interplay of canopy 

structure, topographic, and meteorological controls. We first provide a general overview of snow cover dynamics across the 220 

site for all simulated years to provide context (Section 3.1), then consider the spatial distribution of our snow descriptors in 

more detail (Section 3.2). To help interpret spatial patterns, we analyse the combined impact of the physiographic factors, 

topography and canopy structure, first on the temporal evolution (Section 3.3) and then on the spatial distribution (Section 

3.4) of snow cover dynamics and the underlying processes. Finally, we explore the impact of meteorological conditions on 

the temporal consistency of said spatial patterns between water years (Section 3.5). 225 

3.1 Overview of simulated snow cover dynamics 

Figure 4 summarizes the statistics of the different snow season descriptors for all simulated years, aiming to give an 

overview of their within-year variability (attributable to variations in canopy structure and topography), and of their 

between-year variability (attributable to variations in driving meteorology). A summary of meteorological conditions during 

the simulation period is provided in the Supplementary Material (Figures S2.1-2.2). The start of continuous snow cover 230 

strongly varies both across the model domain and between the years (Figure 4a). The medians within the model domain vary 

by 2 months, ranging from 5 November (WY 2019) to 5 January (WY 2017). Noteworthily, the spread of the start of snow 

cover varies strongly between the simulated WYs as well. While in three years snow cover onset happens basically 

simultaneously across the entire domain (WYs 2017, 2018, 2019), partial melt-out during snow accumulation cause 

heterogeneous snow cover onset dates across the domain in the other years, with interquartile ranges of full snow cover onset 235 

of over a month. 

The timing of peak SWE (Figure 4b) is, on average, much more consistent over the years, with median peak SWE ranging 

from 11 March (WY 2020) to 1 April (WY 2018). However, the spread across the model domain in each year can be large 

(interquartile range of approx. 2 months in WYs 2019 and 2021), which means that there can be a considerable temporal 
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offset in the start of the ablation period across the site. Notably, this leads to some locations reaching peak SWE only when 240 

others have melted out already (overlap of boxes for day of peak SWE and snow disappearance day of the same year). The 

rather large spread in snow disappearance day within each year (Figure 4c), with interquartile ranges between 2 and 6 weeks, 

is the result of spatial variability in both accumulation and ablation rates and is thus not surprising. Between-year variability 

in melt-out timing is much larger than for timing of peak SWE, with medians between 10 April (WY 2016) and 26 May 

(WY 2019). Further, also peak SWE itself varies (Figure 4e), with median peak SWE across the model domain between 135 245 

mm (WY 2016) and 314 mm (WY 2019), mostly reflecting years with higher and lower snowfall, respectively. Notably, 

interquartile ranges are not systematically higher or lower for higher or lower median peak SWEs occurrences. 

 

Figure 4: Summary statistics of snow season descriptors across the full model domain and for all simulated water years (WY), 

including (a) the start of snow cover period, (b) day of peak SWE, (c) snow disappearance day, (d) duration of full snow cover, (e) 250 
peak SWE, and (f) ablation rate. Descriptors denoting specific points in time (a-c) are indicated in terms of day since October 1st. 

The combination of the variable start of snow cover and snow disappearance days implies highly variable snow cover 

durations (Figure 4d). Median full snow cover duration across the model domain varies between 96 (WY 2017) and 173 

(2018) days, and interquartile range varies between 19 (WY 2018) and 65 (WY 2020) days. Snow cover duration can also be 

interpreted as the combination of amount of SWE to be depleted and efficiency of ablation processes. Notably, ablation rates 255 

(Figure 4f) are more uniform across the WYs (median 5.5-9 mm/day) but still rather variable across the model domain 

(interquartile ranges of 3.6-5.9 mm/d).  
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It should be highlighted that there does not appear to be any clear link between any of the individual snow cover descriptors; 

for instance, higher peak SWE does not seem to imply longer snow duration, and later snow disappearance is not linked to 

higher ablation rates. Essentially, this is a consequence of accumulation and ablation processes being affected by different 260 

meteorological drivers. 

3.2 Spatial patterns of snow cover dynamics 

Large spread in the boxplots in many of the subpanels of Figure 4 indicates that most snow season descriptors exhibit strong 

spatial variability across the model domain during most years. In Figure 5, we present spatial maps of the same snow season 

descriptors for WY2019 to analyse the full spatial patterns behind this variability. To better demonstrate the spatial details, 265 

we zoom in to a sub-domain (Figure 1) that comprises the entire range of canopy covers, elevation ranges, slopes, and 

aspects, yet representing the physiographic character of the entire domain well. Equivalent plots over the full model domain 

are included in the Supplementary Material (Figures S3.1-3.3) for interested readers.  

Figure 5 illustrates how peak SWE, ablation rates, day of peak SWE, and snow disappearance date vary across the landscape 

as a function of canopy and within the complex topography. The link between peak SWE and canopy structure (Figure 5a vs 270 

5b) is obvious and reflects the impact of snow interception by the canopy on accumulation, which scales with local canopy 

cover. This dependency is well visible when comparing peak SWE at under-canopy vs. open / gap locations (Figure 5b). Yet, 

a closer look at the gaps and forest edge areas (especially in the upper, south-exposed part of the domain) reveals a rather 

large spread in peak SWE for these locations with low to no local canopy cover, even within this relatively small subdomain 

of 1.5 km2. For this specific example, the spread in peak SWE amounts to approx. 200 mm. Consequently, canopy structure 275 

is clearly not the only factor controlling peak SWE distribution, despite the strong correlation between peak SWE and local 

canopy cover fraction with Pearson’s correlation coefficient (R) ranging from -0.89 (2018) to -0.76 (2017). Note that 

correlation coefficients are computed over the full model domain. 
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Figure 5: Canopy cover (a) and topographic (d) maps, as well as snow season descriptors including peak SWE (b), ablation rate 280 
(c), day of peak SWE (e) and snow disappearance day (f), for a sub-section of the model domain and WY 2019. 

When interpreting spatial patterns of peak SWE, it is important to consider that the timing of peak SWE also varies across 

the domain (i.e., ablation starts in some areas while others are still accumulating snow; Figure 5e). Generally, the onset of 

the ablation period occurs earlier on the south-exposed slope. The earliest onsets occur along the canopy edge at lower 

elevations, but there is no evident simple relationship with canopy cover. The combination of strong variability in peak SWE 285 
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and heterogeneous peak SWE timing means that spatial patterns of ablation rates (Figure 5c) and snow disappearance date 

(Figure 5f) are complex, with non-trivial dependencies with either canopy cover or topography (Figure 5d).   

Notably, snow disappearance day is more variable on the south-exposed slope than in the north-exposed slope, where snow 

disappearance is restricted to a shorter time span. Complex melt-out patterns on the south-exposed slope hint at considerable 

spatial heterogeneity in ablation processes which override accumulation patterns, so that the spatial structure of snow 290 

disappearance is considerably different from that of peak SWE (Figure 5b vs 5f, upper part). In contrast, this is not the case 

on the north-exposed slope: Here, under-canopy areas melt out earlier than canopy gaps, which means that melt-out patterns 

generally have a similar spatial distribution as accumulation patterns (Figure 5b vs 5f, lower part). These similarities suggest 

that on the north-exposed slope spatial variations in ablation rates are not strong enough to supersede spatial variations in 

accumulation. We will look at the physical processes that drive these patterns in more detail in the following sections.  295 

Ablation rates (Figure 5c) exhibit spatial patterns that do not correspond to any other snow season descriptor. Remarkable 

features are the maxima along the south-facing canopy edge on the south-exposed slope, and in the canopy gaps on the 

higher-elevation areas of the north-exposed slope. This is where snow generally either starts to melt first or last (compare to 

Figure 5e). Furthermore, large canopy gaps on both slopes generally feature higher ablation rates than adjacent under-canopy 

areas. Note that assessing the dependencies of ablation rate on canopy structure and topography is confounded by the 300 

necessity to calculate ablation rates over the local ablation period (see definition in Section 2.4), which itself varies across 

the domain due to variable timings of peak SWE and snow disappearance. 

3.3 Impact of canopy structure and topography on the temporal evolution of the snow cover and underlying processes  

The analysis in Section 3.2 clearly suggests that the interaction between canopy structure and topography plays a relevant 

role in shaping spatial snow cover dynamics. To understand these patterns and the processes that lead to them, it is 305 

instructive to consider time series of snow cover evolution at some representative locations. We manually selected seven 

locations that cover the existent range of canopy structures and topographic settings to showcase potential outcomes of 

process interactions in a systematic way. We include points located at the north- and south-facing edges of canopy gaps for 

both north- and south-exposed slopes, as well as three points located under canopy (two on the south- and one on the north-

exposed slope; the two points on the south-exposed slope differ in their proximity to a sun-exposed canopy edge, where 310 

point 1 is more sun-exposed and point 2 more shaded). The locations of these points are marked in the Supplementary 

Material (Figure S4). Figure 6a shows SWE at these seven locations for WY 2019. Note that we will look at data from other 

years and the influence of weather on inter-annual differences in Section 3.5. 

At the beginning of the accumulation period, all three points that are located under canopy accumulate less snow than all 

points located in gaps. These two distinct pathways reflect the fact that, if no major precipitation gradients exist across the 315 

site and if ablation processes or the impact of wind redistribution is negligible, interception of snow is the only process that 

introduces spatial variability during this phase. Canopy structure thus exerts the primary control on snow accumulation. 

However, as the season progresses, further pathways fork off. In this example, early onset of ablation at two points on the 
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south-exposed slope results in further spatial segregation. The first point (dark red), which reaches peak SWE by mid-

February, is located under canopy close to a south-facing canopy edge. The second point (light green), which reaches peak 320 

SWE in mid-March, is located at the south-facing edge of a forest gap. These findings showcase that the same canopy 

structure configuration can host different snow evolution pathways in different topographic settings. This creates more 

variability in snow cover evolution pathways on the south-exposed slope (here, points at south- and north-facing canopy 

edges diverge), and limited variability on the north-exposed slope (here, points at south- and north-facing canopy edges do 

not diverge). 325 

 

Figure 6: Interactions between canopy structure and topography illustrated at seven example points (locations see S3). Time series 

of SWE (a), weekly melt during the ablation period (b) and surface energy balance partitioning at four of the points (c-f). In c-f, 

bars show weekly average fluxes, while the black line depicts their sum, grey triangles mark the day of peak SWE, and only 

periods with snow on the ground are shown. 330 

While accumulation patterns are mainly dictated by canopy structure, topography comes into play when ablation processes 

start. Melt requires a positive net energy input to the snowpack, which is the result of multiple superimposed fluxes. To 

elucidate the underlying processes, Figure 6c-f show surface energy balance partitioning over time at four of the seven 

points, which cover the four major snow cover evolution pathways seen in Figure 6a. These plots show that at all points prior 

to the onset of the ablation period, net shortwave radiation and sensible heat generally provide positive contributions, while 335 

latent heat provides a negative contribution. Longwave radiation acts as a compensating flux. It is strongly negative at 
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locations in canopy gaps (large sky-view, i.e., little longwave enhancement, Figure 6c+d) as well as under-canopy locations 

that receive positive shortwave radiation and sensible heat contributions. In contrast, it is positive where other positive fluxes 

only constitute negligible contributions (i.e., under-canopy, shaded locations, Figure 6e). At both points where ablation starts 

early, regardless of canopy structure, its onset is due to an increase in net shortwave radiation that can no longer be 340 

compensated by a negative longwave radiation flux. Exposure to shortwave irradiance early in the snow cover period is thus 

a mechanism by which topography can affect snow cover evolution pathways in addition to canopy structure, either by way 

of terrain shading or due to inclined terrain (towards or away from sun). At points where direct insolation is unavailable 

early in the snow cover period and ablation starts later, the driving mechanisms are different. At under-canopy points, 

positive longwave radiation contributions and sensible heat drive melt; at gap locations, shortwave radiation and sensible 345 

heat constitute the strongest positive fluxes.  

Generally, shortwave radiation driven ablation leads to larger net energy turnover and therefore high ablation rates even 

early in the season (Figure 6b). This can create situations where snow in canopy gaps can melt out earlier than snow under 

canopy, despite peak SWE being higher (Figure 6a, light green vs light red). Early-season insolation is hence the driver by 

which spatial heterogeneity in ablation processes can override accumulation patterns on the south-exposed slopes (c.f. 350 

Section 3.2). Not surprisingly though, the highest ablation rates are in the late season in gaps when all fluxes are positive. 

Yet these high ablation rates do not impact melt-out patterns, because by this time gaps on the north-exposed slopes are the 

only areas with snow left. 

3.4 Impact of canopy structure and topography on the spatial distribution of leading processes  

The snow cover evolution pathways and corresponding energy balance partitioning pathways shown in Section 3.3 illustrate 355 

the interaction between canopy structure and topography. Considering how these pathways are distributed in space puts the 

snow cover descriptor maps from Figure 5 in context. An important insight from Section 3.3 is that exposure to early-season 

shortwave radiation majorly affects snow cover dynamics, which leads to contrasts between opposing slopes that are or are 

not affected by terrain shading. Figure 7 shows maps of canopy cover, average shortwave irradiance, all-wave irradiance, 

and cumulative snow ablation between mid-January and end of February for WY 2019 across the two opposing slopes. This 360 

period was chosen because it falls between the start of the snow cover period and median day of peak SWE, which makes it 

suitable for analysing the occurrence and distribution of early-season ablation. 
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Figure 7: Canopy cover fraction and aspect in the sub-domain (a), average incoming shortwave (b) average all-wave irradiance (c), 

and cumulative SWE ablation (d) between mid-January and end of February for WY 2019. 365 

In early winter, shortwave irradiance controls all-wave irradiance patterns (Figure 7b vs. 7c; see also Figure S3.2 in 

Supplementary Material), and ablation largely matches these patterns (Figure 7d), confirming that early-season shortwave 

irradiance is a prerequisite for early-season ablation. Due to topographic shading, only the south-exposed slope receives 

direct shortwave irradiance at this time of the year. Consequently, topography exerts a primary control on early-season 

ablation. On top of that, canopy shading affects the distribution of shortwave irradiance, but during times with low solar 370 

elevation angles the dependency between canopy structure and direct shortwave radiation is complex. In fact, early in the 

season the correlation between shortwave irradiance and local canopy cover is rather low (R = -0.52). This, in turn, entails 

local canopy cover and snow ablation to be uncorrelated as well (R = 0.05). These low correlations imply that early-season 

ablation may potentially counteract and even disrupt the association of peak SWE patterns and local canopy cover identified 

in Section 3.2 (see Figure 5).  375 

Shortwave irradiance is, however, not the only flux determining ablation patterns. Figure 7 reveals that some areas above the 

tree line on the south-exposed slope do not experience early-season ablation, despite the high shortwave radiation input. This 

indicates that net energy input must be reduced by other negative fluxes. Additionally, the energy balance partitioning plots 

in Figure 6 evidence other positive contributions to net energy input to the snowpack. To visualize the spatial structure of 

these contributions, Figure 8 shows each individual surface energy balance component (net short- and longwave radiation, 380 

sensible and latent heat fluxes) for periods early (Figure 8a) and late (Figure 8b) in the season (WY 2019), as well as the 

corresponding net surface energy flux (Figure 8c). The spatial distribution of individual energy fluxes and their evolution in 

time generally conform with findings from Figure 6, with sensible heat as the only other positive contribution early in the 

season and longwave transitioning into a positive flux especially at under-canopy locations and later in the season. Overall, 

Figure 8 demonstrates how spatial patterns of individual fluxes translate to patterns of net surface energy, which largely 385 
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match shortwave radiation patterns in both periods. Figure 8d displays correlation coefficients between net surface energy 

and individual energy balance components as they evolve over the season. The strongest positive correlations to shortwave 

radiation are confirmed, while correlations to longwave radiation are consistently and increasingly negative. No systematic 

link between net energy and turbulent fluxes is evident.   

 390 

Figure 8: Energy flux partitioning into the four surface energy balance components (net short- and longwave radiations, SWR and 

LWR; sensible and latent heat fluxes, SHF and LHF)for two weeks in February (a) and May (b) 2019, respectively, as well as net 

energy flux at the snow surface (c), areas that have melted out by the time shown are marked black; Correlations (Pearson’s R) 

between individual energy fluxes and net surface energy over the season (d), with lines showing WY 2019 and shaded areas the 

range of all modelled WYs. 395 
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3.5 Impact of meteorological conditions on the temporal consistency of spatial patterns  

 

Figure 9: Spatial patterns of snow season descriptors for the sub-domain, including peak SWE (1st column), day of peak SWE 

(2nd col.), snow disappearance day (3rd col.) and ablation rate (4th col.) during three different WYs, namely 2017 (1st row), 2018 

(2nd row) and 2019 (3rd row). 400 

Meteorological conditions and their variability between years alter the relative magnitude and timing of different processes. 

By doing so, they can potentially impact the consistency of snow cover dynamics and resulting spatial patterns. Figure 9 
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shows the spatial distribution of the same snow cover descriptors shown in Figure 5, but now including three different WYs. 

Full domain maps of all WYs are available in the Supplementary Material (Figures S5.1-S5.5). For all snow season 

descriptors, we find both temporally consistent and inconsistent features. The link between canopy structure and peak SWE 405 

is evident in all years, despite stronger imprints of early-season ablation patterns in some years (e.g. 2018 vs. 2019). In fact, 

the autocorrelation between peak SWE patterns of different years is high (R: 0.94-0.98). In contrast, ablation rate patterns are 

generally uncorrelated (R: 0.07-0.79). Ablation rate maxima are found at different locations of the domain in different years. 

For example, maximum ablation rates in WY 2018 were above the tree line on the south-exposed slopes but were in canopy 

gaps on the north-exposed slope in both WYs 2017 and 2019. Below-canopy areas have comparatively low ablation rates in 410 

all years, but differences between slopes are more pronounced in WY 2018 than in 2017 and 2019. These consistencies and 

inconsistencies are likely affected by differences in the timing of the ablation period.   

In terms of the timing of peak SWE and snow disappearance, the temporal sequence in which different locations melt out is 

mostly consistent between years: South-exposed canopy edges and under-canopy locations generally become snow-free first, 

and snow lasts longest in shaded canopy gaps (i.e. those on north-exposed slopes). However, the timing of and days between 415 

both peak SWE and snow disappearance across the domain vary. For example, distribution of peak SWE day in 2019 is, in 

the first order, bimodal, with a clear separation between the south- and north-exposed slopes; also in 2017, the distribution of 

peak SWE day is approximately bimodal, but in this case with a separation of only the sunny forest edges on the south facing 

slope, reflecting a considerably smaller number of pixels that exhibit sufficient early-season ablation to prepone peak SWE 

day relative to all other pixels. 420 

Analogous to our approach in Section 3.3, we consider time series at point locations to unravel the process-level mechanisms 

that cause potential inconsistencies in snow cover descriptor patterns between years (Figure 10). To better highlight these 

inter-annual variations, we focus on a set of points located in semi-open conditions on the south-exposed slope, i.e., where 

they can potentially receive early-season direct shortwave radiation (locations see Supplementary Material, Figure S4.1). 

These include a point in a large gap, close to the south-facing canopy edge (yellow); a point in a smaller gap (dark red); and 425 

two points under relatively sparse canopy in a rather sunny (dark blue) and a shady (cyan) location, respectively. Due to the 

limited range in local canopy cover at these points, the differences in accumulation caused by interception are less 

pronounced than for the examples shown in section 3.3 (c.f. Figure 10 vs. Figure 6). Yet, these points experience different 

drivers of ablation and therefore react differently to variations in meteorological conditions between the years. 

Firstly, we note that accumulation patterns (i.e. peak SWE) vary between years based on the timing of the first ablation 430 

events relative to the timing of peak SWE, particularly whether or not considerable ablation events occur during the 

accumulation period (Figure 10a). In 2019, when all major snowfall events occur prior to the first melt episode, gaps feature 

the highest peak SWE, corresponding to low interception losses (yellow and red). In 2017 in contrast, overall accumulation 

is low, and substantial melt precedes the last major accumulation event, which is sufficient to cause melt-out at some of the 

most sun-exposed locations; peak SWE at the sunny canopy gap point (yellow) is now thus the lowest of the four points 435 

considered. It should be noted that for all WY’s considered here, onset of full snow cover happened roughly simultaneously 
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across the entire model domain; early ablation events leading to partial melt-out prior of the onset of full snow cover (not 

shown, but observed e.g. in WY 2016) would obviously further complicate peak SWE patterns.  

 

Figure 10: Impact of meteorological conditions illustrated by comparing three different WYs (columns), including (a) SWE 440 
evolution at four example points (locations see S3) and surface energy partitioning pathways at three of these, i.e. (b) a shady 

sparse canopy location, (c) a sunny canopy gap location, and (d) a shady canopy gap location.  

Second, we note that the relative timing of snow disappearance between years can vary across the domain, based on the 

availability of melt energy over the course of the season (Figure 10a). Points that normally receive early-season shortwave 

irradiance (i.e., the dark blue and the yellow point) melt out later in WY 2018 compared to 2019 because less shortwave 445 
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irradiance is available in February (see strong positive shortwave contributions in Figure 10c). In contrast, points in shadier 

locations (cyan and red) melt earlier in WY 2018 because of the consistently warmer and sunnier weather in spring 

compared to 2019 (see earlier switch to both positive shortwave and longwave contributions in Figure 10b+d). The opposed 

effect of these differences in meteorological conditions causes snow disappearance day of the four points to be much closer 

in WY 2018 than in 2019. The overall melt-out patterns will thus vary between WYs, even if the dominating fluxes at each 450 

specific location remain approximately consistent (Figure 10b-d). 

4 Discussion 

4.1 Process-level insights  

Spatio-temporal snow cover dynamics and associated snow accumulation and ablation patterns are a result of superimposed 

processes that themselves vary as a function of both time-invariant physiographic features (vegetation, topography) and 455 

time-varying meteorological conditions. While the phenological analysis of snow season descriptors presented in Sections 

3.1-3.2 paints a complex picture of snow distribution patterns, the process-level analysis in Sections 3.3-3.5 allowed us to 

attribute the processes that underly these patterns. The main takeaway from this work is that patterns of snow season 

descriptors and their inter-seasonal consistency can only be explained by considering all three factors, canopy structure, 

topography, and meteorology, as well as their interaction throughout the snow season.  460 

Snow distribution patterns at any point in time arise from an interplay between accumulation and ablation patterns. For the 

study site considered here, our analysis showed that snow cover dynamics result from the superposition of (1) a pattern that 

is temporally static and dependent on canopy structure alone, with more snow where there is less canopy (i.e., accumulation  

mostly controlled by interception) and (2) a time-varying pattern with complex dependencies on canopy structure, solar 

position, weather, and topography, with an overall tendency for faster ablation where there is less canopy (i.e., melt mostly 465 

controlled by shortwave radiation). Depending on the relative strength of each of both signals, three regimes of snow cover 

dynamics are principally possible: 

R1. Snow distribution can be described as function of canopy structure alone throughout the whole season. This is the 

case when accumulation creates a strong signal, and ablation patterns are too homogeneous or too weak to override 

this signal, so that areas that accumulate less snow also melt out first. 470 

R2. Snow accumulation patterns can be described as a function of canopy structure during the accumulation period, but 

those patterns will be overridden by ablation patterns during the ablation period. Consequently, snow disappearance 

date exhibits no simple relationship with canopy structure.  

R3. Early-season ablation inhibits formation of simple snow accumulation patterns, and snow distribution patterns 

remain weakly correlated with canopy structure throughout the entire season. 475 

Based on these regimes and using WY 2018 as an example, Figure 11c shows a conceptual subdivision of our model domain 

into 4 zones. Zone A does not feature early-season ablation and exhibits snow disappearance patterns that carry the imprint 
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of local canopy cover; Zone B is characterized by substantial cumulative early-season ablation amounts (Figure 11a); Zones 

C and D largely lack early ablation but exhibit fewer clear linkages between canopy cover and snow disappearance day 

(Figure 11b). Note that Zones C and D are treated separately due to elevational differences. As a crosscheck, we computed 480 

the temporal evolution of the correlation coefficient between SWE and local canopy cover for each of the four zones 

separately (Figure 11d). As expected, Zone A (R1) features a strong negative correlation between SWE and local canopy 

cover throughout the entire season; Zone D (R2) exhibits a similarly strong correlation at the beginning of the season which 

then degrades during ablation season; and Zone B (R3) a weaker correlation even early in the season, where each ablation 

episode degrades and each interception event improves the correlation, until the ablation season causes the correlation to 485 

collapse more permanently. Zone C seems to show characteristics of R2 in 2018, but of R3 in 2016, which implies that the 

regime found at a specific location may not be consistent from year to year. 

 

Figure 11: Conceptual subdivision of study domain into snow cover evolution regimes, the identification of which is based on maps 

of cumulative SWE ablation between mid-January and mid-March (a) and snow disappearance day (b) in WY 2018. Resulting 490 
zones (c) and evolution of the correlation coefficients between snow depth and vegetation cover fraction in these for WYs 2016 and 

2018, resulting in the attribution to a specific regime (d).  
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The co-occurrence of different regimes across our study domain is a consequence of topography because early-season 

shortwave irradiance is a prerequisite for regime 3, while its absence is a prerequisite for regime 1. North-exposed slopes are 

prone to falling into regime 1, while south-exposed slopes tend to conform with regime 3. Regime 2 is less evident in our 495 

example, but most likely to be found in flat areas with large canopy gaps, where early-season ablation is not expected but 

substantial melt energy gradients can evolve during ablation. The impact of inter-annual variability in meteorological 

conditions can lead to the same locations hosting different regimes in different WYs: Differences result from either weaker 

accumulation patterns or variations in magnitude and timing of shortwave irradiance. This finding is in line with Lundquist 

and Flint (2006), who attributed variability in snowmelt patterns between years with early and late snowmelt onset to 500 

differences in topographic shading. Our analysis also furthers the conceptual framework presented by Lundquist et al. 

(2013). Based on site-scale simulations of the net radiative balance, they established timing of early melt, determined by the 

climatological temperature at a site, as the primary control of whether denser forest would generally accelerate or delay 

snowmelt through the prevalence of longwave radiation enhancement or shading, respectively. Our approach, involving 

more processes and detailed canopy structure information, confirms the importance of early-season ablation, but 505 

demonstrates the additional key role of shortwave radiation patterns in determining snow dynamics regimes at smaller spatial 

scales.  

The categorization of snow cover dynamics into regimes provides a context to temporal snapshots of snow distribution 

patterns, such as those derived from singular LiDAR datasets. The temporal evolution of correlation coefficients (Figure 

11d) corroborates findings from Koutantou et al. (2022), who used maps of modelled sub-canopy irradiance to explain why 510 

snow distribution patterns exhibited different dependencies on canopy structure at their north- and south-exposed survey 

sites. A decay of the correlation between snow distribution and canopy structure between two LiDAR acquisitions in spring 

was also observed by Mazzotti et al. (2019a) for sites with less topographic variability. In general, our process-level insights 

explain why these correlations can vary between years and regimes, as shown in this study, and hence why different studies 

may have observed different and sometimes inconsistent dependencies between snow and canopy variables, depending on 515 

when and where data were acquired (e.g. Safa et al., 2021; Currier and Lundquist, 2018).   

4.2 Implications and applications  

The process-level insights discussed in the previous section have important implications in a variety of contexts in which 

small-scale variability of forest snow cover dynamics is relevant. We elaborate on three such examples in the following.  

Firstly, our findings indicate that strategies to account for sub-grid variability in coarser-resolution models that are intended 520 

for application to sub-alpine environments need to account for variations in canopy structure, topography, and meteorology. 

This is particularly the case at sub-kilometre model resolutions, where variability in driving meteorological conditions 

induced by topography is at least partially resolved (e.g., through temperature lapse rates and orographic precipitation 

gradients), while variability in snow cover dynamics caused by canopy structure occurs at much smaller spatial scales and 

needs to be parameterized (Clark et al., 2011). The south-exposed slope in our model domain featured stronger variability 525 
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and more complex patterns of snow cover descriptors than the north-exposed slope, with impacts on the evolution of 

fractional snow-covered area in grid cells that include such terrain. To our knowledge, sub-grid variability parametrizations 

that incorporate these effects are inexistent to date (Dickerson‐Lange et al., 2015; Mazzotti et al., 2021; Schneider et al., 

2020), but their development is a promising avenue for further model improvement. Alternatively, recent studies have 

suggested tiling schemes based on fine-scale canopy structure as an approach to representing sub-grid variability (Broxton et 530 

al., 2021; Currier et al., 2022). Our findings indicate that tiling strategies could be further refined by additionally accounting 

for topography.  

Secondly, our simulations evidence a strong complexity in eco-hydrologically relevant processes across a still relatively 

limited study domain. The large range of snow cover durations observed creates spatial variability in ground insulating 

properties and soil temperatures. Snow water input to the ground also exhibits strong spatial heterogeneity due to variability 535 

in snow melt magnitudes and rates, with further influences on soil moisture evolution. As soil conditions control a wide 

range of biophysical processes (Neumann et al., 2019; Stark et al., 2020; Harpold, 2016), their spatial heterogeneity 

potentially implies strong variability of habitat characteristics across relatively small spatial scales (Niittynen et al., 2018). It 

is also possible that the observed process variability affects ecologically relevant snow properties such as surface layer 

density (Boelman et al., 2019; Gilbert et al., 2017) or the formation of ice layers in the snowpack (Rasmus et al., 2018). This 540 

is an unexplored research topic to date, as resolving these internal snowpack processes would require a more sophisticated 

snow scheme than available in FSM2. Coupling of detailed canopy representation to snow physics models such as Crocus 

(Vionnet et al., 2012; Lafaysse et al., 2017) and SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002; Gouttevin et 

al., 2015) would hence be a prerequisite. Overall, our results advocate that small-scale landscape heterogeneity needs to be 

considered when addressing snow-related eco-hydrological questions in sub-alpine forested environments.  545 

Lastly, process-level insights allow us to extrapolate our findings spatially and temporally. While it is known that forest 

snow cover dynamics differ across climates (Lundquist et al., 2013; Dickerson-Lange et al., 2021; Safa et al., 2021), the 

same underlying processes are active everywhere. The snow distribution patterns found in this study may thus not be directly 

transferrable to other regions, but improved understanding of how physiographic and meteorological factors interact with 

one another allows us to better predict where and when certain processes will prevail. Consequently, we expect the 550 

prevalence of specific snow dynamics regimes to vary with latitude, regional temperature, and snowfall characteristics. 

Likewise, these insights enable improved prediction of how patterns may shift following environmental change. Our findings 

suggest, for instance, that canopy removal may have the opposite effect in different topographic locations, i.e., earlier and 

faster ablation on south-exposed slopes but longer snow retention in north-exposed ones. Warmer temperatures earlier in the 

season favour longwave-radiation driven ablation (Lundquist et al., 2013), shifting the relative timing of shortwave vs. 555 

longwave-radiation driven ablation. Such a shift which would likely accentuate accumulation patterns and thus alter melt-out 

patterns on south-exposed slopes but only show minor impacts on north-exposed slopes. 

The use of hyper-resolution models in the context of forest management and climate change impact studies is still 

underexploited but should be encouraged in the future as only process-based models allow predictions that extrapolate from 
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currently known conditions. Indeed, forest snowpacks in sub-alpine regions reside at climate-sensitive elevations (Schöner et 560 

al., 2019; Pepin et al., 2015), and forest structural change is widely and rapidly happening (Albrich et al., 2020; Goeking and 

Tarboton, 2020).  

4.3 Assets, limitations, and outlook  

Considerations in Sections 4.1 and 4.2 underline the assets of a process-based modelling approach in terms of its capabilities 

to resolve individual process dynamics. Additionally, modelling allowed us to obtain spatially and temporally continuous 565 

information, which is not feasible with today’s observation technology. Most ALS-based snow datasets that cover large areas 

are available for only a few temporal snapshots (Safa et al., 2021; Currier and Lundquist, 2018; Harpold et al., 2014; 

Broxton et al., 2019), while existing attempts to acquire snow distribution time series are very limited in spatial extent and 

mostly cover one winter season only (Koutantou et al., 2022; Broxton and van Leeuwen, 2020). Process-level data that is 

both spatially and temporally explicit is even more scarce and extremely challenging to obtain (Moeser et al., 2015; Malle et 570 

al., 2019, 2021; Mazzotti et al., 2019b). Model application, in contrast, is only limited by the availability of driving 

meteorological data and surface datasets, and thus potentially applicable to extensive spatial and temporal domains.  

Modelled process dynamics, however, can only yield satisfactory estimates of reality if the model representations of the 

processes involved are sufficiently accurate. While models like FSM2 already enable tackling relevant research questions, 

the modelling community should strive for continued improvement. On one hand, the representation of some processes could 575 

still be improved, and associated uncertainties should be evaluated systematically across the full range of canopy structure 

and topographic diversity of the application domains of interest. This is especially the case for processes involving snow in 

the canopy (Lundquist et al., 2021; Lumbrazo et al., 2022). Moreover, while Mazzotti et al. (2020a) could infer spatial 

patterns of snow surface fluxes from their data, direct validation of turbulent fluxes is challenging even with recent 

measurement techniques (see e.g., Conway et al., 2018; Peltola et al., 2020; Haugeneder et al., 2022).  580 

Some processes, such as snow transport by wind and gravitational redistribution by avalanches in steep slopes, are not 

represented in the model framework used here. These processes significantly drive snow distribution patterns in open alpine 

terrain but are assumed to have a smaller impact on fine-scale patterns in forests. Efforts to couple FSM2 to snow 

redistribution models (e.g., Liston and Sturm, 1999; Bernhardt and Schulz, 2010) are ongoing. Additionally, mass and 

energy exchange between neighbouring locations may become relevant at hyper-resolutions (Schlögl et al., 2018), and lateral 585 

coupling would likely improve the representation of expanding snow-free areas in spring. Coupling to a soil or eco-

hydrological model (Fatichi et al., 2012; Tague and Band, 2004) would further extend the potential applications of hyper-

resolution forest snow schemes beyond just snow cover dynamics. Finally, a major challenge concerns the estimation of 

model parameters that are potentially variable in space. This approach was not pursued in this study but has been shown to 

considerably increase the benefits of calibration efforts (Wrzesien et al., 2022). Approaches to automate model calibration 590 

across the full range of canopy structures and topographic settings may thus further improve the skill of models like FSM2.  
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In the longer term, combining hyper-resolution models and observations to leverage their complementary assets is likely the 

most promising avenue to advance our understanding of forest snow cover dynamics in complex terrain. Plausibility checks 

as presented in Section 2.3 are indispensable for the verification of model use cases, as well as for continued model 

enhancement and refinement, and there is potential for improvement here as well.  For instance, the use of RGB satellite data 595 

to validate melt-out patterns (Section 2.3) is promising despite limited visibility of snow under the canopy. Automated 

algorithms to extract snow cover information from RGB imagery are not currently applicable to forested complex terrain 

(Deschamps-Berger et al., 2020; Gascoin et al., 2019), but would encourage the use of such datasets for this purpose. If 

respective workflows are continuously improved, enabling simulations and observations to be used in tandem and to benefit 

from each other (e.g., through data assimilation approaches), hyper-resolution model applications at large temporal and 600 

spatial scales in the contexts discussed in Section 4.2 promise advances in eco-hydrological and land surface modelling 

research.  

5 Conclusion 

This study represents the first multi-year application of a hyper-resolution forest snow model capable of resolving tree-scale 

processes within a sub-alpine valley, aimed at investigating how snow cover dynamics and the underlying processes are 605 

shaped by the interplay of (1) canopy structure, (2) terrain, and (3) meteorological conditions. The chosen approach yielded 

process-level insights that could not be obtained based on snow distribution datasets alone.  

Our findings evidenced that all these three factors must be considered when attempting to explain spatio-temporal snow 

cover dynamics. Canopy structure exerts the primary control on accumulation patterns, yet the resulting snow distribution 

can be disrupted by ablation patterns, which are primarily driven by the distribution of shortwave radiation. Because 610 

shortwave radiation exhibits complex canopy dependencies and tends to counteract accumulation patterns, it is the timing of 

radiation relative to the strength of the accumulation patterns that determines whether accumulation patterns persist until 

melt-out, or whether they are overridden by more complex ablation patterns. Since amount and timing of shortwave 

irradiance are largely controlled by topography, south-exposed slopes are more prone to accumulation patterns being 

superseded by ablation patterns even early in the season compared to north-exposed slopes, where accumulation patterns 615 

likely persist throughout melt-out. Finally, variability in meteorological conditions alters the relative strength of processes 

(accumulation, direct insolation, longwave driven ablation) and can thus cause snow accumulation and ablation pattern 

inconsistencies between years. This framework explains why snow distribution patterns in some areas exhibit a strong 

relationship with canopy structure, while they do not in other areas, and why this can change between years.  

Process understanding gained from this work provides context to existing snow distribution datasets and a proof of concept 620 

for the continued development and application of hyper-resolution modelling approaches to forest-snow related research in 

complex terrain. Potential usages include questions that revolve around developing sub-grid variability parametrization in 
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coarse-resolution models, exploring the eco-hydrological effects of the observed small-scale snow dynamics, and the 

application of hyper-resolution models in environmental change impact studies. 
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