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Abstract. In mountain regions, forests that overlap with seasonal snow mostly reside in complex terrain. Due to persisting 

major observational challenges in these environments, the combined impact of forest structure and topography on seasonal 10 

snow cover dynamics is still poorly understood. Recent advances in forest snow process representation and increasing 

availability of detailed canopy structure datasets, however, now allow for hyper-resolution (<5 m) snow model simulations 

capable of resolving tree-scale processes. These can shed light on the complex process interactions that govern forest snow 

dynamics. We present multi-year simulations at 2 m resolution obtained with FSM2, a mass- and energy-balance based forest 

snow model specifically developed and validated for meter-scale applications. We simulate a ~ 3 km2 model domain 15 

encompassing forested slopes of a sub-alpine valley in the Eastern Swiss Alps and six snow seasons. Simulations thus span a 

wide range of canopy structures, terrain characteristics, and meteorological conditions. We analyse spatial and temporal 

variations in forest snow energy balance partitioning, aiming to quantify and understand the contribution of individual energy 

exchange processes at different locations and times. Our results suggest that snow cover evolution is equally affected by canopy 

structure, terrain characteristics and meteorological conditions. We show that the interaction of these three factors can lead to 20 

snow accumulation and ablation patterns that vary between years. We further identify higher snow distribution variability and 

complexity in slopes that receive solar radiation early in winter. Our process-level insights corroborate and complement 

existing empirical findings that are largely based on snow distribution datasets only. Hyper-resolution simulations as presented 

here thus help to better understand how snowpacks and ecohydrological regimes in sub-alpine regions may evolve due to forest 

disturbances and a warming climate. They could further support the development of process-based sub-grid forest snow cover 25 

parametrizations or tiling approaches for coarse-resolution modelling applications.   

1 Introduction 

The presence of snow in the sub-alpine forest ecoregion of the European Alps, and other mountain ranges across the Northern 

Hemisphere, means large areas of seasonal snow cover overlap with both forests and complex topography. Snow accumulation 

and ablation processes are known to be controlled by the structure of the forest cover (Mazzotti et al., 2019a), topographic 30 
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characteristics (Broxton et al., 2020; Safa et al., 2021; Schirmer and Pomeroy, 2020), as well as how these physiographic 

factors interact with local climate and weather patterns (Lundquist et al., 2013; Seyednasrollah and Kumar, 2019; Pflug and 

Lundquist, 2020). Consequently, snow cover dynamics in sub-alpine forest are subject to strong complexity and variability 

down to small spatial and temporal scales. A thorough understanding of the controlling factors is important because snow 

cover dynamics affect eco-hydrological regimes (e.g. Barnhart et al., 2016; Manning et al., 2022), microclimate and habitat 35 

characteristics (e.g. Niittynen et al., 2020), as well as land surface energy exchange (e.g. Webster and Jonas, 2018; Manninen 

and Jääskeläinen, 2018). Today, snow cover regimes are changing due to climate warming (Mote et al., 2018; Marty et al., 

2017; Notarnicola, 2020; Bormann et al., 2018), and forest structure is being altered by manmade and natural disturbances 

(Bebi et al., 2017; Seidl et al., 2017; Goeking and Tarboton, 2020). In view of these changes, understanding forest-snow 

dynamics can inform adequate management strategies - particularly in regions where downstream water supply is dependent 40 

on snow resources from forested headwaters (Sturm et al., 2017; Siirila-Woodburn et al., 2021). However, it remains unclear 

if and how the response of snow cover dynamics to environmental change will depend on where this snow is located within 

the heterogeneous landscape.  

Canopy structural controls on individual forest processes have been widely addressed in both experimental and modelling 

studies. Interception of snow by the canopy (Moeser et al., 2015; Roth and Nolin, 2019), transmission of shortwave, and 45 

enhancement of longwave radiation (Malle et al., 2019; Mazzotti et al., 2019b; Webster et al., 2016; Lawler and Link, 2011), 

have received particular attention due to the strong spatial variability of these processes induced by tree-scale canopy structural 

heterogeneity. Existing research has, however, focused on flat sites to single out the effect of canopy structure. Only few 

studies have considered how the combination of forest and topography alter accumulation and ablation processes under forest 

relative to clearings. Ellis et al. (2011) presented measurements from a Canadian site, including short- and longwave 50 

irradiances and snow depth under the canopy and in clearings on different slopes and aspects, and showed that the presence of 

forest delayed snowmelt relative to open areas more strongly on south-exposed slopes than on north-exposed ones. In a 

modelling study, Strasser et al. (2011) found that forest cover diminished aspect-dependent differences in snow cover dynamics 

compared to openings, and further noted that forest effects differed between years with varying meteorological conditions. 

Neither of these studies did, however, consider fine-scale canopy structure in detail, and no study that specifically addresses 55 

inter-annual consistency of fine-scale forest snow distribution patterns exists to our knowledge. 

In recent years, the increased availability of LiDAR-derived snow depth distribution datasets has enabled a new approach to 

analysing forest snow cover dynamics. Multiple studies have attempted to establish relationships between snow, canopy, and 

terrain descriptors based on such datasets (Zheng et al., 2019; Mazzotti et al., 2019a; Currier and Lundquist, 2018). Broxton 

et al. (2020) used maps of snow water equivalent (SWE) and time series of snow depth transect measurements to analyse the 60 

combined impact of forest density and topographic location on snow water equivalent in a semi-arid climate. Safa et al. (2021) 

applied machine learning to identify the factors that determine snow disappearance in different forest and topographic settings 

based on snow depth maps covering four US sites with variable climate characteristics. Recently, Koutantou et al. (2022) 

presented a time series of Uncrewed Aerial Vehicle (UAV) borne LiDAR datasets to compare the evolution of snow depth 
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distribution patterns on opposed slopes in an Alpine valley. All these studies were limited to process inferences as snow 65 

distribution datasets only reflect the combined impact of various forest snow processes.  

Instead of relying on snow data alone, understanding process interactions can be advanced through sophisticated process-based 

models. In absence of observational data, or for predictive purposes, models are commonly used as a best estimate of reality 

(Wood et al., 2011; Wrzesien et al., 2022). In forest snow research, the use of hyper-resolution models that resolve tree-scale 

processes is gaining popularity in applications that require the small-scale variability of these processes to be adequately 70 

represented (Harpold et al., 2020). To our knowledge, two models developed specifically for this purpose exist to date: 

SnowPALM - Snow Physics and LiDAR Mapping (Broxton et al., 2015) and FSM2 - Flexible Snow Model (Mazzotti et al., 

2020a, b). They evolved independent of each other but follow similar principles: At every modelled location, the computation 

of forest snow processes considers the specific canopy structure both directly overhead and in the surroundings of the location 

of interest. This approach acknowledges the fact that different characteristics of the canopy are relevant for different processes. 75 

For instance, it allows for a model grid cell located in a forest gap to be unaffected by interception of snow in the canopy (due 

to lack of overhead canopy), but still experience reduced insolation and wind speeds (due to sheltering by the surrounding 

canopy); whereas a grid cell underneath a tree at the canopy edge may be affected by both interception and direct insolation. 

Such a representation requires explicit canopy structure descriptors to be derived from canopy structure data at equally high 

spatial resolution.  80 

The benefit of hyper-resolution canopy representations relative to traditional approaches that rely on bulk canopy descriptors 

like Leaf Area Index (LAI) and average canopy height only has been demonstrated for both FSM2 and SnowPALM. Both 

models have been shown to effectively capture detailed snow depth distribution patterns when compared to manual and 

LiDAR-derived measurements (Broxton et al., 2015; Mazzotti et al., 2020b).  In addition, FSM2 has also been validated at the 

level of individual processes by comparing modelled sub-canopy incoming short- and longwave radiation, air and snow surface 85 

temperature, and wind speed, against spatially and temporally resolved observational datasets (Mazzotti et al., 2020a). To our 

knowledge, such a validation approach is unprecedented, revealing remarkable improvements in resolving canopy-mediated 

processes at a high spatial and temporal resolutions. 

Their ability to accurately capture process variability has made hyper-resolution forest snow models attractive research tools. 

Impact studies have used SnowPALM to analyse the effect of forest disturbance on snow water resources under varying 90 

meteorological conditions (Moeser et al., 2020), and to assess forest thinning strategies (Krogh et al., 2020). Hyper-resolution 

models also provide an approximation of processes that are not resolved in coarser resolution models and can thus inform the 

development of sub-grid parametrizations of these processes. As such, both SnowPALM (Broxton et al., 2021) and FSM2 

(Mazzotti et al., 2021) have been used to derive recommendations for modelling forest snow processes at coarser resolutions, 

and there is still great potential to further exploit these models for scientific purposes.  95 

In this study, we used hyper-resolution modelling to explore the spatio-temporal dynamics of individual forest snow processes 

and their effect on snow cover evolution in forested complex terrain under varying meteorological conditions. We appliedy 

FSM2 to a sub-alpine valley and across multiple winters to assess the interplay of canopy structure, topography, and 
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meteorology. Our work builds on Koutantou et al. (2022), who observed considerable differences in snow distribution 

dynamics between their sites located on south- and north-exposed forested slopes over the course of one snow season. The 100 

authors hypothesized that weaker correlations between snow depth and canopy cover at the south-exposed than at the north-

exposed slope were due to differences in the shortwave irradiance regimes at the two locations but could not fully demonstrate 

this based on their observational data of snow depth alone. The modelling approach used here allows allowed us to overcome 

the limitations of their study by leveraging the capabilities of FSM2 to accurately represent both snow distribution and the 

spatio-temporal dynamics of the underlying processes. Based on the respective simulations, we will analysed individual 105 

processes and their interactions over larger spatial and temporal extents than previously possible, where equivalent 

observational datasets are inexistent. Our goals are were (1) to characterize spatial patterns of snow cover dynamics and the 

underlying processes in such a sub-alpine environment; (2) to detect connectivity between snow patterns and patterns of 

underlying processes; and (3) to assess their temporal consistency throughout the season and between different years. By 

contributing to the improved understanding of these dynamics, we hope to facilitate the development of approaches to treat 110 

sub-grid variability in coarser-resolution models, and to help expand our capabilities to assess the impact of environmental 

change on ecohydrological processes. 
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2 Methods 

2.1 Study area 

 115 

Figure 1: Overview of the study area: (a) Location of the model domain within Switzerland and on the topographic map of the Davos 

area (source: swisstopo), including locations of the automatic weather stations DAV and WFJ; (b) Canopy height model and contour 

lines (equidistance: 50m), including locations of the sites from Koutantou et al. (2022) and of the subdomain shown in Figures 5 and 

7-9.  

We focused our modelling in a domain situated in the Flüela valley near Davos (Figure 1) in the Eastern Swiss Alps. The 120 

climate is inner-alpine with an average wintertime (DJF) air temperature of -4.2 °C and 450 mm yearly snowfall sum (Davos 

station, MeteoSwiss, norm period 1991-2020; www.meteoschweiz.ch). The model domain is contained in a 2.5 x 1.5 km area 

at the entry of the valley, which consists of two opposite (south- and a north-facing) slopes. Both slopes extend over 500 m 

elevation span from the valley bottom at 1570 m a.s.l. to the tree line around 2100 m. Maps of the topographic characteristics 

of the model domain (elevation, slope, and aspect) are included in the Supplementary Material (Figure S1.1).  125 

The forest comprises needleleaf species, predominantly Norway spruce (evergreen) with some individual larches (deciduous), 

which is typical of this sub-alpine forest ecoregion. Understory vegetation is short, mainly consisting of blueberry bushes and 

grasses. Trees range from new- to old growths with maximum heights of 35 m, and forest structure includes both dense stands 

and gaps of varied sizes. The domain thus spans a range of variability in canopy structure and topographic conditions over a 

rather small area, which is common in the sub-alpine environment.  130 
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The site is at ~5 km distance to well-established and predominantly flat research sites that have hosted recent experimental 

forest snow process studies from the WSL Institute for Snow and Avalanche Research (SLF), including Laret (Malle et al., 

2019; Webster, 2016), Seehornwald (Webster et al., 2016), and Ischlag (Moeser et al., 2015). The sites from Koutantou et al. 

(2022) are fully contained in the perimeter of this study. The Ooperational measurements from the automatic weather station 

(AWS) Davos (DAV) and from the measurement field at Weissfluhjoch (WFJ) are within 1 km and 3 km of the site, 135 

respectively (Figure 1a).  

2.2 Modelling framework 

Snow cover simulations with the Flexible Snow Model FSM2 (Mazzotti et al., 2020b, a) are at the core of this study’s 

methodology (Figure 2). FSM2 is the upgrade of the physics-based, medium-complexity Factorial Snow Model, FSM (Essery, 

2015), with forest canopy added. It includes all major canopy processes (interception of snow in the canopy, subsequent 140 

unloading and sublimation, shortwave radiation transfer, longwave radiation enhancement, and wind attenuation) with well-

established parametrizations. We appliedy the version presented by Mazzotti et al. (2020a) specifically developed for hyper-

resolution (meter-scale) simulations, FSM2.0.3. This version uses process-specific canopy metrics, computed for each 

modelled location. Notably, insolation through the three-dimensional forest canopy is explicitly represented by importing time 

series of transmissivity for direct shortwave radiation from an external radiative transfer model. This allows achieving the 145 

accuracy of very detailed, ray-tracing-type radiative transfer modelling approaches without compromising the complexity and 

computational efficiency of FSM2. For this study, we run ran FSM2 at 2 m grid spacing (i.e., 850’000 points) and hourly 

resolution for six winters (i.e., water years (WY) 2016-2021). Our model application follows Mazzotti et al. (2021), who used 

equivalent hyper-resolution simulations to explore model upscaling behavior.  
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 150 

Figure 2: Conceptual sketch of the study methodology. Input meteorological and surface datasets (from the OSHD and the 2017 

LiDAR mission, Section 2.2), FSM2 including external radiative transfer model, evaluation approaches (presented in Mazzotti et al. 

2020a and Section 2.3) and resulting snow cover dynamics descriptors: peak SWE (SWEmax), start of snow cover period (SSD), day 

of peak SWE (PSD) snow disappearance date (SDD) - see Section 2.4 for definitions. 

LiDAR datasets acquired through airborne laser scanning (ALS) in 2017 in the context of the first European mission of the 155 

Airborne Snow Observatory (ASO, Painter et al., 2016; Mazzotti et al., 2019a) provided the basis for computing all canopy 

metrics required by FSM2.0.3, including vertically projected canopy cover, canopy height, canopy density (i.e. LAI), and sky-

view fraction in the full hemispherical view, for details see Mazzotti et al. (2021, 2020b) and Supplementary Material S2. 

Shortwave transmissivity time series at each location were obtained with the workflow from Webster et al. (2020), which 

calculates transmissivity through an overlay of a hemispherical image and solar position at any given point in time, as presented 160 

by Jonas et al. (2020). In Webster et al. (2020), LiDAR-derived synthetic hemispherical images based on a methodology 

originally proposed by Moeser et al. (2014) weare used for this purpose. Through point cloud enhancing techniques, the 

resulting images capture the shape and fine-scale structure of every individual tree in the surrounding, enabling highly accurate 

calculations of subcanopy radiation (Figure S3.2). The workflow was calibrated using real hemispherical images at our sites 

and using the same LiDAR data (Koutantou et al., 2022), allowing direct application also in this study. Additional surface 165 

datasets (e.g., elevation) were available through SLF’s Operational Snow-Hydrological Service’s (OSHD) modelling 

framework. These data were provided at 25 m resolution and interpolated to the model resolution (2 m). 
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Meteorological forcing was also available through OSHD. As described by Griessinger et al. (2019), gridded data of all 

necessary meteorological input variables (incoming short- and longwave radiation, air temperature and relative humidity, wind 

speed, rain- and snowfall rates, and atmospheric pressure) weare provided by MeteoSwiss (COSMO-1 product) at hourly 170 

interval and 1-km resolution over all of Switzerland and further downscaled to model resolution. Additional corrections (for 

biases or terrain effects) weare applied to some of the variables, e.g., wind speed (Winstral et al., 2017) and shortwave radiation 

(Jonas et al., 2020). We refer to Griessinger et al. (2019) for details. By leveraging OSHD methods, this study benefitted from 

the currently best meteorological forcing datasets available for the site, exploiting latest downscaling approaches specifically 

developed for snow modelling in complex terrain. Here, input fields were initially downscaled to 25 m and subsequently 175 

linearly interpolated to 2 m resolution. 

2.3 Validerification of model use case 

FSM2’s capability to accurately simulate sub-canopy snow energetics and to thus reproduce realistic small-scale forest snow 

cover dynamics has been demonstrated in a dedicated study (Mazzotti et al., 2020a). Their detailed model validation was done 

in the vicinity of our study area, with the same type of input data, and for the same type of canopy data. A summary of the 180 

validation approach and results is provided in the Supplementary Material S3. For this reason, another model validation is 

beyond the scope of this study; nevertheless, an assessment of our simulations against available snow distribution datasets was 

performed to ensure plausibility of the model application for our use case. We use considered four independent data sources: 

(1) Daily now depth data from stake readings acquired next to automatic weather stations (AWS) in Davos and Weissfluhjoch 

to assess the simulations at open sites; (2) High- and medium-resolution satellite RGB imagery available through Planet 185 

Explorer (www.planet.com) at approx. weekly intervals for the last five modelled WY’s, including Landsat 8, Sentinel-2 and 

PlanetScope, to evaluate modelled snow cover extent during periods of partial snow cover; (3) Maps of sub-canopy snow depth 

over the full domain from two of the 2017 ASO LiDAR acquisitions (see Section 2.2) at 3 m spatial resolution, parts of which 

were used by Mazzotti et al. (2019a); and (4) Time series of sub-canopy snow depth maps over two 150 x 150 m domains (see 

Figure 1) on the two opposed slopes obtained with UAV-borne LiDAR in 2020, presented by Koutantou et al. (2022). For 190 

details on the LiDAR campaigns, the reader is referred to the corresponding publications.   
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Figure 3: Examples of plausibility checks performed to verify the model use case, including comparisons of 1) satellite RGB imagery 

acquired by Planetscope on 28. April 2018 (a) and snow cover extent simulated by FSM2 on the same day (b); 2) snow depth 

distribution derived from ALS data (c) and simulated by FSM2 (d); and 3) snow depth statistics of UAV-LiDAR derived snow maps 195 
at the north-exposed site and resulting from FSM2 (e) and observed and modelled spatial distribution of the 8 March 2020 campaign 

(f). 
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Figure 3 presents examples of visual comparisons of model simulations to satellite (Figure 3a-b), ALS (Figure 3c-d) and UAV-

LiDAR data (Figure 3e-f). These assessments reveal that the model captures the general characteristics of snow depth and 

snow disappearance patterns well. The strong temporal lag in snow disappearance between the south- and the north-facing 200 

slope is clearly visible in the satellite imagery and likewise reproduced by the FSM2 simulations. Snow distribution features 

such as preferential ablation along south-exposed forest edges and higher snow amounts in canopy gaps compared to nearby 

under-canopy locations in the north-exposed slope are also clearly present in both the LiDAR datasets and the simulations. 

Overall, the verification confirmsvalidation supports that FSM2 simulations are suitable for this use case. Goodness of fit 

measures would be confounded by uncertainties in meteorological input and snow measurement inaccuracies (see e.g. Raleigh 205 

et al., 2015; Günther et al., 2019; Currier et al., 2019) and were therefore not considered here.  

2.4 Analysis approach 

Our analysis uses several descriptors of the snow season and of the surface energy exchange processes derived from the FSM2 

simulation results. These metrics weare computed at each modelled location (i.e. 2 m grid cell) for all winters as follows.  

1. Peak SWE: The maximum value of snow water equivalent on the ground attained over the course of a snow season / 210 

WY. 

2. Day of peak SWE (PSD): The day on which peak SWE occurred. In case of multiple occurrences of peak SWE over 

the season, the median was selected. 

3. Accumulation period: Period between the last occurrence of SWE < 10 mm prior to peak SWE and the day of peak 

SWE.  215 

4. Start of snow cover period (SSD): The first day of the accumulation period.  

5. Ablation period: Period between the day of peak SWE and the first occurrence of SWE < 10 mm following peak 

SWE. 

6. Snow disappearance day (SDD): The last day of the ablation period; also referred to as melt-out. 

7. Snow cover duration: The number of days between the start of snow cover and snow disappearance. 220 

8. Ablation rate: The quotient between peak SWE and the length of the ablation period.  

9. Cumulative ablation: Amount of SWE depleted over the course of a specific time interval (computed as sum of SWE 

decrements including losses due to both melt and sublimation).  

10. Average surface energy fluxes: Incoming and net short- and longwave radiation as well as turbulent (sensible and 

latent) heat fluxes into the snowpack, averaged over a specific time interval, where positive fluxes indicate transport 225 

towards the snow surface.  

Note that the temporal integration varies for different metrics, with some applying to the point-specific snow cover durations 

and some integrating over fixed time intervals. The choice of temporal integration interval wais motivated by the purpose of 

the corresponding analysis. Moreover, it should be noted that the definition of contiguous accumulation and ablation periods 

until / from peak SWE, as applied here, implies that melt events can occur during the accumulation and snowfall events during 230 
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the ablation periods, respectively. The 10mm threshold applied to define snow vs. no-snow conditions served to ensure that 

only days with snow present throughout the whole day would be included in the analysis of ablation rate and surface energy 

fluxes.  

To assess relationships of any snow or process descriptor to canopy structure, we quantifiedy the fine-scale canopy structure 

at a point in terms of local canopy cover fraction, one of the canopy metrics provided as input to FSM2 (‘fveg’, see Mazzotti 235 

et al. (2020b)). This variable describes the fraction of the vertically projected canopy cover within a 5 m radius around each 

modelled location, taking values between 0 and 1. We used local canopy cover fraction because it was shown to be strongly 

correlated to small-scale snow depth distribution at flat sites (Mazzotti et al., 2020b) and in steep terrain (Koutantou et al., 

2022). 

3 Results 240 

The following sections present a systematic analysis of FSM2 simulation results, aimed at illustrating the interplay of canopy 

structure, topographic, and meteorological controls. We first provide a general overview of snow cover dynamics across the 

site for all simulated years to provide context (Section 3.1), then consider the spatial distribution of our snow descriptors in 

more detail (Section 3.2). To help interpret spatial patterns, we analyse the combined impact of the physiographic factors, 

topography and canopy structure, first on the temporal evolution (Section 3.3) and then on the spatial distribution (Section 3.4) 245 

of snow cover dynamics and the underlying processes. Finally, we explore the impact of meteorological conditions on the 

temporal consistency of said spatial patterns between water years (Section 3.5). 

3.1 Overview of simulated snow cover dynamics 

Figure 4 summarizes the statistics of the different snow season descriptors for all simulated years, aiming to give an overview 

of their within-year variability (attributable to variations in canopy structure and topography), and of their between-year 250 

variability (attributable to variations in driving meteorology). A summary of meteorological conditions during the simulation 

period is provided in the Supplementary Material (Figures S3.1-3.2). The start of continuous snow cover strongly varies both 

across the model domain and between the years (Figure 4a). The medians within the model domain vary by 2 months, ranging 

from 5 November (WY 2019) to 5 January (WY 2017). Noteworthily, the spread of the start of snow cover varies strongly 

between the simulated WYs as well. While in three years snow cover onset happens basically simultaneously across the entire 255 

domain (WYs 2017, 2018, 2019), partial melt-out during snow accumulation cause heterogeneous snow cover onset dates 

across the domain in the other years, with interquartile ranges of full snow cover onset of over a month. 

The timing of peak SWE (Figure 4b) is, on average, much more consistent over the years, with median peak SWE ranging 

from 11 March (WY 2020) to 1 April (WY 2018). However, the spread across the model domain in each year can be large 

(interquartile range of approx. 2 months in WYs 2019 and 2021), which means that there can be a considerable temporal offset 260 

in the start of the ablation period across the site. Notably, this leads to some locations reaching peak SWE only when others 
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have melted out already (overlap of boxes for day of peak SWE and snow disappearance day of the same year). The rather 

large spread in snow disappearance day within each year (Figure 4c), with interquartile ranges between 2 and 6 weeks, is the 

result of spatial variability in both accumulation and ablation rates and is thus not surprising. Between-year variability in melt-

out timing is much larger than for timing of peak SWE, with medians between 10 April (WY 2016) and 26 May (WY 2019). 265 

Further, also peak SWE itself varies (Figure 4e), with median peak SWE across the model domain between 135 mm (WY 

2016) and 314 mm (WY 2019), mostly reflecting years with higher and lower snowfall, respectively. Notably, interquartile 

ranges are not systematically higher or lower for higher or lower median peak SWEs occurrences. 

 

Figure 4: Summary statistics of snow season descriptors across the full model domain and for all simulated water years (WY), 270 
including (a) the start of snow cover period, (b) day of peak SWE, (c) snow disappearance day, (d) duration of full snow cover, (e) 

peak SWE, and (f) ablation rate. Descriptors denoting specific points in time (a-c) are indicated in terms of day since October 1st. 

The combination of the variable start of snow cover and snow disappearance days implies highly variable snow cover durations 

(Figure 4d). Median full snow cover duration across the model domain varies between 96 (WY 2017) and 173 (2018) days, 

and interquartile range varies between 19 (WY 2018) and 65 (WY 2020) days. Snow cover duration can also be interpreted as 275 

the combination of amount of SWE to be depleted and efficiency of ablation processes. Notably, ablation rates (Figure 4f) are 

more uniform across the WYs (median 5.5-9 mm/day) but still rather variable across the model domain (interquartile ranges 

of 3.6-5.9 mm/d).  

It should be highlighted that there does not appear to be any clear link between any of the individual snow cover descriptors; 

for instance, higher peak SWE does not seem to imply longer snow duration, and later snow disappearance is not linked to 280 
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higher ablation rates. Essentially, this is a consequence of accumulation and ablation processes being affected by different 

meteorological drivers. 

3.2 Spatial patterns of snow cover dynamics 

The lLarge spread in the boxplots in many of the subpanels of Figure 4 indicates that most snow season descriptors exhibit 

strong spatial variability across the model domain during most years. In Figure 5, we present spatial maps of the same snow 285 

season descriptors for WY2019 to analyse the full spatial patterns behind this variability. To better demonstrate the spatial 

details, we zoom in to a sub-domain (Figure 1) that comprises the entire range of canopy covers, elevation ranges, slopes, and 

aspects, yet representing the physiographic character of the entire domain well. Equivalent plots over the full model domain 

are included in the Supplementary Material (Figures S5.1-5.3) for interested readers.  

Figure 5 illustrates how peak SWE, ablation rates, day of peak SWE, and snow disappearance date vary across the landscape 290 

as a function of canopy and within the complex topography. The link between peak SWE and canopy structure (Figure 5a vs 

5b) is obvious and reflects the impact of snow interception by the canopy on accumulation, which scales with local canopy 

cover. This dependency is well visible when comparing peak SWE at under-canopy vs. open / gap locations (Figure 5b). Yet, 

a closer look at the gaps and forest edge areas (especially in the upper, south-exposed part of the domain) reveals a rather large 

spread in peak SWE for these locations with low to no local canopy cover, even within this relatively small subdomain of 1.5 295 

km2. For this specific example, the spread in peak SWE amounts to approx. 200 mm. Consequently, canopy structure is clearly 

not the only factor controlling peak SWE distribution, despite the strong correlation between peak SWE and local canopy 

cover fraction with Pearson’s correlation coefficient (R) ranging from -0.89 (2018) to -0.76 (2017). Note that correlation 

coefficients are computed over the full model domain. 
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 300 

Figure 5: Canopy cover (a) and topographic (d) maps, as well as snow season descriptors including peak SWE (b), ablation rate (c), 

day of peak SWE (e) and snow disappearance day (f), for a sub-section of the model domain and WY 2019. 

When interpreting spatial patterns of peak SWE, it is important to consider that the timing of peak SWE also varies across the 

domain (i.e., ablation starts in some areas while others are still accumulating snow; Figure 5e). Generally, the onset of the 

ablation period occurs earlier on the south-exposed slope. The earliest onsets occur along the canopy edge at lower elevations, 305 

but there is no evident simple relationship with canopy cover. The combination of strong variability in peak SWE and 
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heterogeneous peak SWE timing means that spatial patterns of ablation rates (Figure 5c) and snow disappearance date (Figure 

5f) are complex, with non-trivial dependencies with either canopy cover or topography (Figure 5d).   

Notably, snow disappearance day is more variable on the south-exposed slope than in the north-exposed slope, where snow 

disappearance is restricted to a shorter time span. Complex melt-out patterns on the south-exposed slope hint at considerable 310 

spatial heterogeneity in ablation processes which override accumulation patterns, so that the spatial structure of snow 

disappearance is considerably different from that of peak SWE (Figure 5b vs 5f, upper part). In contrast, this is not the case on 

the north-exposed slope: Here, under-canopy areas melt out earlier than canopy gaps, which means that melt-out patterns 

generally have a similar spatial distribution as accumulation patterns (Figure 5b vs 5f, lower part). These similarities suggest 

that on the north-exposed slope spatial variations in ablation rates are not strong enough to supersede spatial variations in 315 

accumulation. We will look at the physical processes that drive these patterns in more detail in the following sections.  

Ablation rates (Figure 5c) exhibit spatial patterns that do not correspond to any other snow season descriptor. Remarkable 

features are the maxima along the south-facing canopy edge on the south-exposed slope, and in the canopy gaps on the higher-

elevation areas of the north-exposed slope. This is where snow generally either starts to melt first or last (compare to Figure 

5e). Furthermore, large canopy gaps on both slopes generally feature higher ablation rates than adjacent under-canopy areas. 320 

Note that assessing the dependencies of ablation rate on canopy structure and topography is confounded by the necessity to 

calculate ablation rates over the local ablation period (see definition in Section 2.4), which itself varies across the domain due 

to variable timings of peak SWE and snow disappearance. 

3.3 Impact of canopy structure and topography on the temporal evolution of the snow cover and underlying processes  

The analysis in Section 3.2 clearly suggests that the interaction between canopy structure and topography plays a relevant role 325 

in shaping spatial snow cover dynamics. To understand these patterns and the processes that lead to them, it is instructive to 

consider time series of snow cover evolution at some representative locations. We manually selected seven locations that cover 

the existent range of canopy structures and topographic settings to showcase potential outcomes of process interactions in a 

systematic way. We include points located at the north- and south-facing edges of canopy gaps for both north- and south-

exposed slopes, as well as three points located under canopy (two on the south- and one on the north-exposed slope; the two 330 

points on the south-exposed slope differ in their proximity to a sun-exposed canopy edge, where point 1 is more sun-exposed 

and point 2 more shaded). The locations of these points are marked in the Supplementary Material (Figure S6). Figure 6a 

shows SWE at these seven locations for WY 2019. Note that we will look at data from other years and the influence of weather 

on inter-annual differences in Section 3.5. 

At the beginning of the accumulation period, all three points that are located under canopy accumulate less snow than all points 335 

located in gaps. These two distinct pathways reflect the fact that, if no major precipitation gradients exist across the site and if 

ablation processes or the impact of wind redistribution is negligible, interception of snow is the only process that introduces 

spatial variability during this phase. Canopy structure thus exerts the primary control on snow accumulation. However, as the 

season progresses, further pathways fork off. In this example, early onset of ablation at two points on the south-exposed slope 
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results in further spatial segregation. The first point (dark red), which reaches peak SWE by mid-February, is located under 340 

canopy close to a south-facing canopy edge. The second point (light green), which reaches peak SWE in mid-March, is located 

at the south-facing edge of a forest gap. These findings showcase that the same canopy structure configuration can host 

different snow evolution pathways in different topographic settings. This creates more variability in snow cover evolution 

pathways on the south-exposed slope (here, points at south- and north-facing canopy edges diverge), and limited variability 

on the north-exposed slope (here, points at south- and north-facing canopy edges do not diverge). 345 

 

Figure 6: Interactions between canopy structure and topography illustrated at seven example points (locations see S3). Time series 

of SWE (a), weekly melt during the ablation period (b) and surface energy balance partitioning at four of the points (c-f). In c-f, bars 

show weekly average fluxes, while the black line depicts their sum, grey triangles mark the day of peak SWE, and only periods with 

snow on the ground are shown. 350 

While accumulation patterns are mainly dictated by canopy structure, topography comes into play when ablation processes 

start. Melt requires a positive net energy input to the snowpack, which is the result of multiple superimposed fluxes. To 

elucidate the underlying processes, Figure 6c-f show surface energy balance partitioning over time at four of the seven points, 

which cover the four major snow cover evolution pathways seen in Figure 6a. These plots show that at all points prior to the 

onset of the ablation period, net shortwave radiation and sensible heat generally provide positive contributions, while latent 355 

heat provides a negative contribution. Net lLongwave radiation acts as a compensating flux. It is strongly negative at locations 

in canopy gaps (large sky-view, i.e., little longwave enhancement, Figure 6c+d) as well as under-canopy locations that receive 
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positive net shortwave radiation and sensible heat contributions. In contrast, it net longwave radiation is positive where other 

positive fluxes only constitute negligible contributions (i.e., under-canopy, shaded locations, Figure 6e). At both points where 

ablation starts early, regardless of canopy structure, its onset is due to an increase in net shortwave radiation that can no longer 360 

be compensated by a negative net longwave radiation flux. Exposure to shortwave irradiance early in the snow cover period is 

thus a mechanism by which topography can affect snow cover evolution pathways in addition to canopy structure, either by 

way of terrain shading or due to inclined terrain (towards or away from sun). At points where direct insolation is unavailable 

early in the snow cover period and ablation starts later, the driving mechanisms are different. At under-canopy points, positive 

net longwave radiation contributions and sensible heat drive melt; at gap locations, net shortwave radiation and sensible heat 365 

constitute the strongest positive fluxes.  

Generally, shortwave radiation driven ablation leads to larger net energy turnover and therefore high ablation rates even early 

in the season (Figure 6b). This can create situations where snow in canopy gaps can melt out earlier than snow under canopy, 

despite peak SWE being higher (Figure 6a, light green vs light red). Early-season insolation is hence the driver by which spatial 

heterogeneity in ablation processes can override accumulation patterns on the south-exposed slopes (c.f. Section 3.2). Not 370 

surprisingly though, the highest ablation rates are in the late season in gaps when all fluxes are positive. Yet these high ablation 

rates do not impact melt-out patterns, because by this time gaps on the north-exposed slopes are the only areas with snow left. 

3.4 Impact of canopy structure and topography on the spatial distribution of leading processes  

The snow cover evolution pathways and corresponding energy balance partitioning pathways shown in Section 3.3 illustrate 

the interaction between canopy structure and topography. Considering how these pathways are distributed in space puts the 375 

snow cover descriptor maps from Figure 5 in context. An important insight from Section 3.3 is that exposure to early-season 

shortwave radiation majorly affects snow cover dynamics, which leads to contrasts between opposing slopes that are or are 

not affected by terrain shading. Figure 7 shows maps of canopy cover, average shortwave irradiance, all-wave irradiance, and 

cumulative snow ablation between mid-January and end of February for WY 2019 across the two opposing slopes. This period 

was chosen because it falls between the start of the snow cover period and median day of peak SWE, which makes it suitable 380 

for analysing the occurrence and distribution of early-season ablation. 
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Figure 7: Canopy cover fraction and aspect in the sub-domain (a), average incoming shortwave (b) average all-wave irradiance (c), 

and cumulative SWE ablation (d) between mid-January and end of February for WY 2019. 

In early winter, shortwave irradiance controls all-wave irradiance patterns (Figure 7b vs. 7c; see also Figure S5.2 in 385 

Supplementary Material), and ablation largely matches these patterns (Figure 7d), confirming that early-season shortwave 

irradiance is a prerequisite for early-season ablation. Due to topographic shading, only the south-exposed slope receives direct 

shortwave irradiance at this time of the year. Consequently, topography exerts a primary control on early-season ablation. On 

top of that, canopy shading affects the distribution of shortwave irradiance, but during times with low solar elevation angles 

the dependency between canopy structure and direct shortwave radiation is complex. In fact, early in the season the correlation 390 

between shortwave irradiance and local canopy cover is rather low (R = -0.52). This, in turn, entails local canopy cover and 

snow ablation to be uncorrelated as well (R = 0.05). These low correlations imply that early-season ablation may potentially 

counteract and even disrupt the association of peak SWE patterns and local canopy cover identified in Section 3.2 (see Figure 

5).  

Shortwave irradiance is, however, not the only flux determining ablation patterns. Figure 7 reveals that some areas above the 395 

tree line on the south-exposed slope do not experience early-season ablation, despite the high shortwave radiation input. This 

indicates that net energy input must be reduced by other negative fluxes. Additionally, the energy balance partitioning plots in 

Figure 6 evidence other positive contributions to net energy input to the snowpack. To visualize the spatial structure of these 

contributions, Figure 8 shows each individual surface energy balance component (net short- and longwave radiation, sensible 

and latent heat fluxes) for periods early (Figure 8a) and late (Figure 8b) in the season (WY 2019), as well as the corresponding 400 

net surface energy flux (Figure 8c). The spatial distribution of individual energy fluxes and their evolution in time generally 

conform with findings from Figure 6, with sensible heat as the only other positive contribution early in the season and longwave 

transitioning into a positive flux especially at under-canopy locations and later in the season. Overall, Figure 8 demonstrates 

how spatial patterns of individual fluxes translate to patterns of net surface energy, which largely match shortwave radiation 
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patterns in both periods. Figure 8d displays correlation coefficients between net surface energy and individual energy balance 405 

components as they evolve over the season. The strongest positive correlations to shortwave radiation are confirmed, while 

correlations to longwave radiation are consistently and increasingly negative. No systematic link between net energy and 

turbulent fluxes is evident.   

 

Figure 8: Energy flux partitioning into the four surface energy balance components (net short- and longwave radiations, SWR and 410 
LWR; sensible and latent heat fluxes, SHF and LHF) for two weeks in February (a) and May (b) 2019, respectively, as well as net 

energy flux at the snow surface (c), areas that have melted out by the time shown are marked black; Correlations (Pearson’s R) 

between individual energy fluxes and net surface energy over the season (d), with lines showing WY 2019 and shaded areas the range 

of all modelled WYs. 
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3.5 Impact of meteorological conditions on the temporal consistency of spatial patterns  415 

 

Figure 9: Spatial patterns of snow season descriptors for the sub-domain, including peak SWE (1st column), day of peak SWE (2nd 

col.), snow disappearance day (3rd col.) and ablation rate (4th col.) during three different WYs, namely 2017 (1st row), 2018 (2nd 

row) and 2019 (3rd row). 

Meteorological conditions and their variability between years alter the relative magnitude and timing of different processes. 420 

By doing so, they can potentially impact the consistency of snow cover dynamics and resulting spatial patterns. Figure 9 shows 
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the spatial distribution of the same snow cover descriptors shown in Figure 5, but now including three different WYs. Full 

domain maps of all WYs are available in the Supplementary Material (Figures S7.1-S7.5). For all snow season descriptors, we 

find both temporally consistent and inconsistent features. The link between canopy structure and peak SWE is evident in all 

years, despite stronger imprints of early-season ablation patterns in some years (e.g. 2018 vs. 2019). In fact, the autocorrelation 425 

between peak SWE patterns of different years is high (R: 0.94-0.98). In contrast, ablation rate patterns are generally 

uncorrelated (R: 0.07-0.79). Ablation rate maxima are found at different locations of the domain in different years. For 

example, maximum ablation rates in WY 2018 were above the tree line on the south-exposed slopes but were in canopy gaps 

on the north-exposed slope in both WYs 2017 and 2019. Below-canopy areas have comparatively low ablation rates in all 

years, but differences between slopes are more pronounced in WY 2018 than in 2017 and 2019. These consistencies and 430 

inconsistencies are likely affected by differences in the timing of the ablation period.   

In terms of the timing of peak SWE and snow disappearance, the temporal sequence in which different locations melt out is 

mostly consistent between years: South-exposed canopy edges and under-canopy locations generally become snow-free first, 

and snow lasts longest in shaded canopy gaps (i.e. those on north-exposed slopes). However, the timing of and days between 

both peak SWE and snow disappearance across the domain vary. For example, distribution of peak SWE day in 2019 is, in the 435 

first order, bimodal, with a clear separation between the south- and north-exposed slopes; also in 2017, the distribution of peak 

SWE day is approximately bimodal, but in this case with a separation of only the sunny forest edges on the south facing slope, 

reflecting a considerably smaller number of pixels that exhibit sufficient early-season ablation to prepone peak SWE day 

relative to all other pixels. 

Analogous to our approach in Section 3.3, we consider time series at point locations to unravel the process-level mechanisms 440 

that cause potential inconsistencies in snow cover descriptor patterns between years (Figure 10). To better highlight these inter-

annual variations, we focus on a set of points located in semi-open conditions on the south-exposed slope, i.e., where they can 

potentially receive early-season direct shortwave radiation (locations see Supplementary Material, Figure S6.1). These include 

a point in a large gap, close to the south-facing canopy edge (yellow); a point in a smaller gap (dark red); and two points under 

relatively sparse canopy in a rather sunny (dark blue) and a shady (cyan) location, respectively. Due to the limited range in 445 

local canopy cover at these points, the differences in accumulation caused by interception are less pronounced than for the 

examples shown in Section 3.3 (c.f. Figure 10 vs. Figure 6). Yet, these points experience different drivers of ablation and 

therefore react differently to variations in meteorological conditions between the years. 

Firstly, we note that accumulation patterns (i.e. peak SWE) vary between years based on the timing of the first ablation events 

relative to the timing of peak SWE, particularly whether or not considerable ablation events occur during the accumulation 450 

period (Figure 10a). In 2019, when all major snowfall events occur prior to the first melt episode, gaps feature the highest peak 

SWE, corresponding to low interception losses (yellow and red). In 2017 in contrast, overall accumulation is low, and 

substantial melt precedes the last major accumulation event, which is sufficient to cause melt-out at some of the most sun-

exposed locations; peak SWE at the sunny canopy gap point (yellow) is now thus the lowest of the four points considered. It 

should be noted that for all WY’s considered here, onset of full snow cover happened roughly simultaneously across the entire 455 
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model domain; early ablation events leading to partial melt-out prior of the onset of full snow cover (not shown, but observed 

e.g. in WY 2016) would obviously further complicate peak SWE patterns.  

 

Figure 10: Impact of meteorological conditions illustrated by comparing three different WYs (columns), including (a) SWE evolution 

at four example points (locations see S3) and surface energy partitioning pathways at three of these, i.e. (b) a shady sparse canopy 460 
location, (c) a sunny canopy gap location, and (d) a shady canopy gap location.  

Second, we note that the relative timing of snow disappearance between years can vary across the domain, based on the 

availability of melt energy over the course of the season (Figure 10a). Points that normally receive early-season shortwave 

irradiance (i.e., the dark blue and the yellow point) melt out later in WY 2018 compared to 2019 because less shortwave 
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irradiance is available in February (see strong positive shortwave contributions in Figure 10c). In contrast, points in shadier 465 

locations (cyan and red) melt earlier in WY 2018 because of the consistently warmer and sunnier weather in spring compared 

to 2019 (see earlier switch to both positive shortwave and longwave contributions in Figure 10b+d). The opposed effect of 

these differences in meteorological conditions causes snow disappearance day of the four points to be much closer in WY 

2018 than in 2019. The overall melt-out patterns will thus vary between WYs, even if the dominating fluxes at each specific 

location remain approximately consistent (Figure 10b-d). 470 

4 Discussion 

4.1 Process-level insights  

Spatio-temporal snow cover dynamics and associated snow accumulation and ablation patterns are a result of superimposed 

processes that themselves vary as a function of both time-invariant physiographic features (vegetation, topography) and time-

varying meteorological conditions. While the phenological analysis of snow season descriptors presented in Sections 3.1-3.2 475 

paints a complex picture of snow distribution patterns, the process-level analysis in Sections 3.3-3.5 allowed us to attribute the 

processes that underly these patterns. The main takeaway from this work is that patterns of snow season descriptors and their 

inter-seasonal consistency can only be explained by considering all three factors, canopy structure, topography, and 

meteorology, as well as their interaction throughout the snow season.  

Snow distribution patterns at any point in time arise from an interplay between accumulation and ablation patterns. For the 480 

study site considered here, our analysis showed that snow cover dynamics result from the superposition of (1) a pattern that is 

temporally static and dependent on canopy structure alone, with more snow where there is less canopy (i.e., accumulation  

mostly controlled by interception) and (2) a time-varying pattern with complex dependencies on canopy structure, solar 

position, weather, and topography, with an overall tendency for faster ablation where there is less canopy (i.e., melt mostly 

controlled by shortwave radiation). Depending on the relative strength of each of both signals, three regimes of snow cover 485 

dynamics are principally possible: 

R1. Snow distribution can be described as function of canopy structure alone throughout the whole season. This is the 

case when accumulation creates a strong signal, and ablation patterns are too homogeneous or too weak to override 

this signal, so that areas that accumulate less snow also melt out first. 

R2. Snow accumulation patterns can be described as a function of canopy structure during the accumulation period, but 490 

those patterns will be overridden by ablation patterns during the ablation period. Consequently, snow disappearance 

date exhibits no simple relationship with canopy structure.  

R3. Early-season ablation inhibits formation of simple snow accumulation patterns, and snow distribution patterns remain 

weakly correlated with canopy structure throughout the entire season. 

Based on these regimes and using WY 2018 as an example, Figure 11c shows a conceptual subdivision of our model domain 495 

into 4 zones. Zone A does not feature early-season ablation and exhibits snow disappearance patterns that carry the imprint of 
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local canopy cover; Zone B is characterized by substantial cumulative early-season ablation amounts (Figure 11a); Zones C 

and D largely lack early ablation but exhibit fewer clear linkages between canopy cover and snow disappearance day (Figure 

11b). Note that Zones C and D are treated separately due to elevational differences. As a crosscheck, we computed the temporal 

evolution of the correlation coefficient between SWE and local canopy cover for each of the four zones separately (Figure 500 

11d). As expected, Zone A (R1) features a strong negative correlation between SWE and local canopy cover throughout the 

entire season; Zone D (R2) exhibits a similarly strong correlation at the beginning of the season which then degrades during 

ablation season; and Zone B (R3) a weaker correlation even early in the season, where each ablation episode degrades and 

each interception event improves the correlation, until the ablation season causes the correlation to collapse more permanently. 

Zone C seems to show characteristics of R2 in 2018, but of R3 in 2016, which implies that the regime found at a specific 505 

location may not be consistent from year to year. 

 

Figure 11: Conceptual subdivision of study domain into snow cover evolution regimes, the identification of which is based on maps 

of cumulative SWE ablation between mid-January and mid-March (a) and snow disappearance day (b) in WY 2018. Resulting zones 

(c) and evolution of the correlation coefficients between snow depth and vegetation cover fraction in these for WYs 2016 and 2018, 510 
resulting in the attribution to a specific regime (d).  
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The co-occurrence of different regimes across our study domain is a consequence of topography because early-season 

shortwave irradiance is a prerequisite for regime 3, while its absence is a prerequisite for regime 1. North-exposed slopes are 

prone to falling into regime 1, while south-exposed slopes tend to conform with regime 3. Regime 2 is less evident in our 

example, but most likely to be found in flat areas with large canopy gaps, where early-season ablation is not expected but 515 

substantial melt energy gradients can evolve during ablation. The impact of inter-annual variability in meteorological 

conditions can lead to the same locations hosting different regimes in different WYs: Differences result from either weaker 

accumulation patterns or variations in magnitude and timing of shortwave irradiance. This finding is in line with Lundquist 

and Flint (2006), who attributed variability in snowmelt patterns between years with early and late snowmelt onset to 

differences in topographic shading. Our analysis also furthers the conceptual framework presented by Lundquist et al. (2013). 520 

Based on site-scale simulations of the net radiative balance, they established timing of early melt, determined by the 

climatological temperature at a site, as the primary control of whether denser forest would generally accelerate or delay 

snowmelt through the prevalence of longwave radiation enhancement or shading, respectively. Our approach, involving more 

processes and detailed canopy structure information, confirms the importance of early-season ablation, but demonstrates the 

additional key role of shortwave radiation patterns in determining snow dynamics regimes at smaller spatial scales.  525 

The categorization of snow cover dynamics into regimes provides a context to temporal snapshots of snow distribution patterns, 

such as those derived from singular LiDAR datasets. The temporal evolution of correlation coefficients (Figure 11d) 

corroborates findings from Koutantou et al. (2022), who used maps of modelled sub-canopy irradiance to explain why snow 

distribution patterns exhibited different dependencies on canopy structure at their north- and south-exposed survey sites. A 

decay of the correlation between snow distribution and canopy structure between two LiDAR acquisitions in spring was also 530 

observed by Mazzotti et al. (2019a) for sites with less topographic variability. In general, our process-level insights explain 

why these correlations can vary between years and regimes, as shown in this study, and hence why different studies may have 

observed different and sometimes inconsistent dependencies between snow and canopy variables, depending on when and 

where data were acquired (e.g. Safa et al., 2021; Currier and Lundquist, 2018).   

4.2 Implications and applications  535 

The process-level insights discussed in the previous section have important implications in a variety of contexts in which 

small-scale variability of forest snow cover dynamics is relevant. We elaborate on three such examples in the following.  

Firstly, our findings indicate that strategies to account for sub-grid variability in coarser-resolution models that are intended 

for application to sub-alpine environments need to account for variations in canopy structure, topography, and meteorology. 

This is particularly the case at sub-kilometre model resolutions, where variability in driving meteorological conditions induced 540 

by topography is at least partially resolved (e.g., through temperature lapse rates and orographic precipitation gradients), while 

variability in snow cover dynamics caused by canopy structure occurs at much smaller spatial scales and needs to be 

parameterized (Clark et al., 2011). The south-exposed slope in our model domain featured stronger variability and more 

complex patterns of snow cover descriptors than the north-exposed slope, with impacts on the evolution of fractional snow-
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covered area in grid cells that include such terrain. To our knowledge, sub-grid variability parametrizations that incorporate 545 

these effects are inexistent to date (Dickerson‐Lange et al., 2015; Mazzotti et al., 2021; Schneider et al., 2020), but their 

development is a promising avenue for further model improvement. However, recent studies have suggested tiling schemes 

based on fine-scale canopy structure as an alternative approach to representing sub-grid variability (Broxton et al., 2021; 

Currier et al., 2022), in line with our findings. 

Secondly, our simulations evidence a strong complexity in eco-hydrologically relevant processes across a still relatively limited 550 

study domain. The large range of snow cover durations observed creates spatial variability in ground insulating properties and 

soil temperatures. Snow water input to the ground also exhibits strong spatial heterogeneity due to variability in snow melt 

magnitudes and rates, with further influences on soil moisture evolution. As soil conditions control a wide range of biophysical 

processes (Neumann et al., 2019; Stark et al., 2020; Harpold, 2016), their spatial heterogeneity potentially implies strong 

variability of habitat characteristics across relatively small spatial scales (Niittynen et al., 2018). It is also possible that the 555 

observed process variability affects ecologically relevant snow properties such as surface layer density (Boelman et al., 2019; 

Gilbert et al., 2017) or the formation of ice layers in the snowpack (Rasmus et al., 2018). This is an unexplored research topic 

to date, as resolving these internal snowpack processes would require a more sophisticated snow scheme than available in 

FSM2. Coupling of detailed canopy representation to snow physics models such as Crocus (Vionnet et al., 2012; Lafaysse et 

al., 2017) and SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002; Gouttevin et al., 2015) would hence be a 560 

prerequisite. Overall, our results advocate that small-scale landscape heterogeneity needs to be considered when addressing 

snow-related eco-hydrological questions in sub-alpine forested environments.  

Lastly, process-level insights allow us to extrapolate our findings spatially and temporally. While it is known that forest snow 

cover dynamics differ across climates (Lundquist et al., 2013; Dickerson-Lange et al., 2021; Safa et al., 2021), the same 

underlying processes are active everywhere. The snow distribution patterns found in this study may thus not be directly 565 

transferrable to other regions, but improved understanding of how physiographic and meteorological factors interact with one 

another allows us to better predict where and when certain processes will prevail. Consequently, we expect the prevalence of 

specific snow dynamics regimes to vary with latitude, regional temperature, and snowfall characteristics. Likewise, these 

insights enable improved prediction of how patterns may shift following environmental change. Our findings suggest, for 

instance, that canopy removal may have the opposite effect in different topographic locations, i.e., earlier and faster ablation 570 

on south-exposed slopes but longer snow retention in north-exposed ones. Warmer temperatures earlier in the season favour 

longwave-radiation driven ablation (Lundquist et al., 2013), shifting the relative timing of shortwave vs. longwave-radiation 

driven ablation. Such a shift which would likely accentuate accumulation patterns and thus alter melt-out patterns on south-

exposed slopes but only show minor impacts on north-exposed slopes. 

The use of hyper-resolution models in the context of forest management and climate change impact studies is still 575 

underexploited but should be encouraged in the future as only process-based models allow predictions that extrapolate from 

currently known conditions. Indeed, forest snowpacks in sub-alpine regions reside at climate-sensitive elevations (Schöner et 
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al., 2019; Pepin et al., 2015), and forest structural change is widely and rapidly happening (Albrich et al., 2020; Goeking and 

Tarboton, 2020).  

4.3 Assets, limitations, and outlook  580 

Considerations in Sections 4.1 and 4.2 underline the assets of a process-based modelling approach in terms of its capabilities 

to resolve individual process dynamics. Additionally, modelling allowed us to obtain spatially and temporally continuous 

information, which is not feasible with today’s observation technology. Most ALS-based snow datasets that cover large areas 

are available for only a few temporal snapshots (Safa et al., 2021; Currier and Lundquist, 2018; Harpold et al., 2014; Broxton 

et al., 2019), while existing attempts to acquire snow distribution time series are very limited in spatial extent and mostly cover 585 

one winter season only (Koutantou et al., 2022; Broxton and van Leeuwen, 2020). Process-level data that is both spatially and 

temporally explicit is even more scarce and extremely challenging to obtain (Moeser et al., 2015; Malle et al., 2019, 2021; 

Mazzotti et al., 2019b). Model application, in contrast, is only limited by the availability of driving meteorological data and 

surface datasets, and thus potentially applicable to extensive spatial and temporal domains.  

Modelled process dynamics, however, can only yield satisfactory estimates of reality if the model representations of the 590 

processes involved are sufficiently accurate. For this study, we used FSM2, which we believe to be particularly suited given 

previous validation efforts demonstrating the model’s capability to accurately represent individual processes related to the 

snowpack surface energy balance (Mazzotti et al. 2020a). Yet, we acknowledge that our findings depend on modelling choices 

and results might vary when using alternative models or process parametrizations. ThereforeWhile models like FSM2 already 

enable tackling relevant research questions, the modelling community should strive for continued improvement. On one hand, 595 

the representation of some processes could still be improved, and associated uncertainties should be evaluated systematically 

across the full range of canopy structure and topographic diversity of the application domains of interest. This is especially the 

case for processes involving snow in the canopy (Lundquist et al., 2021; Lumbrazo et al., 2022). Moreover, while Mazzotti et 

al. (2020a) could infer spatial patterns of snow surface fluxes from their data, direct validation of turbulent fluxes is challenging 

even with recent measurement techniques (see e.g., Conway et al., 2018; Peltola et al., 2020; Haugeneder et al., 2022).  600 

Some processes, such as snow transport by wind and gravitational redistribution by avalanches in steep slopes, are not 

represented in the model framework used here. These processes significantly drive snow distribution patterns in open alpine 

terrain but are assumed to have a smaller impact on fine-scale patterns in forests. Efforts to couple FSM2 to snow redistribution 

models (e.g., Liston and Sturm, 1999; Bernhardt and Schulz, 2010) are ongoing. Additionally, mass and energy exchange 

between neighbouring locations may become relevant at hyper-resolutions (Schlögl et al., 2018), and lateral coupling would 605 

likely improve the representation of expanding snow-free areas in spring. Coupling to a soil or eco-hydrological model (Fatichi 

et al., 2012; Tague and Band, 2004) would further extend the potential applications of hyper-resolution forest snow schemes 

beyond just snow cover dynamics. Finally, a major challenge concerns the estimation of model parameters that are potentially 

variable in space. This approach was not pursued in this study but has been shown to considerably increase the benefits of 
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calibration efforts (Wrzesien et al., 2022). Approaches to automate model calibration across the full range of canopy structures 610 

and topographic settings may thus further improve the skill of models like FSM2.  

In the longer term, combining hyper-resolution models and observations to leverage their complementary assets is likely the 

most promising avenue to advance our understanding of forest snow cover dynamics in complex terrain. Plausibility checks 

as presented in Section 2.3 are indispensable for the verification of model use cases, as well as for continued model 

enhancement and refinement, and there is potential for improvement here as well.  For instance, the use of RGB satellite data 615 

to validate melt-out patterns (Section 2.3) is promising despite limited visibility of snow under the canopy. Automated 

algorithms to extract snow cover information from RGB imagery are not currently applicable to forested complex terrain 

(Deschamps-Berger et al., 2020; Gascoin et al., 2019), but would encourage the use of such datasets for this purpose. If 

respective workflows are continuously improved, enabling simulations and observations to be used in tandem and to benefit 

from each other (e.g., through data assimilation approaches), hyper-resolution model applications at large temporal and spatial 620 

scales in the contexts discussed in Section 4.2 promise advances in eco-hydrological and land surface modelling research.  

5 Conclusion 

This study represents the first multi-year application of a hyper-resolution forest snow model capable of resolving tree-scale 

processes within a sub-alpine valley, aimed at investigating how snow cover dynamics and the underlying processes are shaped 

by the interplay of (1) canopy structure, (2) terrain, and (3) meteorological conditions. The chosen approach yielded process-625 

level insights that could not be obtained based on snow distribution datasets alone.  

Our findings evidenced that all these three factors must be considered when attempting to explain spatio-temporal snow cover 

dynamics. Canopy structure exerts the primary control on accumulation patterns, yet the resulting snow distribution can be 

disrupted by ablation patterns, which are primarily driven by the distribution of shortwave radiation. Because shortwave 

radiation exhibits complex canopy dependencies and tends to counteract accumulation patterns, it is the timing of radiation 630 

relative to the strength of the accumulation patterns that determines whether accumulation patterns persist until melt-out, or 

whether they are overridden by more complex ablation patterns. Since amount and timing of shortwave irradiance are largely 

controlled by topography, south-exposed slopes are more prone to accumulation patterns being superseded by ablation patterns 

even early in the season compared to north-exposed slopes, where accumulation patterns likely persist throughout melt-out. 

Finally, variability in meteorological conditions alters the relative strength of processes (accumulation, direct insolation, 635 

longwave driven ablation) and can thus cause snow accumulation and ablation pattern inconsistencies between years. This 

framework explains why snow distribution patterns in some areas exhibit a strong relationship with canopy structure, while 

they do not in other areas, and why this can change between years.  

Process understanding gained from this work provides context to existing snow distribution datasets and a proof of concept 

for the continued development and application of hyper-resolution modelling approaches to forest-snow related research in 640 

complex terrain. Potential usages include questions that revolve around developing sub-grid variability parametrization in 
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coarse-resolution models, exploring the eco-hydrological effects of the observed small-scale snow dynamics, and the 

application of hyper-resolution models in environmental change impact studies. 
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S1: Physiographic maps over the full model domain 

To complement the site description in the main article (Section 2.2 and Figure 1), Figure S1.1 reports additional maps of 

physiographic variables across the model domain, including local canopy cover fraction, elevation, aspect and slope. 

 

Figure S1.1: Local canopy cover fraction (a), elevation (b), aspect classes (c), and slope (d) across the full model domain. 25 
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S2: Canopy structure representation in FSM2 

The diversified representation of canopy structure of FSM2 with process-specific canopy metrics constitutes the model’s 

principal asset. With this strategy, FSM2 considers that different canopy-mediated processes are regulated by different and 30 

potentially uncorrelated canopy characteristics. A point located in a canopy gap, as example, experiences the interception 

regime of a very sparse canopy, but may be affected by frequent shading, which implies conditions typical of a dense 

canopy. These independent and contrasting canopy controls on each of the various processes cannot be reproduced if all 

processes are parametrized with the same, bulk canopy descriptors. Bulk canopy metrics may thus be suited for intermediate- 

or coarse-resolution model applications targeting the estimation of spatially averaged fluxes and states, but hyper-resolution 35 

approaches that strive to reproduce meter-scale patterns require explicit representation of a wide range of detailed canopy 

features. The canopy metrics used within FSM2 comprise horizontal, vertical, local, and stand-scale canopy characteristics at 

each modelled location. Consequently, the canopy’s structural diversity is captured even though canopy is represented with a 

so-called one-layer model. Figure S2.1 illustrates this concept, summarizing the different canopy perspectives, the 

corresponding metrics, approaches, and data sources used to derive them, and the processes employing them. The schematic 40 

complements the mathematical formulation of the process parametrizations provided in the respective model description 

papers, Essery (2015) and Mazzotti et al. (2020a,b).  

Transmission of direct shortwave radiation through the canopy involves a particularly complex interaction with small-scale 

canopy elements. Because transmissivity is dictated by the presence of canopy elements in the path of the solar beam, it 

depends on the exact geometric arrangement of the point of interest, the canopy, and the sun, and is thus highly variable in 45 

space and time. By accepting transmissivity time series as model input, FSM2 forgoes simplification of the process 

representation that comes with any parametrization, and instead leverages the benefits of an (external) radiative transfer 

model that resolves the process explicitly. So far, FSM2.0.3 has been used in tandem with the radiative transfer model 

HPEval (Jonas et al., 2020), which comprises a traditional approach to compute transmissivity time series at a point based on 

a high-resolution hemispherical image. The radiative transfer model depicted in the schematic in Figure S2.1 illustrates the 50 

HPEval approach. In this study, transmissivity time series are computed following the HPEval methodology based on 

synthetic hemispherical images derived from LiDAR datasets instead of real ones. The workflow to create these synthetic 

images, detailed in Webster et al. (2020), integrates canopy segmentation algorithms to identify individual trees in a canopy 

height model and point cloud enhancing algorithms to densify the point cloud, aimed at mimicking opaque stems and 

branches. The resulting images feature more realistic and detailed tree shapes than images obtained with unprocessed 55 

LiDAR data (see Section S3). 
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Figure S2.1: Overview of the concepts underlying the canopy structure representation in FSM2: different perspectives, relevant 

data sources and computation approaches, resulting metrics, and modelled processes that use the respective metrics.  60 
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S3: Summary of FSM2 validation at the process level 

This study relies on FSM2’s capability to accurately simulate the spatio-temporal patterns of individual fluxes and states that 

constitute forest snow processes, which was extensively tested in a previous study by Mazzotti et al. (2020a). Figure S3.1 

reports an example of their validation efforts to illustrate the underlying methodology. Data were acquired with multiple 65 

meteorological sensors mounted on a motorized cable car platform (Figure S3.1). Over the course of a winter, the system 

was deployed along several forest transects of approx. 50 m length each in both Switzerland and Finland. Surveys covered 

variable canopy structures and forest species, weather conditions, as well as sub-alpine and boreal climates. Observations 

from the cable car setup were complemented by data from two additional handheld and stationary setups, yielding a dataset 

with an unprecedented variety of micro-meteorological and snow measurements. FSM2 simulations at high spatial and 70 

temporal resolution were directly compared to the acquired datasets. The example in Figure S3.1 features measurements 

from a full 24-hour cycle along a cable car transect and corresponding FSM2 simulations at 1.5m spacing and 10min 

temporal resolution. To our knowledge, FSM2 is the only forest snow model to have ever undergone such a rigorous 

validation.  

FSM2’s ability to replicate individual fluxes and states and their spatial and temporal variability was quantitatively assessed 75 

in terms of transect averages and standard deviations of all measured variables across all available datasets (Figure S3.2). 

Root means square errors (RMSE) of 23 Wm−2 and 4Wm−2 resulted for average shortwave and longwave irradiances, 

respectively, while their standard deviations featured RMSEs of 21Wm−2  and 2Wm−2. RMSEs of mean and standard 

deviation of canopy air space temperatures were 1.6°C and 0.4°C, for snow surface temperatures they amounted to 0.6°C 

and 0.4°C. Performance metrics all showed substantial improvements relative to the standard land surface model canopy 80 

implementation that was used as benchmark in Mazzotti et al. (2020a).  

The accuracy of the shortwave radiative transfer calculations in FSM2 is dictated by the accuracy of the external radiative 

transfer model. Webster et al. (2020) showed that shortwave radiation estimates using synthetic images obtained with the 

LiDAR enhancing methodology were similar to estimates obtained with real images (Figure S3.3, a-e), and patterns of 

shadows on the snow surface (f) matched those captured with UAV-imagery (g) with high level of detail.  85 

While plausibility checks as presented in Section 2.3 (main article) are important to ensure model applicability for a specific 

use case, we believe that quantitative validations at the level of individual fluxes and states such as in Mazzotti et al. (2020a) 

and summarized here are more conclusive than assessments based on snow extent and depth data alone.  
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Figure S3.1: The multi-sensor platform in operation along a 50-m cable (yellow arrow) in a pine stand near Davos, Switzerland 90 

below variable canopy cover (sky-view fraction, SVF, obtained from hemispherical photographs acquired along the transect). 

Resulting model validation: observed spatiotemporal variability of measured variables during a 24-h cycle (19. to 20.03.2019) and 

corresponding FSM2 simulations. The direct comparison between model results and observations is achieved by extracting model 

output at each point based on the time stamp of the respective observation. Adapted from Mazzotti et al. (2020a), Fig. 1 and 3.  
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 95 

Figure S3.2: Observed vs. modelled averages and standard deviations of subcanopy shortwave (a,b) and longwave (c,d) 

irradiances, canopy air space (e,f) and snow surface (g,h) temperatures. Data points correspond to temporal averages at point 

locations (crosses), spatial averages along the cable car transects (dots), and spatial averages over plots surveyed with a handheld 

setup (squares) at given points in time. Individual colors represent each study area, where Laret and Flin are located in the 

Eastern Swiss Alps and Sodankylä in sub-arctic Finland. Adapted from Mazzotti et al. (2020a), Figures 5 and 7. 100 
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Figure S3.3: Changing solar position across a 6-month solar cycle in yellow within (a) a real hemispherical photograph, (b) 

synthetic hemispherical images from the enhanced LiDAR and (c) original LiDAR. Modelled total daily radiation across the same 

period (d) at location X in the canopy height model (e). Comparison of modelled radiation (f) and snow surface shadowing as 105 

photographed from a drone (g) at 09:30 (left), 12:30 (center) and 15:30 (right) on 28.03.2019. Adapted from Webster et al. (2020), 

Fig. 8 and 10. 
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S4: Meteorological conditions during the simulation period 

The following figures provide an overview of meteorological conditions during the six simulated water years to give context 

to the observed differences in snow cover dynamics outlined in the main article. We focus on the three variables that, as 110 

elaborated on in the main article, have the largest potential to cause differences between years: snowfall (affects total 

accumulation), shortwave radiation, and temperature (affect the timing and strength of melt, as well as whether it is mainly 

driven by short- or longwave radiation contributions). The left panel of Figure S4.1 reports weekly snowfall sums between 

the beginning of November and June, which represent the earliest and latest yearly median of the start of snow cover period 

and snow disappearance date. Some marked differences in how the precipitation is distributed throughout the snow season 115 

can be observed. The right panel of Figure S4.1 shows cumulative snowfall between the median start of snow cover and 

snow disappearance dates of each specific year. This visualization evidences the substantial differences in timing and length 

of snow cover period and total snowfall between the years, with WY2016 (lowest accumulation) amounting to only half of 

total snowfall of WY 2019 (highest accumulation). 

 120 

Figure S4.1: Weekly snowfall during the six modelled winters between November and June (left) and cumulative snowfall over the 

median snow cover duration period of the respective year (right). 
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Figure S4.2 contrasts shortwave radiation (left) and air temperatures (right) during the six simulated winters, with the upper 

row showing weekly values and the lower row the weekly deviation from the six-year average. While no year is clearly 125 

above or below average for any of the two variables for the entire season, some marked deviations from the averages can be 

detected in these plots, for instance the relatively warm period in the middle of the 2020 winter.  

 

Figure S4.2: Incoming shortwave radiation (left) and air temperature (top right) of the six simulated winters, and deviation from 

mean (lower row) for the same variables. 130 
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S5: Maps of snow cover and energy balance descriptors for WY2019 over the full model domain 

While some figures in the main article include maps of a subdomain of the model domain to illustrate patterns of snow cover 

descriptors and energy fluxes, here we add the corresponding maps for the full model domain for interested readers. Figure 

S5.1 reports peak SWE, ablation rate, day of peak SWE and snow disappearance day for WY 2019, corresponding to Figure 135 

5 of the main article.  

 

Figure S5.1: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2019. 
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Figure S5.2 shows average incoming irradiances and early melt between mid-January and end of February 2019, analogous 140 

to Figure 7 of the main article. Note the addition of incoming longwave radiation which further underpins the statement that 

all-wave irradiance patterns are largely determined by patterns of incoming shortwave radiation.  

 

Figure S5.2: Average incoming short (a) and longwave (b) radiation, all-wave radiation (c) and snow melt (d) between mid-

January and end of February 2019. 145 
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Figure S5.3 includes average patterns of the individual surface energy balance components (net short- and longwave 

radiation, sensible and latent heat) as well as net surface energy flux computed as the sum of the four. Maps shown are for 

the second half of February 2019, analogous to the upper part of Figure 8 in the main article. 

 150 

Figure S5.3: Individual surface energy components (net short- and longwave radiation, SWR (a) and LWR (b), as well as sensible 

and latent heat fluxes, SHF (c) and LHF (d)) and net surface energy flux (NSEF, e) computed as sum of the four, for the second 

half of February 2019. 
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S6: Location of example points within the model domain 

The location of example points used for the analysis of snow evolution and energy balance partitioning pathways presented 155 

in Section 3.3 and 3.5 are shown in Figure S6.1. In Section 3.3, points were chosen to cover the entire range of canopy 

structures and topographic locations (Figure S6.1b, corresponding to points shown in Figure 6 of the main article). In Section 

3.5, we focused our analysis on points located at the south-exposed slope and sparse canopy or small gaps to explore 

differences between years (Figure S6.1c, corresponding to points shown in Figure 10 of the main article). 

 160 

Figure S6.1: Locations of example points. Overview (a), points presented in Section 3.3 / Figure 6 of the main article (b), and points 

used in Section 3.5 / Figure 10 of the main article. Colours marking individual points match the colour code of the figures in the 

main article. 
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S7: Maps of snow cover descriptors for the other simulated WYs 

In Section S5, we presented full-domain maps of snow cover descriptors for WY 2019, which is used as main example 165 

throughout the article. To complement Figure S5.1, Figures S7.1 to S7.5 report snow cover descriptors for all other 

simulated WYs. These figures provide an additional visual impression of the between-year consistencies and differences of 

these snow metrics. Moreover, it should be noted that correlation coefficients presented in Section 3.2 of the main article rely 

on these data. 

 170 

Figure S7.1: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2016. 



16 

 

 

Figure S7.2: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2017. 
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Figure S7.3: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2018. 175 
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Figure S7.4: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2020. 
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Figure S7.5: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2021. 
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