1 Quantifying the trade-offs in re-operating dams for the environment

in the Lower Volta River

- 3 Afua Owusu^{a b}, Jazmin Zatarain Salazar^b, Marloes Mul^a, Pieter van der Zaag^{a c}, Jill Slinger^{b d}
 - ^a Land and Water Management Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
 - ^b Faculty of Technology, Policy and Management, TU Delft, Jaffalaan 5, 2628 BX Delft, The Netherlands
- 7 ^c Faculty of Civil Engineering and Geosciences, TU Delft, Stevinweg 1, 2628 CN Delft, The Netherlands
- 8 d Institute of Water Research, Rhodes University, Drosty Rd, Grahamstown, 6139, South Africa

9 Supplementary material

2

4

5

6

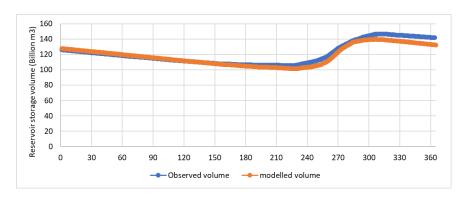


Figure S1: Observed volume as compared with modelled volume (2010, wet year)

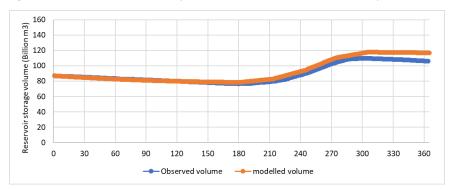


Figure S2: Observed volume as compared with modelled volume (1985, normal year)

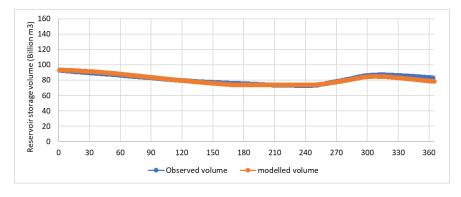


Figure S3: Observed volume as compared with modelled volume (2006, dry year)

Reference	Time period	Climate model	Hydrological model	Scenarios	Predictions
Kunstmann and Jung, 2005	2030-2040	ЕСНАМ4-ММ6	OSU-LSM	IS92a	Monthly changes: increase: May-June & Aug- Nov (range 20-55%) decrease: July (10%); Feb-May and Dec (20%-75%)
					18% increase in annual runoff
Aerts et al., 2006	2001-2099	ECBilt-CLIO- VECODE	STREAM	A2	Annual trend: 65% increase mean decadal runoff
Jung et al., 2012	2030-2039	ECHAM4-MM5	WaSIM	IS92a	Monthly changes: increase: Jun, Sept & Oct (range 15-30%) decrease: July & Aug (6-8%) Annual trend: 4% increase in annual runoff
McCartney et al., 2012	2071/2100 2021/2050, 1983/2012	ECHAM4-MM5 HadCM3	SWAT and WEAP	A1B	Annual trend: 45% decrease in annual runoff
Sood et al.,2013	2021-2050 2071-2100	ECHAM5	SWAT	A1B	Annual trend: Decrease by 13% in water yield in 2021-2015 Decrease of 40% in 2071-2100
Amisigo et al.,2015	2010-2050	NCAR_CCSM3_0 A2 CSIRO_MK3_0 A2 NCAR_PCM1 A1b IPSL_CM4 B1	WEAP	A2 A1b B1	Inconsistent results across scenarios
Jin et al., 2018	1951-2100	CNRM-CM5 HadGEM2-ES CanESM2	INCA	RCP 8.5	Monthly changes: increase: wet season flow: June to Sept (10-50%) decrease: dry season months
Abubakari, 2021	2011-2040 2041-2070 2071-2100	CFSR	SWAT	A1B	Monthly changes: increase: February to August decrease: September to January Annual trend: 12% increase in annual runoff

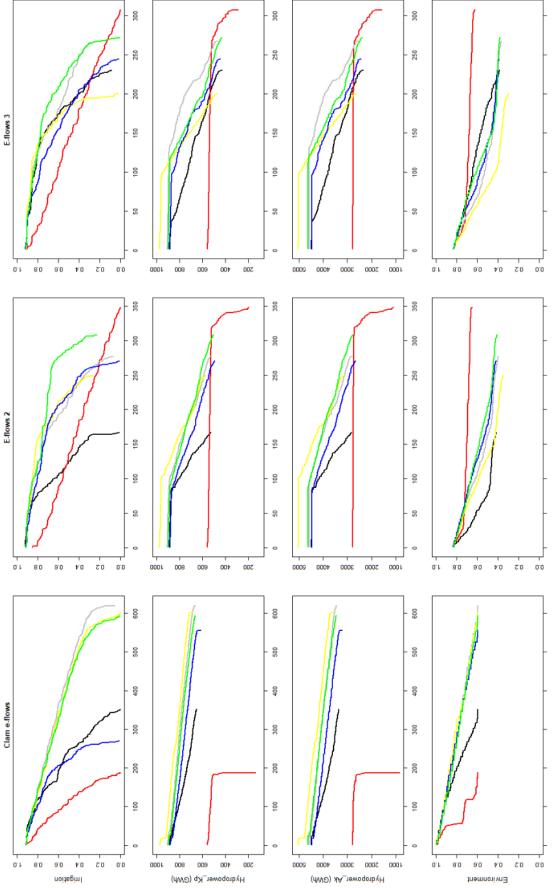


Figure S4: Cumulative distributive graphs showing the function values of all the non-dominated solutions for the baseline and future scenarios. Notation- scenarios: S1 to S5- Scenario 1 to 5, D- dry season flow, W-wet season flow