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Abstract. Groundwater recharge is a key component of the hydrological cycle, yet its direct measurement is complex and

often difficult to achieve. An alternative is its inverse estimation through a combination of numerical models and transient

observations from distributed soil water monitoring stations. However, an often neglected aspect of this approach is the effect

of model predictive uncertainty on simulated water fluxes. In this study, we made use of long-term soil water content measure-

ments at 14 locations from the Austrian soil water monitoring program to quantify and compare local, potential groundwater5

recharge rates and their temporal variability. Observations were coupled with a Bayesian probabilistic framework to calibrate

the model HYDRUS-1D and assess the effect of model predictive uncertainty on long-term simulated recharge fluxes. Esti-

mated annual potential recharge rates ranged from 44 mm a−1 to 1319 mm a−1 with a relative uncertainty (95% interquantile

range/median) in the estimation between 1-39%. Recharge rates decreased longitudinally, with high rates and lower seasonality

at western sites and low rates with high seasonality and extended periods without recharge at the southeastern and eastern sites10

of Austria. Higher recharge rates and lower actual evapotranspiration were related to sandy soils; however, climatic factors

had a stronger influence on estimated potential groundwater recharge than soil properties, underscoring the vulnerability of

groundwater recharge to the effects of climate change.

1 Introduction

Groundwater is the largest reservoir of liquid freshwater on earth and one of the most important sources of drinking and15

irrigation water. Under changing climatic conditions with extremes occurring more frequently and intensely, the strategic

importance of groundwater for global water and food security is expected to further increase (Taylor et al., 2013). In some

countries, such as Austria, groundwater including spring water is the most important water resource, making up 100% of the

water supply (Vogel, 2001). The major limitation for sustainable groundwater use is recharge, which represents the maximum

amount of water that may be withdrawn from an aquifer without depleting it. This makes it a crucial variable for groundwater20

resource management (Moeck et al., 2020; Taylor et al., 2013). A large portion of groundwater recharge comes from water

infiltrating soil and flowing through the vadose zone towards the water table (Döll and Fiedler, 2008; Nolan et al., 2007).

Infiltration capacity, root water uptake and evaporation from the upper soil layers determine the net amount of water which is
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transported into the deeper vadose zone, following the gradient in matric potential and gravity (Vereecken et al., 2008). Water

flow through the vadose zone is supposed to have a major influence on the process of groundwater recharge even at karst25

mountain sites (Berthelin et al., 2020; Hartmann et al., 2014; Kaminsky et al., 2021; Neukum et al., 2008).

The quantification of recharge is complicated by temporal and spatial variability and by the fact that direct measurements are

difficult (Moeck et al., 2020, 2018; Nolan et al., 2007; Scanlon et al., 2002). Lysimeters are the only means to obtaining local

measurements of seepage flow, which can be considered a good indicator of groundwater recharge (Moeck et al., 2020, 2018;

Seneviratne et al., 2012; von Freyberg et al., 2015). However, their appropriate set up is difficult without introducing a bias30

in the hydrological processes (Barkle et al., 2011; Groh et al., 2016; Pütz et al., 2018; Stumpp et al., 2012). Furthermore,

the operation and maintenance of lysimeters is expensive, which is why long-term lysimeter measurements are scarce (Nolz

et al., 2016; von Freyberg et al., 2015). Among the most widely used alternatives for recharge estimation are methods based on

artificial and environmental tracer experiments (e.g., Boumaiza et al., 2020; Chesnaux and Stumpp, 2018; Koeniger et al., 2016)

and groundwater table fluctuations (Moeck et al., 2020; Collenteur et al., 2021). Common water table fluctuation methods,35

however, face some limitations in reflecting and predicting the actual recharge process (Collenteur et al., 2021; Healy and

Cook, 2002).

Moeck et al. (2020) collected and investigated a global scale data set of natural groundwater recharge rates where, however,

recharge rates from high altitudes were underrepresented. For mountain sites in particular, there is a lack of reported ground-

water recharge rates (Bresciani et al., 2018; Moeck et al., 2020). A limited number of studies report local or regional recharge40

rates based on different modeling approaches using field measurements, such as groundwater levels and river discharge, or

available information on vegetation and subsurface, and assess controlling factors on groundwater recharge (e.g., Barron et al.,

2012; Collenteur et al., 2021; Hartmann et al., 2017; Keese et al., 2005; Neukum and Azzam, 2012).

An alternative is the inverse estimation of recharge fluxes through the unsaturated zone by calibrating vadose zone hydro-

logical models against transient observations (e.g., soil water content and pressure head). Over the last decades, numerical45

modeling of soil water fluxes has been applied and improved, resulting in today’s state of the art soil models with an imple-

mentation of the Richards Equation for simulating the transport of water through the soil, considering heat and energy balances

and accounting for relevant processes such as plant water uptake and snow hydrology (Šimůnek et al., 2016, 2003; Vereecken

et al., 2016).

The core of this modeling approach is generally the inverse estimation of hydraulically relevant parameters, such as Soil50

Hydraulic Parameters (SHPs) (e.g., Van Genuchten, 1980). The use of field measurements guarantees a higher generalizability

of estimated parameters compared to small scale measurements of soil samples in the laboratory (Dyck and Kachanoski, 2010;

Groh et al., 2018; Stumpp et al., 2012; Vereecken et al., 2008; Vrugt et al., 2008; Wöhling et al., 2008). Several studies

have evaluated the use of vadose zone measurements for the inverse estimation of effective SHPs and the reliable prediction

of recharge fluxes (Durner et al., 2008; Groh et al., 2018; Schelle et al., 2012). However, inverse parameter estimation is55

often treated as an optimization problem aiming at a unique solution, which neglects the uncertainty which is fundamentally

associated with parameter identification. Uncertainties originate from different error sources including model input and forcing

data, the initial and boundary conditions, the model structure, heterogeneity and scale effects (Beven, 2006; Vereecken et al.,
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2016). Further, the quality and scope of calibration data affects the uncertainty in parameter estimation. It is important not to

neglect uncertainties related to the model calibration as they can lead to uncertain or even failing predictions (Finsterle, 2015;60

Vrugt and Sadegh, 2013). The emergence of computationally efficient algorithms makes it possible to deal with uncertainties

in a statistically rigorous way based on the Bayesian approach to statistics (e.g., Brunetti et al., 2019; Scharnagl et al., 2011;

Wöhling et al., 2008). This approach relies on the idea of integrating a priori knowledge of the system in the statistical inference,

to combine it with observed data in order to derive the posterior probability distribution of parameter values, which can be used

to quantify model uncertainty. Posterior parameter distributions also reflect the non-uniqueness and equifinality of parameter65

values.

In combination with a soil hydraulic model, an efficient algorithm is needed to compute posterior distributions with an iter-

ative Monte Carlo approach and to allow for a clear convergence in a reasonable amount of time. Skilling (2006) introduced

Nested Sampling as an efficient Monte Carlo method to estimate the integral of the Bayesian evidence, the denominator of

Bayes theorem, and obtain posterior distributions as a side product. Its efficiency has been further increased with ellipsoidal70

Nested Sampling (Mukherjee et al., 2006). Finally, ellipsoidal rejection sampling, as proposed by Feroz et al. (2009) with the

MULTINEST algorithm, is able to account efficiently for multimodal posterior distributions. A Bayesian statistical framework

using a Nested Sampling approach in combination with a physically based soil water model and soil water monitoring mea-

surements thus provides a powerful tool for a comprehensive characterization of the vadose zone at individual sites and the

estimation of local water balances, including an assessment of the model uncertainties.75

In this study, we made use of long-term volumetric soil water content measurements at 14 different locations from the Aus-

tria wide soil water monitoring program and integrated them in a Bayesian probabilistic framework with the MULTINEST

algorithm to calibrate the hydrological model HYDRUS-1D at each location. We used this approach to account for the un-

certainties inherently associated with the inverse parameter estimation, and we simultaneously assessed and propagated the

model predictive uncertainty in simulated local potential groundwater recharge rates. All sites were modeled with the same80

approach on a similar data basis supporting comparability of the results. Site properties included a variety of soils and climatic

conditions which allowed to investigate factors which influence the long-term soil water balances and temporal variability of

potential groundwater recharge.

2 Material and methods

2.1 Austrian soil water monitoring program85

The locations of 14 Austrian soil water monitoring sites are shown in Fig. 1(a). Figure 1(b) gives an overview over soil types

according to the digital soil map of Austria (BFW, 2016). Figures 1(c) and 1(d) show long-term annual areal precipitation

and actual evapotranspiration estimates (modified from Kling et al. (2007b) and Kling et al. (2007a), respectively). According

to texture information (ÖNORM L 1050), the soil types at the measurement sites vary between sand and silt loam/loamy

silt (11 – 88% sand, 12 – 75 % silt, and 0 – 32% clay). Details on altitude, geo-coordinates, soil textures, and measurement90

depths are given in the Appendix (Table A1). Zettersfeld, Gschlössboden and Sillianberger Alm are on the sub-alpine level in
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the southwest of Austria, characterized by high contents in organic matter, coarse soil texture and/or high skeleton fraction;

Leutasch, Achenkirch, Gumpenstein and Aichfeld-Murboden are at the montane level from western to central Austria with soil

textures ranging between sand and loam; Pettenbach, Elsbethen and Lauterach are located at the foothill zone in western to

central Austria with soil textures ranging from loam to loamy silt; Kalsdorf, Schalladorf, Lobau and Frauenkirchen are situated95

in the southern and eastern lowlands with sandy to loamy soil textures. Locations included in this study are horizontally even

at the plot scale, and usually consisting of uncultivated grassland. In contrast, cultivation of alternating crops was carried out

at the location Pettenbach, where details on the crop cover for calibration and validation periods were obtained from technical

reports provided by the Upper Austrian Government (Land OÖ, 2013, 2014).

Long-term field measurements of volumetric soil water content, measured with Time Domain or Frequency Domain Reflec-100

tometry (TDR/FDR) over several years, partly since 1996, are carried out within the Austrian Soil Water Monitoring Program

of the Federal Ministry of Agriculture, Regions and Tourism (BMLRT). Under this program, continuous measurements are

conducted at various depth levels of soil profiles with the aim of providing standardized and quality assured measurement data.

For inverse parameter estimation in this study, we selected calibration periods of around six months with sufficiently complete

and plausible soil water content measurement series (Fig. A2 in the Appendix) and aggregated the data to a daily resolution. We105

used a model spin-up period of two months to relax the effect of initial conditions on the estimation procedure. The length of

calibration periods was chosen to be similar for all sites, long enough to be informative for a range of soil water conditions. We

excluded the winter season requiring the simulation of snow accumulation and melt processes as it increases the computational

cost and numerical sensitivity of the simulations and introduces additional complexity and potential biases in the calibration.

The use of spring-summer months, which have an alternation of wet-dry periods, is expected to increase the informativeness110

of soil water measurements. The monitoring program also offers composite matric potential measurements from tensiometers

and gypsum blocks. The discontinuity of the data complicates the modeling and analysis, which is why they have not been

used in this study. Validation periods were chosen to provide one year or more of continuous, plausible data. Snow hydrology

was simulated for the model validation, as described in Sect. 2.2.1. Details on calibration and validation periods are summa-

rized in Table A2. Several locations were equipped with lysimeters: At Leutasch and Pettenbach, in situ soil water content115

measurements were directly obtained from lysimeter set ups; in Gumpenstein, soil water content measurements were obtained

from a soil profile next to a lysimeter cluster which provided long-term seepage measurements. Lysimeter measurements from

Leutasch and Gumpenstein were used for additional validation of recharge rates.

2.2 Modeling theory

2.2.1 Water flow and root water uptake120

The mechanistic model HYDRUS-1D (Šimůnek et al., 2016) was used to simulate water flow in the vadose zone profiles.

HYDRUS-1D is a finite element model that numerically solves the one-dimensional Richards equation [Eq. (1)]

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h

∂z
+1

)]
−S(h) (1)
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Figure 1. (a) Locations of 14 monitoring sites in Austria (1) Lauterach, (2) Leutasch, (3) Achenkirch, (4) Gschlössboden, (5) Sillianberger

Alm, (6) Zettersfeld, (7) Elsbethen, (8) Gumpenstein, (9) Aichfeld-Murboden, (10) Kalsdorf, (11) Pettenbach, (12) Schalladorf, (13) Lobau,

(14) Frauenkirchen; (b) Soil map data basis: Digital soil map of Austria, 1km raster, Federal Forest Research Center (BFW, 2016); (c) Hydro-

logical Atlas of Austria (HAO) mean areal annual precipitation (Kling et al., 2007b); (d) HAO mean areal annual actual evapotranspiration

(Kling et al., 2007a); Maps from the HAO where compiled using QGIS (QGIS Development Team, 2022).

where θ[L3L−3] is the volumetric water content, t[T ] is the time variable, z[L] is a vertical coordinate, K(h)[LT−1] is the125

unsaturated hydraulic conductivity function and h[L] is the pressure head. S[T−1] is a sink term accounting for water uptake

by plant roots. The unimodal Van Genuchten-Mualem (VGM) model described the soil hydraulic properties, namely the soil

water retention curve [Eq. (2)], and the unsaturated hydraulic conductivity [Eq. (3)]:

θ(h) =

 θr +
θs−θr

(1+(|αh|)n)m , h < 0

θs, h≥ 0
(2)

K(h) =KsS
l
e

[
1−

(
1−S1/m

e

)m]2
(3)130

m= 1− 1/n,n > 1 (4)
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Se =
θ− θr
θs − θr

(5)

where θr[L
3L−3] is the residual water content, θs[L3L−3] is the saturated water content, α[L−1], n[−] and m[−] are van-135

Genuchten shape parameters, with the relation given in Eq. (4), Se [-] is the effective saturation (defined in Eq. (5)) and l[L]

is a pore connectivity parameter. The unimodal VGM model was successfully used in several studies to parameterize the

hydraulic behavior of variably saturated soils (e.g., Brunetti et al., 2020b; Dettmann et al., 2014; Lambot et al., 2002). It has

been shown to become more inconsistent in the clay range of soil textures (Fuentes et al., 1992); however, this limitation does

not affect any soils in the framework of this study and was thus employed for all sites. The sink term for the simulation of plant140

water uptake is implemented according to Eq. (6) (Feddes et al., 1978), where rd[L] is the root depth, Tp[L] is the potential

transpiration and α(h) is a prescribed water stress response function depending on the crop type. The crop parameterization for

the sites in this study used the default values for grass cover (Taylor et al., 1972), except for the Pettenbach calibration with

maize parameterization according to Wesseling et al. (1991).

S(h) = α(h)
1

rd
Tp (6)145

The model domain was set up from soil surface to 1.5 m depth at all sites and two different soil materials were defined for the

upper soil (including 20 cm root zone) and the lower soil, respectively. The depths of the soil layers are given in the Appendix

in Table A3. The available soil water measurements and profile information (texture data and soil horizons) indicated a distinct

topsoil overlying deeper soil layers with low to mild degrees of inhomogeneity at the vast majority of the soil profiles. Dealing150

with 14 monitoring stations, we uniformly adopted two soil layers with varying thickness across different locations, aiming to

reduce the overall computational burden of the Bayesian analysis while maintaining a physically realistic description of the

soil domain. Simplifications of the soil profile in the model geometry with a mildly heterogeneous soil will usually lead to an

acceptably small loss of accuracy in effective parameters (Schneider et al., 2013).

In this study, we define the point at which percolating water is expected to contribute to groundwater recharge as the amount155

of water that arrives at the bottom of the area at a depth of 150 cm, well below the root zone. It is assumed that water arriving at

this depth will not be subject to further loss mechanisms and so will reach the water table (Heppner et al., 2007). Similar to our

approach, Šimůnek (2015) and Heppner et al. (2007) simulated groundwater recharge with HYDRUS-1D for grass-covered

soils as bottom flux at 100 cm profile depth; Assefa and Woodbury (2013) used different profile depths of up to 150 cm.

However, since the point where water actually reaches the water table remains unknown, the estimation with this approach can160

be referred to as potential recharge (Scanlon et al., 2002).

Daily time-steps were used in all simulations, for variable boundary conditions as well as simulated soil water content

and water fluxes. Meteorological data for the sites, including precipitation, solar radiation, sunshine duration, wind speed,
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and relative humidity, were obtained from the Central Institution for Meteorology and Geodynamics (ZAMG), Austria. The

potential evapotranspiration ET0 was calculated with the FAO Penman-Monteith method according to Allen et al. (1998).165

At the upper boundary of the model domain, an “atmospheric”, “zero-ponding” boundary condition was specified, where an

equilibrium is prescribed between the soil surface pressure and atmospheric water vapor pressure when the evaporative demand

exceeds the soil evaporation capacity, and where the pressure at the soil surface is set to zero when both infiltration and surface

runoff occur. For the parameter estimation during the half-year calibration periods, as well as for the model validation periods,

we chose boundary conditions with respect to the conditions at the measurement plots, i.e. seepage face for the lysimeter sites170

and free drainage for sites with natural field conditions. For the simulation of long-term potential recharge rates, the lower

boundary condition at all sites was set to free-drainage in order to reflect natural conditions with a water table far below the

model domain. To improve comparability of long-term simulations at the sites, a grass reference was used with the calibrated

Pettenbach model to simulate long-term groundwater recharge. Long-term simulations comprised the entire period of available

soil water and meteorological data. For the location Achenkirch, only two years of meteorological data (2017-2018) were175

available.

For model validation and long-term simulations, snow accumulation and snow melt was accounted for in HYDRUS-1D. The

model treats any precipitation falling at a temperature below -2°C as snow and any precipitation above +2°C as liquid, assuming

a linear transition between -2°C and +2°C. A 0.4 snow sublimation constant was used for the reduction of potential evaporation

from snow and the simulation of snow melt at temperatures above 0°C used a constant of 0.43 cm day −1 °C−1. This default180

snow routine in HYDRUS is based on assumptions by Jarvis (1994) and has been found to be suitable for estimating soil water

fluxes in unfrozen soils in several studies, (e.g., Assefa and Woodbury, 2013; Zhao et al., 2008).

2.2.2 Bayesian analysis

Bayes theorem [Eq. (7)] is the basis for the estimation of parameter posterior distributions which are used for quantification of

model parameter uncertainties after calibration.185

P (Ω |D,M) =
P (D |M,Ω)P (Ω |M)

P (D |M)
(7)

Here, P (Ω |D,M) is the posterior probability of the model parameters (Ω), given the data (D) and the model (M ), P (D |
M,Ω) is the conditional probability of the data given the model and parameters, P (Ω |M) is the prior probability and P (D|M)

is the marginal likelihood or Bayesian model evidence (BME). Prior knowledge, i.e. information available before looking at190

measured data, is included in the Bayesian inference via the prior distribution which can be chosen as a uniform density

bounded by physical limits (e.g., Brunetti et al., 2020b; Gupta et al., 2022; Wöhling et al., 2015). In this study, uniform prior

distributions were assumed for all parameters and sites. Their ranges were established based on texture information, literature

review, and preliminary testing to prevent truncating posteriors. Final ranges are given in the Appendix in Table A3. By
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combining the likelihood and the prior, we obtain a posterior distribution of the most probable SHP values, which reflects the195

parameters’ uncertainty.

We used volumetric water content measurements from TDR sensors in the calibration where the measurement error is based

on electromagnetic instantaneous pulses and can be assumed to be independent, homoscedastic, and normally distributed. This

leads to a Gaussian likelihood function [Eq. (8)], where σ is the standard deviation in the measurement error, Mi(Ω) is the

model realization and ỹi is the corresponding observed data.200

L(Ω |D,M) =

k∏
i=1

1√
2πσ2

exp

[
−1

2
σ−2 (Mi(Ω)− ỹi)

2

]
(8)

The choice of likelihood function is critical to the outcome of Bayesian inference and is the subject of ongoing debate. A

recent promising approach that should be explored in future studies is the universal likelihood proposed by Vrugt et al. (2022).205

Instead of making prior assumptions about the distribution of model residuals in the likelihood function, this approach is

distribution-adaptive to the actual residual properties. However, in the present study, we used the Gaussian likelihood function

as described above for process-based probabilistic inference, where we use significant, systematic discrepancies between model

predictions and observations that violate our assumptions as indicators that the model structure needs improvement. We show

the residual checks as example for the location Gumpenstein in the Appendix (Fig. A1).210

At all 14 locations, 10 soil hydraulic parameters (SHPs) (residual and saturated water content parameters θr and θs, shape

parameters α and n, and the saturated hydraulic conductivity parameter Ks, for two soil layers, respectively) were estimated

per site. The pore connectivity parameter l was fixed to 0.5 according to Mualem (1976). Together with the SHPs, the standard

deviations of the measurement errors were estimated in the Bayesian inference.

The implementation of the Bayesian approach in a numerical framework can become challenging for non-linear models215

such as the model used here. The Nested Sampling algorithm as proposed by Skilling (2006) has been used successfully

for parameter estimation and uncertainty quantification in studies with non-linear hydrological or biogeochemical models

(Brunetti et al., 2020a; Elsheikh et al., 2013). It has been tested in Schübl et al. (2022) with synthetic data scenarios for SHP

estimation with similar HYDRUS models where it reliably inferred the true parameter values as well as standard deviations of

the artificial errors in the calibration data. Nested Sampling is an efficient Monte Carlo method which estimates the Bayesian220

model evidence and calculates posterior distributions as a side product. It transforms the multi-dimensional integral of the

Bayesian model evidence (BME) into a one-dimensional one, which is then solved iteratively, based on the evaluation and

redistribution of a number of “live points” over the parameter space. Several improvements were implemented with the original

algorithm such as the ellipsoidal rejection sampling scheme which is able to establish multiple posterior modes. This has been

realized in the algorithm MULTINEST by Feroz et al. (2009). The algorithm has been shown to be well suited to multimodal225

distributions and moderately complex inverse problems with up to 20 parameters (Buchner, 2016; Feroz and Hobson, 2008).

The algorithm is particularly suitable for our study because it offers a high level of efficiency for unimodal problems while also
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handling the possibility of multimodal posteriors. Further details on the algorithm can be found in Feroz et al. (2019, 2009),

Feroz and Hobson (2008) and Mukherjee et al. (2006).

Here, we used a number of live points N=100 to sample the parameter space. This number has been shown to produce a230

reliable estimate of the BME integral (and therefore a satisfactory sampling of the parameter space) in a sensitivity analysis

by Brunetti et al. (2020a, b) for similar models and dimensionalities. At each iteration of the algorithm, the current maximum

likelihood sample point is multiplied with the remaining prior volume to estimate the maximum remaining volume of the

BME integral. Sampling is then terminated according to a tolerance (convergence) criterion, which defines when the remaining

contribution from the current live points to the integral is considered to be small enough. At this point, it is expected, that the235

bulk of the posterior has been sampled sufficiently. The tolerance parameter in this study was set to 0.5. The number of posterior

samples provided by MULTINEST depends on the algorithm convergence with each model. On average, we obtained 4100

posterior samples and corresponding sample weights to characterize posterior parameter distributions. We used 100 random

samples from the posterior to propagate parameter uncertainty in the model for long-term simulations to quantify the resulting

uncertainty in recharge simulations. Uncertainty ranges for SHPs and soil water fluxes are given as 95% interquantile ranges240

(IQR).

2.2.3 Statistical analysis

Simulations with the successfully calibrated models were used in a second step to perform a statistical analysis in order to

characterize and describe the variability of groundwater recharge at the monitoring sites and to assess the influence of climatic,

geographic and soil properties on potential groundwater recharge rates and their temporal variability. For this purpose, we245

used a Principle Component Analysis (PCA) and established clusters of sites with similar properties using Agglomerative

Clustering (Pedregosa et al., 2011). In order to quantify the temporal variability in water balance components, we calculated

the coefficients of variations (CVs) defined as the quotient of standard deviations between months within a year as measure for

seasonal variability. Spearman’s Rho correlations were used to identify predictor variables for potential groundwater recharge

rates and temporal variability. Significance of correlations were evaluated at a 90% confidence level (p<0.1).250

3 Results and discussion

3.1 Calibration and validation

The required number of iterations of the MULTINEST algorithm with models for all 14 locations ranged between 2595 and

5515 (4111 on average) until the termination criterion was satisfied (as described in Sect. 2.2.2), generally resulting in unimodal

posterior parameter distributions. Median parameter estimates and estimated measurement errors including the 95% credible255

interval are given in Table 1 for upper and lower soil layers at the 14 sites. Figure 2 shows exemplarily for the location

Gumpenstein the calibrated measurement error and median prediction of the volumetric soil water content for the upper and
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Figure 2. Parameter estimation at Gumpenstein: calibration period with soil water content measurements (grey) from two depth levels

including the calibrated measurement error σ, and prediction with median parameter estimates (blue).

lower soil layer. Calibration plots for all 14 sites are shown in Fig. A2 in the Appendix. Uncertainty in the parameter estimation

is summarized for all 14 sites in Fig. 3 as ratios between the 95% interquantile range (IQR) and the median estimate.

Median estimates for the VGM shape-parameters α and n varied between 0.001 – 0.945 cm−1 and 1.01 – 2.30, respectively,260

where α was < 0.01 cm−1 at most sites. Except for the high α estimates at Gschlössboden (α1 = 0.945 cm−1) and Lobau

(α1= 0.511 cm−1 and α2 = 0.696 cm−1), the VGM shape parameters fell well within the range of values predicted by the

ROSETTA pedotransfer model (Schaap and Leij, 1998); high estimates for α and n coincided with a high reported fraction in

sand. Median estimates for hydraulic conductivity parameters Ks ranged from 5–3863 cm d−1, where high values were found

for soils with high fractions in organic and stone content (Gschlössboden, Sillianberger Alm, Zettersfeld).265
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Table 1. Median estimates and 95 % credible interval of soil hydraulic parameters and measurement errors for upper (L1) and lower (L2)

soil profiles.

Site θr
(
cm3 cm−3

)
θs

(
cm3 cm−3

)
α
(
cm−1

)
n(−) Ks

(
cm d−1

)
σmeas

(
cm3 cm−3

)
Lauterach L1 0.134+0.062

−0.118 0.425+0.019
−0.010 0.002+0.002

−0.001 1.34+0.19
−0.14 133.9+65.2

−92.4 0.024+0.002
−0.002

L2 0.068+0.094
−0.062 0.390+0.072

−0.008 0.006+0.028
−0.002 1.19+0.09

−0.07 5.3+165.0
−1.3 0.027+0.003

−0.002

Leutasch L1 0.022+0.046
−0.021 0.462+0.028

−0.067 0.006+0.004
−0.002 1.20+0.05

−0.06 667.3+290.3
−339.2 0.031+0.002

−0.002

L2 0.096+0.002
−0.003 0.160+0.010

−0.009 0.005+0.003
−0.002 2.30+0.33

−0.27 770.1+219.1
−272.0 0.011+0.000

−0.001

Achenkirch L1 0.023+0.054
−0.021 0.570+0.025

−0.020 0.001+0.001
−0.000 1.13+0.01

−0.02 776.3+207.2
−333.4 0.048+0.003

−0.004

L2 0.001+0.001
−0.001 0.197+0.002

−0.003 0.004+0.002
−0.001 1.09+0.01

−0.01 1843.8+1.011.6
−708.7 0.011+0.000

−0.000

Gschlössboden L1 0.050+0.000
−0.001 0.278+0.047

−0.025 0.945+0.053
−0.126 2.25+0.27

−0.07 839.0+605.4
−284.6 0.021+0.001

−0.001

L2 0.005+0.006
−0.005 0.320+0.023

−0.046 0.002+0.003
−0.001 2.04+0.19

−0.17 2320.5+293.5
−999.0 0.009+0.001

−0.001

Sillianberger L1 0.143+0.052
−0.093 0.536+0.042

−0.051 0.006+0.009
−0.004 1.12+0.03

−0.02 3098.7+1769.1
−2043.5 0.030+0.002

−0.002

Alm L2 0.189+0.010
−0.040 0.535+0.022

−0.016 0.002+0.001
−0.001 1.11+0.02

−0.01 3863.4+1034.2
−2520.3 0.023+0.002

−0.002

Zettersfeld L1 0.082+0.061
−0.047 0.583+0.015

−0.012 0.060+0.228
−0.027 1.09+0.02

−0.02 562.0+1194.2
−290.5 0.030+0.002

−0.002

L2 0.019+0.022
−0.017 0.256+0.009

−0.010 0.001+0.001
−0.000 1.09+0.02

−0.01 3344.6+1061.8
−1040.8 0.007+0.000

−0.001

Elsbethen L1 0.105+0.082
−0.082 0.453+0.012

−0.006 0.001+0.001
−0.000 1.13+0.05

−0.03 144.8+52.7
−87.3 0.013+0.001

−0.001

L2 0.031+0.074
−0.028 0.408+0.020

−0.010 0.001+0.001
−0.000 1.16+0.06

−0.03 18.3+37.7
−8.5 0.019+0.002

−0.002

Gumpenstein L1 0.051+0.027
−0.038 0.375+0.014

−0.010 0.003+0.001
−0.001 1.08+0.01

−0.01 392.1+97.6
−111.6 0.012+0.001

−0.001

L2 0.067+0.034
−0.050 0.333+0.008

−0.007 0.001+0.001
−0.001 1.08+0.01

−0.02 214.2+172.5
−105.6 0.009+0.001

−0.001

Aichfeld- L1 0.214+0.035
−0.052 0.391+0.010

−0.004 0.026+0.048
−0.012 1.06+0.02

−0.02 856.3+135.1
−294.8 0.021+0.001

−0.001

Murboden L2 0.100+0.015
−0.015 0.245+0.023

−0.017 0.661+0.299
−0.264 1.23+0.08

−0.05 57.0+77.1
−33.8 0.008+0.001

−0.000

Kalsdorf L1 0.036+0.044
−0.030 0.448+0.080

−0.078 0.011+0.008
−0.006 1.46+0.24

−0.12 486.9+469.1
−367.3 0.043+0.004

−0.003

L2 0.017+0.016
−0.016 0.309+0.024

−0.009 0.033+0.020
−0.011 1.50+0.14

−0.08 867.4+130.4
−301.3 0.016+0.002

−0.001

Pettenbach L1 0.063+0.108
−0.057 0.387+0.005

−0.006 0.001+0.001
−0.000 1.15+0.06

−0.04 245.3+239.7
−189.9 0.036+0.004

−0.002

L2 0.163+0.061
−0.068 0.405+0.006

−0.007 0.516+0.467
−0.421 1.03+0.01

−0.01 19.6+99.8
−16.2 0.012+0.001

−0.001

Schalladorf L1 0.013+0.033
−0.012 0.455+0.039

−0.034 0.011+0.007
−0.005 1.28+0.06

−0.05 17.1+27.2
−10.7 0.023+0.002

−0.001

L2 0.049+0.066
−0.046 0.395+0.005

−0.002 0.001+0.001
−0.000 1.22+0.06

−0.07 1.5+1.2
−0.5 0.005+0.001

−0.000

Lobau L1 0.006+0.013
−0.006 0.723+0.019

−0.032 0.511+0.266
−0.106 1.18+0.01

−0.01 684.5+201.0
−196.4 0.044+0.002

−0.002

L2 0.173+0.052
−0.055 0.378+0.004

−0.004 0.696+0.268
−0.304 1.01+0.01

−0.00 262.0+491.5
−149.0 0.004+0.000

−0.000

Frauenkirchen L1 0.049+0.045
−0.047 0.489+0.052

−0.043 0.001+0.001
−0.000 1.46+0.12

−0.10 333.4+150.2
−212.4 0.0299+0.003

−0.003

L2 0.008+0.012
−0.007 0.359+0.043

−0.031 0.002+0.001
−0.000 1.32+0.07

−0.03 269.8+195.1
−117.5 0.019+0.002

−0.001
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Figure 3. Boxplots of estimated parameter uncertainties (index 1 for upper, index 2 for lower soil layer) from all 14 sites, as ratios between

95% interquantile range (IQR) and median estimates.

A typical example for marginal posterior distributions resulting from SHP estimation on the basis of volumetric soil water

content data in this study is shown in Fig. 4 for the upper soil layer of the mountain location Zettersfeld. Limits of the plot

axes are given by the prior bounds. This representation shows how well the calibration data constrained uncertainties of each

parameter: the posterior range of θr is only slightly reduced compared to the prior range, indicating that θr was least sensitive

for simulating soil water content and poorly informed by observations. The parameter Ks has a wide posterior range (although270

clearly reduced compared to the prior), showing a logarithmic distribution and a clearly defined mode. On the other hand,

the parameters α, and especially n and θs, show narrow posterior distributions which appear leptokurtic, indicating a higher

sensitivity for the soil water content simulations and a high information gain from the calibration data.

Parameter interdependencies in the inverse estimation are reflected in the shapes of bivariate contour or scatter plots of

posteriors (see Fig. A3 in the Appendix for a representation of posteriors with closer axes ranges). By random sampling from275

the posterior, the effect of these correlations is propagated in the uncertainty in the prediction of soil water fluxes. Usually,

a negative relation exists between the VGM shape parameters (e.g., Scharnagl et al., 2011; Vrugt et al., 2003; Romano and

Santini, 1999). Here, both α and n show narrow posteriors and stray close to the lower physical bounds (0 and 1, respectively).

The correlation of posterior samples for α and Ks can be expected to have some effect on the uncertainty in recharge peak

prediction, for which both parameters (but especially Ks under wet conditions) are sensitive (Schübl et al., 2022). This will be280

further discussed in section 3.2.

Generally, uncertainties in the estimation of the residual water content parameter θr and the saturated hydraulic conductivity

parameter Ks for the sites were high, both for the upper and lower soil layers (IQR/median ∼ 26 for Ks2 at Lauterach). The

uncertainty in the shape parameter α was medium with a relative uncertainty (IQR/median) < 6 and mostly low absolute values

in estimates and uncertainty ranges. The shape parameter n and the saturated water content parameter θs were identified with285

the highest precision (IQR/median<0.5).
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Figure 4. Marginal posterior distributions (one-dimensional projection on top of each column; joint distributions of each two parameters

below) of estimated SHPs for the top soil layer at Zettersfeld. Presented are residual and saturated water content parameters θr and θs

(cm3cm−3), VGM shape parameter α (cm−1) and n (-), and the saturated hydraulic conductivity parameter Ks (cm day−1). Axes ranges

correspond to the parameter bounds of the prior distribution. A close up presentation of distributions with narrower axes ranges is shown in

Fig. A3 in the Appendix.

Overall, SHP estimation using soil water content monitoring data from different depth levels was associated with some

uncertainty. An important factor for parameter uncertainty was soil texture: uncertainties in parameters Ks and n, in terms of

the 95% interquantile range (IQR) in posteriors, were significantly positively correlated with the percentage in sand (r=0.43

and r=0.42, respectively). Uncertainty ranges in Ks, α, and n increased significantly with the value of median estimates (Fig.290

5). Higher values of these parameters signify a lower water retention capacity of the soil. According to results from Schübl

et al. (2022) and Gao et al. (2019), parameter uncertainty from calibration with daily soil water content measurements can

be expected to be higher in coarse-textured soils (with a higher soil hydraulic conductivity and lower soil water retention

capacity), than in fine-textured soils which was the case in this study. We suppose that the more rapid water flow processes

are less efficiently captured in daily soil water content measurements, which are consequently less efficient in constraining295

uncertainties in SHPs.

We expectedly found high parameter uncertainties for sites where the estimated errors were high (σ > 0.04 cm3 cm−3 at

Karlsdorf and Lobau) or where the error was high in comparison to the temporal variation (more than 90% of the standard

deviation in the observations at Zettersfeld and Sillianberger Alm). Xie et al. (2018) observed how the relation between size
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Figure 5. Correlations between median parameter estimates and 95% interquantile range (IQR) from posterior parameter distributions for

estimated SHPs including 14 sites with each two soil layers (blue dots show the upper soil layer, grey circles show the lower soil layer).

Parameters α and Ks are shown on the log-scale to better depict the range of values. Spearman’s Rho (r) is given for the presented correlations.

They were highly significant with p<0.01 for α, n, and Ks on the log-scale as well as on the linear scale. On the linear scale, r was slightly

lower for α (r=0.77) and Ks (r=0.89).

of the estimated measurement error and temporal variation of the measured variable influences the data’s ability to constrain300

model uncertainties. Brunetti et al. (2019) observed in the estimation of SHPs with remote sensing soil moisture data, that

uncertainty in θr estimation was low whereas θs was highly uncertain. This was related to soil water content values being low

in their study and mainly representative for unsaturated conditions. In this study, at Lauterach and Elsbethen, very wet climatic

conditions and measurements mainly in the wet range resulted in the highest uncertainties in the estimation of θr. At Kalsdorf,

in contrast, soil moisture dynamics were hardly at saturation and resulted in the highest uncertainty in θs estimation. At the305

majority of the Austrian locations, soil water content measurements were more often near saturation and less in the dry range

(as for example in Fig. 2(a) at Gumpenstein). The θs parameter was therefore mostly better informed by the measurements than

θr. The estimation of Ks has been frequently shown to be associated with high uncertainties (e.g., Baroni et al., 2010; Minasny

and Field, 2005; Mishra et al., 1989).

The reliability of the calibration was quantified by the RMSE between median simulations and observations during calibra-310

tion and validation periods, summarized for all sites in the Appendix in Table A2. Overall, the calibration fit was good, with

RMSE values ranging between 0.009-0.028 cm3 cm−3. Some events were missed by the model: at Lauterach and Elsbethen,

the drying of the lower soil layer in summer was underestimated; at Gschlössboden, the peak in soil water content in the early

calibration period was missed for both layers. For the validation periods, the fit in terms of RMSE deteriorated especially for

the locations of Lobau (RMSE calibration = 0.028 cm3 cm−3, RMSE validation = 0.054 cm3 cm−3) and Pettenbach (RMSE315

calibration = 0.020 cm3 cm−3, RMSE validation = 0.067 cm3 cm−3). The Lobau soil profile was under the influence of water

table fluctuations where we cannot exclude that model assumptions about the lower boundary condition have been occasionally

violated. At the Pettenbach lysimeter station, a crop rotation including fertilization was applied. It is possible, that this affected

soil properties, which were assumed to be constant in the modeling. For example, Lu et al. (2020) showed in their review

that root growth and decay can alter soil hydraulic properties; Whalley et al. (2005) found, that growing different plants had a320
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Table 2. Local long-term average water balances at 14 sites: Precipitation (P), potential Evapotranspiration (ETp); simulated potential

groundwater recharge (GWR) and actual evapotranspiration (ETa) including 95% credible interval from propagated parameter uncertainty.

Period P (mm a−1) ETp(mm a−1) GWR (mm a−1) ETa(mm a−1) GWR/P (%)

Lauterach 1996− 2018 1578 700 907+4
−4 672+3

−4 57+1
−0%

Leutasch 2008− 2018 1235 622 665+9
−7 521+7

−10 54+2
−1%

Achenkirch 2017− 2018 1533 673 1022+14
−16 480+14

−14 67+1
−1%

Gschlössboden 2012− 2018 1493 552 1319+7
−9 170+2

−6 88+0
−1%

Sillianberger Alm 1997− 2018 1023 707 578+13
−12 439+10

−13 57+1
−1%

Zettersfeld 2012− 2018 1353 634 926+15
−10 399+10

−15 68+1
−1%

Elsbethen 1996− 2018 1468 665 853+10
−6 614+6

−10 58+1
−0%

Gumpenstein 1996− 2018 1100 661 641+8
−11 448+11

−8 58+1
−1%

Aichfeld-Murb. 1996− 2018 813 728 244+3
−2 557+2

−3 30+0
−0%

Kalsdorf 1996− 2018 852 801 229+23
−24 623+19

−31 27+3
−3%

Pettenbach 1996− 2018 1031 789 459+18
−19 558+20

−20 45+2
−2%

Schalladorf 1996− 2018 484 893 45+7
−7 431+6

−7 9+1
−1%

Lobau 1996− 2018 570 913 44+8
−9 520+9

−8 8+1
−2%

Frauenkirchen 2005− 2018 601 882 92+15
−9 526+10

−16 15+2
−1%

significant effect on the porosity of the soil aggregates, and Schjønning et al. (2002) observed the development different pore

systems in soils depending on crop rotation and fertilization.

Overall, in the validation periods RMSE values ranged between 0.014-0.067 cm3 cm−3. Scatterplots including the coeffi-

cients of determination R2 (0.34 – 0.98) for the validation period are shown in Fig. A4 in the Appendix.

3.2 Simulated long-term water balance at the local scale325

The calibrated models were used to simulate and assess different components of the water balance for all monitoring stations.

In particular, we looked at long-term estimates and temporal variability in actual evapotranspiration and potential groundwater

recharge, as well as the average fractions of potential groundwater recharge from precipitation. Long-term averages of input

and simulated annual water balance components including propagated parameter uncertainties are given in Table 2. Figure 6

shows cumulative potential recharge sums for the entire simulation period including propagated posterior uncertainty for all 14330

sites; Figure 7 shows the uncertainty in the peak prediction as maximum daily recharge rates and posterior uncertainty during

the same period.

Uncertainty in the estimated long-term potential annual recharge from propagated parameter uncertainty was highest in

Kalsdorf (95% IQR = 47 mm) and lowest in Aichfeld-Murboden (95% IQR = 5 mm). Uncertainties in the prediction of long-

term and cumulative recharge rates (Fig. 6) were generally small in relation to the high sums estimated for mountain and335
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Figure 6. Median prediction and posterior uncertainty in the long-term estimation of cumulative recharge at 14 Austrian sites.

western sites; however, in relation to low absolute values at dry eastern sites Kalsdorf, Lobau and Frauenkirchen, posterior

uncertainties played a more important role. The relative uncertainty (IQR/median) in long-term recharge estimates ranged be-

tween 1% (Gschlössboden, Lauterach) and 39% (Lobau). The prediction of peaks in recharge was generally affected by higher

uncertainties (Fig. 7), especially at western mountainous sites with high maximum rates (Lauterach, Leutasch, Gschlössboden,

Sillianberger Alm). In a previous study with similar models and hydrological conditions, we found n to be the most sensitive340

parameter for cumulative recharge prediction, and Ks to be most sensitive for peak prediction, especially under wet climatic

conditions (Schübl et al., 2022). Small uncertainties in the prediction of long-term recharge sums here were related to the gen-

erally small uncertainties in the VGM shape parameter n, whereas higher uncertainties in the hydraulic conductivity parameter

Ks (sometimes in interaction with uncertainties in α) can be considered the main reason for the greater uncertainty in the peak

prediction.345

It has often been found that in-situ field measurements of soil water content are not sufficient for the accurate and precise

estimation of SHPs (e.g., Scharnagl et al., 2011; Ritter et al., 2003). Here, we found that while SHPs were partially affected by

considerable uncertainties, the precision was still in an acceptable range for groundwater recharge estimation. At dry locations

with small absolute recharge rates, model uncertainties could be further reduced e.g., by including additional observations in

the calibration. Especially the combination with soil matric potential measurements has been shown to be highly informative350

for SHP estimation and to considerably reduce uncertainties in recharge estimation (Schübl et al., 2022; Schelle et al., 2012).

Including additional measurements in the analysis, however, might not only lead to different shapes in SHP posteriors, but to

altogether different estimates. This issue requires further investigation with available soil water monitoring data.
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Figure 7. Uncertainty ranges in peaks of the potential recharge flux at 14 Austrian sites. Maximum daily rates of the long-term simulation

period and propagated posterior uncertainties are presented as boxplots.

Propagated uncertainties in soil water fluxes presented here are a result of parameter uncertainties from the calibration, and

the sensitivity of the simulated water fluxes towards the parameters. Uncertainties in water fluxes were treated as aleatory,355

derived from stationary statistical characteristics. In addition, the epistemic uncertainty associated with the lack of knowledge

about the correct representation of system dynamics (conceptual uncertainty) and forcing data may affect the overall predic-

tive uncertainty and reduce the effective information content of observations (Beven, 2016). Due to their complex and often

dynamic nature, epistemic uncertainties pose important conceptual and numerical challenges. For instance, model conceptual

uncertainty can be assessed by comparing different model structures using specific statistical metrics (e.g., marginal likeli-360

hood). This was, however, beyond the scope of the present study, which focuses on the inverse estimation of soil water fluxes

at multiple monitoring stations to discuss implications on the water balance. In this framework, an appraisal of the model

structural adequacy through posterior predictive checks appears sufficient. We were not able to account for some processes in

this study which may have affected water balances at the sites: The modeling approach assumed that the groundwater table was

well below the model domain at all times. At the Lobau site, however, the groundwater table is shallow, and fluctuations may365

have reached into the model domain. In this case, infiltrating water may have reached the water table earlier than assumed by

the model. At the same time, net recharge would have been reduced if the capillary fringe extended into the root zone or even

to the soil surface and transpiration and evaporation occurred directly from groundwater (Doble and Crosbie, 2017). Further,

the modeling approach here neglected preferential and lateral flow processes. The ground surface at the measurement locations

was even; however, it has been shown that heterogeneity and layering in the soil profiles can lead to lateral flow, even when the370

effective hydraulic gradient is vertical (Heilig et al., 2003; Rimon et al., 2007).
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To assess the plausibility of estimated potential recharge rates we compared them to literature values where available. Tóth

et al. (2016) assumed annual groundwater recharge for the western Pannonian Basin of 70 mm a−1. The region includes the

three southeasternmost sites here (Lobau, Frauenkirchen and Kalsdorf), where potential recharge rates in this study ranged

between 44 – 229 mm a−1. For Wagna in southern Styria, 20 km from Kalsdorf, between 296 – 396 mm a−1 have been375

estimated in studies by Collenteur et al. (2021) and Stumpp et al. (2009). We also compared the estimates with the long-term

(1961-1990) water balance averages for precipitation, potential and actual evapotranspiration on the catchment scale from the

Hydrological Atlas of Austria (HAO) (BMLFUW, 2007; Dobesch, 2007; Kling et al., 2007b, a) (Fig. A5 in the Appendix). The

mean annual areal actual evapotranspiration estimates of the HAO (Kling et al., 2007a) are based on water balance calculations

from the period 1961 to 1990. They are comparable to our long-term estimates (R2 = 0.78) supporting the plausibility of the380

here established water balances.

We further evaluated estimated recharge rates at the locations of Leutasch and Gumpenstein by comparing the available

lysimeter outflow measurements to modeled median estimates. It resulted in an acceptable agreement with R2 = 0.56 (for the

period 2008 – 2018) and R2 = 0.64 (for the period 2001 – 2018), respectively, and is shown in Fig. A6 in the Appendix,

including uncertainties. Variability in annual seepage measurements between four Gumpenstein lysimeters was high with385

an average uncertainty range of 132 mm a−1. This clearly exceeded the average range of predictive uncertainty related to

parameter uncertainty of the modeling at this site (20 mm a−1). Besides the uncertainty in the seepage measurement, the

variability in the measurements could also be an indicator of spatial heterogeneities causing differences in the soil hydrology

for individual lysimeters. In any case, the high variability in seepage measurements here emphasizes the need to analyze

uncertainties in the estimation of soil water fluxes.390

3.3 Statistical analysis of hydrologically relevant properties

In the following section we characterize the 14 monitoring according to hydrologically relevant properties including model es-

timations from the previous section. Since uncertainty in long-term actual evapotranspiration and recharge rates were generally

low, and to enable the analysis with common statistical tools, we will proceed from here on using the median values without

consideration of uncertainty ranges.395

The seasonal variability in groundwater recharge (quantified as coefficient of variation from standard deviation between

monthly sums and annual means) ranged between 71% and 265%. This was consistently higher than the seasonality in pre-

cipitation (52 – 76%) and potential evapotranspiration (64 – 76%) indicating that potential recharge rates vary significantly

more over the year than the meteorological input variables. We further analyzed the seasonality in local water balances in a

PCA and correlation analysis. Figure 8 shows the biplot of the PCA with first and second principle components (PC1 and PC2,400

explaining 77% of the variance in the data), according to amount and seasonality of water balance components, the fraction

of potential groundwater recharge from precipitation, and site specific properties (altitude and longitude; sand, silt, clay and

organic matter percentages of the upper soil layers).

Two clusters were established: The five sites in the south and east of Austria (Aichfeld (9), Kalsdorf (10), Schalladorf (12),

Lobau (13), Frauenkirchen (14)) show a potential recharge fraction of less than 30% of annual precipitation (as low as 8% in405
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Figure 8. Principle Component Analysis Biplot. Included variables are potential annual groundwater recharge (GWR), annual precipita-

tion (P), annual potential evapotranspiration (ETp), annual actual evapotranspiration (ETa), the fraction of groundwater from precipitation

(GWR/P), seasonalities (Season.) in GWR, P, ETa; longitude (Long), altitude (Alt); sand, silt, clay and organic matter (Org) percentages at

the 14 sites. Clusters of monitoring sites with similar characteristics are shown in orange and blue. The clustering with Euclidean affinity and

ward linkage, as well as the Biplot were produced using the sklearn module in Python by Pedregosa et al. (2011).

Lobau), a high seasonality in groundwater recharge (134 – 265%) and precipitation (67 – 76%), but a low seasonality in actual

evapotranspiration (59 – 73%). The remaining nine out of 14 sites in western to central Austria with humid to wet climate

show a fraction of potential groundwater recharge from precipitation of more than 40%, and a low seasonality in precipitation

(52 – 68%). The seasonality in groundwater recharge at these sites was lower than in the East (71 – 124%), but seasonality in

actual evapotranspiration was higher (75 – 112%); it was most pronounced at the three sub-alpine sites (Gschlössboden (4),410

Sillianberger Alm (5), and Zettersfeld (6)) which were influenced by snow and where little to no actual evapotranspiration was

estimated outside of the extended summer period (May – September). An obvious outlier among the monitoring sites in Fig.

8(a) was the location Gschlössboden (4) at high altitude, with coarse soil, lowest potential and actual evapotranspiration, and

the highest estimated potential recharge rates compared to other sites.

Figure 9 shows the pair-wise scatterplots, correlation coefficients and significance levels of relevant variables. Since precipi-415

tation and potential evapotranspiration were negatively correlated, we adopted the Aridity Index (ETp/P) as predictor instead of

looking at both variables separately. Seasonality in potential evapotranspiration is not shown, since no significant correlations

to other variables were identified. Grain size classes of the soil textures were intercorrelated, we therefore only used the sand

fraction as predictor variable.

Potential annual groundwater recharge rates were negatively correlated with aridity (lower precipitation and higher potential420

evapotranspiration). This was expected and was also supported by findings of Moeck et al. (2020) on the global scale. At the

Austrian sites, aridity increased and potential groundwater recharge decreased significantly with longitude, resulting in lower

potential recharge rates at the eastern than at the western sites. Precipitation and recharge rates were higher in the West than in
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Figure 9. Correlation analysis with pair-wise scatter plots, Spearman’s Rho correlation coefficient and significance levels for the variables

potential annual groundwater recharge (GWR), annual actual evapotransiration (ETa), Aridity Index (AI), Seasonalities (Seas.) in GWR,

ETa, and P; longitude (Long), altitude (Alt), percentages in sand and organic matter (Org) at 14 monitoring sites.

the East, following both the longitudinal gradient in altitude and the climatic influence of the wet oceanic climate in the West,

with high precipitation and recharge rates even at lower altitudes (Lauterach, Elsbethen), versus the dry continental climate in425

the East. In the study here, slopes were not taken into consideration, as the monitoring sites were horizontally even and the

modeling domain was limited to the plot scale. Regarding the larger scale (and actual recharge rates), the occurrence of steep

slopes at high altitudes would be expected to result in more surface runoff or more interflow instead of recharge (Brunetti et al.,

2022; Moeck et al., 2020) which could reverse the correlation of recharge rates with altitude.

The fraction of potential groundwater recharge to precipitation (GWR/P) was strongly correlated with the amount of pre-430

cipitation (r = 0.91, p<0.001). Similarly, Barron et al. (2012) found an exponential relationship between annual recharge and

rainfall estimates at Australian sites, which they explained by the correlation of high amounts of precipitation with high rainfall

intensities and long wet periods throughout the year, leading to an increased fraction of recharge from precipitation.
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Higher potential recharge rates and lower actual evapotranspiration were correlated with a higher percentage in sand. Soils

with greater sand fraction and less fine material have a higher hydraulic conductivity and a lower water retention capacity435

as they let water percolate faster below the root zone (Emerson, 1995; Wohling et al., 2012). Wang et al. (2009) observed

how the fraction of recharge from precipitation increased with coarser soil texture as the more rapid deep percolation reduced

evapotranspiration. In the study here, however, the relation between potential groundwater recharge and soil texture was weaker

compared to climatic factors, i.e. precipitation and potential evapotranspiration. This corresponded to findings of the global

scale analysis by Moeck et al. (2020).440

Seasonality in potential groundwater recharge was most strongly correlated with the Aridity Index (ETp/P). Sites in the east,

with more pronounced aridity and low potential recharge rates, were associated with a high seasonality with extended periods of

zero recharge. Estimated potential groundwater recharge there was concentrated on the winter half-year. High rates in potential

groundwater recharge were associated with sites where recharge occurred throughout the year and were thus correlated with

a low seasonality in recharge. Soil texture did not correlate with seasonality in estimated potential groundwater recharge. In445

this study, we assumed the same lower boundary for all profiles to ensure comparability of the sites, where additional data

from below 1.5 m were not available. However, the depth of the water table, and thus the thickness of the unsaturated zone,

in addition to structural features causing lateral flow, determine quantity and timing of water actually reaching the aquifer.

With greater thickness of the unsaturated zone, the influence of soil water retention characteristics on magnitude and temporal

variability of actual groundwater recharge rates might increase (Burri et al., 2019; Cao et al., 2016; Moeck et al., 2020). In450

future, data from the deeper unsaturated zone (>1.5 m) would be helpful to further improve the quantification of recharge.

4 Conclusions

In this study, we made use of volumetric soil water content measurements from multiple depth levels at 14 locations in Austria

to inversely estimate effective soil hydraulic parameters (SHPs) using the physically based HYDRUS-1D model, and we

quantified parameter uncertainties in a Bayesian probabilistic framework based on multimodal Nested Sampling. We used the455

calibrated models for the long-term simulation of soil water fluxes and associated uncertainties. Finally, we compared potential

recharge rates and actual evapotranspiration at the 14 Austrian locations to identify the influencing factors on amount and

temporal variability of local water balances.

SHPs were successfully established and resulted in adequate fits of model simulations to observations. The parameter esti-

mation based on soil water content measurements was partly subject to considerable uncertainties, especially in residual water460

content (θr) and soil hydraulic conductivity parameters (Ks). The latter resulted in considerable uncertainties in predicting the

magnitude of recharge peaks at the sites. Higher uncertainties in VGM shape parameters α, n, and soil hydraulic conductivity

parameter Ks were associated with coarser soil textures. In general, however, uncertainty in the estimation of the VGM shape

parameters was low and resulted in small uncertainty ranges for long-term potential groundwater recharge rates. Absolute un-

certainty ranges were between 5-47 mm a−1, which corresponded to relative uncertainties in cumulative recharge prediction465

(IQR/median) between 1%, at sites with high absolute rates in a wet climate, and 39% at dry eastern sites with small potential
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recharge rates. Especially at the latter sites, model uncertainties could be improved by including additional observations in the

calibration.

Estimated potential groundwater recharge rates at the Austrian soil water monitoring sites were influenced by the East-

West gradient in altitude and climatic conditions: The dry continental climate at the eastern locations was associated with low470

fractions of potential groundwater recharge from precipitation, and high seasonality in potential recharge rates. In contrast,

the wet and snow influenced climate at western and central Austrian sites came with high potential recharge rates and lower

temporal variability in recharge than in the East, but with a higher seasonality in actual evapotranspiration. Sandy soil textures

were associated with higher potential recharge rates and lower actual evapotranspiration. However, precipitation and potential

evapotranspiration were more influential variables than soil properties on estimated potential recharge rates and their temporal475

variability.

The approach could be improved by including information on the deeper vadose zone to obtain more insight on temporal

variation and seasonality of actual recharge, and to improve the model structure including lower boundary conditions. Espe-

cially at dry locations, using improved and additional measurements (e.g. of soil matric potential) could help reduce uncertainty

in cumulative recharge estimation. Additionally, consideration of sites with varying slopes and the inclusion of surface runoff480

simulations in the analysis might improve representativeness for larger scale.

Overall, the use of a Nested Sampling based Bayesian approach proved to be an efficient method to inversely estimate SHPs

and soil water fluxes, and to quantify associated uncertainties from soil water monitoring data. The calibrated models can be

used to estimate future groundwater recharge rates under climate change and to illuminate model uncertainties resulting from

SHP uncertainties and a range of climate scenarios.485
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Appendix A

Table A1. Site properties and particle size distribution of the upper soil layer (ÖNORM L 1050).

Altitude Longitude Latitude Sand % Silt % Clay %

(m.a.s.l.) (◦) (◦) 0.063− 2.0 mm 0.002− 0.063 mm < 0.002 mm

Lauterach 415 9.74 47.48 41 45 14

Leutasch 1135 11.14 47.37 35 51 14

Achenkirch 895 11.64 47.58 20 48 32

Gschlössboden 1737 12.43 47.12 88 12 0

Sillianberger Alm 1500 12.41 46.76 33 63 4

Zettersfeld 1990 12.79 46.87 56 42 2

Elsbethen 428 13.08 47.76 36 59 5

Gumpenstein 690 14.10 47.50 38 53 9

Aichfeld-Murb. 669 14.76 47.21 28 56 16

Kalsdorf 320 15.47 46.95 49 42 9

Pettenbach 466 14.01 47.98 11 75 14

Schalladorf 238 16.14 48.64 17 43 40

Lobau 150 16.53 48.21 29 57 14

Frauenkirchen 124 16.90 47.85 53 33 14
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Table A2. Calibration and validation periods, and goodness of fit (root mean squared error RMSE) between median prediction and measure-

ments.

Calibration Validation Calib. RMSE Valid. RMSE(
cm3 cm−3

) (
cm3 cm−3

)
Lauterach 01.03.− 31.10.2015 01.01.2016− 31.12.2016 0.025 0.028

Leutasch 01.03.− 31.10.2014 01.03.2017− 31.10.2017 0.018 0.021

Achenkirch 01.05.− 31.10.2018 01.01.2017− 31.12.2017 0.023 0.037

Gschlössboden* 01.04.− 30.09.2018 01.01.2018− 31.12.2018 0.017 0.019

Sillianberger Alm* 01.03.− 31.10.2018 01.01.2018− 31.12.2018 0.026 0.020

Zettersfeld 01.04.− 30.09.2017 01.01.2014− 31.12.2015 0.022 0.020

Elsbethen 01.03.− 31.10.2015 01.01.2012− 31.12.2012 0.018 0.015

Gumpenstein 15.04.− 15.10.2012 01.03.2011− 31.12.2011 0.011 0.014

Aichfeld-Murb. 15.04.− 15.10.2016 15.08.2017− 31.12.2018 0.015 0.021

Kalsdorf 01.03.− 31.10.2007 01.01.2008− 31.12.2008 0.021 0.037

Pettenbach** 23.04.− 14.10.2014 24.04.2013− 24.09.2013 0.020 0.067

Schalladorf 01.03.− 31.10.2010 01.03.2013− 31.10.2014 0.009 0.028

Lobau 01.03.− 31.10.2012 01.01.2000− 31.12.2000 0.028 0.054

Frauenkirchen 01.03.− 31.10.2015 01.01.2012− 31.12.2014 0.021 0.036

* No validation data available outside the calibration year, instead the RMSE for the entire year (2018) was calculated.

** Pettenbach calibration period during maize cultivation, validation period during soy bean cultivation. Root parameters were adjusted and potential evapotranspiration estimation

was estimated with corresponding crop coefficients (Allen et al., 1998).
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Table A3. Soil layers in HYDRUS-1D and prior parameter ranges of the Bayesian analysis.

Site Depth (cm) θr
(
cm3 cm−3

)
θs

(
cm3 cm−3

)
α
(
cm−1

)
n(−) Ks

(
cm d−1

)
Lauterach L1 0− 24 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

L2 25− 150 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

Leutasch L1 0− 24 0.00− 0.10 0.25− 0.50 0.0001− 0.5000 1.01− 2.70 1− 1000

L2 25− 150 0.00− 0.10 0.15− 0.40 0.0001− 0.5000 1.01− 3.50 1− 1000

Achenkirch L1 0− 15 0.00− 0.25 0.40− 0.60 0.0001− 0.5000 1.01− 2.70 1− 1000

L2 16− 150 0.00− 0.08 0.10− 0.20 0.0001− 1.0000 1.01− 3.50 10− 10000

Gschlössboden L1 0− 22 0.00− 0.05 0.20− 0.35 0.0001− 1.0000 1.01− 2.70 10− 10000

L2 23− 150 0.00− 0.05 0.20− 0.35 0.0001− 1.0000 1.01− 3.50 10− 10000

Sillianberger Alm L1 0− 24 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 5000

L2 25− 150 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 5000

Zettersfeld L1 0− 49 0.00− 0.25 0.30− 0.60 0.0001− 1.0000 1.01− 2.70 1− 5000

L2 50− 150 0.00− 0.08 0.10− 0.40 0.0001− 1.0000 1.01− 3.50 1− 5000

Elsbethen L1 0− 24 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

L2 25− 150 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

Gumpenstein L1 0− 24 0.00− 0.20 0.25− 0.60 0.0001− 0.5000 1.01− 2.70 0.1− 500

L2 25− 150 0.00− 0.20 0.25− 0.60 0.0001− 0.5000 1.01− 2.70 0.1− 500

Aichfeld-Murboden L1 0− 74 0.00− 0.25 0.30− 0.60 0.0001− 0.5000 1.01− 2.70 1− 1000

L2 75− 150 0.00− 0.15 0.17− 0.40 0.0001− 1.0000 1.01− 2.70 1− 1000

Kalsdorf L1 0− 24 0.00− 0.10 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 1000

L2 25− 150 0.00− 0.10 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 1000

Pettenbach L1 0− 24 0.00− 0.25 0.30− 0.60 0.0001− 0.5000 1.01− 2.70 0.1− 500

L2 25− 150 0.00− 0.25 0.30− 0.60 0.0001− 1.0000 1.01− 2.70 0.1− 500

Schalladorf L1 0− 44 0.00− 0.20 0.40− 0.60 0.0001− 0.1000 1.01− 2.00 1− 50

L2 45− 150 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 50

Lobau L1 0− 100 0.00− 0.15 0.35− 0.75 0.0001− 1.0000 1.01− 2.70 1− 1000

L2 101− 150 0.00− 0.25 0.35− 0.60 0.0001− 1.0000 1.01− 2.70 1− 1000

Frauenkirchen L1 0− 24 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 500

L2 25− 150 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 500
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Figure A1. Residual plots for the calibration at Gumpenstein: (a) histogram of residuals, (b) quantile-quantile (QQ) plots and (c) autocor-

relation function (ACF) plots. The upper graphs show residuals of the top soil layer (L1), the lower graphs show residuals of the lower soil

layer (L2).
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Figure A2. Calibration with soil water content measurements at all 14 sites: The grey bands show the measurement including the area of

the calibrated measurement error σ, the blue lines show the prediction with median parameter estimates for each one measurement depth in

upper and lower soil layer.
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Figure A3. Marginal posterior distributions (one-dimensional projection on top of each column; joint distributions of each two parameters

below) of estimated SHPs for the top soil layer at Zettersfeld. Presented are residual and saturated water content parameters θr and θs

(cm3cm−3), VGM shape parameter α (cm−1) and n (-), and the saturated hydraulic conductivity parameter Ks (cm day−1).
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Figure A4. Model validation showing the coefficient of determination (R2) and scatterplots of simulated and observed soil water content from

upper and lower soil layer (layer 1 and 2, respectively) for the 14 sites: (01) Lauterach, (02) Leutasch, (03) Achenkirch, (04) Gschlössboden,

(05) Sillianberger Alm, (06) Zettersfeld, (07) Elsbethen, (08) Gumpenstein, (09) Aichfeld-Murboden, (10) Kalsdorf, (11) Pettenbach, (12)

Schalladorf, (13) Lobau, (14) Frauenkirchen. The dashed black Diagonal shows the 1:1 line. Validation periods are given in Table A2.
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Figure A5. Scatterplots comparing the long-term averages of precipitation (P), potential and actual evapotranspiration (ETp and ETa) from

the digital Hydrological Atlas of Austria (HAO) (BMLFUW, 2007) with the corresponding rates of simulations in this study. The dashed

black Diagonal shows the 1:1 line. Potential evapotranspiration in the HAO was calculated by Dobesch (2007) using the FAO approach

described by Doorenbos and Pruitt (1977) resulting in lower values than those of this study which were calculated for a grass reference

according to Allen et al. (1998).
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Figure A6. Model validation using lysimeter data from Leutasch and Gumpenstein. Scatterplots and coefficients of determination (R2) are

shown for simulated and observed annual seepage flow. Blue dots show median estimates and the grey errorbars depict the 95% credible

interval from propagated parameter uncertainty. The dashed black Diagonal shows the 1:1 line. Leutasch seepage measurements are obtained

from a single lysimeter; for Gumpenstein, the 95% uncertainty interval in lysimeter measurements was calculated from a cluster of four

lysimeters.
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