
Responses to Editor’s and Reviewers’ comments 

Editor 

Dear Authors, 

Your submission was evaluated by three reviewers who are well-focused on the topic but provided 

slightly different rates and comments mainly due to their different backgrounds. Overall, the 

scientific quality and significance of your study were evaluated quite well, whereas the presentation 

of the investigation requires some improvement. I support the general assessment of these 

reviewers. However, as also raised by one reviewer, I do suggest the uncertainty issue should be 

discussed more in-depth as it is an interesting question of your study that definitely can stimulate 

the interest of a wider readership toward your paper. 

Your replies during the discussion phase showed that your group is acquainted with this question, 

but I think that treating epistemic uncertainty through an assessment of parameter sensitivity might 

resolve only an aspect of the problem. Maybe I miss something, but the question of parameter 

correlations and how it reflects on the propagation of uncertainty seems a bit overlooked. One 

question is to assess parameter uncertainty, whereas another question is to assess how epistemic 

uncertainty is reflected in the output of a model (a hydrologic one in this case). It is not always the 

case that uncertainty in the inputs is then lowered in the model outputs (as it can happen when 

comparing infiltration versus drainage processes). You may find it useful to discuss this latter 

question in the paper. Due attention should also be devoted to the comments from Reviewer #3. 

I recommend reconsideration following major revisions, and invite you to submit your revised 

manuscript together with detailed point-by-point responses to all comments received thus far. 

Should you disagree with a comment or suggestion, please explain why clearly.  

Response: We thank the Editor and all the Reviewers for their comments and suggestions, which 

have improved our manuscript. All comments have been thoroughly considered in our revisions. 

In particular, we included more details on the Bayesian uncertainty analysis by adding 

- An improved description of the method 

- An additional figure to discuss marginal posterior distributions and address the effect of 

parameter interdependencies/ correlations between parameter values in posterior samples 

on propagated predictive uncertainty  

- Additional figures and discussion of propagated parameter uncertainties in cumulative and 

peak recharge estimation  

As suggested by the editor, we address the topic of epistemic uncertainty in Lines 339-347 of the 

revised and marked manuscript:  

“Uncertainties in water fluxes were treated as aleatory, derived from stationary statistical 

characteristics. In addition, the epistemic uncertainty associated with the lack of knowledge 

about the correct representation of system dynamics (conceptual uncertainty) and forcing 

data may affect the overall predictive uncertainty and reduce the effective information 

content of observations (Beven, 2016). Due to their complex and often dynamic nature, 

epistemic uncertainties pose important conceptual and numerical challenges. For instance, 



model conceptual uncertainty can be assessed by comparing different model structures using 

specific statistical metrics (e.g., marginal likelihood). This was, however, beyond the scope of 

the present study, which focuses on the inverse estimation of soil water fluxes at multiple 

monitoring stations to discuss implications on the water balance. In this framework, an 

appraisal of the model structural adequacy through posterior predictive checks appears 

sufficient.” 

In the following, we describe our revisions note by note in response to the Reviewers’ comments, 

indicating the line numbers of the marked manuscript.  

We welcome the suggestion of the Editor to reconsider our thoroughly revised manuscript for 

publication. 

 



Reviewer #1 

I enjoyed this paper.  The authors made use of an extensive set of water content profile time series 

in two differing climates within Austria.  They used an accepted Bayesian inference algorithm to 

fit HYDRUS1D to the observations.  They found that recharge is highly correlated with 

precipitation in the shorter term and aridity in the longer term.  These results are well aligned with 

expectations from previous publications.  My only complaint is that the method is based on a 

Bayesian approach, but there is almost no discussion of the resulting uncertainty of the inferences, 

how these depend on site conditions, how these might affect larger interpretations, and how the 

data did or did not constrain these uncertainties.  The results and conclusions are primarily based 

on deterministic findings that seem to rely on the maximum likelihood parameter 

values.  (Although this isn't discussed in detail.)  I am actually fine with that - as stated above, I 

think that this makes a useful contribution.  But, in the end, I was left wondering why the Bayesian 

approach was used rather than another parameter estimation tool.  I would like to see the authors 

include some discussion of the special insights that resulted from the Bayesian analysis. 

Best 

Ty Ferre 

Response: We thank Dr. Ferré very much for his appreciation of our work! We agree that a more 

detailed presentation and discussion of the results of the Bayesian analysis is helpful. 

In our revised manuscript, we added a figure to show marginal posterior distributions of SHPs for 

one exemplary site. In this context we further discussed how parameter uncertainty was constrained 

by the observations in Lines 249-256: 

“A typical example for marginal posterior distributions resulting from SHP estimation on 

the basis of volumetric soil water content data in this study is shown in Figure 3 for the upper 

soil layer of the mountain location Zettersfeld. Limits of the plot axes are given by the prior 

bounds. This representation shows how well the calibration data constrained uncertainties of 

each parameter: the posterior range of θr is only slightly reduced compared to the prior 

range, indicating that θr was least sensitive for simulating soil water content and poorly 

informed by observations. The parameter Ks has a wide posterior range (although clearly 

reduced compared to the prior), showing a logarithmic distribution and a clearly defined 

mode. On the other hand, the parameters α, and especially n and θs, show narrow posterior 

distributions which appear leptokurtic, indicating a higher sensitivity for the soil water 

content simulations and a high information gain from the calibration data.” 

We further included two figures to visualize the results of the uncertainty propagation for (1) 

cumulative recharge and (2) magnitudes of recharge peaks at all sites in the revised manuscript, 

and discussed them in Lines 318-335: 

“Uncertainties in the prediction of long-term and cumulative recharge rates (Figure 5) were 

generally small in relation to the high sums estimated for mountain and western sites; 

however, in relation to low absolute values at dry eastern sites Kalsdorf, Lobau and 

Frauenkirchen, posterior uncertainties played a more important role. The relative 

uncertainty (IQR/median) in long-term recharge estimates ranged between 1% 



(Gschlössboden, Lauterach) and 39% (Lobau). The prediction of peaks in recharge was 

generally affected by higher uncertainties (Figure 6), especially at western mountainous sites 

with high maximum rates (Lauterach, Leutasch, Gschlössboden, Sillianberger Alm). In a 

previous study with similar models and hydrological conditions, we found n to be the most 

sensitive parameter for cumulative recharge prediction, and Ks to be most sensitive for peak 

prediction, especially under wet climatic conditions (Schübl et al., 2022). Small uncertainties 

in the prediction of long-term recharge sums here were related to the generally small 

uncertainties in the VGM shape parameter n, whereas higher uncertainties in the hydraulic 

conductivity parameter Ks (sometimes in interaction with uncertainties in α) can be 

considered the main reason for the greater uncertainty in the peak prediction. 

It has often been found that in-situ field measurements of soil water content are not sufficient 

for the accurate and precise estimation of SHPs (Scharnagl et al., 2011; Ritter et al., 2003). 

Here, we found that while SHPs were partially affected by considerable uncertainties, the 

precision was still in an acceptable range for groundwater recharge estimation. At dry 

locations with small absolute recharge rates, model uncertainties could be further reduced 

e.g., by including additional observations in the calibration. Especially the combination with 

soil matric potential measurements has been shown to be highly informative for SHP 

estimation and to considerably reduce uncertainties in recharge estimation (Schübl et al., 

2022; Schelle et al., 2012).”. 

To give better insights on how site conditions and measurements have affected model parameter 

uncertainties, we have expanded the discussion in Lines 271-290: 

“An important factor for parameter uncertainty was soil texture: uncertainties in parameters 

Ks and n, in terms of the 95% interquantile range (IQR) in posteriors, were significantly 

positively correlated with the percentage in sand (r=0.43 and r=0.42, respectively). 

Uncertainty ranges in Ks, α, and n increased significantly with the value of median estimates 

(Fig. 4). Higher values of these parameters signify a lower water retention capacity of the soil. 

According to results from Schübl et al. (2022) and Gao et al. (2019), parameter uncertainty 

from calibration with daily soil water content measurements can be expected to be higher in 

coarse-textured soils (with a higher soil hydraulic conductivity and lower soil water retention 

capacity), than in fine-textured soils which was the case in this study. We suppose that the 

more rapid water flow processes are less efficiently captured in daily soil water content 

measurements, which are consequently less efficient in constraining uncertainties in SHPs. 

We expectedly found high parameter uncertainties for sites where the estimated errors were 

high (σ > 0.04 cm3 cm-3 at Karlsdorf and Lobau) or where the error was high in comparison 

to the temporal variation (more than 90% of the standard deviation in the observations at 

Zettersfeld and Sillianberger Alm). Xie et al. (2018) observed how the relation between size 

of the estimated measurement error and temporal variation of the measured variable 

influences the data’s ability to constrain model uncertainties.  Brunetti et al. (2019) observed 

in the estimation of SHPs with remote sensing soil moisture data, that uncertainty in θr 

estimation was low whereas θs was highly uncertain. This was related to soil water content 

values being low in their study and mainly representative for unsaturated conditions. In this 

study, at Lauterach and Elsbethen, very wet climatic conditions and measurements mainly 



in the wet range resulted in the highest uncertainties in the estimation of θr. At Kalsdorf, in 

contrast, soil moisture dynamics were hardly at saturation and resulted in the highest 

uncertainty in θs estimation. At the majority of the Austrian locations, soil water content 

measurements were more often near saturation and less in the dry range (as for example in 

Fig. 2(a) at Gumpenstein). The θs parameter was therefore mostly better informed by the 

measurements than θr.” 

The second part of the paper was aimed at characterizing the Austrian sites based on measured and 

modeled hydrological variables and site properties. In the revised manuscript, we clarified our 

approach in Lines 376-379: 

“In the following section we characterize the 14 monitoring according to hydrologically 

relevant properties including model estimations from the previous section. Since uncertainty 

in long-term actual evapotranspiration and recharge rates were generally low, and to enable 

the analysis with common statistical tools, we will proceed from here on using the median 

values without consideration of uncertainty ranges.”   

  



Reviewer #2  

General remarks: 

The manuscript is very well structured, very well written and represents an interesting scientific 

contribution to the determination of groundwater recharge rates. Changes to the manuscript are not 

necessary. 

 

Specific comments: 

The sites in Austria used for the study were described comprehensively, as were the statistical 

methods used. Why Bayes' theorem was used in the statistical analysis was sufficiently explained. 

In order to be able to better evaluate the results obtained, the methodological limitations were 

explained in detail. 

Technical corrections: no corrections necessary 

Response: We are very happy about the positive and motivating feedback on our work from 

Reviewer#2! We thank him/her for reviewing our manuscript. 

  



Reviewer #3 

Dear Editor, dear authors, 

Please find below my review of the paper entitled “From soil water monitoring data to vadose zone 

water fluxes: a comprehensive example of reverse hydrology” by Marleen Schübl, Giuseppe 

Brunetti, Gabriele Fuchs, and Christine Stumpp. 

This article investigates the use of the Bayesian approach to invert water content profiles to derive 

the soil hydraulic parameters, including their statistical distribution and related statistical 

parameters. Based on this information, the authors compute the water cycle over large periods and 

quantify the groundwater recharge, its uncertainty, and its temporal variability at 14 sites in Austria. 

The authors conclude that there is a West-East gradient with more continuous groundwater 

recharge at mountainous sites with wetter climates versus seasonal lower groundwater recharge in 

the Eastern plain. 

The article is well-organized, well-illustrated, and well-written. The scientific question is properly 

stated, the methodology to answer conclusions is clear and straightforward, and the conclusions 

are quite obvious. The paper addresses an important topic and deserves to be published in the HESS 

journal. However, I have several concerns that should be addressed prior to publication.  

Response: We thank Reviewer#3 for his/her appreciation of our paper and the helpful feedback.  

I am not very familiar with the Bayesian approach, and thus hope that my comments do not reveal 

my lack of expertise in this subject. However, I consider that any paper should be standalone and 

present clear facts understandable by any scientific reader. Several points deserve to be clarified: 

 For the Bayesian approach, the choice of distributions needs to be clarified. If the errors between 

the modeled and observed data are expected to obey the normal law, no details are given about 

the laws of the soil hydraulic parameters. I expect most parameters to follow normal laws and 

hydraulic conductivity to follow a log-normal law. If I understand well, the Bayesian approach 

allows us to characterize the SHP laws. Then, why not show them in the Result section and state 

on the alignment of normal laws? Why not state on the multimodality features of the SHPs? In 

addition, do the SHPS distributions have any consequences on the Bayesian approach and the 

Monte Carlo method? Is the normality of errors between experimental and modeled data 

compatible with any statistical law for SHPs? 

Response: The Reviewer raises an important point of discussion to better clarify our approach. 

The Bayesian inference can be applied directly to obtain Soil Hydraulic Parameters (SHPs), if 

data include pressure head, water content, and conductivity (e.g., laboratory measurements 

derived from the simplified evaporative method). Instead, our study uses field scale observations 

of volumetric water content to inversely estimate the most probable distribution of SHPs that 

generated observations. Therefore, the assumption of homoscedastic and normal errors 

(reflected in the likelihood function) refers to TDR measurements, not to SHPs. The posterior 

distribution of SHPs is inferred by combining two components: 1) the prior distribution, which 

reflects the modeler’s believe about Soil Hydraulic Parameters (SHPs) before considering 

measurements (in our case, soil water content), 2) the likelihood, which describes the probability 



that a parameter set drawn from the prior has generated the observations. By combining the 

likelihood and the prior with Nested sampling and HYDRUS (or Markov-chain Monte Carlo), 

we obtain a posterior distribution of the most probable SHP values, which reflects the 

parameters’ uncertainty: 

1. Prior: As it is frequently the case in vadose zone hydrology (e.g., Brunetti et al. 2020 

https://doi.org/10.1016/j.jhydrol.2020.124681, Wöhling et al. 2015 

https://doi.org/10.1002/2014WR016292), we assumed bounded uniform priors to avoid 

making important assumptions on the shape of the posterior, and let the data tell us what 

is its shape. However, at the same time, we imposed hard boundaries on the parameters 

to avoid the possibility to obtain physically unrealistic values. 

2. Likelihood: We assumed that sensor errors are normally distributed. This is widely 

established approach in inverse vadose zone modeling (e.g., Schelle et al.. 2012 

https://doi:10.2136/vzj2011.0169, Gao et al. 2019 

https://doi.org/10.2136/vzj2019.03.0029). 

 

 The problem of equifinality and non-uniqueness needs to be addressed in the paper. The authors 

inverted all the SHPs, except the parameter "l" fixed at 0.5. However, we know that many 

parameters may be interrelated, and some may have a poor impact on water fluxes. In particular, 

the value of the residual water content has no effect (or very little on the water fluxes), so this 

parameter may not be reachable when inverting. A similar statement may apply to the saturated 

water content. What is the strategy of the authors regarding this aspect of non-uniqueness? Why 

not propose a sensitivity analysis that shows the most influential parameters and select those 

when inverting water content data while suggesting additional information for the others? 

Response: Also in this case, we thank the Reviewer for pointing this aspect, which gives us the 

opportunity to better clarify the utility of the Bayesian approach to address equifinality, and to 

discuss the limitations of the sensitivity analysis compared to the Bayesian probabilistic 

approach.  

The Bayesian inference is precisely conceived to have a statistical rigorous appraisal of the 

“equifinality and non-uniqueness”. The Bayesian approach infers a marginal posterior 

distribution that exposes the parameters’ uncertainty, and their interaction (e.g., correlation). If 

the resulting uncertainty is high (i.e., wide posterior), then data are not informative for that 

parameter. In this case, the modeler has two choices: 1) ask for other measurements (e.g., disk 

infiltrometer for Ks) to have more informative priors and run again the Bayesian analysis; 2) 

honestly communicate what is the parameters’ uncertainty with the data available, and more 

important, how the estimated uncertainty propagates in the model simulations. This is what we 

precisely did in our study. 

The sensitivity analysis is certainly a valuable tool, which we use frequently in our research. 

However, it will not provide any more meaningful information compared to the Bayesian 

analysis for this work. A global sensitivity analysis will sample the parameters’ space (frequently 

ineffectively as MCMC techniques are much better in finding high-probability regions), and then 

decompose the variance to identify influential and uninfluential factors. But this is already better 

targeted in a Bayesian analysis: influential parameters are those that exhibit leptokurtic 

https://doi.org/10.2136/vzj2019.03.0029


posteriors, while uninfluential factors are those that have similar prior-posterior distributions (in 

our case flat). The sensitivity analysis might have some utility in high dimensions for numerical 

sampling reasons, but this is not the case and is beyond the purpose of the present study.     

In the introduction of the revised manuscript, we have added to the description of the Bayesian 

approach in Line 65: 

“Posterior parameter distributions also reflect the non-uniqueness and equifinality of 

parameter values.” 

We further justified our choice of prior distributions and have added some clarification on the 

Bayesian method in Lines 185-191:  

“Prior knowledge, i.e. information available before looking at measured data, is included 

in the Bayesian inference via the prior distribution which can be chosen as a uniform 

density bounded by physical limits (e.g., Brunetti et al., 2020b; Gupta et al., 2022; Wöhling 

et al., 2015). In this study, uniform prior distributions were assumed for all parameters 

and sites. Their ranges were established based on texture information, literature review, 

and preliminary testing to prevent truncating posteriors. Final ranges are given in the 

Appendix in Table A3. By combining the likelihood and the prior, we obtain a posterior 

distribution of the most probable SHP values, which reflects the parameters’ uncertainty.” 

In our revised results section, we included an example of the marginal posterior distributions of 

SHPs and discussed them in Lines 249-263: 

“A typical example for marginal posterior distributions resulting from SHP estimation on 

the basis of volumetric soil water content data in this study is shown in Figure 3 for the 

upper soil layer of the mountain location Zettersfeld. Limits of the plot axes are given by 

the prior bounds. This representation shows how well the calibration data constrained 

uncertainties of each parameter: the posterior range of θr is only slightly reduced 

compared to the prior range, indicating that θr was least sensitive for simulating soil water 

content and poorly informed by observations. The parameter Ks has a wide posterior range 

(although clearly reduced compared to the prior), showing a logarithmic distribution and 

a clearly defined mode. On the other hand, the parameters α, and especially n and θs, show 

narrow posterior distributions which appear leptokurtic, indicating a higher sensitivity for 

the soil water content simulations and a high information gain from the calibration data.” 

Parameter interdependencies in the inverse estimation are reflected in the shapes of 

bivariate contour or scatter plots of posteriors (see Figure A2 in the Appendix for a 

representation of posteriors with closer axes ranges). By random sampling from the 

posterior, the effect of these correlations is propagated in the uncertainty in the prediction 

of soil water fluxes. Usually, a negative relation exists between the VGM shape parameters 

(e.g., Scharnagl et al. 2011; Romano and Santini, 1999; Vrugt et al., 2003). Here, both α 

and n show narrow posteriors and stray very close to the lower physical bounds (0 and 1, 

respectively). The correlation of posterior samples for α and Ks can be expected to have 

some effect on the uncertainty in recharge peak prediction, for which both parameters (but 

especially Ks under wet conditions) are sensitive (Schübl et al., 2022).” 



 I also have some concerns regarding the data inverted to derive the SHPs. In their study, the 

authors invert only water content profiles. However, if I remember well, they also have water 

pressure head profiles for some sites. I understand they selected the water content profiles 

because they had those data at their disposal at all sites. However, for a given site (with the two 

types of data), they could have compared the results when inverting water content and water 

pressure head. My feeling is that the authors may not have had the same results. Based on this 

comparison, they might validate the choice of water content for all sites and strengthen their 

conclusions. That could be the topic of further research.  

Response: In general, we agree that it is helpful to include pressure head data, as it can help to 

identify SHPs with even less uncertainty than with soil water content data (Schübl et al., 2022). 

However, at the sites in this study we had some issues with soil pressure head measurements: 

(1) they were not available for all sites which would have impaired the comparability of results 

between locations (2) they were composite from different measurement techniques (tensiometers 

and gypsum blocks) and included sudden shifts and large gaps in time series. Altogether we 

found the measurements to not be reliable enough to be used in this study. We agree that results 

for SHP estimates might change when including the available soil pressure head data and have 

included this in the discussion (see reply to comments in manuscript). We also agree that this 

would be a very interesting topic for further studies with improved field measurements of soil 

pressure heads. 

 Lastly, I had some questions and concerns about the ACP proposed at the end of the result 

section. I was surprised by the plots of "individuals" (i.e., sites) and the "variables" on the same 

plots (Figure 4). Even after searching on R tutorials and finding these types of plots, I am not 

convinced that we have the right to do so. For ACP, variables and individuals don't have the 

same nature and should be plotted on separate plots. I also suggest plotting the correlation circles 

and commenting only on the vectors (variables) that are well represented on the maps, i.e., which 

vector is close to the correlation circle. 

Response: We used this PCA Biplot here (Figure 7 of the revised manuscript) to visualize the 

two clusters of hydrologically similar sites in context with the variables according to which they 

have been characterized. This kind of visualization, with individuals (sites or samples) and 

variables in the same plot, has been used in several studies, for example by Luna et al., 2018 

https://doi.org/https://doi.org/10.1002/eco.1896 (Figure 7), Rodríguez et al., 2020 

https://doi.org/10.1007/s10750-020-04201-5 (Figure 3), Gibson et al., 2019 

https://doi.org/https://doi.org/10.1016/j.ejrh.2019.100643 (Figure 7).  

Some R tutorials showing this kind of plot are  

1. https://f0nzie.github.io/machine_learning_compilation/detailed-study-of-principal-

component-analysis.html (See 4.20 Biplot) 

2. https://www.datacamp.com/tutorial/pca-analysis-r 

3. https://finnstats.com/index.php/2021/05/07/pca/ 

Citing from the first tutorial for the use of Biplots with variables and individuals, the focus is 

“…on the direction of variables but not on their absolute positions on the plot. Roughly speaking, 

a biplot can be interpreted as follows: an individual that is on the same side of a given variable 

has a high value for this variable; an individual that is on the opposite side of a given variable 



has a low value for this variable.” We wrote the code for our plot in Python using the sklearn 

module (Pedregosa et al., 2011 https://arxiv.org/abs/1201.0490) which is now cited properly in 

the revised manuscript. 

We agree with the comment in the manuscript that the data is not well represented in the Biplot 

of Figure 4(b) and it does not add further insight, we therefore deleted it. 

The authors will find an in-depth review in the enclosed file, with suggestions, comments, and 

proposals throughout the manuscript. Again, this paper is valuable and promising, and I have no 

doubts that it will be published after improvements. 

Response: We thank the Reviewer for the positive assessment of our work. We are also grateful 

for the suggestions, which helped to improve the paper. 

 

Comments in Manuscript: 

L75: Why not also consider water pressure head profiles? Inverting other types of measures could 

change the features of estimates. 

Response: In general, we agree that it is helpful to include pressure head data, as it can help to 

identify SHPs with even less uncertainty than with soil water content data. However, at the sites in 

this study we had some issues with soil pressure head measurements (see manuscript L105/6 and 

our reply comment). We agree that results for SHP estimates might change when including the 

available soil pressure head data, therefore we included this in the discussion in Lines 334-337: 

“[…] Especially the combination with soil matric potential measurements has been shown to 

be highly informative for SHP estimation and to considerably reduce uncertainties in 

recharge estimation (Schübl et al., 2022, Schelle et al. 2012). Including additional 

measurements in the analysis, however, might not only lead to different shapes in SHP 

posteriors, but to altogether different estimates. This issue requires further investigation with 

available soil water monitoring data.” 

L103: Any rationale for the choice of the period? 

Response: We in included the justification in Lines 106-110: 

“The length of calibration periods was chosen to be similar for all sites, long enough to be 

informative for a range of soil water conditions, and excluding the winter season which would 

require simulation of snow accumulation and melt processes. This exclusion allowed to 

reduce computational cost and numerical sensitivity of the simulations which often lead to 

non-convergence or delayed convergence of the sampling algorithm in the Bayesian analysis 

(described in Sect. 2.3)” 

L105/106 That is a good reason. We could have imagined using both water content and water 

pressure head profiles at some sites to compare the estimates and their distributions when one or 

the other signal is used. Which signal is the best? That may be a question for further studies. 



Response: We investigated this question in Schübl et al. (2022) and came to the conclusions (based 

on synthetic data scenarios within the tensiometer range) that SHPs are identifiable and in general 

associated with less uncertainty when using matric potential as compared to soil water content 

measurements (see comment above). For the reasons highlighted, we did not use water pressure 

head data here, however, we agree that this would be a topic for further studies with improved field 

measurements. 

In Line 122 we have corrected the symbol. 

In Line 134 we have removed the bracket. 

L144/145: You simplified the soil profile. However, weren't there some sites with more than three 

soil horizons? What could be the consequences of such simplifications on soil hydraulic 

characterization and water fluxes? 

Response: We included in Lines 148-152: 

“The vast majority of the soil profiles indicated a distinct topsoil overlying deeper soil layers 

that had low to mild degrees of inhomogeneity. Dealing with 14 monitoring stations, we 

uniformly adopted two soil layers with varying thickness across different locations, aiming 

to reduce the overall computational burden of the Bayesian analysis while maintaining a 

physically realistic description of the soil domain. Simplifications of the soil profile in the 

model geometry with a mildly heterogeneous soil will usually lead to an acceptably small loss 

of accuracy in effective parameters (Schneider et al., 2013).” 

L147: Could you cite works that justify that the zero flux plane (ZFP) must be above 1.5m depth 

in all your sites? It seems reasonable to think that 1.5m is enough to include the ZFP and estimate 

GW recharge. But it is better to cite at least one source. 

Response: In Lines 156-158 we included: 

“Similar to our approach, Simunek (2015) and Heppner et al. (2007) simulated groundwater 

recharge with HYDRUS-1D for grass-covered soils as bottom flux at 100 cm profile depth; 

Assefa and Woodbury (2013) used different profile depths of up to 150 cm.” 

L158/159: Unclear. Does that concern only the simulation of the six-month period? If yes, please 

clarify your choice in terms of simulated chronics here. 

Response: We rephrased this in Lines 167-169: 

“For inverse parameter estimation during the half-year calibration periods, as well as for the 

model validation periods, we chose boundary conditions with respect to the conditions at the 

measurement plots, i.e.  seepage face for the lysimeter sites and free drainage for sites with 

natural field conditions.” 



L166/167: Do you have any reference to justify such linearity between -2 and +2°C? I am not 

convinced by such a hypothesis given the complexity of processes (freezing rain, isothermal 

snowfall, etc.). 

Response: We included a justification in Lines 178-180: 

“This default snow routine in HYDRUS is based on assumptions by Jarvis (1994) and has 

been found to be suitable for estimating soil water fluxes in unfrozen soils in several studies 

(e.g., Assefa and Woodbury, 2013; Zhao et al., 2008).” 

L169: I am fine with this part, but we should somehow address the problem of parameter 

equifinality and non-uniqueness of solutions. May we, by increasing a parameter, compensate for 

the effect of the other? This point is somehow addressed when investigating the correlation matrix 

between parameters in the result section but not evoked in the modeling section. I suggest giving 

more details in this section about the distributions of each hydraulic parameter and the random 

sampling for the Monte Carlo method. 

Response: We thank the Reviewer for his/her comments on this section. In the revised manuscript, 

we clarified the Bayesian approach, justified our choice of prior distributions and discussed 

resulting marginal posterior distributions (see reply to main Review comment).  

L172: Couldn't we note this as P(D | \Omega, M), given that the model is chosen as the first step, 

and then the data D and the parameter \Omega are related against each other (for a fixed model)? I 

would prefer the notation P(D| \Omega, M) and P(M | D, M) all together. 

Response: We used the common notation for the purpose of Bayesian parameter estimation with 

a previously chosen model (see e.g., Skilling, 2006 https://doi.org/10.1214/06-BA127). 

L182: Do we speak of the distribution of randomly sampled values for each parameter or the 

distribution of hydraulic parameters on the field? Should we consider uniform distributions for all 

hydraulic parameters? Alternatively, shouldn't we consider a log-normal distribution for Ks and 

normal distributions for the other parameters? Which impacts does the choice of the distribution 

have on the likelihood function and on the Monte Carlo method? 

Response: The prior distribution reflects the modeler’s prior belief about the parameter before 

running the analysis, and should be supported by available information. The normal distribution 

implies that we have data-supported guesses about the mean and the standard deviation of the 

parameter. However, we didn’t have these supporting information, therefore we assumed flat priors 

to let data inform us about the parameters’ values. 

Impact of the prior on the Monte Carlo procedure: if the prior is close to the posterior, the 

convergence will be faster. Otherwise, samples drawn from the prior will be frequently rejected as 

they don’t belong to the posterior, and the convergence will be delayed. 

The choice of the prior has no impact on the likelihood. 

L193: "multimodal distributions" related to the SHPs? 



Response: It relates to the shape of the posterior, which can have (possibly) multiple modes (i.e., 

high-likelihood regions). These distributions are problematic to sample but MULTINEST does that 

fairly good. 

L215:  Why not 0.05, as usual? 

Response: E.g., Moeck et al., 2020 (https://doi.org/10.1016/j.scitotenv.2020.137042) use a 90% 

confidence level for similar questions (even with a much greater data set). 

Table 1 caption: Please remind us why the credible intervals are not symmetrical while parameter 

distributions may be quasi-gaussian (except for Ks). 

Response: We do not expect that posterior probability distributions of SHPs are necessarily quasi-

gaussian. Therefore, uncertainty bounds below and above the median are given separately (instead 

of being summarized as standard deviation). We included an example of marginal parameter 

posterior distributions to better illustrate this (see above comments).  

Figure 3: Why not distinguish the dots for the two layers?  Why don't you show the trends for these 

parameters? It could be interesting to discuss the differences between SHPs. 

Response: We distinguished the two layers and included residual and saturated water content 

parameters in the plot (Figure 4 of the revised manuscript). We added in the discussion in Lines 

271-279 (see reply to comment of Reviewer#1) 

L291: "agreement" instead of "fit" which is more dedicated to the alignment of a given model to 

experimental data. 

In Line 367, we replaced fit by agreement. 

L294-295: We have one order of magnitude of difference. Does that stem from the 

representativeness of the lysimeter, as said below? 

Response: We suggested that potential reasons for the larger variability in the lysimeter 

measurements are spatial heterogeneities and uncertainty in seepage measurements (as stated 

below). 

Figure 4: For PCA analysis, theoretically, it is not correct to superpose the plots of individuals and 

the correlation circle. You can do it when individuals and variables are of the same nature, which 

is the case of MCA (Multiple Correspondance Analysis) but definitely not the case of PCA. Then, 

I reckon that you explain how you did your graphs, or alternatively, I reckon that you replace your 

figure 4 with a new plot with separated subplots of the plans (F1, F2), (F3, F4) and the correlation 

circle (F1, F2), (F3, F4). Ensure to include the unity circle that indicates if the variable is well 

represented in the plan or poorly represented. For instance, GWR/P, GWR, and P are poorly 

represented in the plan (F3, F4). 

Response: We used this PCA Biplot here to visualize the two clusters of hydrologically similar 

sites in context with the variables according to which they have been characterized (not for further 

statistical analysis). This kind of visualization with individuals (sites or samples) and variables in 



the same plot has been used in several studies (see discussion comment for references and links to 

R tutorials). We wrote the code for our plot in Python using the sklearn module which is now cited 

properly in the Figure description. It was based on these tutorials: 

https://ostwalprasad.github.io/machine-learning/PCA-using-python.html 

https://blog.bioturing.com/2018/06/18/how-to-read-pca-biplots-and-scree-plots/ 

We agree, however, that the Figure 4(b) for PC3 and PC4 does not represent the data very well and 

does not give much further insight, we therefore deleted it. 

Theoretically, in PCA analysis, all the variables are independent. Then, we avoid designing new 

variables from already considered variables because it reduces the degree of freedom of the system 

and defines an ill-posed problem (as for inversion). Please, address this point in the revised version 

of the manuscript. 

Response: To our knowledge, there is no requirement that variables included in a PCA must be 

independent. We used this representation for displaying the site clusters and to describe their 

characteristics, not for further statistical analysis. We believe this representation is applicable for 

this purpose.  

L327/28: Caution: you have more mountainous sites in the western part of the studied area. Thus 

altitude and longitude are correlated, which biases the analysis. 

Response: We rephrased this statement in Lines 407-410: 

“Precipitation and recharge rates were higher in the West than in the East, following both 

the longitudinal gradient in altitude and the climatic influence of the wet oceanic climate in 

the West, with high precipitation and recharge rates even at lower altitudes (Lauterach, 

Elsbethen), versus the dry continental climate in the East.“ 

L333-335: Awkward. Correlation does not give information about the function that relates the 

variables. Please, elaborate. 

Response: We deleted this half-sentence in Line 414: 

“The fraction of potential groundwater recharge to precipitation (GWR/P) was strongly 

correlated with the amount of precipitation (r = 0.91). Similarly, Barron et al. (2012) found 

[…]” 

L363: See below my inputs in the annexes. Some events were missed (even if roughly the modeling 

did well). 

Response: We included the discussion on missed events by the model in Lines 295-297: 

“Some events were missed by the model: at Lauterach and Elsbethen, the drying of the lower 

soil layer in summer was underestimated; at Gschlössboden, the peak in soil water content 

in the early calibration period was missed for both layers.” 

https://ostwalprasad.github.io/machine-learning/PCA-using-python.html
https://blog.bioturing.com/2018/06/18/how-to-read-pca-biplots-and-scree-plots/


L380-382: Please, add, afterward, a few words on perspectives of improvement, like the 

combination with data at lower depths (GW monitoring) and the consideration of additional 

physical processes (preferential flows and water repellence, etc.). 

Response: We added perspectives of improvement in Lines 461-465: 

“The approach could be improved by including information on the deeper vadose zone to 

obtain more insight on temporal variation and seasonality of actual recharge, and to improve 

the model structure including lower boundary conditions. Especially at dry locations, using 

improved and additional measurements (e.g. of soil matric potential) could help reduce 

uncertainty in cumulative recharge estimation. Additionally, consideration of sites with 

varying slopes and the inclusion of surface runoff simulations in the analysis might improve 

representativeness for larger scale.” 

From the methods and results in this study, we cannot draw specific conclusions on which physical 

processes must be considered in the modeling, as this would require separate case studies for each 

individual monitoring site and is beyond the scope of this work. 

In the Appendix, we improved the Figure descriptions including the 1:1 lines. 


