
From soil water monitoring data to vadose zone water fluxes: a
comprehensive example of reverse hydrology
Marleen Schübl1, Giuseppe Brunetti1, Gabriele Fuchs2, and Christine Stumpp1

1University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of
Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
2Federal Ministry of Agriculture, Regions and Tourism (BMLRT), Division I/3: Department of Water Resources,
Marxergasse 2, 1030 Vienna, Austria

Correspondence: Marleen Schübl (marleen.schuebl@boku.ac.at )

Abstract. Groundwater recharge is a key component of the hydrological cycle, yet its direct measurement is complex and

often difficult to achieve. An alternative is its inverse estimation through a combination of numerical models and transient

observations from distributed soil water monitoring stations. However, an often neglected aspect of this approach is the effect

of model predictive uncertainty on simulated water fluxes. In this study, we made use of long-term soil water content measure-

ments at 14 locations from the Austrian soil water monitoring program to quantify and compare local, potential groundwater5

recharge rates and their temporal variability. Observations were coupled with a Bayesian probabilistic framework to calibrate

the model HYDRUS-1D and assess the effect of model predictive uncertainty on long-term simulated recharge fluxes. Esti-

mated annual potential recharge rates ranged from 44 mm a−1 to 1319 mm a−1 with a relative uncertainty (95% interquantile

range/median) in the estimation between 1-39%. Recharge rates decreased longitudinally, with high rates and lower seasonality

at western sites and low rates with high seasonality and extended periods without recharge at the southeastern and eastern sites10

of Austria. Higher recharge rates and lower actual evapotranspiration were related to sandy soils; however, climatic factors

had a stronger influence on estimated potential groundwater recharge than soil properties, underscoring the vulnerability of

groundwater recharge to the effects of climate change.

1 Introduction

Groundwater is the largest reservoir of liquid freshwater on earth and one of the most important sources of drinking and15

irrigation water. Under changing climatic conditions with extremes occurring more frequently and intensely, the strategic

importance of groundwater for global water and food security is expected to further increase (Taylor et al., 2013). In some

countries, such as Austria, groundwater including spring water is the most important water resource, making up 100% of the

water supply (Vogel, 2001). The major limitation for sustainable groundwater use is recharge, which represents the maximum

amount of water that may be withdrawn from an aquifer without depleting it. This makes it a crucial variable for groundwater20

resource management (Moeck et al., 2020; Taylor et al., 2013). A large portion of groundwater recharge comes from water

infiltrating soil and flowing through the vadose zone towards the water table (Döll and Fiedler, 2008; Nolan et al., 2007).

Infiltration capacity, root water uptake and evaporation from the upper soil layers determine the net amount of water which is
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transported into the deeper vadose zone, following the gradient in matric potential and gravity (Vereecken et al., 2008). Water

flow through the vadose zone is supposed to have a major influence on the process of groundwater recharge even at karst25

mountain sites (Berthelin et al., 2020; Hartmann et al., 2014; Kaminsky et al., 2021; Neukum et al., 2008).

The quantification of recharge is complicated by temporal and spatial variability and by the fact that direct measurements are

difficult (Moeck et al., 2020, 2018; Nolan et al., 2007; Scanlon et al., 2002). Lysimeters are the only means to obtaining local

measurements of seepage flow, which can be considered a good indicator of groundwater recharge (Moeck et al., 2020, 2018;

Seneviratne et al., 2012; von Freyberg et al., 2015). However, their appropriate set up is difficult without introducing a bias30

in the hydrological processes (Barkle et al., 2011; Groh et al., 2016; Pütz et al., 2018; Stumpp et al., 2012). Furthermore,

the operation and maintenance of lysimeters is expensive, which is why long-term lysimeter measurements are scarce (Nolz

et al., 2016; von Freyberg et al., 2015). Among the most widely used alternatives for recharge estimation are methods based on

artificial and environmental tracer experiments (e.g., Boumaiza et al., 2020; Chesnaux and Stumpp, 2018; Koeniger et al., 2016)

and groundwater table fluctuations (Moeck et al., 2020; Collenteur et al., 2021). Common water table fluctuation methods,35

however, face some limitations in reflecting and predicting the actual recharge process (Collenteur et al., 2021; Healy and

Cook, 2002).

Moeck et al. (2020) collected and investigated a global scale data set of natural groundwater recharge rates where, however,

recharge rates from high altitudes were underrepresented. For mountain sites in particular, there is a lack of reported ground-

water recharge rates (Bresciani et al., 2018; Moeck et al., 2020). A limited number of studies report local or regional recharge40

rates based on different modeling approaches using field measurements, such as groundwater levels and river discharge, or

available information on vegetation and subsurface, and assess controlling factors on groundwater recharge (e.g., Barron et al.,

2012; Collenteur et al., 2021; Hartmann et al., 2017; Keese et al., 2005; Neukum and Azzam, 2012).

An alternative is the inverse estimation of recharge fluxes through the unsaturated zone by calibrating vadose zone hydro-

logical models against transient observations (e.g., soil water content and pressure head). Over the last decades, numerical45

modeling of soil water fluxes has been applied and improved, resulting in today’s state of the art soil models with an imple-

mentation of the Richards Equation for simulating the transport of water through the soil, considering heat and energy balances

and accounting for relevant processes such as plant water uptake and snow hydrology (Šimůnek et al., 2016, 2003; Vereecken

et al., 2016).

The core of this modeling approach is generally the inverse estimation of hydraulically relevant parameters, such as Soil50

Hydraulic Parameters (SHPs) (e.g., Van Genuchten, 1980). The use of field measurements guarantees a higher generalizability

of estimated parameters compared to small scale measurements of soil samples in the laboratory (Dyck and Kachanoski, 2010;

Groh et al., 2018; Stumpp et al., 2012; Vereecken et al., 2008; Vrugt et al., 2008; Wöhling et al., 2008). Several studies

have evaluated the use of vadose zone measurements for the inverse estimation of effective SHPs and the reliable prediction

of recharge fluxes (Durner et al., 2008; Groh et al., 2018; Schelle et al., 2012). However, inverse parameter estimation is55

often treated as an optimization problem aiming at a unique solution, which neglects the uncertainty which is fundamentally

associated with parameter identification. Uncertainties originate from different error sources including model input and forcing

data, the initial and boundary conditions, the model structure, heterogeneity and scale effects (Beven, 2006; Vereecken et al.,
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2016). Further, the quality and scope of calibration data affects the uncertainty in parameter estimation. It is important not to

neglect uncertainties related to the model calibration as they can lead to uncertain or even failing predictions (Finsterle, 2015;60

Vrugt and Sadegh, 2013). The emergence of computationally efficient algorithms makes it possible to deal with uncertainties

in a statistically rigorous way based on the Bayesian approach to statistics (e.g., Brunetti et al., 2019; Scharnagl et al., 2011;

Wöhling et al., 2008). This approach relies on the idea of integrating a priori knowledge of the system in the statistical inference,

to combine it with observed data in order to derive the posterior probability distribution of parameter values, which can be used

to quantify model uncertainty.65

In combination with a soil hydraulic model, an efficient algorithm is needed to compute posterior distributions with an

iterative Monte Carlo approach and to allow for a clear convergence in a reasonable amount of time. Skilling (2006) introduced

Nested Sampling as an efficient Monte Carlo method to estimate the integral of the Bayesian evidence, the denominator

of the Bayes Theorem, and obtain posterior distributions as a side product. Its efficiency has been further increased with

ellipsoidal Nested Sampling (Mukherjee et al., 2006). Finally, ellipsoidal rejection sampling, as proposed by Feroz et al.70

(2009) with the MULTINEST algorithm, is able to account efficiently for multimodal posterior distributions. A Bayesian

statistical framework using a Nested Sampling approach in combination with a physically based soil water model and soil

water monitoring measurements thus provides a powerful tool for a comprehensive characterization of the vadose zone at

individual sites and the estimation of local water balances, including an assessment of the model uncertainties.

In this study, we made use of long-term volumetric soil water content measurements at 14 different locations from the Aus-75

tria wide soil water monitoring program and integrated them in a Bayesian probabilistic framework with the MULTINEST

algorithm to calibrate the hydrological model HYDRUS-1D at each location. We used this approach to account for the un-

certainties inherently associated with the inverse parameter estimation, and we simultaneously assessed and propagated the

model predictive uncertainty in simulated local potential groundwater recharge rates. All sites were modelled with the same

approach on a similar data basis supporting comparability of the results. Site properties included a variety of soils and climatic80

conditions which allowed to investigate factors which influence the long-term soil water balances and temporal variability of

potential groundwater recharge.

2 Material and methods

2.1 Austrian soil water monitoring program

The locations of 14 Austrian soil water monitoring sites are shown in Fig. 1(a). Figure 1(b) gives an overview over soil types85

according to the digital soil map of Austria (BFW, 2016). Figures 1(c) and 1(d) show long-term annual areal precipitation

and actual evapotranspiration estimates (modified from Kling et al. (2007b) and Kling et al. (2007a), respectively. According

to texture information (ÖNORM L 1050), the soil types at the measurement sites vary between sand and silt loam/loamy

silt (11 – 88% sand, 12 – 75 % silt, and 0 – 32% clay). Details on altitude, geo-coordinates, soil textures, and measurement

depths are given in the Appendix (Table A1). Zettersfeld, Gschlössboden and Sillianberger Alm are on the sub-alpine level in90

the southwest of Austria, characterized by high contents in organic matter, coarse soil texture and/or high skeleton fraction;
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Leutasch, Achenkirch, Gumpenstein and Aichfeld-Murboden are at the montane level from western to central Austria with soil

textures ranging between sand and loam; Pettenbach, Elsbethen and Lauterach are located at the foothill zone in western to

central Austria with soil textures ranging from loam to loamy silt; Kalsdorf, Schalladorf, Lobau and Frauenkirchen are situated

in the southern and eastern lowlands with sandy to loamy soil textures. Locations included in this study are horizontally even95

at the plot scale, and usually consisting of uncultivated grassland. In contrast, cultivation of alternating crops was carried out

at the location Pettenbach, where details on the crop cover for calibration and validation periods were obtained from technical

reports provided by the Upper Austrian Government (Land OÖ, 2013, 2014).

Long-term field measurements of volumetric soil water content, measured with Time Domain or Frequency Domain Reflec-

tometry (TDR/FDR) over several years, partly since 1996, are carried out within the Austrian Soil Water Monitoring Program100

of the Federal Ministry of Agriculture, Regions and Tourism (BMLRT). Under this program, continuous measurements are

conducted at various depth levels of soil profiles with the aim of providing standardized and quality assured measurement data.

For inverse parameter estimation in this study, we selected calibration periods of around six months with sufficiently complete

and plausible soil water content measurement series from two to five depth levels (Table A1 in the Appendix) and aggregated

the data to a daily resolution. The program also offers composite matric potential measurements from tensiometers and gypsum105

blocks. The discontinuity of the data complicates the modeling and analysis, which is why they have not been used in this study.

Further, the winter season was excluded from the calibration periods to avoid the simulation of snow. This procedure allowed

to reduce computational cost and numerical sensitivity of the simulations which often lead to non-convergence or delayed

convergence of the sampling algorithm in the Bayesian analysis (described in Sect. 2.3). Validation periods were chosen to

provide one year or more of continuous, plausible data. Snow hydrology was simulated for the model validation, as described110

in Sect. 2.2. Details on calibration and validation periods are summarized in Table A2. Several locations were equipped with

lysimeters: At Leutasch and Pettenbach, in situ soil water content measurements were directly obtained from lysimeter set

ups; in Gumpenstein, soil water content measurements were obtained from a soil profile next to a lysimeter cluster which pro-

vided long-term seepage measurements. Lysimeter measurements from Leutasch and Gumpenstein were used for additional

validation of recharge rates.115

2.2 Modelling theory

2.2.1 Water flow and root water uptake

The mechanistic model HYDRUS-1D (Šimůnek et al., 2016) was used to simulate water flow in the vadose zone profiles.

HYDRUS-1D is a finite element model that numerically solves the one-dimensional Richards equation [Eq. (1)]

δθ

δt
=

δ

δz

[
K(h)

(
δh

δz
+ 1

)]
−S(h) (1)120

where θ[L3L−3] is the volumetric water content, t[T ] is the time variable, z[L] is a vertical coordinate, K(h)[LT−1] is the
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Figure 1. (a) Locations of 14 monitoring sites in Austria (1) Lauterach, (2) Leutasch, (3) Achenkirch, (4) Gschlössboden, (5) Sillianberger

Alm, (6) Zettersfeld, (7) Elsbethen, (8) Gumpenstein, (9) Aichfeld-Murboden, (10) Kalsdorf, (11) Pettenbach, (12) Schalladorf, (13) Lobau,

(14) Frauenkirchen; (b) Soil map data basis: Digital soil map of Austria, 1km raster, Federal Forest Research Center (BFW, 2016); (c) Hydro-

logical Atlas of Austria (HAO) mean areal annual precipitation (Kling et al., 2007b); (d) HAO mean areal annual actual evapotranspiration

(Kling et al., 2007a); Maps from the HAO where compiled using QGIS (QGIS Development Team, 2022).

unsaturated hydraulic conductivity function and h[L] is the pressure head. S is a sink term accounting for water uptake by

plant roots. The unimodal Van Genuchten-Mualem (VGM) model described the soil hydraulic properties, namely the soil

water retention curve [Eq. (2)], and the unsaturated hydraulic conductivity [Eq. (3)]:125

θ(h) =





θr + θs−θr

(1+(|αh|)n)m , h < 0

θs, h≥ 0
(2)

K(h) = KsS
l
e

[
1−

(
1−S1/m

e

)m]2

(3)

m = 1− 1/n,n > 1 (4)

Se =
θ− θr

θs− θr
(5)130
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where θr[L3L−3] is the residual water content, θs][L3L−3] is the saturated water content, α[L−1], n[−] and m[−] are van-

Genuchten shape parameters, with the relation given in Eq. (4), Se [-] is the effective saturation (defined in Eq. (5)) and l[L] is a

pore connectivity parameter. The unimodal VGM model was successfully used in several studies to parameterize the hydraulic

behavior of variably saturated soils (e.g., Brunetti et al., 2020b; Dettmann et al., 2014; Lambot et al., 2002). It has been shown135

to become more inconsistent in the clay range of soil textures (Fuentes et al., 1992); however, this limitation does not affect any

soils in the framework of this study and was thus employed for all sites. The sink term for the simulation of plant water uptake

is implemented according to Eq. (6) (Feddes et al., 1978), where rd[L] is the root depth, Tp[L] is the potential transpiration

and α(h) is a prescribed water stress response function depending on the crop type. The crop parameterization for the sites

in this study used the default values for grass cover (Taylor et al., 1972), except for the Pettenbach calibration with maize140

parameterization according to Wesseling et al. (1991).

S(h) = α(h)
1
rd

Tp (6)

The model domain was set up from soil surface to 1.5 m depth at all sites and two different soil materials were defined for the

upper soil (including 20 cm root zone) and the lower soil, respectively. The depths of the soil layers are given in the Appendix145

in Table A3. In this study, we define the point at which percolating water is expected to contribute to groundwater recharge as

the amount of water that arrives at the bottom of the area at a depth of 1.5 m, well below the root zone. It is assumed that water

arriving at this depth will not be subject to further loss mechanisms and so will reach the water table (Heppner et al., 2007).

However, since the point where water actually reaches the water table remains unknown, the estimation with this approach can

be referred to as potential recharge (Scanlon et al., 2002).150

Daily time-steps were used in all simulations, for variable boundary conditions as well as simulated soil water content

and water fluxes. Meteorological data for the sites, including precipitation, solar radiation, sunshine duration, wind speed,

and relative humidity, were obtained from the Central Institution for Meteorology and Geodynamics (ZAMG), Austria. The

potential evapotranspiration ET0 was calculated with the FAO Penman-Monteith method according to Allen et al. (1998).

At the upper boundary of the model domain, an “atmospheric”, “zero-ponding” boundary condition was specified, where155

an equilibrium is prescribed between the soil surface pressure and atmospheric water vapor pressure when the evaporative

demand exceeds the soil evaporation capacity, and where the pressure at the soil surface is set to zero when both infiltration

and surface runoff occur. The lower boundary of the model domain was set to seepage face for the lysimeter sites (Leutasch

and Pettenbach) and to free-drainage for all other sites during the calibration period. For the simulation of long-term potential

recharge rates, the lower boundary condition at all sites was set to free-drainage in order to reflect natural conditions with a160

water table far below the model domain. To improve comparability of long-term simulations at the sites, a grass reference was

used with the calibrated Pettenbach model to simulate long-term groundwater recharge. Long-term simulations comprised the
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entire period of available soil water and meteorological data. For the location Achenkirch, only two years of meteorological

data (2017-2018) were available.

For model validation and long-term simulations, snow accumulation and snow melt was accounted for in HYDRUS-1D.165

The model treats any precipitation falling at a temperature below -2°C as snow and any precipitation above +2°C as liquid,

assuming a linear transition between -2°C and +2°C. A 0.4 snow sublimation constant was used for the reduction of potential

evaporation from snow and the simulation of snow melt at temperatures above 0°C used a constant of 0.43 cm day −1 °C−1.

2.2.2 Bayesian analysis

The Bayes Theorem (Eq. 7) is the basis for the estimation of parameter posterior distributions which are used for quantification170

of model parameter uncertainties after calibration. Here, P (Ω |D,M) is the posterior distribution of the model parameters (Ω),

given the data (D) and the model (M ), P (D |M,Ω) is the data likelihood, P (Ω |M) is the prior parameter distribution and

P (D|M) is the marginal likelihood or Bayesian model evidence (BME). Measurement errors are assumed to be independent,

homoscedastic, and normally distributed, thus leading to a Gaussian likelihood function [Eq. (8)], where σ is the standard

deviation in the measurement error, Mi(Ω) is the model realization and ỹi is the corresponding observed data.175

P (Ω |D,M) =
P (D |M,Ω)P (Ω |M)

P (D |M)
(7)

L(Ω) =
k∏

i=1

1√
2πσ2

exp
[
−1

2
σ2 (Mi(Ω)− ỹi)

2

]
(8)

At all 14 locations, 10 soil hydraulic parameters (SHPs) (residual and saturated water content parameters θr and θs, shape

parameters α and n, and the saturated hydraulic conductivity parameter Ks, for two soil layers, respectively) were estimated180

per site. The pore connectivity parameter l was fixed to 0.5 according to Mualem (1976). Together with the SHPs, the standard

deviations of the measurement errors were estimated in the Bayesian inference. Uniform prior distributions were assumed for

all parameters. Their ranges were established based on texture information, literature review, and preliminary testing to prevent

cutting off the posterior distributions. Final ranges are given in the Appendix in Table A3.

The implementation of the Bayesian approach in a numerical framework can become challenging for non-linear models185

such as the model used here. The Nested Sampling algorithm as proposed by Skilling (2006) has been used successfully

for parameter estimation and uncertainty quantification in studies with non-linear hydrological or biogeochemical models

(Brunetti et al., 2020a; Elsheikh et al., 2013). It is an efficient Monte Carlo method which estimates the Bayesian model

evidence and calculates posterior distributions as a side product. It transforms the multi-dimensional integral of the Bayesian

model evidence (BME) into a one-dimensional one, which is then solved iteratively, based on the evaluation and redistribution190

of a number of “live points” over the parameter space. Several improvements were implemented with the original algorithm

such as the ellipsoidal rejection sampling scheme which is able to establish multiple posterior modes. This has been realized in
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the algorithm MULTINEST by Feroz et al. (2009). The algorithm has been shown to be well suited to multimodal distributions

and moderately complex inverse problems with up to 20 parameters (Buchner, 2016; Feroz and Hobson, 2008). The algorithm

is particularly suitable for our study because it offers a high level of efficiency for unimodal problems while also handling195

the possibility of multimodal posteriors. Further details on the algorithm can be found in Feroz et al. (2019, 2009), Feroz and

Hobson (2008) and Mukherjee et al. (2006).

Here, we used a number of live points N=100 to sample the parameter space. This number has been shown to produce a

reliable estimate of the BME integral (and therefore a satisfactory sampling of the parameter space) in a sensitivity analysis

by Brunetti et al. (2020a, b) for similar models and dimensionalities. At each iteration of the algorithm, the current maximum200

likelihood sample point is multiplied with the remaining prior volume to estimate the maximum remaining volume of the BME

integral. Sampling is then terminated according to a tolerance criterion, which defines when the remaining contribution from

the current live points to the integral is considered to be small enough. At this point, it is expected, that the bulk of the posterior

has been sampled sufficiently. The tolerance parameter in this study was set to 0.5. After successful model calibration, we used

samples from the posterior distributions to propagate parameter uncertainty in the model for long-term simulations to quantify205

the resulting uncertainty in recharge simulations.

2.2.3 Statistical analysis

Simulations with the successfully calibrated models were used in a second step to perform a statistical analysis in order to

characterize and describe the variability of groundwater recharge at the monitoring sites and to assess the influence of climatic,

geographic and soil properties on potential groundwater recharge rates and their temporal variability. For this purpose, we210

used a Principle Component Analysis (PCA) and established clusters of sites with similar properties using Agglomerative

Clustering (Pedregosa et al., 2011). In order to quantify the temporal variability in water balance components, we calculated

the coefficients of variations (CVs) defined as the quotient of standard deviations between months within a year as measure for

seasonal variability. Spearman’s Rho correlations were used to identify predictor variables for potential groundwater recharge

rates and temporal variability. Significance of correlations were evaluated at a 90% confidence level (p<0.1).215

3 Results and discussion

3.1 Calibration and validation

The required number of iterations of the MULTINEST algorithm with models for all 14 locations ranged between 2595 and

5515 (4111 on average) until the termination criterion was satisfied (as described in Sect. 2.3), generally resulting in unimodal

posterior parameter distributions. Median parameter estimates and estimated measurement errors including the 95% credible220

interval are given in Table 1 for upper and lower soil layers at the 14 sites. Figure 2(a) shows exemplarily for the location

Gumpenstein the calibrated measurement error and median prediction of the volumetric soil water content for the upper and
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Figure 2. Inverse parameter estimation and uncertainty: (a) Gumpenstein calibration period with soil water content measurements (grey)

from two depth levels including the calibrated measurement error σ, and prediction with median parameter estimates (blue); (b) Boxplots of

estimated parameter uncertainties (index 1 for upper, index 2 for lower soil layer) from all 14 sites, as ratios between 95% interquantile range

(IQR) and median estimates.

lower soil layer. Calibration plots for all 14 sites are shown in Fig. A1 in the Appendix. Uncertainty in the parameter estimation

is summarized for all 14 sites in Fig. 2(b) as ratios between the 95% interquantile range (IQR) and the median estimate.

Median estimates for the VGM shape-parameters α and n varied between 0.001 – 0.945 cm−1 and 1.01 – 2.30, respectively,225

where α was < 0.01 cm−1 at most sites. Except for the high α estimates at Gschlössboden (α1 = 0.945 cm−1) and Lobau

(α1= 0.511 cm−1 and α2 = 0.696 cm−1), the VGM shape parameters fell well within the range of values predicted by the

ROSETTA pedotransfer model (Schaap and Leij, 1998); high estimates for α and n coincided with a high reported fraction in

sand. Median estimates for hydraulic conductivity parameters Ks ranged from 5–3863 cm d−1, where high values were found

for soils with high fractions in organic and stone content (Gschlössboden, Sillianberger Alm, Zettersfeld).230

Generally, uncertainties in the estimation of the residual water content parameter θr and the saturated hydraulic conductivity

parameter Ks for the sites were high, both for the upper and lower soil layers (IQR/median ∼ 26 for Ks2 at Lauterach). The

uncertainty in the shape parameter α was medium with a relative uncertainty (IQR/median) < 6 and mostly low absolute values

in estimates and uncertainty ranges. The shape parameter n and the saturated water content parameter θs were identified with

the highest precision (IQR/median<0.5).235

The estimation of Ks has been frequently shown to be associated with high uncertainties (e.g., Baroni et al., 2010; Minasny

and Field, 2005; Mishra et al., 1989). Brunetti et al. (2019) observed in the estimation of SHPs with remote sensing soil moisture

data, that uncertainty in θr estimation was low whereas θs was highly uncertain. This was related to soil water content values

being low in their study and mainly representative for unsaturated conditions. In this study, at the majority of the Austrian
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Table 1. Median estimates and 95 % credible interval of soil hydraulic parameters and measurement errors for upper (L1) and lower (L2)

soil profiles.

Site θr

(
cm3 cm−3

)
θs

(
cm3 cm−3

)
α
(
cm−1

)
n(−) Ks

(
cm d−1

)
σmeas

(
cm3 cm−3

)
Lauterach L1 0.134+0.062

−0.118 0.425+0.019
−0.010 0.002+0.002

−0.001 1.34+0.19
−0.14 133.9+65.2

−92.4 0.024+0.002
−0.002

L2 0.068+0.094
−0.062 0.390+0.072

−0.008 0.006+0.028
−0.002 1.19+0.09

−0.07 5.3+165.0
−1.3 0.027+0.003

−0.002

Leutasch L1 0.022+0.046
−0.021 0.462+0.028

−0.067 0.006+0.004
−0.002 1.20+0.05

−0.06 667.3+290.3
−339.2 0.031+0.002

−0.002

L2 0.096+0.002
−0.003 0.160+0.010

−0.009 0.005+0.003
−0.002 2.30+0.33

−0.27 770.1+219.1
−272.0 0.011+0.000

−0.001

Achenkirch L1 0.023+0.054
−0.021 0.570+0.025

−0.020 0.001+0.001
−0.000 1.13+0.01

−0.02 776.3+207.2
−333.4 0.048+0.003

−0.004

L2 0.001+0.001
−0.001 0.197+0.002

−0.003 0.004+0.002
−0.001 1.09+0.01

−0.01 1843.8+1.011.6
−708.7 0.011+0.000

−0.000

Gschlössboden L1 0.050+0.000
−0.001 0.278+0.047

−0.025 0.945+0.053
−0.126 2.25+0.27

−0.07 839.0+605.4
−284.6 0.021+0.001

−0.001

L2 0.005+0.006
−0.005 0.320+0.023

−0.046 0.002+0.003
−0.001 2.04+0.19

−0.17 2320.5+293.5
−999.0 0.009+0.001

−0.001

Sillianberger L1 0.143+0.052
−0.093 0.536+0.042

−0.051 0.006+0.009
−0.004 1.12+0.03

−0.02 3098.7+1769.1
−2043.5 0.030+0.002

−0.002

Alm L2 0.189+0.010
−0.040 0.535+0.022

−0.016 0.002+0.001
−0.001 1.11+0.02

−0.01 3863.4+1034.2
−2520.3 0.023+0.002

−0.002

Zettersfeld L1 0.082+0.061
−0.047 0.583+0.015

−0.012 0.060+0.228
−0.027 1.09+0.02

−0.02 562.0+1194.2
−290.5 0.030+0.002

−0.002

L2 0.019+0.022
−0.017 0.256+0.009

−0.010 0.001+0.001
−0.000 1.09+0.02

−0.01 3344.6+1061.8
−1040.8 0.007+0.000

−0.001

Elsbethen L1 0.105+0.082
−0.082 0.453+0.012

−0.006 0.001+0.001
−0.000 1.13+0.05

−0.03 144.8+52.7
−87.3 0.013+0.001

−0.001

L2 0.031+0.074
−0.028 0.408+0.020

−0.010 0.001+0.001
−0.000 1.16+0.06

−0.03 18.3+37.7
−8.5 0.019+0.002

−0.002

Gumpenstein L1 0.051+0.027
−0.038 0.375+0.014

−0.010 0.003+0.001
−0.001 1.08+0.01

−0.01 392.1+97.6
−111.6 0.012+0.001

−0.001

L2 0.067+0.034
−0.050 0.333+0.008

−0.007 0.001+0.001
−0.001 1.08+0.01

−0.02 214.2+172.5
−105.6 0.009+0.001

−0.001

Aichfeld- L1 0.214+0.035
−0.052 0.391+0.010

−0.004 0.026+0.048
−0.012 1.06+0.02

−0.02 856.3+135.1
−294.8 0.021+0.001

−0.001

Murboden L2 0.100+0.015
−0.015 0.245+0.023

−0.017 0.661+0.299
−0.264 1.23+0.08

−0.05 57.0+77.1
−33.8 0.008+0.001

−0.000

Kalsdorf L1 0.036+0.044
−0.030 0.448+0.080

−0.078 0.011+0.008
−0.006 1.46+0.24

−0.12 486.9+469.1
−367.3 0.043+0.004

−0.003

L2 0.017+0.016
−0.016 0.309+0.024

−0.009 0.033+0.020
−0.011 1.50+0.14

−0.08 867.4+130.4
−301.3 0.016+0.002

−0.001

Pettenbach L1 0.063+0.108
−0.057 0.387+0.005

−0.006 0.001+0.001
−0.000 1.15+0.06

−0.04 245.3+239.7
−189.9 0.036+0.004

−0.002

L2 0.163+0.061
−0.068 0.405+0.006

−0.007 0.516+0.467
−0.421 1.03+0.01

−0.01 19.6+99.8
−16.2 0.012+0.001

−0.001

Schalladorf L1 0.013+0.033
−0.012 0.455+0.039

−0.034 0.011+0.007
−0.005 1.28+0.06

−0.05 17.1+27.2
−10.7 0.023+0.002

−0.001

L2 0.049+0.066
−0.046 0.395+0.005

−0.002 0.001+0.001
−0.000 1.22+0.06

−0.07 1.5+1.2
−0.5 0.005+0.001

−0.000

Lobau L1 0.006+0.013
−0.006 0.723+0.019

−0.032 0.511+0.266
−0.106 1.18+0.01

−0.01 684.5+201.0
−196.4 0.044+0.002

−0.002

L2 0.173+0.052
−0.055 0.378+0.004

−0.004 0.696+0.268
−0.304 1.01+0.01

−0.00 262.0+491.5
−149.0 0.004+0.000

−0.000

Frauenkirchen L1 0.049+0.045
−0.047 0.489+0.052

−0.043 0.001+0.001
−0.000 1.46+0.12

−0.10 333.4+150.2
−212.4 0.0299+0.003

−0.003

L2 0.008+0.012
−0.007 0.359+0.043

−0.031 0.002+0.001
−0.000 1.32+0.07

−0.03 269.8+195.1
−117.5 0.019+0.002

−0.001

locations, soil water content measurements were more often near saturation and less in the dry range (as for example in Fig.240

2(a) at Gumpenstein). The θs parameter was therefore mostly better informed by the measurements than θr.
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Figure 3. Correlations between median parameter estimates and 95% interquantile range (IQR) from posterior parameter distributions for α,

n and Ks including 14 sites with each two soil layers. Spearman’s Rho correlation coefficient (r) are given. The presented correlations for α,

n and Ks were significant with p<0.01; no such relation was found for θs and θr .

Overall, SHP estimation using soil water content monitoring data from different depth levels was associated with some uncer-

tainty. Parameter uncertainties were higher in coarse than in fine textured soils: Uncertainties in terms of the 95% interquantile

range (IQR) in the posterior distributions of Ks and n were positively correlated with the percentage in sand (p=0.06); IQRs in

Ks, α, and n increased significantly with the values of the median estimates (p<0.01) (Fig. 3), whereas no such relation existed245

for θs and θr.

The reliability of the calibration was quantified by the RMSE between median simulations and observations during calibra-

tion and validation periods, summarized for all sites in the Appendix in Table A2. Overall, the calibration fit was good, with

RMSE values ranging between 0.009-0.028 cm3 cm−3. For the validation periods, the fit in terms of RMSE deteriorated espe-

cially for the locations of Lobau (RMSE calibration = 0.028 cm3 cm−3, RMSE validation = 0.054 cm3 cm−3) and Pettenbach250

(RMSE calibration = 0.020 cm3 cm−3, RMSE validation = 0.067 cm3 cm−3). The Lobau soil profile was under the influence

of water table fluctuations where we cannot exclude that model assumptions about the lower boundary condition have been

occasionally violated. At the Pettenbach lysimeter station, a crop rotation including fertilization was applied. It is possible, that

this affected soil properties, which were assumed to be constant in the modeling. For example, Lu et al. (2020) showed in their

review that root growth and decay can alter soil hydraulic properties; Whalley et al. (2005) found, that growing different plants255

had a significant effect on the porosity of the soil aggregates, and Schjønning et al. (2002) observed the development different

pore systems in soils depending on crop rotation and fertilization.

Overall, the validation of the models was acceptable with RMSE values ranging between 0.014-0.067 cm3 cm−3. Scat-

terplots including the coefficients of determination R2 (0.34 – 0.98) for the validation period are shown in Fig. A2 in the

Appendix.260

3.2 Simulated long-term water balance at the local scale

The calibrated models were used to simulate and assess different components of the water balance for all monitoring stations.

In particular, we looked at long-term estimates and temporal variability in actual evapotranspiration and potential groundwater
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Table 2. Local long-term average water balances at 14 sites: Precipitation (P), potential Evapotranspiration (ETp); simulated potential

groundwater recharge (GWR) and actual evapotranspiration (ETa) including 95% credible interval from propagated parameter uncertainty.

Period P (mm a−1) ETp(mm a−1) GWR (mm a−1) ETa(mm a−1) GWR/P (%)

Lauterach 1996− 2018 1578 700 907+4
−4 672+3

−4 57+1
−0%

Leutasch 2008− 2018 1235 622 665+9
−7 521+7

−10 54+2
−1%

Achenkirch 2017− 2018 1533 673 1022+14
−16 480+14

−14 67+1
−1%

Gschlössboden 2012− 2018 1493 552 1319+7
−9 170+2

−6 88+0
−1%

Sillianberger Alm 1997− 2018 1023 707 578+13
−12 439+10

−13 57+1
−1%

Zettersfeld 2012− 2018 1353 634 926+15
−10 399+10

−15 68+1
−1%

Elsbethen 1996− 2018 1468 665 853+10
−6 614+6

−10 58+1
−0%

Gumpenstein 1996− 2018 1100 661 641+8
−11 448+11

−8 58+1
−1%

Aichfeld-Murb. 1996− 2018 813 728 244+3
−2 557+2

−3 30+0
−0%

Kalsdorf 1996− 2018 852 801 229+23
−24 623+19

−31 27+3
−3%

Pettenbach 1996− 2018 1031 789 459+18
−19 558+20

−20 45+2
−2%

Schalladorf 1996− 2018 484 893 45+7
−7 431+6

−7 9+1
−1%

Lobau 1996− 2018 570 913 44+8
−9 520+9

−8 8+1
−2%

Frauenkirchen 2005− 2018 601 882 92+15
−9 526+10

−16 15+2
−1%

recharge, as well as the average fractions of potential groundwater recharge from precipitation. Long-term averages of input

and simulated annual water balance components including propagated parameter uncertainties are given in Table 2.265

Uncertainty in the estimated long-term potential annual recharge from propagated parameter uncertainty was highest in

Kalsdorf (95% IQR = 47 mm) and lowest in Aichfeld-Murboden (95% IQR = 5 mm). The relative uncertainty (IQR/median)

was greater at the dry sites with low absolute potential recharge estimates. It ranged between 1% (Gschlössboden, Lauterach)

and 39% (Lobau). The uncertainties presented here result from parameter uncertainties from the calibration, as well as from

the sensitivity of the simulated water fluxes towards the parameters (and thus also the model input data/ boundary condition270

during the long-term simulation periods). Some processes were not accounted for which may have affected water balances

additionally: The modeling approach assumed that the groundwater table was well below the model domain at all times. At

the Lobau site, however, the groundwater table is shallow, and fluctuations may have reached into the model domain. In this

case, infiltrating water may have reached the water table earlier than assumed by the model. At the same time, net recharge

would have been reduced if the capillary fringe extended into the root zone or even to the soil surface and transpiration and275

evaporation occurred directly from groundwater (Doble and Crosbie, 2017). Further, the modeling approach here neglected

preferential and lateral flow processes. The ground surface at the measurement locations was even; however, it has been shown

that heterogeneity and layering in the soil profiles can lead to lateral flow, even when the effective hydraulic gradient is vertical

(Heilig et al., 2003; Rimon et al., 2007).
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To assess the plausibility of estimated potential recharge rates we compared them to literature values where available. Tóth280

et al. (2016) assumed annual groundwater recharge for the western Pannonian Basin of 70 mm a−1. The region includes the

three southeasternmost sites here (Lobau, Frauenkirchen and Kalsdorf), where potential recharge rates in this study ranged

between 44 – 229 mma−1. For Wagna in southern Styria, 20 km from Kalsdorf, between 296 – 396 mm a−1 have been

estimated in studies by Collenteur et al. (2021) and Stumpp et al. (2009). We also compared the estimates with the long-term

(1961-1990) water balance averages for precipitation, potential and actual evapotranspiration on the catchment scale from the285

Hydrological Atlas of Austria (HAO) (BMLFUW, 2007; Dobesch, 2007; Kling et al., 2007b, a) (Fig. A3 in the Appendix). The

mean annual areal actual evapotranspiration estimates of the HAO (Kling et al., 2007a) are based on water balance calculations

from the period 1961 to 1990. They are comparable to our long-term estimates (R2 = 0.78) supporting the plausibility of the

here established water balances.

We further evaluated estimated recharge rates at the locations of Leutasch and Gumpenstein by comparing the available290

lysimeter outflow measurements to modelled median estimates. It resulted in acceptable fits of R2 = 0.56 (for the period

2008 – 2018) and R2 = 0.64 (for the period 2001 – 2018), respectively, and is shown in Fig. A4 in the Appendix, including

uncertainties. Variability in annual seepage measurements between four Gumpenstein lysimeters was high with an average

uncertainty range of 132 mm a−1. This clearly exceeded the average range of predictive uncertainty related to parameter

uncertainty of the modeling at this site (20 mm a−1). Besides the uncertainty in the seepage measurement, the variability in295

the measurements could also be an indicator of spatial heterogeneities causing differences in the soil hydrology for individual

lysimeters. In any case, the high variability in seepage measurements here emphasizes the need to analyze uncertainties in the

estimation of soil water fluxes.

3.3 Statistical analysis of hydrologically relevant properties

The seasonal variability in groundwater recharge (quantified as coefficient of variation from standard deviation between300

monthly sums and annual means) ranged between 71% and 265%. This was consistently higher than the seasonality in precip-

itation (52 – 76%) and potential evapotranspiration (64 – 76%) indicating that potential recharge rates vary significantly more

over the year than the meteorological input variables. We further analyzed the seasonality in local water balances in a PCA and

correlation analysis. Figure 4 shows the biplots of the PCA, according to amount and seasonality of water balance components,

the fraction of potential groundwater recharge from precipitation, and site specific properties (altitude and longitude; sand, silt,305

clay and organic matter percentages of the upper soil layers). PC1 and 2 alone explained 77%, PC1 – 4 together explained 93%

of the variance in the data.

Two clusters were established: The five sites in the south and east of Austria (Aichfeld (9), Kalsdorf (10), Schalladorf (12),

Lobau (13), Frauenkirchen (14)) show a potential recharge fraction of less than 30% of annual precipitation (as low as 8% in

Lobau), a high seasonality in groundwater recharge (134 – 265%) and precipitation (67 – 76%), but a low seasonality in actual310

evapotranspiration (59 – 73%). The remaining nine out of 14 sites in western to central Austria with humid to wet climate

show a fraction of potential groundwater recharge from precipitation of more than 40%, and a low seasonality in precipitation

(52 – 68%). The seasonality in groundwater recharge at these sites was lower than in the East (71 – 124%), but seasonality in
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(a) (b)

Figure 4. Principle Component Analysis biplots (a) for the first and second principle component and (b) for the third and fourth principal

component. The analysis included potential annual groundwater recharge (GWR), annual precipitation (P), annual potential evapotranspi-

ration (ETp), annual actual evapotranspiration (ETa), the fraction of groundwater from precipitation (GWR/P), seasonalities (Season.) in

GWR, P, ETa; longitude (Long), altitude (Alt); sand, silt, clay and organic matter (Org) percentages at the 14 sites. Clusters of monitoring

sites shown in orange and blue were established with Agglomerative Clustering (Euclidean affinity and ward linkage) (Pedregosa et al.,

2011).

actual evapotranspiration was higher (75 – 112%); it was most pronounced at the three sub-alpine sites (Gschlössboden (4),

Sillianberger Alm (5), and Zettersfeld (6)) which were influenced by snow and where little to no actual evapotranspiration was315

estimated outside of the extended summer period (May – September). An obvious outlier among the monitoring sites in Fig.

4(a) was the location Gschlössboden at high altitude, with coarse soil, lowest potential and actual evapotranspiration, and the

highest estimated potential recharge rates compared to other sites.

Figure 5 shows the pair-wise scatterplots, correlation coefficients and significance levels of relevant variables. Since precipi-

tation and potential evapotranspiration were negatively correlated, we adopted the Aridity Index (ETp/P) as predictor instead of320

looking at both variables separately. Seasonality in potential evapotranspiration is not shown, since no significant correlations

to other variables were identified. Grain size classes of the soil textures were intercorrelated, we therefore only used the sand

fraction as predictor variable.

Potential annual groundwater recharge rates were negatively correlated with aridity (lower precipitation and higher potential

evapotranspiration). This was expected and was also supported by findings of (Moeck et al., 2020) on the global scale. At the325

Austrian sites, aridity increased and potential groundwater recharge decreased significantly with longitude, resulting in lower

potential recharge rates at the eastern than at the western sites. As expected, precipitation was also correlated with altitude and

so were potential recharge rates; however, less strongly and less significantly than with longitude. In the study here, slopes were

not taken into consideration, as the monitoring sites were horizontally even and the modeling domain was limited to the plot

scale. Regarding the larger scale (and actual recharge rates), the occurrence of steep slopes at high altitudes would be expected330
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Figure 5. Correlation analysis with pair-wise scatter plots, Spearman’s Rho correlation coefficient and significance levels for the variables

potential annual groundwater recharge (GWR), annual actual evapotransiration (ETa), Aridity Index (AI), Seasonalities (Seas.) in GWR,

ETa, and P; longitude (Long), altitude (Alt), percentages in sand and organic matter (Org) at 14 monitoring sites.

to result in more surface runoff or more interflow instead of recharge (Brunetti et al., 2022; Moeck et al., 2020) which could

reverse the correlation of recharge rates with altitude.

The fraction of potential groundwater recharge to precipitation (GWR/P) was strongly correlated with the amount of pre-

cipitation (r = 0.91, p<0.001) which means that there is an exponential relationship between potential recharge estimates and

precipitation. Similarly, Barron et al. (2012) found an exponential relationship between annual recharge and rainfall estimates335

at Australian sites, which they explained by the correlation of high amounts of precipitation with high rainfall intensities and

long wet periods throughout the year, leading to an increased fraction of recharge from precipitation.

Higher potential recharge rates and lower actual evapotranspiration were correlated with a higher percentage in sand. Soils

with greater sand fraction and less fine material have a higher hydraulic conductivity and a lower water retention capacity

as they let water percolate faster below the root zone (Emerson, 1995; Wohling et al., 2012). Wang et al. (2009) observed340
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how the fraction of recharge from precipitation increased with coarser soil texture as the more rapid deep percolation reduced

evapotranspiration. In the study here, however, the relation between potential groundwater recharge and soil texture was weaker

compared to climatic factors, i.e. precipitation and potential evapotranspiration. This corresponded to findings of the global

scale analysis by Moeck et al. (2020).

Seasonality in potential groundwater recharge was most strongly correlated with the Aridity Index (ETp/P). Sites in the east,345

with more pronounced aridity and low potential recharge rates, were associated with a high seasonality with extended periods of

zero recharge. Estimated potential groundwater recharge there was concentrated on the winter half-year. High rates in potential

groundwater recharge were associated with sites where recharge occurred throughout the year and were thus correlated with

a low seasonality in recharge. Soil texture did not correlate with seasonality in estimated potential groundwater recharge. In

this study, we assumed the same lower boundary for all profiles to ensure comparability of the sites, where additional data350

from below 1.5 m were not available. However, the depth of the water table, and thus the thickness of the unsaturated zone,

in addition to structural features causing lateral flow, determine quantity and timing of water actually reaching the aquifer.

With greater thickness of the unsaturated zone, the influence of soil water retention characteristics on magnitude and temporal

variability of actual groundwater recharge rates might increase (Burri et al., 2019; Cao et al., 2016; Moeck et al., 2020). In

future, data from the deeper unsaturated zone (>1.5 m) would be helpful to further improve the quantification of recharge.355

4 Conclusions

In this study, we made use of volumetric soil water content measurements from multiple depth levels at 14 locations in Austria

to inversely estimate effective soil hydraulic parameters (SHPs) using the physically based HYDRUS-1D model, and we

quantified parameter uncertainties in a Bayesian probabilistic framework based on multimodal Nested Sampling. We used the

calibrated models for the long-term simulation of soil water fluxes and associated uncertainties. Finally, we compared potential360

recharge rates and actual evapotranspiration at the 14 Austrian locations to identify the influencing factors on amount and

temporal variability of local water balances.

SHPs were successfully established resulted in good fits to the measured soil water content. The parameter estimation based

on soil water content measurements was partly subject to considerable uncertainties; especially in the residual water content

and soil hydraulic conductivity parameters, whereas uncertainties in the estimation of saturated water content parameters and365

shape parameters n of the soil water retention curves were low. Higher uncertainties in shape parameters and the saturated

hydraulic conductivity parameter were linked with coarser soil textures. The absolute uncertainty in potential groundwater

recharge derived from SHP uncertainty ranged between 5-47 mm a−1; the relative uncertainty (IQR/median) was as low as 1%

at sites with high absolute potential recharge rates in a wet climate, and as high as 39% with low absolute potential recharge

rates in a dry climate.370

Estimated potential groundwater recharge rates at the Austrian soil water monitoring sites were influenced by the East-

West gradient in altitude and climatic conditions: The dry continental climate at the eastern locations was associated with low

fractions of potential groundwater recharge from precipitation, and high seasonality in potential recharge rates. In contrast,
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the wet and snow influenced climate at western and central Austrian sites came with high potential recharge rates and lower

temporal variability in recharge than in the East, but with a higher seasonality in actual evapotranspiration. Sandy soil textures375

were associated with higher potential recharge rates and lower actual evapotranspiration. However, precipitation and potential

evapotranspiration were more influential variables than soil properties on estimated potential recharge rates and their temporal

variability.

Overall, the use of a Nested Sampling based Bayesian approach proved to be an efficient method to inversely estimate SHPs

and soil water fluxes, and to quantify associated uncertainties from soil water monitoring data. The calibrated models can be380

used to estimate future groundwater recharge rates under climate change and to illuminate model uncertainties resulting from

SHP uncertainties and a range of climate scenarios.
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Appendix A

Table A1. Site properties, particle size distribution of the upper soil layer (ÖNORM L 1050), and selected measurement depths for calibration

and validation periods.

Altitude Longitude Latitude Sand % Silt % Clay % Probe dephts

(m.a.s.l.) (◦) (◦) 0.063− 2.0 mm 0.002− 0.063 mm < 0.002 mm (−cm)

Lauterach 415 9.74 47.48 41 45 14 10,30,60,120

Leutasch 1135 11.14 47.37 35 51 14 10,50,80

Achenkirch 895 11.64 47.58 20 48 32 5,25,50

Gschlössboden 1737 12.43 47.12 88 12 0 10,20,30

Sillianberger Alm 1500 12.41 46.76 33 63 4 10,20,30,50

Zettersfeld 1990 12.79 46.87 56 42 2 20,40,60

Elsbethen 428 13.08 47.76 36 59 5 10,30,60,90,150

Gumpenstein 690 14.10 47.50 38 53 9 20,40

Aichfeld-Murb. 669 14.76 47.21 28 56 16 10,30,90,150

Kalsdorf 320 15.47 46.95 49 42 9 10,30,60,130,150

Pettenbach 466 14.01 47.98 11 75 14 10,35,60

Schalladorf 238 16.14 48.64 17 43 40 35,60,90,120,150

Lobau 150 16.53 48.21 29 57 14 5,10,35,150

Frauenkirchen 124 16.90 47.85 53 33 14 10,40,80,110,145
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Table A2. Calibration and validation periods, and goodness of fit (root mean squared error RMSE) between median prediction and measure-

ments.

Calibration Validation Calib. RMSE Valid. RMSE(
cm3 cm−3

) (
cm3 cm−3

)
Lauterach 01.03.− 31.10.2015 01.01.2016− 31.12.2016 0.025 0.028

Leutasch 01.03.− 31.10.2014 01.03.2017− 31.10.2017 0.018 0.021

Achenkirch 01.05.− 31.10.2018 01.01.2017− 31.12.2017 0.023 0.037

Gschlössboden* 01.04.− 30.09.2018 01.01.2018− 31.12.2018 0.017 0.019

Sillianberger Alm* 01.03.− 31.10.2018 01.01.2018− 31.12.2018 0.026 0.020

Zettersfeld 01.04.− 30.09.2017 01.01.2014− 31.12.2015 0.022 0.020

Elsbethen 01.03.− 31.10.2015 01.01.2012− 31.12.2012 0.018 0.015

Gumpenstein 15.04.− 15.10.2012 01.03.2011− 31.12.2011 0.011 0.014

Aichfeld-Murb. 15.04.− 15.10.2016 15.08.2017− 31.12.2018 0.015 0.021

Kalsdorf 01.03.− 31.10.2007 01.01.2008− 31.12.2008 0.021 0.037

Pettenbach** 23.04.− 14.10.2014 24.04.2013− 24.09.2013 0.020 0.067

Schalladorf 01.03.− 31.10.2010 01.03.2013− 31.10.2014 0.009 0.028

Lobau 01.03.− 31.10.2012 01.01.2000− 31.12.2000 0.028 0.054

Frauenkirchen 01.03.− 31.10.2015 01.01.2012− 31.12.2014 0.021 0.036

* No validation data available outside the calibration year, instead the RMSE for the entire year (2018) was calculated.

** Pettenbach calibration period during maize cultivation, validation period during soy bean cultivation. Root parameters were adjusted and potential evapotranspiration estimation

was estimated with corresponding crop coefficients (Allen et al., 1998).
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Table A3. Soil layers in HYDRUS-1D and prior parameter ranges of the Bayesian analysis.

Site Depth (cm) θr

(
cm3 cm−3

)
θs

(
cm3 cm−3

)
α
(
cm−1

)
n(−) Ks

(
cm d−1

)
Lauterach L1 0− 24 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

L2 25− 150 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

Leutasch L1 0− 24 0.00− 0.10 0.25− 0.50 0.0001− 0.5000 1.01− 2.70 1− 1000

L2 25− 150 0.00− 0.10 0.15− 0.40 0.0001− 0.5000 1.01− 3.50 1− 1000

Achenkirch L1 0− 15 0.00− 0.25 0.40− 0.60 0.0001− 0.5000 1.01− 2.70 1− 1000

L2 16− 150 0.00− 0.08 0.10− 0.20 0.0001− 1.0000 1.01− 3.50 10− 10000

Gschlössboden L1 0− 22 0.00− 0.05 0.20− 0.35 0.0001− 1.0000 1.01− 2.70 10− 10000

L2 23− 150 0.00− 0.05 0.20− 0.35 0.0001− 1.0000 1.01− 3.50 10− 10000

Sillianberger Alm L1 0− 24 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 5000

L2 25− 150 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 5000

Zettersfeld L1 0− 49 0.00− 0.25 0.30− 0.60 0.0001− 1.0000 1.01− 2.70 1− 5000

L2 50− 150 0.00− 0.08 0.10− 0.40 0.0001− 1.0000 1.01− 3.50 1− 5000

Elsbethen L1 0− 24 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

L2 25− 150 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 200

Gumpenstein L1 0− 24 0.00− 0.20 0.25− 0.60 0.0001− 0.5000 1.01− 2.70 0.1− 500

L2 25− 150 0.00− 0.20 0.25− 0.60 0.0001− 0.5000 1.01− 2.70 0.1− 500

Aichfeld-Murboden L1 0− 74 0.00− 0.25 0.30− 0.60 0.0001− 0.5000 1.01− 2.70 1− 1000

L2 75− 150 0.00− 0.15 0.17− 0.40 0.0001− 1.0000 1.01− 2.70 1− 1000

Kalsdorf L1 0− 24 0.00− 0.10 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 1000

L2 25− 150 0.00− 0.10 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 1000

Pettenbach L1 0− 24 0.00− 0.25 0.30− 0.60 0.0001− 0.5000 1.01− 2.70 0.1− 500

L2 25− 150 0.00− 0.25 0.30− 0.60 0.0001− 1.0000 1.01− 2.70 0.1− 500

Schalladorf L1 0− 44 0.00− 0.20 0.40− 0.60 0.0001− 0.1000 1.01− 2.00 1− 50

L2 45− 150 0.00− 0.20 0.30− 0.50 0.0001− 0.1000 1.01− 2.00 1− 50

Lobau L1 0− 100 0.00− 0.15 0.35− 0.75 0.0001− 1.0000 1.01− 2.70 1− 1000

L2 101− 150 0.00− 0.25 0.35− 0.60 0.0001− 1.0000 1.01− 2.70 1− 1000

Frauenkirchen L1 0− 24 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 500

L2 25− 150 0.00− 0.20 0.30− 0.60 0.0001− 0.2000 1.01− 2.00 1− 500
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Figure A1. Calibration with soil water content measurements at all 14 sites: The grey bands show the measurement including the area of

the calibrated measurement error σ, the blue lines show the prediction with median parameter estimates for each one measurement depth in

upper and lower soil layer.
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Figure A2. Model validation showing the coefficient of determination (R2) and scatterplots of simulated and observed soil water content from

upper and lower soil layer (layer 1 and 2, respectively) for the 14 sites: (01) Lauterach, (02) Leutasch, (03) Achenkirch, (04) Gschlössboden,

(05) Sillianberger Alm, (06) Zettersfeld, (07) Elsbethen, (08) Gumpenstein, (09) Aichfeld-Murboden, (10) Kalsdorf, (11) Pettenbach, (12)

Schalladorf, (13) Lobau, (14) Frauenkirchen. Validation periods are given in Table A2.
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Figure A3. Scatterplots comparing the long-term averages of precipitation (P), potential and actual evapotranspiration (ETp and ETa) from

the digital Hydrological Atlas of Austria (HAO) (BMLFUW, 2007) with the corresponding rates of simulations in this study. Potential

evapotranspiration in the HAO was calculated by Dobesch (2007) using the FAO approach described by Doorenbos and Pruitt (1977) resulting

in lower values than those of this study which were calculated for a grass reference according to Allen et al. (1998).
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Figure A4. Model validation using lysimeter data from Leutasch and Gumpenstein. Scatterplots and coefficients of determination (R2)

are shown for simulated and observed annual seepage flow. Grey errorbars depict the 95% credible interval from propagated parameter

uncertainty. Leutasch seepage measurements are obtained from a single lysimeter; for Gumpenstein, the 95% uncertainty interval in lysimeter

measurements was calculated from a cluster of four lysimeters.
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